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Abstract 

 Clostridium difficile (C. difficile) is a gram-positive bacterium that comprises part 

of the healthy human gut microbiome. When it gains sufficient access to peptides, C. 

difficile flourishes and releases tissue-damaging toxins, which cause inflammation of the 

colon that can develop into a Clostridium difficile Infection (CDI).10 The Ivey Laboratory 

believes that the best tactic in preventing CDIs is stopping peptide ingestion, which 

theoretically could be accomplished by manipulating the oligopeptide permease (App) 

system.7 In order to verify that altering the App system would successfully impede 

peptide uptake, first the expression of the app Promoter Region (appProR) of C. 

difficile’s DNA needs to be better understood. This characterization can be accomplished 

by fusing appProR to the gfp-reporter gene, which codes for Green Fluorescent Protein 

(GFP). GFP emits green fluorescent light when exposed to blue or ultraviolet light, and 

the degree of fluorescence can be used to quantify the gene expression of whatever DNA 

sequence to which the gfp-reporter gene is fused.9 

 The specific aim of this project was to incorporate the appProR-gfp-reporter gene 

complex first into Eschericheria coli (E. coli), and then into Bacillus subtilis (B. subtilis). 

Those two bacterial species were chosen as hosts for the transformations, for E. coli and 

B. subtilis are known for being more receptive to recombinant DNA techniques than C. 

difficile.22 By ligating the appProR-gfp-reporter gene sequence of pUA321 to pG+host4, 

the resulting plasmid, pUA625, contained a broad enough host range to transform both 

gram-negative E. coli and gram-positive B. subtilis. Those successful transformations 

indicate that pUA625 could be integrated into C. difficile in the future, an achievement 

which would lead to a better understanding of the expression of C. difficile’s App system. 
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Introduction 

 Clostridium difficile is a gram-positive, pathogenic obligate anaerobe that resides 

in the human gastrointestinal tract. As is typical of many strictly anaerobic bacteria that 

inhabit the human gut, C. difficile produces endospores as a means of pathogenesis and, 

ultimately, survival.10 While vegetative C. difficile cells are anaerobic, its spores do not 

require oxygen-free conditions and can persist in a variety of environments for extended 

periods of time.18 Once a potential host consumes C. difficile spores, the spores can 

develop into vegetative, toxin-releasing cells. These cytotoxins damage epithelial colon 

tissue and cause what has appropriately been termed a Clostridium difficile Infection.10 

CDIs often involve pseudomembranous colitis, or inflammation of the large intestine. 

Symptoms of CDI-associated pseudomembranous colitis can include abdominal pain and 

fever, but its most characteristic presentations are diarrhea (which can range from mild to 

extreme) and the accompanying unpleasant odor. The more severe cases can be lethal, 

earning CDIs the reputation of being the main cause of gastroenteritis fatalities in the 

United States.3 From 2005 to 2009 the CDI prevalence rate doubled to 140 cases per 

10,000 hospital discharges, resulting in upwards of 500,000 new instances of CDI in the 

U.S. each year.3,4 These alarming statistics demonstrate how critical it is that better CDI 

treatment options are developed.  

While C. difficile is a standard part of the human gut microbiome, CDIs do not 

become an issue until the normal intestinal flora has become disrupted. This disruption 

most often occurs through the use of antibiotics, thus explaining why CDIs are almost 

exclusively restricted to patients in hospitals who are receiving antibiotic therapy.3 

Antimicrobial treatments specifically involving penicillin analogues, fluoroquinolones, 
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clindamycin, or cephalosporins are implicated in most CDI incidences.11 These 

antibiotics kill a large portion of the bacteria in the gastrointestinal tract, but the spores of 

C. difficile are resistant to these antimicrobials.10 When other intestinal bacterial species 

have been suppressed, C. difficile no longer has 

to compete for its nutrient of choice, peptides. 

The uptake of these peptides is facilitated by 

the oligopeptide permease (App) system, 

particularly by subunits App A, B, D, and F 

(figure 1).7 The App system also plays a role in 

the colonization abilities of C. difficile, for App 

A gives C. difficile the ability to bind to 

intestinal epithelial cells.7  

Once well-nourished C. difficile has attached to the luminal side of the epithelial 

cells of the colon, it begins releasing cytotoxins A and B. It is hypothesized that the 

release of these toxins is prompted by the peptides’ dual function as pheromones. Gram-

positive bacteria, such as Bacillus subtilis and Staphylococcus aureus, have been known 

to utilize peptide pheromone systems as a means of chemical signaling to stimulate 

synchronized cellular responses among bacterial communities.6 Though this phenomenon 

has not yet been confirmed in C. difficile, the notion that the uptake of peptides 

communicates to C. difficile that the weakened gut microbiome is now vulnerable to its 

toxins seems a likely possibility.  

Following their release from the vegetative C. difficile cells, the cytotoxins bind to 

the epithelial intestinal cells’ receptors and enter the cytosol of their new host cells. Next, 

Figure 1: Subunits of the App System; image 
generated using the Microsoft Paint Application. 
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Toxins A and B target the host Rho GTPases, which are proteins that regulate numerous 

cellular processes, including transcription, phagocytosis, actin cytoskeleton maintenance, 

and other vital activities.5 The cytotoxins alter the Rho GTPases via mono-O-

glucolysation, a modification that disrupts the functionality of the Rho GTPases and 

eventually leads to cell death by apoptosis (figure 2). This widespread intestinal epithelial 

cell death causes inflammation of the colon, which then progresses into a CDI.5 

 

Figure 2: Effects of Glucosylation by Toxin A and B on RhoGTPases.14 

 Once a patient has been diagnosed with a CDI, the first step of treatment involves 

stopping whatever antibiotics the patient is currently consuming. Next, the patient is 

typically prescribed a different antibiotic that specifically targets the endospore-forming 

capacities of C. difficile, a skill that is crucial for the survival and consequent 

pathogenesis of the bacterium. Without its highly resistant spores, C. difficile can no 
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longer withstand penicillin or other common antibiotic treatments associated with CDIs; 

therefore, C. difficile cannot persist long enough to gain access to peptides and produce 

its infection-causing toxins. Historically vancomycin has been thought to be the most 

effective antibiotic in battling CDIs, but recent studies have offered a better option: 

fidaxomicin. While both drugs rapidly reduce the amount of vegetative cells in CDI 

patients, patients receiving vancomycin have a much higher recurrence rate. 

Fidaxomicin’s dominance is likely attributed to two factors: it causes a larger decrease in 

C. difficile spore counts, and it maintains a greater portion of the healthy gastrointestinal 

microbiome. By preserving other bacterial species, C. difficile remains starved for 

peptides and is unable to cause an infection. While fidaxomicin may be produce better 

results than vancomycin, the 20% relapse rate of patients using fidaxomicin suggest that 

there is still plenty of room for CDI treatment improvement.12 

 Studies suggest that C. difficile is evolving at a rapid rate, become more virulent 

and even less responsive to traditional antibiotic treatments. This worrisome observation 

highlights the need for a new type of CDI therapy. A promising alternative to drugs is the 

fecal microbiota transplant (FMT). As its name suggests, FMT is the transfer of fecal 

matter from a healthy individual into the gastrointestinal tract of a CDI patient. The 

healthy stool sample contains normal gut flora, and the re-introduction of those bacteria 

into the colon of the CDI patient reestablishes bacterial homeostasis and disturbs C. 

difficile’s unregulated proliferation. While the gruesome nature of an FMT may not seem 

like a desirable option for CDI patients, its impressive cure rate of roughly 94% will 

likely increase the frequency of FMTs in the future.18 
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 Ideally, a technique should be developed that prevents CDIs from occurring and, 

thus, renders CDI antibiotic treatments and FMTs unnecessary. The work performed in 

the Ivey Laboratory operates under the notion that the best method of stopping CDIs is to 

inhibit C. difficile’s peptide intake, which could have a two-fold affect. First, vegetative 

C. difficile cell growth should be hindered, for the lack of nutrient consumption should 

limit C. difficile’s proliferation capacities. Ceasing peptide ingestion could also obstruct 

cytotoxin release, assuming that peptides do indeed act as a communication method in C. 

difficile. In theory, this goal of peptide restriction could be accomplished by manipulating 

the app promoter region (appProR), which is the sequence of DNA that controls gene 

expression of the peptide-consuming App system.7 Before this manipulation can occur, 

however, a better understanding of appProR is required. To further characterize this 

segment of DNA, the Ivey Laboratory utilizes the green fluorescent protein (GFP). GFP 

is a protein comprised of 238 amino acids and is found in the jellyfish species Aequorea 

victoria.9,17 When exposed to U.V. or blue light, GFP emits green fluorescence.9 Since its 

discovery, this fluorescent aspect of GFP has been used to analyze various cellular 

activities, including gene expression.17 By fusing the gfp-reporter gene to the DNA 

sequence of choice and cultivating cells containing this gene construct, the degree of 

fluorescence in the resulting colonies serves as an indicator of that specific gene’s 

expression. Since the Ivey Laboratory aims to characterize the App system of C. difficile, 

the gfp-reporter gene has been attached to the appProR sequence in a plasmid called 

pUA321. By inserting the DNA sequence coding for the appProR-gfp-reporter gene 

complex into C. difficile, the amount of fluorescence in the transformed C. difficile cells 

can be quantified as a means of measuring the degree of appProR expression. Further 
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characterizing appProR expression should clarify whether or not manipulating the App 

system is a viable option for impeding C. difficile growth and pathogenesis. 

Unfortunately, transforming C. difficile is no easy task. Before attempting to 

insert pUA321 into C. difficile, one must start with a more cooperative bacterial species. 

For this experiment, E. coli was chosen as the primary transformation candidate, for it is 

celebrated as being one of the most compliant bacterial species when subjected to 

recombinant DNA techniques.22 Once the desired DNA sequence has successfully been 

inserted into the E. coli DNA, one can then attempt to transform a species that is more 

similar to C. difficile, such as B. subtilis. This transition is necessary because gram-

negative E. coli (while it can be fairly easily transformed) is not a good model organism 

for how a gram-positive species such as C. difficile would react during a transformation. 

Therefore, the appProR-gfp-reporter gene complex from E. coli must be transferred to the 

more cooperative gram-positive B. subtilis before a C. difficile transformation would be a 

feasible endeavor.  

 The specific goal of this project is to transform B. subtilis, the realization of which 

would be indicated by the production of green fluorescent B. subtilis colonies. The 

successful recombination of the appProR-gfp-reporter gene construct into B. subtilis 

would pave the way for the future incorporation of the DNA sequence into C. difficile, 

which would help the Ivey Laboratory further analyze C. difficile’s App system and bring 

CDIs one step closer to eradication.   
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Materials and Methods 

Materials and Definitions: 

Material Definitions Source 

pUA321 Plasmid containing 
appProR and gfp 

Ivey Lab 

pG+host4 Broad host range plasmid 
containing Ori Ts 

Ivey Lab 

pUA625 Plasmid created via the 
ligation of pUA321 and 
pG+host4 

 

LB Miller Broth Base for maintenance and 
proliferation of E. coli 

IBI Scientific 

Brain Heart Infusion (BHI) 
Broth 

Base for maintenance and 
proliferation of B. subtilis 

EMD 

Bacto agar Solidifying agent for LB, 
BHI broth media 

SIGMA Chemical 
Company 

Erythromycin (Em) Antibiotic used to select 
for transformed cells 
containing pUA625 and to 
prevent unwanted bacterial 
growth 

Ivey Lab 

UP101 Universal primer Bio-Rad 
AppProR Primer for appProR IDT 
Master mix, 2x Mixture containing Taq 

DNA polymerase, dNTPs, 
MgCl2, and reaction 
buffer; used for PCR 
amplification of DNA 
templates ranging from 
0.2-2 kb 

Promega 

Vent DNA polymerase; 
proofreads and prevents 
mutations in DNA of PCR 
product 

New England BioLabs, 
Inc. 

dH2O Deionized water Ivey Lab 
TAE, 1x Buffer utilized in gel 

electrophoresis 
Ivey Lab 

NEBuffer 2.1 Digest buffer New England BioLabs, 
Inc. 

HindIII Restriction enzyme Life Technologies 
EcoR1 Restriction enzyme Promega 
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XbaI Restriciton enzyme Life Technologies 
T4 Buffer, 10x Buffer for ligation 

involving T4 ligase 
New England BioLabs, 
Inc. 

T4 Ligase Ligation enzyme New England BioLabs, 
Inc. 

MicroElute Cycle Pure Kit Kit containing materials 
and protocol for a 
purification 

Omega Bio-Tek 

MicroElute DNA Cleanup 
Kit 

Kit containing materials 
and protocol for a DNA 
purification 

Omega Bio-Tek 

DH5α Electrocompetent 
Escherichia coli cells 

Invitrogen 

BD366 Electrocompetent Bacillus 
subtilis cells 

Ivey Lab 

Glycerol Base for the stock solution 
containing pUA625 

Ivey Lab 

Plasmid DNA Maxi Kit Kit containing materials 
and protocol for a large-
scale plasmid preparation 

Omega Bio-Tek 

NaCl, 5M Component of ethanol 
precipitation 

Ivey Lab 

Ethanol, 95%, 70% Components of ethanol 
precipitation 

Ivey Lab 

SeaKem GTG Agarose Agarose specifically 
designed for gel 
electrophoresis 

FMC BioProducts 

SYBR Safe 
 

DNA stain used in gel 
electrophoresis; gets 
excited by blue light 

Life Technologies 

1 kb marker Creates a ladder from 
which the size of the 
sample is assessed via gel 
electrophoresis 

Ivey Lab 

Loading buffer, 2x Dyes the sample DNA so 
that it can be assessed via 
gel electrophoresis 

Ivey Lab 
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Methods: 

Media and Growth Conditions: 

LB Miller Broth, Erythromycin Plates:   

 The medium for the LBEm500 plates was prepared using 200mL H2O, 5g LB 

Miller Broth, 3g bacto agar, and 1mL Em100. The transformed E. coli (DH5α) cells were 

spread on these plates, which were then placed in a 30°C incubation chamber for 7 days. 

LB Miller, Erythromycin Broth Culture: 

 The broth culture utilized the same medium as the LBEm500 plates described 

above. A fluorescent colony from the LBEm500 plates was picked and placed in a test tube 

containing LBEm500 broth. The test tube was placed in a 37°C shaking incubator 

overnight. 

 This broth culture was also used in an inoculation involving the glycerol stock 

solution of the transformed E. coli cells. The inoculated flask was placed in the 37°C 

shaking incubator overnight. 

Brain Hearth Infusion (BHI) broth, Erythromycin Plates: 

 The medium for the BHIEm1 plates was prepared using 200mL H2O, 7.4g BHI 

broth, 3g bacto agar, and 20µL Em10. The transformed B. subtilis (BD366) cells were 

spread on these plates, which were then placed in a 30°C incubation chamber for 3 days. 

Electroporation Recovery Media: 

 The recovery medium used for each electroporation product corresponded to the 

plates onto which the transformed cells were spread; the recovery medium for the 

transformed DH5α cells was LBEm500, while the recovery medium for the transformed 

BD366 cells was BHIEm1 broth. 
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Recombinant DNA Techniques: 

Polymerase Chain Reaction (PCR):  

 PCR is a standard method for rapidly producing numerous copies of a DNA 

segment.20 The first step of PCR is combining the plasmid possessing the DNA sequence 

of interest, the master mix, deionized water, and two primers that mimic the beginning 

and ending nucleotide sequences that encompass the desired DNA segment. Next, that 

mixture is placed in some sort of heating device, such as a thermocycler. The 

thermocycler heats the sample to three different temperatures, the first of which being the 

temperature required to denature the double-stranded DNA of the plasmid. Once the two 

DNA strands have been separated, the sequences are ready to act as templates for the 

construction of new strands. Thus begins the annealing stage, during which the 

temperature is reduced to allow the primers to adhere to their complementary sequences 

on the now single-stranded DNA segments. Finally, the thermocycler raises the 

temperature once more to the optimum temperature at which the specific DNA 

polymerase functions. During this last step, the DNA polymerase prompts the 

deoxynucleotide triphosphates (dNTPs) from the master mix to bind to their 

complimentary nucleotides on the DNA segment, starting with the primer. By the end of 

this final stage, the single copy of double-stranded DNA coding for the desired DNA 

segment has now become two identical copies. This three-stage cycle can be repeated as 

many times as necessary until the desired amount of DNA copies have been created.20 

The components of the PCR typically include master mix, vent, the target 

plasmid, two primers associated with that plasmid, and dH2O. While the master mix 

contains Taq, the additional DNA polymerase vent is often utilized because it is capable 
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proofreading the new DNA strands and eliminating any potential mutations that occur 

during the elongation process. For this experiment, the thermocylcer was set to 94°C for 

the denaturing stage, which lasted 30 seconds. The second step ran for 45 seconds at 

45°C, which was deemed the appropriate annealing temperature for the AppProR and 

UP101 primers. The final stage occurred at 72°C, the optimum temperature for the DNA 

polymerases Taq and vent; this step lasted for 60 seconds. This three-step cycle was set to 

repeat 30 times.  

Restriction Enzyme Digests: 

 The purpose of a restriction enzyme digest is typically to produce compatible ends 

of DNA sequences that can be ligated together, or “sticky ends.” DNA digests typically 

involve restriction enzymes that recognize 6-8 consecutive bases.21 This project included 

two digests in preparation for a ligation: a pUA321 digest and a pG+host4 digest. The 

pUA321 digest consisted of 11µL purified pUA321 PCR product, 32µL dH2O, 5µL  

NEBuffer 2.1, 1µL HindIII, and 1µL EcoR1. The pG+host4 digest consisted of 1µL 

pG+host4, 42µL dH2O, and equivalent amounts of NEBuffer 2.1, HindIII, and EcoR1 as 

outlined in the pUA321 digest. Both digests utilized the same restriction enzymes, 

HindIII and EcoR1, in the hopes of producing sticky ends for a future ligation. Each 

digest was placed in the 37°C shaking incubator for 1 hour. 

Restriction enzyme digests can also be used as a means of preparing a plasmid for 

transformation. Studies have shown that transformations of naturally competent B. 

subtilis cells produce better results when transformed with linear DNA rather than 

circular DNA.8 While this linear DNA preference has not been shown conclusively for 

transformation via electroporation, a digest was performed on the ethanol precipitation 
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product (EPP) in the hopes of increasing the transformation efficiency of BD366 with the 

EPP. The components of this restriction enzyme digest were 2µL EPP, 5µL NEBuffer 

2.1, 1µL XbaI, and 42µL dH2O. This digest was also placed in the 37°C shaking 

incubator for 1 hour. 

Ligation: 

Ligations are performed to unify two linear DNA fragments into one circular 

piece of DNA. The components of a ligation include a ligation enzyme, the ligation 

buffer associated with that enzyme, and the two digests that are being joined. In this 

experiment, the ligation mixture was incubated at room temperature overnight.  

Purification Techniques: 

MicroElute Cycle Pure Kit:  

 This purification kit is typically used to remove impurities from PCR products. 

The protocol in this kit was followed for two purifications during this experiment: the 

purification of the pUA321 PCR product and the purification of the pUA321 and 

pG+host4 digests prior to their ligation.  

MicroElute DNA Cleanup Kit: 

 This purification kit is typically used to remove impurities from DNA segments 

that have been subjected to enzymatic reactions of some sort. The protocol in this kit was 

followed to purify the EPP digest prior to the transformation of the BD366 cells via 

electroporation. 

Electroporation of DH5α and BD366: 

 Electroporation is the most common physical technique utilized to transform 

bacterial cells. Electroporation uses a high-strength electrical pulse to generate temporary 
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pores in the membranes of the electrocompetent cells. The plasmid containing the DNA 

sequence to be incorporated into the bacterial DNA may enter the cells through those 

pores and be recombined into the electrocompetent cells.1 First, the plasmid of interest is 

pipetted into a solution of electrocompetent cells. This mixture is pipetted into a chilled 

cuvette, which is then placed into a chilled cuvette holder. The cuvette holder is 

positioned into the electroporator, which is set according to the needs of the 

electrocompetent cells being utilized. After the electrical charge is applied, the time 

constant is measured. Finally, recovery medium is added to the cuvette before the 

contents of the cuvette are transferred to a Falcon tube for incubation. In this experiment, 

the Falcon tube was placed in the 37°C shaking incubator for 2 hours prior to plating the 

transformed cells.   

Glycerol Stock Solution: 

 A glycerol stock solution (created from the fluorescent E. coli colony) was 

produced so that the transformed E. coli cells containing the pUA625 could be stored in 

the -80°C deep freezer and retrieved during future related experiments. 

Inoculation: 

 A flask containing LBEm500 broth was inoculated with 100µL glycerol stock 

solution in order to grow cells to be used for the maxi plasmid preparation. 

Plasmid Preparation: 

Plasmid DNA Maxi Kit: 

 This plasmid preparation kit produces high copy number plasmid DNA, which is 

desirable when executing a bacterial transformation.  
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Ethanol Precipitation: 

 The purpose of an ethanol precipitation is to concentrate DNA through the 

centrifugation, washing, and consequent drying of the DNA of interest. The first step in 

an ethanol precipitation is to add NaCl and ethanol to the plasmid DNA. The mixture is 

then centrifuged to produce a pellet. The pellet is then washed with ethanol, dried by 

vacuum centrifugation, and then suspended in a solution.  

Horizontal Agarose Gel Electrophoresis: 

 Agarose gel electrophoresis is a means of separating DNA fragments based on 

size. The DNA being evaluated is placed in wells at one end of the gel, and an electric 

current is then applied to the gel. The negatively-charged phosphate backbone of the 

DNA causes the fragments to move towards the positively charged anode. As the 

fragments are migrating through the gel, the network of agarose particles acts as a filter 

and catches the DNA fragments in a size-dependent manner; the smaller the DNA 

fragment, the more easily it can move through the agarose pores and, thus, the farther it 

will travel in the gel.15 

 This project utilized the Embi Tec “RunOne Electrophoresis Unit” when 

performing horizontal agarose gel electrophoresis. The gel itself was composed of TAE, 

SeaKem GTG agarose, and SYBR Safe. A 1 kb marker, which produces multiple bands 

of varying sizes, was run during every gel that was executed. By simultaneously running 

the 1 kb marker with the DNA samples, the ladder created by the marker allowed the 

relative sizes of the DNA samples to be estimated. These size estimations served as a 

means of verifying various experimental steps, for the expected size of the samples was 
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known. The gels, therefore, were extremely helpful in validating the success of the other 

experimental methods (figures 3, 4, 8, and 9). 

Fluorescence Microscopy: 

 Fluorescence microscopy is a technique that separates fluorescence excitation and 

detection into two distinct light paths. By juxtaposing the axis of illumination and the 

axis of detection in a perpendicular manner, the amount of excitation light that is 

captured in the image is reduced. This means that the final image is a clearer, better 

representation of the degree of fluorescence being emitted by the cells.19  
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Results 

PCR amplification of Papp:gfp. A fragment suitable for cloning to the app promoter 

was produced by PCR, using pUA321 as target DNA, and the primers AppProR and 

UP101. The purpose of the PCR was to create numerous linear copies of the DNA 

segment that codes for the desired appProR-gfp-

reporter gene sequence, with flanking DNA sequences 

containing restriction endonuclease sequences for the 

subsequent cloning experiment. The PCR product was 

subjected to horizontal gel electrophoresis, which 

revealed a band of 1.2 kb (figure 3), corresponding to 

the Papp:gfp gene fragment.  

 

 

The PCR product was then subjected to the 

MicroElute Cycle Pure Kit in preparation for the 

subsequent ligation. Horizontal gel electrophoresis 

was then utilized to verify the success of this 

purification (figure 4); the 1.2 kb band produced 

was consistent with the expected size of the 

purified PCR product. 

 

 

 

Figure 3: Gel electrophoresis of 
pUA321 PCR Product. 
	
  

Figure 4: Gel electrophoresis of purified 
pUA321 PCR Product. 
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Ligation of pUA321 and pG+host4. The ligation was executed utilizing T4 ligase and 

T4 ligation buffer to unite the purified pUA321 digest with the purified pG+host4 digest. 

This fusion of pUA321 with pG+host4 was a vital step in the experiment, for pUA321 

would be unable to replicate in both E. coli and B. subtilis if left to its own devices. The 

plasmid pG+host4, however, contains a broad host range that permits it to survive in a 

variety of gram-negative and gram-positive bacterial species.13 Therefore, the ligation 

was carried out to insert the appProR-gfp-reporter sequence from pUA321 into pG+host4 

to create a new plasmid, pUA625 (figure 5). This new plasmid was utilized in all 

subsequent transformations and steps in the project.  

 

 

 

 

  

 

 

Figure 5: Plasmid Map of pUA625; image generated from the nucleotide sequence 
using CLC-Bio DNA Workstation. 
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Electroporation of E. coli cells. This electroporation was conducted to incorporate 

pUA625 into electrocompetent E. coli cells, or DH5α cells. This experiment used the 

Bio-Rad Electroporator, which was set to 25µF, 200 Ohms, and 1.7kV/cm pulse rate, as 

is dictated by the DH5α cells. The time constant was recorded as 4.1 ms, which fell into 

the range of satisfactory time constants for DH5α cells (3.5 to 4.5 ms).  

The time constant of the transformed E. coli cells suggested that the 

electroporation was successful, so the cells were spread on an LBEm500 plate. The cells 

produced a green fluorescent colony when subjected to epiluminescence with blue light 

(figure 6).  

 

 

 

 

 

 

 

 
 
 

 

 

 

 

Figure 6: A fluorescent E. coli colony on an LBEm500 plate. This image was 
captured with a standard Canon camera that was covered with an orange lens.  
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Fluorescence microscopy of transformed E. coli cells. Cells from the fluorescent E. 

coli colony (figure 6) were subjected to fluorescence microscopy using a Zeiss 

Fluorescent AxioImager M1 Upright Motorized Microscope in conjunction with 

AxioVision Image Analysis Software, yielding an image of bright green cells (figure 7).   

 
Figure 7: Fluorescent E. coli cells. 
 

Plasmid preparation of transformed E. coli cells. A plasmid preparation was 

performed according to the protocol outlined in the Plasmid DNA Maxi Kit. This step 

was executed in order to produce a large amount of the 

transformed E. coli DNA containing the appProR-gfp-

reporter sequence, increasing the likelihood that the 

upcoming B. subtilis transformation would be successful. 

The product of this plasmid preparation was subjected to 

horizontal agarose gel electrophoresis (figure 8), which 

produced a blurry band of roughly 5 kb that was consistent 

with the expected band size of the plasmid. The smallest 

bands (less than 500 bp) indicated the presence of residual RNA. 

Figure 8: Gel electrophoresis of large-
scale plasmid preparation product. 
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Ethanol precipitation of the large-scale plasmid preparation product. The purpose of 

this precipitation was to concentrate the DNA from the preceding plasmid preparation 

product in order to increase the chances for a successful subsequent B. subtilis 

transformation. This ethanol precipitation was executed as described by Lever et al 

(2015), which started by adding 0.2 volumes 5 M NaCl and 2.5 volumes ethanol (95 %) 

to the plasmid preparation product.16 After centrifuging at 20,000 x g for 10 minutes, the 

pellet was washed with 70% ethanol and dried by vacuum centrifugation before being 

suspended in 10 mM Tris-C (pH 8.0). The resulting ethanol precipitation product (EPP) 

was then subjected to horizontal agarose gel electrophoresis (figure 9). Electrophoresis 

produced a band of approximately 5 kb, as was expected of the EPP. Additional large 

bands arose due to DNA supercoiling, as well small bands (less than 500 bp) indicative of 

residual RNA. 

 
 
 

 

 

 

 

 

 

Figure 9: Gel electrophoresis of EPP (third well). 
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Electroporation of B. subtilis cells. Another electroporation was executed, this time 

involving the integration of the purified, digested EPP into electrocompetent B. subtilis 

(BD366) cells. For this electroporation, the Bio-Rad Electroporator was set to 25µF, 400 

Ohms, and 1.4kV/cm pulse rate. The time constant was recorded as 5.3ms, which fell 

under the range of suitable time constants for BD366 cells (4.8 to 5.8 ms).  

The time constant of the transformed BD366 cells, suggested that the 

electroporation was successful, so the cells were spread on a BHIEm1 plate. The cells 

produced multiple green fluorescent colonies when subjected to transillumination with 

blue light (figure 10). The fluorescent colonies were labeled pUA630, a designation 

which will be used when referring to this strain of transformed B. subtilis cells containing 

the appProR-gfp-reporter gene sequence in future Ivey Laboratory experiments. 

 

 

 

 

 

Figure 10: Fluorescent B. subtilis colonies on a BHIEm1 plate. The colonies 
marked through with an “X” are non-fluorescent. This image was captured 
with a standard Canon camera that was covered with an orange lens. 
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Fluorescence Microscopy of transformed B. subtilis cells. Cells from the fluorescent 

pUA630 colonies (figure 10) were subjected to fluorescence microscopy using a Zeiss 

Fluorescent AxioImager M1 Upright Motorized Microscope in conjunction with 

AxioVision Image Analysis Software microscope, producing an image of vibrant green 

cells (figure 11). 

 

 

Figure 11: Fluorescent B. subtilis cells.  

 

 

 

 

 

 

 

 

 



	
   27	
  

Discussion 

 The first achievement of this experiment was the successful cloning of plasmid 

pUA625 through the ligation of the purified pUA321 and pG+host4 digests. This step was 

essential for the future success of this project, for the appProR-gfp-reporter gene 

sequence from pUA321 would not have the host range potential to be incorporated into 

C. difficile without pG+host4. The creation of pUA625 was verified when the 

transformation of the E. coli cells with the ligation product produced fluorescent colonies, 

since E. coli colonies are not naturally fluorescent and must have been expressing the 

green fluorescent protein from pUA625. Once the appProR-gfp-reporter construct was 

integrated into E. coli, the next phase of the experiment was to incorporate pUA625 into 

B. subtilis. This step would be more indicative of the likelihood that a future 

transformation of the plasmid into C. difficile would work, since B. subtilis behaves more 

similarly than E. coli to C. difficile as a host organism. B. subtilis is not as easily 

transformed as E. coli, so the outcome of the second electroporation was less certain. 

Thankfully, the transformed B. subtilis strain (pUA630) produced fluorescent colonies, 

signifying that this electroporation was also executed effectively.  

The incorporation of the appProR-gfp-reporter gene into B. subtilis was a triumph 

for the Ivey Laboratory, for it created a model organism in which various aspects of C. 

difficile can be further characterized. B. subtilis’s sporulation developmental program, for 

example, is one promising target for future research. Since endospore formation is crucial 

for C. difficile survival, one could attempt to modify the spore-forming capacities of 

pUA630 and then apply those findings to C. difficile. Additionally, pUA630 could be 

used in conjunction with the results from previous projects conducted in the Ivey 
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Laboratory. CodY, a protein found in gram-positive bacterial species, has been found to 

bind and repress the expression of the App promoter in response to C. difficile’s 

nutritional environment.2 This repressive function could be instrumental in preventing 

CDIs, for stopping the expression of the App system would render the bacterium 

incapable of ingesting peptides and perhaps hinder cytotoxin release. By conducting 

experiments to further analyze CodY’s suppressive effects on pUA630’s appProR 

sequence, the protein’s mechanisms could be better understood and, hopefully, exploited 

in C. difficile. By taking advantage of the similarities shared between B. subtilis and C. 

difficile, the Ivey Laboratory can determine which methods would be most effective in 

preventing C. difficile proliferation by performing tests on a much safer experimental 

host, pUA630. 
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