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Abstract

Without special precautions a sum-rule error occurs automatically when a chi-squared procedure is used to fit a fun-
don to binomial or Poisson distributed histogram data if the function has at least one linear parameter. Since the square
of the variance per channel is equal to the mean population, errors are usually approximated using (G^yjX)};this choice
for approximating the variance gives a per-channel error weighting of 1/yj that automatically results ina sum-rule error.
This sum-rule error consistently and systematically underestimates the total sum of the data points by an amount equal to

the value of %*, resulting in Zjyj-Zjfj= J&where %i = £j (vi
- QVyi an^ f'i=f(Xj,{parameters}). In contrast, using {o'-f=(¦>()}

gives the error weighting per channel of 1/fj that automatically results ina less well known sum rule error. This sum-rule
error which is only half as large but opposite insign consistently and systematically overestimates the total sum of the data

X?points by an amount equal to half the value of %?, that is, it results in - Zjf- = -
Ly ,where Xr

= (vi" 'i)"'/'i- The good
news is a combination of error weightings may be constructed which completely eliminates the otherwise automatically
cocuring sum-rule error by taking advantage of cancellations occuring between the two sum-rule errors implicit in the two

above-mentioned approaches to error-weighting per channel. This fortunitous linear combination of sum-rule error swill
combine and cancel ifthe fitting funtion is a sufficiently viable choice so that Xr= Xy = v (number ofdegrees of freedom);

1 2consequently a weighted linear combination of these two definitions may be used, X2 =
3 Xy +!%?• This choice for X" = is

1 1 2
equivalent to choosing an error weighting of „'_'

= 3yj + :'>(; ,and it essentially eliminates summing errors so that Xjyi- Zjf-.
An alternate method is presented and proven for {jLt; = f-}in fitting a function using Maximum Likelihood.

Introduction

Chi-squared fitting is a common method of describ-
ing histogram data with an appropriate theoretical func-
tion. One advantage of this procedure is the ready avail-
ability of error estimation for the fitting parameters using
the error matrixprocedure (Arndt and MacGregor, 1966;
Bevington and Robinson, 1992; Press et al., 1989). A huge
amount of binomial or Poisson distributed data is taken
every year in the form ofhistograms, where the error per
channel is the square-root of the mean channel popula-
tion (Boa/, 1983). One reason this body of physical data
is so large is that data may now be acquired using auto-

matic data processing techniques under micro-computer
control often using multi-parameter analog-to-digital con-
version of amplitudes of pulsed analog waveforms or
using multiscaling techniques. An example is the con-
struction of histogram data taken in a counting experi-
ment where each "spectrum" is a frequency distribution
often analyzed automatically by fitting it with a general
theoretical function containing amplitudes and widths for
describing a collection of peaks to the populations of all
the channels, while also parametrizing the background
population underlying these peaks.

The quantum nature of physical interactions requires
a microscopic event to either happen or not happen
despite the average likelihood of occurrence being repre-
sented as a spatially-distributed collection of fractional
probabilities. This idea underlies why binomial or Poisson
statistics applies to a huge body ofphysical data.

However a systematic difficulty with fitting a theoreti-
cal function to this type of data was indicated in early
work (Bevington, 1969) which has shown a serious sum-
rule problem arises using the chi-squared technique
[area(date) - area(fit) =

X2] ifthe measured values of chan-
nel population {y,} are used to represent mean channel
populations in estimating errors, thus, the standard devi-
ation estimates are taken as {o?£Vj>0}.This work showed
a consistent and systematic underestimation of the total
sum of the data points by an amount equal to the value of

t1. s Xi(yr f'i)-/yi,i-e., ZiyrXifi¦ Xy. when using a (non-lin-
ear) Gaussian and a (linear) background for f; = f(Xj,
{parameters}) in an example of using chi-squared fitting
of a functional form to histogram data {xj, y^} when the
population ofeach channel is a Poisson distribution.
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Materials and Methods

Consider a function f- = f(xj, {a
k})in the description of

an {xj,yj} histogram of Poisson or Binary distributed
data, with each per-channel error given by o{ = Vy~ Ifthe
technique of minimizing chi-squared is used to optimize
the parameters {ak} in each fj, the total sum of the fitting
function Zjf- systematically fails to agree with lyl by an
amount equal to the un-normalized x~ = Xv- Figure 1
proves the underestimation of the sum, Ziyi- Xjfj= X~> an<^
this proof is generalized forany fitting function having at

least one linear parameter used to optimize a theoretical
function to a histogram of binomial or Poisson distrib-
uted date {yt } with standard deviation estimates {o~j

_
Vyj}, i.e., since yi is used to estimate each mean channel
population.

Zjyj
-
Zjfj= x2 is proved, when (<jj=yf~yi )is used inminimizing y}\

Consider only the linear parameter set (aj<( when using (o"j= -\fy~j ) to

minimize %2,providing a set of equations: fj= f(xj,(a^)) = Lk a^ gk(xi< a),

witha representing any non-linear parameters.

2 T fri-fi>2
r fri-fr2 v

(yi-fi)2
r/ M .(yi-fj),

3X2 (yj
-

fj)
-j

=-2Ij gk( xi'a)=0' lak)parameters. Each term is zero =>

1 9v 2 (yi ¦ fi>"
2 Skaka^

= 3^!
~

yi
gk(xi'«)= 0.

Interchanging summing order above and using fj¦ Z^a^ gk(xi/ <*) gives:

(yj
-

h) (yi
-

h)
zi—^— z-k ak gk(xi'«) =si~^r- h = -

% 2+ (yi
-
fj)=o.

Transposing completes the proof: Zj(yj
-

fj)= Zjyj
-

Zjfj=y}

Fig. 1. Systematic summing errors are shown for {d^=yt}:

X2 =x^ =lyi-Iii-

Ifthe function fj= f(xi; {a
k })provides a good descrip-

tion of the histogram shape, x~ =
X\ = v =N -

p (the num-
ber of degrees of freedom) where N is the number of
data points and p is the number of parameters in the
optimization. This underestimation of the total sum
results in an average error ofonly about 1 count per chan-
nel. However, there are no guarantees that in any particu-
lar channel this error willnot substantially exceed 1.

It is interesting to note there is no sum-rule error and
Zjyi

= Zjfjmust hold for a simple least-squares fit which
ignores the role of errors by setting G=l for each chan-
nel, giving x1=^i(yi 'fi)~> provided the function, fj,
includes an overall constant term (a^ to be optimized.

The proof of ZiYi- Zjf- is as follows: a ]
= 2Zj ()'j - (¦) = 0,

giving Xj (yi - fj) = 0- Unfortunately this cure of the sum-
rule error is of little importance since errors may not be
ignored in any serious data analysis procedure.

Several remedial efforts have been suggested for min-
imizing the effects of the sum-rule error (Bevington,
1969; Bevington and Robinson, 1992). These remedia-
tions include smoothing histogram data using a convolu-
tion which damps the channel-to-channel flutter in {yx}
artificially reducing the size of Xy, thus reducing the sys-
tematic summing error, l^y; - £jfj =

X\- Among other
adverse effects, smoothing degrades the resolution of the
experimental peaks in a greater or lesser proportion
depending on the remediation being sought.

A second approach for remediation suggests a coars-
er binning of histogram data to reduce the number of
degrees of freedom, v, thus reducing the size of the sys-
tematic summing error Ziyi - Zjfj =

X\ = v- Unfortunately,
inproviding fewer histogram bins for describing each
experimental peak this approach also degrades the reso-
lution of the experimental peaks in a greater or lesser
proportion depending on the remediation being sought.
A third approach suggests fittingbackgrounds in regions
far removed from any peaking followed by fitting the
peaks while holding background parameters constant.
Although a careful examination of the role of peaks ver-
sus background is generally a good idea when possible, it
is not a general approach consequently it has limited
applicability incuring the sum-rule problem.

One would not expect summing errors to play an
important role when the number of counts in every his-
togram channel is quite large. However, counting statis-
tics only improve as the square root ofeach mean channel
population; many researchers carrying out difficultexper-
iments or those committed to production line analysis
work may not have the luxury of acquiring a large num-
ber of counts per channel in their experimental spectra.

Though many experimenters use chi-squared fitting
procedures to represent their data, many may be unaware
of the automatic onset of a sum-rule difficulty associated
with this type of analysis, and possibly a substantial num-
ber may be more concerned with determining other fit-
ting parameters than the populations of the peaks.
However, when there are unconnected systematic errors in
a fitting method, these difficulties may have adverse con-
sequences in determining the size of other fitting para-
meters, not just those associated with the strength of each
peak. Thus, it would be better to fix the fundamental
problem of systematic errors in the sum rule, rather than
try to patch up consequences in some ad hoc fashion.
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Results and Discussion

The cure to the sum-rule problem discovered by
Bevington (1969) of a systematic error in (underestimat-
ing) the sum may be found by re-defining the y}.This
cure is possible because, by remarkable contrast to

Bevington's earlier work, iferrors are estimated using
{c»7=fj>0}instead of {ofsyi>0}, the chi-squared method is
found to consistently and systematically overestimate the
total sum of data points by half the value of Xl = Xj(yi -
fi)2/fi(Braithwaite, 1974).

Underestimation (in Fig. 1) and overestimation (in
Fig. 2) of the total sum are proven for the choices of error
estimates {ofsy^O) and {<j2~f.>0},respectively, using only
the normal equations for the linear parameters. Non-lin-
ear parameters only affect the systematic summing errors
because of their influence on the numerical size of X~
and thus on the viability of the choice ofoptimizing func-
tion.

X2 i—Z,yj
-

Zjfj= "2 is proved, when (a; s-y fj)isused in minimizing x2:

Consider only the linear parameter set (ak) when using {Oj= -yfj) to

minimize y},providing a set ofequations: fj¦ f(x;,(ak)) = Zk ak gk(xj, °0'
witha representing any non-linear parameters.

, (yi-fi)2 _ (yi-fj)2 (yi-fj)2 .(yj-h)
vl

„

az2 i (yj-fj) \y\-hV-\
af-=-

2Ij f.
-+ I,-y-1 gk(xi# a)= 0, V {akl parameters. Each

k i L i J )

i dx2 ( (yr fi) i ryi- fil2)
term is zero => -

2Ikak d
= Zkak Xj -? +

2Ij-g— gk(xj,a) =0.

Interchanging summing order above and using fj=Ikak gk(xj,a) gives:

_ <Yi
-
fi), 1 [Yi" fil2, _

v v . 1 , _
fi

+
2

—
fi j fi

= Ziyi"Zifi
+

2
* = °-

f v2
Transposing completes the proof: £j(yj

-
fj)= £, yj

-
Xjfj=

-
y

Fig. 2. Systematic summing errors are shown for [ofsfj}giv-

inglyi-Ifi^T•

Ifthe fitting function is a viable choice itwillresult in
Xy = Xr' so these two versions of'x~, although of very simi-
lar size, willyield different signs and sizes in their associ-
ated systematic summing errors. Cancellation of these
sum-rule errors by using the new weighting, x~ = \ X v

+i
X'{,in formulating and minimizing of X2 should essentially
eliminate these summing errors. This weighting is com-
pletely equivalent to replacing the error weighting terms

a2 byTfyj +% in the routine computing %-. Although^ vs|
should provide an adequate weighting in essentially elimi-

nating sum-rule errors, one might view this choice as pro-
viding a good firstguess for the new weighting.

Figure 3 proves an alternate method of curing the
sum-rule errors for Poisson-distributed data if a
Maximum Likelihood formulation with {\xx

= fj} is used
instead of the error-weighted %- formulation. The only
change needed in the numerical approach for optimizing
the parameter search is to replace the routine calculating
X~

= £io^ (yi'fi)~ ky r°utine (of the same name) which cal-
culates X\ [fj -

yj log(fj)] in place of %'- for the same fitting
function.

Ijyj
= Ijfjisproved in fittingdata by Maximum Likelihood for (uj= fj)

when the population of each channel follows a Poisson distribution

Consider only linear parameters (ak),and {(ij= fj( in the Maximum

Likelihood function: P = Flj yT e '< for h¦ %*i> \&V))" ak gk(xj,a),

witha representing non-linear parameters. Maximizing Pis equivalent to
<)V

minimizing F = - L= - log(P) =Ij[fj
-
yj log(fj))+ constant, using s

— = 0.

=Ij1
-

£7 gk(xj,a) =0, (ak) parameters. Each term is zero =>
k I ii

dF - (. Vi
Ikak 3av

= \l'f gk(xi'a)=°- Interchanging summing order
K \ \ j

and using fj=Ik ak gk(xj,a) =>Ij1
- bk akgk(xi'«) ¦ Zitfi•Yi)=

Ijfj-Ej yj=0. Transposing completes the proofrfljyj=I,fj .

Fig. 3. Systematic summing erros are cured with a maxi-
mum likelihood formulation using (Mi= fi}«

Figure 4 shows a second-order expansion describing
X2 in terms of all the search parameters {oc

k },both linear
and non-linear, near the minimum of X2- The first deriva-
tive of this expression is taken for each parameter, and
each resulting expression is set to zero to provide N
simultaneous linear equations for a set of candidate steps
{Aoc

k} to be taken toward the global minimum. Figure 4
shows these N equations as a single matrix equation.
Since an absolute minimum in x~ ls needed for every
parameter in {ock }, the second derivative must be greater
than zero for each diagonal-element term of the square
matrix, called the curvature matrix.

Derivatives shown above may be found numerically,
and since cross partials commute, only half of the off-
diagonal elements in Fig. 4 need to be calculated. As
noted earlier, each diagonal element in Fig. 4 must be
positive to assure an absolute minimum in x~ occurs for
every parameter in {ock }.If each diagonal element is posi-
tive and an inverse matrix is found to exist, then a set of
candidate changes {Aak } in the parameters may be com-
puted by inverting the matrix equation and using the
inverse matrix to multiply the column vector on the right
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which is comprised of first partials of X2 with respect to

each fittingparameter.

Using allparameters {ak}to find absolute minimum in X2

The expansion: X2 = X? + Aak+^^[gl^AakAam

is used to describe %2 f°r a'lsearch parameters (oc k|near a %2minimum.

For X2 to be an absolute minimum in (ak),two requirements must be

9v2 r32y2-1 ay 2
satisfied: =0 and hj^T^ > 0,for every parameter in(ak). Using j£r
= 0 in the quadratic expansion above results in the matrix equation below

wi \J%L\ r g2*2 1 r a2*2 1
"

rj^zii rw rj2!2 ! r 2x2 1
Laa23onJ 0 L3a22J o L3a2aa 3J o

-
¦ ¦ L9a23a NL|o

r d2X2 1 rj^j ra^i r, 2̂ !
Laa^3a]] o[803302] o La«37Jo ¦ ' 'L5a33aNj o

r &X2 ir a2*2 ir *2x2 i fWLaa N3a ]J oL3aNaa 2JoL3a Naa3jo
-

¦
• L3aN2Jo

This NxNmatrix is inverted and used to solve fora candidate set of (Aa^)

Fig. 4. A second-order expansion procedure is used t<

develop equations for finding the
parameters {cc

k
} both linear and m

Ifany diagonal elements in Fig. 4 are found to be
zero or negative, the initialparameter choice is not suffu-
ciently close to a global minimum. Methods to remediate
this problem are available in the literature (Bevington
and Robinson, 1992; Marquardt, 1963; Daniel 1971). One
possible remediation is to change the size and/or sign of
zero or negative diagonal elements to make all diagonal
elements greater than zero and then take fractionally
smaller steps than prescribed by the set of candidate
changes {Aak} which are calculated after matrix inver-
sion.

Since the goal was to minimize chi-squared, numeri-
cal values were calculated for each of these derivative,

symmetrically around each expansion point to provide a
good representation of the quadratic expansion of X"
near and at its global minimum. Figure 5 outlines the
procedure used for calculating both the first and second
derivatives numerically. This figure shows a slightly more
elaborate method of calculating the second derivatives
(Abrahamovich and Stegun, 1984). The simpler methods
of calculating derivatives gave adequate results: after sev-
eral iterations Ax2 was reductin by ~ 10 lr>,with the corre-
sponding candidate step sizes also approaching zero,
{Acck

~ 10"ir'}.Also the inverse matrix routine was tested;

the product of the matrix and its inverse gave 1 for each

dx2
every parameter in(oc^). Using

¦suits in the matrix equation below: r

I a2*2 111" 1 fWl L
r 2x2 1 r^cii

\JhL2 A f^il

L^?JoJL AaNJ LL^nJoJ
jsolve fora candidate set of (Acc^l-

ision procedure is used to |_
the minimum in X"for all

idnonlinear.

diagonal element and either zero or numbers about 10 ir>

for the off-diagonal elements when using 64-bit double
precision for the real variables in all the routines includ-
ing the numerical derivatives.

Procedures for Calculating Derivatives Numerically

Each derivative is calculated symmetrically around
the expansion point to provide a good representation of
the quadratic expansion of X2 near and at its minimum.

X 7~\ Y 2 .V2 <*m Aak

dado" 2A(Xk Ty2 I""|y2 |"""|y2 H
92*21 x+2o^2o-2xo2

o cri i Aam

aa k2j
o

-
(Aak)2 Q--^-|[glJ «k

¦

a,^, 1 Y 2. Y2. Y2.Y2 1(akcv «mo)
alX - X++^ X-- X+- X-+ ; i ;

aa k3amjo
=

4(Aak)(Aam) f^H [S fxi
A slightly more elaborate method uses the following:

32X2] = X+2+
- 2Xo2+

+ X2++ X+2O "2Xo2o
+ X2o

+ X+2- - 2 y&_+ %}. >

3ak2jo
-

3(Aak)2

&x2 1 =*+2++ 2 Xo2o
+ x-2- - x+2o

- x-2o -
Xo2+

-xh
3ak5a mJo~ 2(Aak)(Aam)

Fig. 5. Procedures incalculating numerical derivatives to

fitall parameters {a
k
}.

In a recent publication Bevington and Robinson
(1992) show a fit to a 60-point histogram with a 6-parame-
ter fitting function. Their chi-squared analysis tises three
linear parameters to describe a quadratic background
and three parameters to describe the single peak: a
Lorentzian with a variable area, position and width. The
maximum peak in the data histogram contained 81
counts, and the smallest histogram populations were 6
and 1in channel 1 and 2, respectively.

Figure 6(a) shows the result of calculations using
Bevington and Robinson's published (1992) optimization
parameters: giving x2 =

X2 =59, with N - p = 60 - 6 = 54.
The sum of data over 60 channels is Xiyi = 2000 with the
sum of their fitting function over 60 channels Xjfj= 1940,

discrepant by roughly x2 = 59. Their quoted fitting para-
meter (#4) gives an area of 276+44, lying roughly in
between their sum Zj (fj - bj) = 261 and their sum Zj(yi -
bi)

-
321.

?

In contrast, Fig. 6(b) shows results from an optimiza-
tionusing the newly-prescribed chi-squared weighting: x2

=
7^ x2+ \ X2 —>60, which is completely equivalent to replac-

ing the error-weighting terms by ~Jyt
+% in analyzing
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the same {xj,yj}histogram data set, with N -p = 60 - 6 =

54. The sum of data over 60 channels is Xjyj = 2000 as
compared with the sum of the new fitting function over
60 channels Zjf-¦ 1996, which is discrepant by only 4. The
fitting parameter (#4) gives an area of 260+42, in good
agreement withXj(fj-bj)= 252 and Zj(y; - bj)= 256.

Figures 6(c) and 6(d) differ from Figs. 6(a) and 6(b)
in that histogram data channels 1 and 2 are ignored in
Figs. 6(c) and 6(d). Comparing these figures shows the
importance of eliminating data channels containing little
information but having %- weightings sufficiently large to
unduly distort the chi-squared fit.

Figure 6(c) shows the result of calculations using
Bevington and Robinson's published (1992) optimization
parameters: giving x2 =

X2 = 48 with N - p = 58 - 6 = 52.
The sum of data over 58 channels is '^

iyl
= 1993 with the

sum of their fitting function over 58 channels Y,\y-, =

1945, now discrepant by x2= 48. Fitting parameter (#4)
gives an area of 269 (276 before) with

'

Is (fj - bj) = 257
(261 before) and Ij(y, - bj)= 305 (321 before). Figure 6(d)
shows results of an optimization using x2 =

5 X2 +2>,X2 ~* 49
inanalyzing the same {xj,yj}histogram data set with N - p

= 58 - 6 = 52. The sum of data over 58 channels is 'Zlyi=

1993 and the sum over 58 channels of Itf = 1992, dis-
crepant by only 1. Fitting parameter (#4) gives an area of
258 (260 before) withI,(fj -yj = 247 (252 before) and S,
(ys -bj) = 247 (25(5 before).

Thus we have presented and proved a method for cur-
ing systematic sum-rule errors which automatically arise
when using an error-weighted chi-squared fitting of a
function with at least one linear fitting parameter to bino-
mial or Poisson distributed histogram data. Further, an
example histogram of data was fittedby a Lorentzian on
a polynomial background. This example demonstrated
the systematic summing error discovered by Bevington
(1969) as wellas showing an adequate elimination of the
summing errors by using the presently proposed prescrip-
tion for approximating the error-weightings with O2

= 5$yj
+ Wr In addition, an alternate method of curing the sum-
rule errors forPoisson-distributed data was presented and
proven ifa Maximum Likelihood formulation with {(ij=

fj} is used to replace the error-weighted x2 formulation.
The only change needed in the numerical approach for
optimizing the parameter search is to replace the routine
calculating x2 = £j^3 (y;- fj)g by a routine (of same name)
which calculates X; [fj -

yi l<>g(fj)] in place of X2 for the
same fitting function.
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