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Forest cover for 7.25 million acres (2.93 million hectares) in southeastern Georgia was characterized for the years 1988 and
1994 with the intent of assessing the efficacy of remote sensing procedures for broad scale forest inventory. Landsat-5 Thematic
Mapper digital satellite scenes of seven spectral bands were obtained for winter and summer of each year and were analyzed
as two separate 14-band multi-temporal images. Images were geo-referenced to the universal transverse mercator (UTM) coor-
dinate system prior to classification. Spectral classification with the ISOCLUSTER algorithm produced 250 categories. Color
infrared aerial photographs were mapped to the digital imagery and were used to convert spectral categories to land cover fea-
tures. For this study, land features of interest were limited to water, marsh, pine forest, hardwood forest, mixed pine/hardwood
forest, urban, and where distinguishable, clearcut and agriculture. Accuracy assessment techniques indicated very good con-

sistency.

Introduction

The practice of forest inventory is playing an increas-
ingly important role in resource planning as demands for
fiber increase upon finite resources. Traditional field inven-
tory techniques are becoming harder to justify economical-
ly. In addition, the accuracy of field inventory is often less
than optimal; surveys are usually less than one percent of
area. Remote sensing techniques have the potential to make
frequent, inexpensive, and useful inferences about very
large areas. This manuscript reports on stage one of a two-
stage project to characterize forest vegetation based on spec-
tral signatures, i.e., reflectance of solar irradiance in specific
narrow wavelengths, as a reasonably accurate map of major
forest types. The purpose of this manuscript is to describe
two aspects of the procedure: 1) the practical application of
integrating aerial photography with industry standard digital
image classification techniques for large areas; and 2) a
method of assessing the accuracy of the resultant map.

The study area for this project, 7.25 million acres (2.93
million hectares) in southeastern Georgia (Fig. 1), was
selected primarily because of the availability of detailed dig-
ital inventory data. In addition, the physiography of the
region has several important features for remote sensing of
forest vegetation.

(1) Negligible topographic variation exists. Shadows,
various angles of light incidence, and spatial distortions
inherent in high-relief areas are typically problematic in
their effect on sunlight reflected from surface features, espe-
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Fig. 1. Study area is in gray. Georgia counties are outlined in
black.
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cially forest vegetation which is typically highly variable.

(2) Large areas of managed pine forests are common.
Because southern pines, particularly Pinus taeda and P. elli-
otil, figure prominently in North American supply of wood
fiber, it is important that spectral signatures of various stages
of pine plantations be adequately captured.

(3) Georgia ranks third among southeastern states in
volume of sawtimber produced (FIA Homepage, 1997).
Characterization of forest resources for a highly productive
region of the southeastern United States has a greater value
than for a less productive region.

Southeastern Georgia physiography is typified by slight-
ly rolling hills to flat topography. Sandy soils in the area,
though well drained, are usually low in fertility and this is a
driving factor in the effort to improve wood fiber yields
through genetic selection and intensive cultivation (Keefer,
1994). Agricultural crop production competes with forestry
for land use in the western portion of the study area, but
poorer soils in the east favor pines.

Because forest vegetation extent was of primary impor-
tance in this phase of the project, a limited set of land class
features were selected for final categorization. These fea-
tures are water, marsh, pine (Pinus spp.) forest, hardwood
(deciduous species) forest, mixed pine/hardwood forest,
urban/roads, and where possible to distinguish, clearcut and
agriculture.

Materials and Methods

Data and Software.~-Four dates of Landsat-5 Thematic
Mapper (TM) digital imagery were selected based on their
extent of significant cloud cover during dormant and peak
growing seasons. The following image dates were used:
February 26 and June 17, 1988; January 9 and May 17, 1994.
All seven available spectral bands were acquired; they cor-
respond to three visible bands, one near-infrared, two mid-
infrared, and one thermal band (Lillesand and Kiefer, 1987).

Geometric correction of the images was performed on
Arc/Info version 7.0 (from ESRI, Inc.) Image analysis was
performed with ERDAS IMAGINE, version 82 (from
ERDAS, Inc.). Both software packages operated on a Sun
SPARCstation 20 workstation running Solaris 2.4. IMAG-
INE utilizes the ISOCLUSTER unsupervised classification
algorithm. In addition, the software provides a very conve-
nient graphical interface which facilitates the coding of spec-
tral features. All digital maps were projected in the
Universal Transverse Mercator coordinate system, Zone 17.

Aerial photographs were obtained from the U.S.
Geological Survey National Aerial Photography Program
(NAPP) for a subset of the study area, approximately 17%.
Photographs were selected to correspond with the dates of
the Landsat imagery. Due to the periodic latency in the

flight schedule, color infrared photographs were available
only for 1988. Only black and white panchromatic pho-
tographs were available for 1994.

Mitigation of Cloud Effects.~-For this study, "significant”
cloud cover denotes degradation of ground surface-reflected
sunlight such that demarcation of ground feature categories
is not feasible. Fortunately, only the summer-1994 image
had any appreciable cloud cover. However, it was indeed
significant; approximately 15% of the image was treated as
cloudy.

Detection of the extent of clouds was facilitated by the
use of the thermal infrared image band (commonly referred
to as band 6). The cooler temperatures of the clouds con-
trasted distinctly with the ground surface features. Cloud
temperatures registered as low pixel values in band 6. By
plotting a histogram of these values, a breakpoint could be
determined that represented the change from cloud to cool
ground features such as water. Removing pixels having val-
ues lower than this threshold removed most of the cloud
effect. Visual inspection of the remaining image indicated
that the clouds were adequately removed. However, this left
a portion of the image that could not be classified with win-
ter and summer TM scenes together, To mitigate this prob-
lem, enclouded ground areas were extracted from the
unclouded winter image and classified separately. The two
separate classified images were later combined into a single
image to complete the analysis.

Georeferencing.--Landsat images may be purchased in
several degrees of geometric correction. Although the image
vendor, Space Imaging EOSAT, will provide geometric cor-
rection to several map projections, the images often do not
match features such as roads and waterways as effectively as
when they are fit to a specific area. Therefore, geometric
correction was the first step involved in preparing the
images for analysis. In addition, the TM images were
received with pixel resolutions of 25 x 25 m, and during the
georeferencing operation they were converted to 30 x 30 m
resolution through a process called nearest-neighbor resam-
pling. This resampling process works by using the value of
the pixel in the original image nearest to the relocated pixel
coordinate as the new value. Compared to other methods
that average nearby values, the nearest neighbor approach
results in a blockier appearance but preserves the original
sensor values without creating new values from averaging.

The method of georeferencing the four images used in
this study was to match the first image to a standard base
network (e.g., roads), then match the remaining images to
the first corrected image. This image-to-image registration
reduces potential errors that might be incurred if all images
were referenced to the base network. The reason is that the
base network is not part of the analysis procedure. Rather, it
provides a standard for the first image, which then becomes
the standard for the remaining images. If all images were
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registered to the base network then, supposing a maximum
error of one pixel, all images could be displaced from the
base network equilaterally and the maximum error between
all images would be two pixels. However, if all remaining
images are registered to the first image, the maximum error
is one pixel. In fact, localized errors can be substantially
more than one pixel due to inaccuracies of the base network
itself. In this study, the U.S. Geological Survey's 1:100,000
scale Digital Line Graph road network was used as the base
network. Image to image registration was performed in
IMAGINE.

Arc/Info provides a convenient interface for selecting
corresponding points on the satellite image and a digital
dataset, such as a road network. When a suitable number of
correlated points have been selected, parameters for a first-
order polynomial transformation are computed. The result-
ing equation is applied to affect three image characters-
translation, scaling and rotation--that cause the image to
match the known dataset, roads in this case. This highly
interactive process can take several days to perform proper-
ly. Ideally, each pixel in each of the four images should cor-
respond to the same spot on the ground. Of course, not all
pixels will line up exactly. For this study, on average, image
pixels were within one-half pixel width of their true location,
i.e., RMS error in meters was 13.3 in the east-west direction
and 13.1 in the north-south direction.

Classification.~-Multispectral images are arrays of digi-
tal numbers (DN) representing surface reflectance of light in
various wavelength bands. For example, the Landsat TM
datasets are composed of seven coregistered images called
bands. Each pixel location (e.g., row |, column 1) contains a
number from 0 to 255 (eight binary bits) representing
reflectance of a particular narrow-band range of the light
spectrum for a 25 x 25 m surface area. One feature of satel-
lite imagery that is important to consider in image classifi-
cation is the concept of a sensor’s instantaneous field of view
(IFOV). The IFOV is the surface area composing the light
received by one sensor element or pixel. Note that IFOV
defines the resolution of the image. The digital number rep-
resenting the reflectance of a given pixel in the image is a
weighted average of the respective reflectance of all features
in the [FOV. Ideally, all pixels should fall completely upon
a single feature, but in fact, many pixels capture light from
several features, resulting in what is known as a mixed pixel.
Mixed pixels contribute significantly to confusion between
features when classifying digital imagery.

All spectral classifiers attempt to define spectral signa-
tures of surface features. Spectral signatures are represented
by the collection of DNs for different wavelengths associat-
ed with a surface feature. These values sometimes may be
averaged or otherwise ciphered, and they sometimes may
incorporate covariance between bands or between features.
Generally, the signatures are considered to be multidimen-
sional quantities.

Among standard spectral classifiers, two basic methods
exist (Wilkie and Finn, 1996); supervised and unsupervised.
The important difference is in the way spectral signatures
are developed. Supervised methods require prior knowl-
edge of the study area inasmuch as a human analyst selects
known portions of the images from which to develop spec-
tral signatures. In this case, a polygon may be digitized
around a feature class causing, for example, 10 pixel loca-
tions to be acquired for that signature, resulting in 10 seven-
dimension values. These polygons are called training areas
because they are used to "train" the classification algorithm
regarding that feature. By collecting several representative
training statistics, the analyst hopes to characterize all such
features over the extent of the image. Confidence values
could then be applied to each pixel in the image according
to its fit with the "known" spectral signature.

Unsupervised methods, on the other hand, attempt to
designate signatures based on natural "clumpiness" of the
spectral dataset. Consider Fig. 2 which depicts a hypotheti-
cal dataset of three bands, green, red, and infrared. Some
features may be well defined, whereas others may be barely
distinguishable. Still others may not readily fall into any
conceivable class. Often, similar classes can be made dis-
tinct by including another spectral band. However, a draw-
back of unsupervised classification is that it produces only
spectral classes; it does not produce feature classes.
Consequently the analyst must investigate all output classes
to determine their relation to feature classes. Furthermore,
the burden of assigning confidence values lies completely
with the analyst.

RED

GREEN

IR

Fig. 2. Hypothetical clusters in three spectral bands. Lines
are drawn to midpoints of clusters.
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The IMAGINE software includes the ISODATA algo-

rithm for unsupervised classification. A detailed explanation is
included here to clarify the need for steps that follow.
Execution of the program is controlled by several user-sup-
plied parameters: maximum number of classes (NBINS), max-
imum number of iterations (MAXITER), and percent conver-
gence threshold (CONVY). Assuming a seven band image,
the operation of this algorithm is as follows (ERDAS, 1994).
1) Define NBINS classes evenly dividing the spectral space.
Basically this means 255/NBINS for each band. These class
values will change during execution of the program. Note
that these class values would denote seven-value coordi-
nates in spectral space.
2) Working through each pixel location in the image, com-
pute the distance from each pixel's spectral coordinate to
each NBINS value according to the modified Euclidean dis-
tance formula

p=\z (d;-C,)*

where D = distance from segment i; i = band number from
| to seven; d = digital number of band i; and C = class i
from step 1. The pixel is temporarily assigned to the class
having the shortest distance to the pixel. This step is repeat-
ed for all pixel locations in the image.

3) Collect all pixel values in each tentative class and average
the pixels in each band. This becomes the new n-coordinate
class value. Repeat this procedure for all classes; then begin
step 2 again with the new class values.

4) During the iteration of steps 2 and 3, many pixels will
change classes causing the means of the class values to
change. The rate of change eventually slows, and the algo-
rithm stops when either the number of classes denoted by
CONVY% no longer changes, or MAXITER has been
reached.

When all the images in this study were transformed to
the UTM (zone 17) coordinate system, the two images for
each year were combined into a single file, one per year, to
facilitate application of the algorithms. Thus, ISOCLUS-
TER was executed on one l4-band image for 1988 and
1994, respectively, and one seven band image for the
enclouded area of the 1994 image. The computational pro-
cedure took five days per image on the SPARCstation 20 to
create output images composed of 250 values. The encloud-
ed area, representing only 15% of the study area, was
processed with NBINS=50 due to time constraints.
Recoding time is a function of NBINS, not area.

Obviously, this is many more classes than needed for
the final map. However, two or more distinct features will
sometimes occupy a class regardless of how many initial
divisions are used. For example, swamp and marsh are often
subject to this confusion due to the effect of surface water in
the understory. This fact is less problematic with more class-
es than with fewer classes.

One can think of the output image as a reduction of
practically an infinite number of potential classes (2*"'-1) to
NBINS classes, 250 in this case. Consequently, a given class
will be scattered throughout the image, associated with
whichever ground features happen to have similar
reflectance. The feature coding process involves highlight-
ing each class individually, verifying the associated ground
feature, and recoding the numeric class to a descriptive
class. The process of recoding a class requires the analyst to
view as many of the given class's associated ground features
as possible. This is why aerial photographs are so valuable.
Actual ground visitation at a similar level of detail would be
prohibitively expensive. However, some ground visitation is
important to resolve ambiguities and spot check estimates
from photos.

Integrating aerial photography for feature coding.—
Ordinarily, field forays may supplement the use of aerial
photography as ancillary information. However, due to the
availability, quantity, timeliness, and low cost of color-
infrared aerial photography versus the cost of trips to the
study area, in this study nearly all feature coding was accom-
plished through aerial photographs. Some ground recon-
naissance was performed prior to classification whereby the
authors drove the highways of the study area and spot-
checked a hardcopy of the satellite imagery. In addition, for
this study, land managers substituted for detailed field forays
in "reality checking" the final classifications.

To facilitate the time consuming task of finding on the
aerial photograph the spot that corresponds with a point on
the computer-displayed map, outlines of the aerial photos
were digitized in a form that could be displayed against any
of the images. Fortunately, IMAGINE allows a large num-
ber of image viewing screens to be displayed simultaneous-
ly. In addition, these viewers may be geographically refer-
enced, such that information displayed in one viewer is
accessible in other viewers. Therefore, a useful layout incor-
porates views of summer and winter TM images, the classi-
fied image, boundaries of aerial photographs, and any
necessary magnifications of these constituents. Another fea-
ture of IMAGINE is that any given class can be displayed
separately or highlighted. This makes it much easier to find
a given pixel on the aerial photographs.

Ultimately, however, the task of verifying each of the
classes is time consuming due to potential ambiguity within
classes. Mixed pixels create the most difficult ambiguities
because the pixel assumes spectral characteristics of several
features and this can give it the appearance of something
completely different. Note that a relatively high degree of
proficiency in interpreting aerial photography is required
since it is used so extensively.

Accuracy Assessment.—-Errors in interpretation, incom-
plete data, or confusion of feature classes will result in errors
in the final classified map. Therefore, some method of
assessing accuracy must be implemented. The general prin-
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ciple of accuracy assessment is to compare estimated feature
values for pixels to known feature values for the same pix-
els. Normally, one cannot test every pixel so a percentage of
pixels is sampled. Known feature values can be obtained in
a number of ways, e.g., aerial photographs, ground visita-
tion, expert knowledge, or other ancillary data. Aerial pho-
tographs can provide good reference data, but some pixels
will be difficult to visually co-register.

Congalton (1988) noted several variations on simple ran-
dom sampling, including stratifying based on land cover and
stratifying geometrically, cluster sampling, and systematic
unaligned sampling. He concluded, however, that the simple
random sampling or stratification by land classes performed
best for agriculture and forested areas in that study:.

IMAGINE provides an interface for assessing the accu-
racy of classified images. The approach is similar to that rec-
ommended by Congalton (1988) because one can select
simple random sampling, stratification based on class value,
or equalized random sampling (i.e., each class is assigned an
equal number of samples). In addition, one can define a
minimum number of points per class, total number of sam-
ple points, and some degree of homogeneity of surrounding
pixels via a "majority window. " This last issue is imple-
mented by considering the pixels in a window of n x n pix-
els (where n is greater than two) surrounding the candidate
sample. If the values of the pixels are the same for some
user-defined threshold, then the candidate pixel is retained.
The purpose of such a threshold is to control the number of
pixels in areas of high diversity as such areas are more like-
ly to contain misclassified pixels due to the larger number of
mixed pixels.

Digital outlines of the photographs were used to elimi-
nate areas of the classified image not actually verifiable.
Thus a "clipped” image was created corresponding to the
coverage of the aerial photographs and the accuracy
assessment was performed on this subset (Figure 3). Table 1
presents the results for the accuracy assessment for the clas-
sifications of the 1988 and 1994 images, respectively.
Generally, the classes for 1988 and 1994 are within 10 per-
centage points of each other, except for the water class.
Apparently, the majority window restricted the number of
possible samples in the already small population of inland
water such that fringe pixels had a higher likelihood of being
selected. This result warrants future attention.

Discussion

Much theoretically oriented literature exists regarding
the accuracy of spectral classification (Fenstermaker, 1994).
However, a rigorous analysis of the classification accuracy
was not attempted for this report. The purpose of the classi-
fication accuracy assessment as presented herein was to pro-
vide a meaningful indication as to the efficacy of the resul-
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Fig. 3. Aerial photograph outlines (black) were used to delin-
eate a subset of the study area (gray).

tant map for later stages of this research. Notwithstanding, in
the authors' experience (Weih et al., 1993; Thomasson et al.,
1994), the percentages in Table 1 are very agreeable for such
a large and diverse area. In addition, spot checks of the 1988
classification by personnel experienced with the area indi-
cate similar agreement. Therefore, it appears that the use of
aerial photography as a verification medium for unsuper-
vised classification can be a viable alternative to more
expensive field checking. Future research in this area could
investigate specific combinations of spectral bands for effi-
ciency in classifying various vegetation types, development
of spectral curves for vegetation communities and individual
species, and the practical application of theoretical accuracy
assessment concepts to production-oriented image classifi-
cation endeavors.
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