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Abstract

We report a facile method to fabricate an
AZO/PANI heterostructure by a sandwiching
technique. Aluminum-doped ZnO (AZO) films were
deposited onto indium tin oxide (ITO) glass using the
sputtering technique while PANI films were deposited
onto ITO glass using electropolymerization. The
optoelectric properties of the inorganic/organic device
were characterized.

Introduction

Transparent conductive oxides (TCOs) have a wide
range of applications in many fields such as gas
sensors (Gupta et al. 2010), piezoelectric (Lorenz-
Hallenberg 2003), solar cells (Sittinger et al. 2008) and
as transparent conductive electrodes (Shi et al. 2000).
TCOs have unique properties that combine both high
transparency and high conductivity. In the majority of
semiconductors, conductivity and transparency are
repulsive and oppose each other. In TCOs, the large
band gap (≈ 3.4 eV) makes them transparent to the 
region of interest in the solar applications and the non-
stoichiometry (lack of oxygen) results in high free
charge concentration and then high conductivity.
Indium tin oxide (ITO) is widely and commercially
used as TCO material, but indium is a scarce element
on Earth, and is toxic. Another drawback of ITO is that
it has low chemical stability. Aluminum-doped zinc
oxide (AZO) has attracted increasing interest over the
years and has been investigated as an alternative to
ITO because it exhibits high transmittance (> 90%) and
low resistivity (around 10-4 Ohm.cm) (Jin et al. 1993).
AZO is supposed to be less expensive than ITO and
also less toxic. As with any TCO materials, AZO is an
n-type semiconductor in nature, with a bandgap around
3.4 eV (Jung et al. 2009). AZO films can be prepared
by different methods, such as spray pyrolysis (Kaid et
al. 2007), and sputtering (Kong et al. 2011). Sputtering
is a common way to deposit AZO by using ZnO and
Al2O3 targets and sometimes by using two separate
targets of Al and ZnO (Fenske et al. 1999). Recently,

AZO nanoparticles (NPs) have attracted increasing
attention (Benouis et al. 2007) as a result of the rapid
development of nanotechnology and nanomaterials.
One of the promising applications of AZO NPs is the
production of efficient solar converters because the
NPs films introduce a large junction area in solar cells.

Polyaniline (PANI) is one of the best, facile and
conductive polymers (Rimbu et al. 2006) with feasible
stability against the environment (Ansari et al. 2006).
Its conductivity arises from the -electron conjugate in
the polymeric chain. PANI is naturally a p-type
material with an optical band gap of about 3 eV. As a
polymer, the energy gap diagram of PANI is not
comprised of conduction and valence bands, but rather
it is described by the highest occupied molecular
orbital (HOMO) and the lowest unoccupied molecular
orbital (LUMO). The HOMO level of PANI is 7.7 eV,
while the LOMO level is 4.7 eV. (Catedral et al. 2004).
PANI can be synthesized by different techniques, such
as plasma enhanced polymerization (Sadia et al. 2009)
and electrochemical techniques (Martinez et al. 2008).

Recently, hybrid inorganic/organic heterojunction
devices have received much attention as promising
junctions for many applications, such as gas sensors
(Gong et al. 2010), light emitting diodes (He et al.
2010), and photo detectors (Mahmoud 2009).
ZnO/PANI has gained a lot of interest for its
luminescence properties (Amrithesh et al. 2009) and
UV detection (Moreira et al. 2009). In this paper,
AZO/PANI heterostructure sandwiched between two
ITO-coated glass was studied. AZO films were
deposited using the sputtering technique while PANI
films were deposited using by electro polymerization.
The AZO films in solar cells are used as a window
layer and an active material.

Methods

Aniline monomer was distilled twice under
reduced pressure before use, and dissolved into a 1 M
sulfuric acid to make a 0.1 M solution. The polyaniline
was synthesized with a galvanostatic step method at a
constant voltage of 3 V. The working electrode was a
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Figure 4. Dark I-V characteristics of AZO/PANI heterojunction, y-
axis multiply by 10-2.

Figure 5. The semi-log I-V plot at the forward bias, Y-Axes
multiply by 10-2.

The J-V characteristics of the AZO/PANI thin film
solar cell exhibit considerable photovoltaic
performance under illumination AM 1.5 (~100
mW/cm2), as depicted in Fig. 6, with a short circuit
current density (ISC) of 0.075 mA/cm2, an open circuit
voltage (VOC) of 195 V and a fill-factor (FF) of 0.41.
The photon conversion efficiency (PCE) of the cell is
0.0078%, which indicates a significant performance.

The photovoltaic performances of the AZO/PANI
devices under different illumination intensities are
listed in Table 1.

The use of the sandwiching technique to fabricate a
heterojunction has not been reported in the literature to
date and most of the existing papers use the subsequent
deposition of the two layers. The rectification behavior
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Figure 6. The J-V characteristics under AM1.5 illumination.

and the acceptable photovoltaic performance of the
device presented above suggest a successful formation
of a heterojunction between AZO nanoparticles and
PANI, indicating that the sandwiching technique is
useful in the fabrication of this kind of heterojunction.
The wet surface of PANI directly after the
electropolymerization helps to form an intimate contact
with AZO nanoparticle film, and the morphology of the
bumpy AZO surface could help to increase the junction
area. An SEM photographs. In the subsequent
deposition, the AZO nanoparticle film needs to be used
as a working electrode. That can cause a degradation of
the AZO film when it is immersed in the electrolyte
and, in addition, the AZO film may dissolve in the
electrolyte because of the effect of the sulfuric acid.
Furthermore, the subsequent deposition needs to make
ohmic contact onto the PANI surface, requiring the use
of the evaporation technique to deposit the metal onto
the PANI surface, which could degrade the PANI
performance.

Table 1. The photovoltaic performances of the
AZO/PANI devices under different illumination
intensities.

Illumination
(mW/cm2)

W

Isc

(mA/cm2)
Voc

(volt)
FF PCE

(%)

100 0.075 0.195 0.41 6.0 ×10-3

80 0.055 0.18 0.57 7.1 × 10-3

50 0.04 0.15 0.63 7.6 ×10 -3

25 0.025 0.15 0.61 9.1 × 10-3

The room temperature photoluminescence (PL) of
AZO nanoparticles deposited onto ITO glass is shown
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in Figure 8. The PL spectrum shows a near-band-edge
at 3.46 eV, which represents the direct band gap of
AZO. The deep-level emission appears at 2.27 eV,
which represents the defects inside the AZO
nanoparticles. The intensity ratio (Inear-band/Ideep-level) is
about 1.8, indicating a very high quality film with high
crystallinity and is higher than previously reported
results (Kim et al. 2008). The PANI film shows a PL
peak of 2.9 eV which is very close to the reported band
gap of PANI (Abrarov et al. 2005).

Figure 8. The photoluminescence spectrum of (a) AZO NPs and
(b) PANI film.

The optical band gap of AZO film was calculated
based on the location of the absorption peak. The band
gap for AZO film was 3.2 eV. For AZO films, ions and
Al interstitial atoms determines the widening of the
band gap caused by increase in carrier concentration.
This is the well known Burstein–Moss effect due to the
Fermi level moving into the conduction band.
According to the Burstein–Moss effect, the broadening
of the optical band is a result for doping by Al atoms.

Figure 9 displays the graph of (αhν)2 vs.photon
energy hν for the AZO thin film obtained by the 

supterring method. The linear dependence of (αhν)2 on
hν at higher photon energies indicates that AZO film is 
essentially direct-transition–type semiconducter. The
straight-line portion of the curve, when extrapolated to
zero, gives the optical band gap. From the results of
Figure 9, optical band gap Eopt for AZO thin film is 3.2
eV. This band gap is known as the Moss-Burstein shift.

Figure 9. Energy band gap determination of AZO sample at room
temperature.

Conclusions

In this manuscript, we report the fabrication of
aluminum-doped ZnO (AZO) nanoparticle coating on
ITO glass by using sputtering technique and the
synthesis of PANI on ITO glass by using
electropolymerization. A new type of organic/inorganic
hybrid solar cells based on the AZO/PANI
heterostructure was developed by sandwiching the two
coated ITO glass plates, and the optoelectric properties
of devices studied show these heterostructures to be
promising organic/inorganic solar cells devices.
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