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An Introduction to Monte Carlo Methods

S.E. McCloskey and W.J. Braithwaite
Department of Physics and Astronomy
University of Arkansas at Little Rock

LittleRock, AR72204

Abstract

Monte Carlo computer programming is becoming increasingly popular to those who use it, due to the ease with
which complex problems may be formulated and solved. However, the growth of MC programming for small projects is
inhibited by a frequent misconception of difficulty, inferred from the high level of complexity of problems solved inHigh
Energy and Nuclear Physics using MC methods. Inaddition, few students of science and engineering are receiving expo-
sure to the basic issues involved in the Monte Carlo process despite the ease with which MC can be used to solve classical
physics problems, especially those problems with little symmetry or unusual geometry. Few upper-division or graduate
students have begun to exploit this approach, even in research projects. Thus, an introduction to Monte Carlo methods
would be valuable, even for the beginning science or engineering student. The present work introduces integration of
area and volume, then expands this effort to include surface and volume integrals of scalar and vector functions. Next,
integration over unusual geometries introduces programs which convert the geometries defined by CAD (Computer
Aided Design) to geometries convenient to the Monte Carlo process. Finally, Gauss's Law uses MC to calculate the size of
an asymmetrically positioned charge and a classic example from Sir Isaac Newton uses MC to calculate the effect of a
spherically symmetric shell of mass on an exterior field point where the average force components (Fx,Fy,FJ are calculat-
ed. These final examples introduce singularities and convergence problems arising in the Monte Carlo averaging process.

Introduction

Monte Carlo programming would be growing faster
today ifit were not for the frequent misconception of dif-
ficulty inferred from exposure to the huge Monte Carlo
programs used to solve problems inHigh Energy and
Nuclear Physics. Examples include complex Monte Carlo
modeling programs like GEANT (Roetzel and
Braithwaite, 1993) or the need for optimizing parallel
computing for MC problems (Byrd et al., 1993). This mis-
conception inhibits the growth of MC programming,
which can be extremely useful for much smaller projects
than those encountered in High Energy and Nuclear
Physics.

Despite these inhibition to newcomers, Monte Carlo
computer programming is becoming increasingly popular
to its frequent users, due to the ease with which fairly
complex problems may be formulated and solved for
numerical answers. In many instances, calculational
demands of MC are so slight that spreadsheet program-
ming is sufficient to formulate a problem. However, few
students of science and engineering receive early expo-
sure to the basic issues involved in the Monte Carlo
process. Indeed, upper-division and graduate research
projects could be enhanced by using MC, making the
introduction to Monte Carlo methods in some tangible
examples desirable for beginning science and engineer-
ing students (Buslenko et al., 1966; Hammersley and

Handscomb, 1986).
Monte Carlo integration has been chosen as the

process for introducing Monte Carlo methods, as MC
algorithms are useful in solving integral equations
(Sabelfield, 1991; Mikhailov, 1992). For applications like
integration, the Monte Carlo approach is an averaging
process using random numbers to sample the space being
integrated. Despite its random nature, the MC averaging
process must be set up so as to uniformly sample the
space (or domain) being integrated. Itis worth noting the
Monte Carlo averaging process, as it applies to integra-
tion, converges asymptotically (N -*°°) to the exact solu-
tion.

The simplest example presented is the calculation of
the ratio of the area of a circle inscribed in a square to

the area of the square. The ratio, Area(Circle) /
Area(Square), is 7i/4 *0.7854. The inscribed circle is
shown in Fig la with Fig. lb showing 200 (x, y) points
each chosen randomly for sampling the square. The pro-
cedure used to integrate the area of the circle inunits of
the square (in which it is inscribed) is to count the num-
ber of points falling within the circle (Nhits), then divide
by the total number of points sampling the square (Ntotaj).
The ratio Nhits/Ntotaiis the same as the ratio of areas,
Area(Circle) / Area(Square), provided the coordinate
pairs of random numbers uniformly sample the square as
N"»oo.

The (x, y) points chosen to sample the square come
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from random number pairs each chosen between (-1, +1).
Despite expectations that these random (x, y) point-pairs
uniformly sample the square as N -> °°, a small sampling
group (like the one inFig. lb) looks "spotty" to everyone.
How large a sample is needed for the Monte Carlo
process to converge to useful results? This important
question of convergence is answered qualitatively by
repeating the random (x,y) point selection process sever-
al more times to see ifit reduces the apparent spottiness
of the sampling process.

tion of the "spotty" appearance every time the sampling
is increased by 200 events. This sampling increase may be
accomplished by placing each successive transparency
containing 200 events on top of the transparency showing
the target circle inscribed ina square.

Fig. 1. (a) A "target" Circle is inscribed within a square,
(b-f) Five sets of 200 2-D Monte Carlo samplings of the
area of the square.

Figure lc,d,e,f provides graphs showing four addi-
tional distinct groups of 200 random (x, y) points where
all five groups of 200 points and the "target" circle
inscribed within a square (shown inFig. 1) may be copied
to transparencies (with enlargement) and progressively
laid one above the other. This progression shows a reduc-

Fig. 2. Monte Carlo "target" area sampling for visualizing
the integration of a circle.

The area of the square is chosen as 2x2=4, where all
(Ntotai) of the (x,y) random number pairs fall within the
area of the square, randomly and uniformly sampling the
area of the square. Two plots of the ratio Area(Circle) /
Area(Square) versus the number of 2-D MC samples are
shown in Fig. 3. Most (x, y) points sampling the square
also fall within the circle where the Pythagorean
Theorem is used to test the "hit" or "miss" status of each
(x, y) point. The test is whether x2 + y2 < 1, ifsuccessful,
Nhit$ is incremented. The ratio of the area of the
inscribed circle to the square is given by:

Area(Circle) Nhits N^ n(lp n
Area(Square)

"
Nhits

+Nmisses
=

Ntotal

*
4

"
4
"°7854 -

Figures 3 addresses convergence graphically by show-
ing two envelopes labeled as +lo\ These two envelopes
show one standard deviation on each side of the mean (of
7t/4 = 0.7854) with the figure of merit being the event

fraction lying within ±lo (.693 as N -> <»). The statistical
theory of binomial sampling provides formulas for these
two ±\g envelopes as a function of 2-D samples (N):
0.7854(1±a/ (1-0.7854)/.7854 N).

The next example of Monte Carlo integration is the
calculation of the volume of a sphere inscribed within a
cube. All(x, y, z) points fall within the cube with only
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about half of these points falling within the sphere.
Analytically, the volume of a sphere is calculated to be
7C/3 (* 1.0472) times larger than half the volume of the
cube.

The drawing in Fig. 4 shows an example of an (x,y, z)
>oint on the target sphere. This target picture of the

sphere is useful invisualizing the test for integration of a
pherical volume by Monte Carlo averaging. The status of

each (x, y, z) point is tested using the 3-D Pythagorean
Theorem (developed in Fig. 4). This test asks the ques-
ion: Is r2=x2+y2+z2<l? A "yes" is a "hit" within the sphere.

To calculate a volume using Monte Carlo, consider a
sampling of (x, y, z)random-triplets, where each is viewed
as a coordinate point within the cube. Large numbers of
x,y, z) random triplets are used to uniformly sample the

cube; this sampling is used to extract the volume of the
sphere inscribed within this cube.

tThe increasingly uniform sampling of a square with
creasing sample size, using (x, y) random pairs, was
en in the 2-D example presented above. Convergence in

this earlier 2-D work is reassuring to a new MC user as it
relates to the 3-D problem; it corresponds to examining
each face of the cube from a position of normal inci-
dence.

Figure 5 has two plots of calculated
Volume(Sphere)/Volume(Cube) versus the number of 3-
D MC events (N). Also, each plot shows two envelopes
labeled at +lo\ These two envelopes are one standard
deviation on each side of twice the mean of the volume
ratios (rc/3 = 1.0472), with each plot giving a figure of
merit (event fraction within±lo) for N= 1600 (approach-
ing .693 as N -» °q). These two envelopes may be written
as 1.0472(1 ±V(2- 1.0472)/1.0472 N) as a function of 3-
D samplings (N).Note the

Volume(Sphere) Nhl, S*'1
'

1 It 1
Volume(Cube)

'N^,"»~8 J 3 '1<L0472-> "50% -

This second example uses a spreadsheet with graph-
ics to calculate 1600 volume samplings of the cube.
Figure 6 displays a matrix of 20 distinct MC calculations
of the volume of the sphere versus N[the number of (x,y,
z) triplets of random samples]. Each plot has two

envelopes indicating one standard deviation from n/3 as
a function of N. The number in each calculation is the
figure of merit indicating the event fraction lying within
this +1 standard deviation for each set of 1600 samples.

Fig. 4. Monte Carlo volume sampling for visualizing the
integration of a sphere.

Number of Monte Carlo 2-D Samples
—

»

Fig. 3. A Monte Carlo calculation of the area of a circle
(inscribed within a square) to the area of the square, as a
function of the number of (x,y) samples.
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Figure 6 shows the large variation inMC predictions for
repeated calculations as a function of N. Envelopes of
+la generally show the convergent trend as the number
N (of 3-D MC events) increases to 1600. Despite this con-
vergent trend, large variations are observed in repeated
calculations of volume as the calculation process is
repeated over-and-over; each calculation could be avail-
able graphically in seconds using modern Workstations.

tion f(x,y) for R2 <1 [R2
-

r2
-

x2+ y2].Using a statement
like S2=S1+ IF(R2<l,l,0)*f(x, y), effectively removes it
from the sum in the "fill-down" (SI is 0). InFORTRAN
an expression like sum = sum +f(xh,yh) is evaluated for a
"hit,"but skipped over for a "miss" (with sum initially 0).
In summary:.. sum Nhit
JJf*x,y)dx dy

-
average[f(xh,yh)]•A(Cirde) ¦* N t̂

• N^iArea(Square).

Results and Discussion

Integration of area may be expanded to include sur-
face integrals of scalar and vector functions. First consid-
er integrating a scalar function f(x, y) over a circle
(inscribed within a square) using MC. Little change in
procedure is needed from that used to integrate the area
of the circle. For each "hit" (defined above) form a run-
ning sum of the evaluated f(xh,yh), but ignore the sum
for a "miss." Ifa spreadsheet like EXCEL is used, the logi-
cal IFstatement is a function subroutine which returns a
1(true) or a 0 (false) which can be multiplied by the func-

Similarly, integration of volume can be expanded to

include surface or volume integrals of scalar and vector

functions. First consider integrating the function f(x, y, z)
over the sphere (inscribed within a cube) using MC with
little change inprocedure from that used to integrate the
volume of the sphere. Insimilar fashion to the integral of
the 2-D f(x, y) outlined above for each 3-D "hit," form a
running sum of the evaluated function f(xh,yh, zh), but
ignore the sum for a "miss." Spreadsheet and FORTRAN
procedures are essentially the same as outlined for the 2-
D integral above. Insummary:
fff sum NhitJJJ f(x,y,z)dxdy dz

-
average[f(s h,yh,zh)]•Vol(Sphere)-» jj—-rf*Vol(Cube).

total

Integration of a function over an unusual volume, such
as a closed "teapot" in a rectangular box, would follow simi-
lar procedures once the MCgeometry is defined. Programs
are available for converting CAD (Computer Aided Design)

Fig. 6. 20 spherical-volume calculations each with two +o*

envelopes as a function of N and the event fraction lying
within ±G at N=1600 (asymptotically .683).

Fig. 5. A MC calculation of the volume of the sphere
inscribed within a cube to the volume of the cube as a
function of N, the number of (x,y, z) samples.
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geometries to geometries to geometries convenient to Monte
Carlo (Cloth and Sterzenbach, 1993). An example of this
type of program is OCTAGON (Dragovitsch et al., 1992), a
program for converting CAD geometries defined in the
drawing of HighEnergy Physics detector elements to geome-
tries compatible with CERN's Monte Carlo detector model-
ing (GEANT, 1994).

Gauss' Law may be used withMC where the field point
is replaced by another spherical shell which is used to define
the surface integral over a sphere. This shell uses three ran-
dom number to form the unit vector:

Rfieid =(x» y> z)/^* x2 + y2 +z2 to define the field coordinates.
The source shell may be taken off center from that of the
surface integral over the field-points, or an asymmetrically
positioned source may be used.

Figure 7a shows a calculation of the size of an asymmet-
rically positioned source of charge using MC to integrate
Gauss's Law by averaging E« h over the closed surface of a
spherical shell centered around (0, 0, 0), with E the charge-
induced Electric Field. The shell defining the integration
coordinates uses three random numbers to form the unit
vector: Rfield=(x,y,z)/v x2 + y2 + z2,with the force found due
to Q=l at (0, .5, 0). Many ideas needed for this calculation
including preserving spherical symmetry, are presented in
the following final MC example from the classic work ofSir
Isaac Newton.

Newton was obliged to invent the calculus to find the
aggregate effect of earth's mass. He showed a field point
located outside a spherically symmetric shell of mass experi-
ences a force as though the mass of the shell were located at

its symmetry center, with the net force being zero for a field
point located inside the spherical shell ofmass.

The shell providing the source of mass is defined using
three random numbers Rsource

= r*(x,y,z)/V x2 + y2 + z2,
where (the scalar) r is the distance of the source shell from
its symmetry center. Spherical symmetry is preserved in the
MC 3-D sampling of £„„„*provided only random number
triplets with x2 +y2 + z2 < 1are used. The field point i^locat-
ed outside the shell for r < 1, and MC sampling of1/1 RS0Urcc

-
Rfield|2 converges to 1, provided a sufficiently large MC sam-
pling is taken when "r"is near one. The vector integral is cal-
culated for the force (Fx,Fy,Fz). Figure 7b shows results of a
spreadsheet calculation of each force component (for G^=l)
when the unit-vector field point is taken along the axis Rfield= (0, 1, 0), (0, 1, 0). The fixed field point is easily changed to

any of these three unit vectors or to any other (x, y, z) unit-
vector.

The graph for any force component may be presented in
a different color ona computer display, so changing the unit
vector field assignment to another coordinate axis changes
the color of the force component averaging to 1, with color
of the graph of the original force component now averaging
to 0 (along with a third graph). The display willchange when
any other arbitrary unit vector field point is chosen such as:

(l,l,l)/v 3. In this case all 3 components converge (as N
increases) to the same value.

Fjg. 7. (a) MC is used to integrate Gauss' Law by averaging
E• h over a spherical shell. E is due to a unit charge located
off-center from the spherical shell, (b) MC averaging pro-
vides the vector integral of the force (Fx,Fy,Fz) at the field
point (0, 1, 0) due to a spherically symmetric unit-mass shell
at r =0.5.

To appreciate the problem ofconvergence, consider r=l
where the MC weighting term is singular, as RJOurce

"

Rfieldp-*0 at closest approach of source to the field point so

the MC calculation cannot converge. At r = 0.90, the closest
approach point of the source shell (of mass) is 0.1, and the
weighting term in the MC is 100. In contrast, weighting for
force contributions from the far side of the source shell is ¦

0.277, about 400 times smaller. This means that for r = 0.9
(or 1.1) a sampling of 1600 MC triplets is insufficient and a
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much larger value of N must be used. Students are asked to

estimate how many MCsamplings are needed ofr= 0.95 and
for r= 0.99, etc. This example allows students the opportuni-
ty to explore near singularities and their effect on the con-
vergence of the Monte Carlo averaging process. Rough esti-
mates are useful in determining N, the number ofMC sam-
plings which willbe sufficient to assure reasonable conver-
gence; for r = 0.9 a safe but unduly large estimate of N is
100*1600.

In summary, the present work shows that the calcula-
tional demands of Monte Carlo methods for many simple
problems are so slight that spreadsheet programming is
often sufficient to provide useful results (e.g., when evaluat-
ing surface or volume integrals ofscalar or vector functions).
An example of a near-singularity in MC was presented where
the remedy requires a substantial increase in the number of
MC samples. Examples presented above were indicative of
the ease with which MC calculations can be used to provide
tangible results when solving many science and engineering
problems encountered in upper division or graduate course-
work. Monte Carlo methods can complement the formal
mathematics by providing an easy way to arrive at a numeri-
cal answer, especially for those problems with little symme-
try orunusual geometry.
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