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Abstract

A one-dimensional, three-component, fluid model has been employed to investigate the existence of a speed cut-off point
for antiforce breakdown waves. The term antiforce wave is used to identify breakdown waves for which the electric field force
on electrons is in the opposite direction of wave propagation. The electron fluid-dynamical equations for antiforce waves are
different from those of proforce waves. This presentation will address the difference in the set of equations for proforce and
antiforce waves and the method of integration of the set of equations through the dynamical transition region for antiforce
waves. Also, for antiforce waves, the existence and approximate value of a speed cut-off point will be discussed.

Introduction

The basic set of equations in the fluid model consists of

the equations of conservation of mass, momentum, and
energy, coupled with Poisson’s equation. The three equa-
tions of conservation of mass, momentum, and energy are in
Eulerian form and were adopted by Fowler (1964). Also, the
wave is considered to be a shock front driven by the elec-
tron gas pressure. The shock front is followed by a dynami-
cal transition region in which a neutral cold gas entering
from the front is turned into a partially ionized hot gas.

For antiforce waves, the net electric field (applied plus
space charge field) is in the direection of wave propagation.
Therefore, the electric field force on electrons is in the oppo-
site direction of wave propagation. However, the electron
temperature and therefore fluid pressure are assumed to be
large enough to provide the driving foree. The problem is
assumed to be one-dimensional and time independent with
the wave propagating along the x-axis. In the wave frame,
the frame whose origin is located at the shock front, the elec-
trons, ions, and neutral particle velocities and number den-
sities are time independent.

Model and Theory

Consider the breakdown wave as an infinite plane wave
traveling in the positive x direction with a speed V. Due to
the absence of observed Doppler shift, in the wave frame,
the frame which the wave front is considered to be station-
ary, the ions and neutral particles will have a velocity of —
V, and the wave will extend from 0 to - . The shock [ront

at x = 0 divides the neutral particles in front of the wave
from the three component gas (electrons, ions, and neutral
particles) behind the wave.

In gas electrical discharge, the wave front is followed by
a dynamical transition region. In this region the net electric
field (applied plus space charge field), starting from its value
E, at the wave front, falls to zero at the trailing edge of this
region. This region, which is somewhat thicker than a
Debye length, is referred to as the sheath region. At the end
of the sheath region the electrons come to rest relative to
ions and neutral partieles. These physical conditions will be
the guiding tool in solving the set of electron fluid-dynami-
cal equations. Since 1964, Fowler's (1964) set of electron
fluid dynamical equations has been improved. The set of
equations which have proven to be suceessfull in the case of
proforce waves was completed by Fowler et al. (1984). Their
set of equations include equations of conservation of mass,
momentum, and energy. Coupled with Poisson’s equation
and in one dimension, they are, respectively

d{ny) (1)

= itn,

%{ nrviy = V) + nkT, } = = enkl = Kimn{v - V), (2)
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The symbols n, v, m, e, and T, represent electron num-
ber density, velocity, mass, charge, and temperature inside
the sheath, and k, K, B, ¢, V, M, E,, x are Boltzman con-
stant, elastic collision frequency, ionization frequency, ion-
ization potential, wave velocity, neutral particle mass, elec-
tric field at the wave front, and position inside the sheath,
respectively.

For antiforce waves, Sanmann and Fowler (1975) con-
sidered the wave to be charaeterized by a weak discontinu-
ity at its front. That is, the electron temperature and number
density derivatives were considered to change discontinu-
ously; however, the variables themselves changed continu-
ously. For examplee, his conditions on electron number
density, n, at the wave front were n=0 and % = 0,

Application of Sanmann’s approximate method of solutions

and initial conditions reflecting a weak discontinuity to the
completed set of electron fluid dynamical equations did not
bear fruit; therefore, we had to consider an alternate
approach.

In our attempts to solve the set of equations, assuming a
strong discontinuity (a shock front), has proven to be suc-
cessful. That is, at the wave front the variables such as elec-
tron temperature and number density change discontinu-
ously. Sanmann and Fowler (1975) used variables suggested
by Shelton and Fowler (1968) to reduce the set of equations
to nondimensional form. However, these variables lead to a
contradiction in sign for the variables. Therefore, we will
choose a slightly different set of variables, and they are

P = h ]
L= I_-“I]\'. X W= = T

-"-7,2

n=
)

w=2m jl:;—:l. n=

In the above equations, v. \, 6, i1, x, 1, and £ are the
dimensionless electron concentration, electron velocity,
electron temperatue, ionization rate, elastic collision fre-
quency, electric field, and position inside the sheath, respec-
tively. All the above nondimensional quantities, including x,
are intrinsically positive. Introducing the above dimension-
less variables in the equations 1-4 results in

% = Kjisr, {5)
z‘-i, {arn"{tfl = 1)+ lwr?} = i) = i = 1), ((i)
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Ala
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Solution of the Equations

At the shock front, the electron velocity, v, is not as high

as the wave velocity, V. Therefore, the value of the nondi-
mensional electron velocity, v, will be less than one. All
varaibles are intrinsically positive; therefore, at the wave
front Poisson’s equation will yield a positive electric field
derivative (> (). This indicates that, traversing the sheath,
at first the nondimensional electric field value will increase
from its initial value of 1. However, gradually the electrons

reach speeds larger than those of ions and neutral particles.
This results in y values larger than one, and therefore, a

negative value of electric field derivative ( 0). Thus, the

electric field value starts decreasing. Since a contained vol-
ume of plasma cannot support an electric field, as one
approaches the trailing edge of the sheath the electric field
value must approach zero (n = 0). Approaching the end of
the sheath, due to collisions with heavy particles, the elec-
trons slow down to speeds equal to those of heavy particles.
The dimensionless electron velocity value, therefore, must
approach unity at the end of the sheath (i = 1).

Integrating the electron fluid dynamical equations
through the sheath region, the physical conditions at the end
of the sheath, referred to in the above paragraph, will
become the guiding tool. For given values of & and x, a com-
bination of initial electron number density, v;, and initial
electron velocity, y,, are selected. Then, for such a combi-
nation, the equations are numerically integrated and varia-
tions of the variables through the sheath region are
observed. k is called the wave constant and determines the
relation between the laboratory wave speed and the initial
value of the electric field. Changes in the value of x are uti-
lized for dramatic impact in the process of numerical inte-
gration. Additionally, the values of v, and y, are altered to
achieve a solution by trial and error.

Through the sheath region, the electron fluid dynamical
equations have successfully been integrated for six values of
a (0.01, 0.05, 0.1, 0.25, 1, 2). a.= 0.0] represents a fast wave
speed (V = 3 x 107 m/s) and « = 2 represents a slow wave
speed (V= 2 x 105 m/s). Figure 1 is a plot of the electric
field, n, as a function of electron velocity, v, inside the
sheath for all six values of o. The graphs show that for all six
values of o the solutions to the electron fluid dynamical
equations conform to the expected physical conditions at
the end of the sheath. To achieve successful integration for
different values of «, the following values of x and initial
electron velocity and electron density had to be utilized:

o=0.01, k= L3, ¥, = 0886, and ¢ = 0.645

a =005, &= 0.6, v, = 0.853, and y; = 0.80]
a=01, & = 0477, v, = 0801, and ¥ = 0.924
a = 025, & = (03883, ¢y, = 0.985, and vy = 046
=1, x=022 v =9, and gy = 0.4
=2, K="1.1% vy = (L3094, andd If‘1 = 0.97
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Fig. 1. Electric field, n, as a function of electron velocity, y; for six different values of a. & = 0.01, 0.05, 0.1, 0.25, 1, and 2.

As the value of o increases, the wave speed decreases
and the numerical integration of the electron fluid dynami-
cal equations becomes more difficult. Solution for o = 2
required long hours of computer work and analysis. A great
deal of time was spent trying to achieve solution for o = 4;
however, there seems to be no solution for & = 4. Therefore,
there seems to be a cut-off point for values of o which allow
successful integration of the set of equations (n = 0, = 1).
That is, there seems to be a cut-off point for wave speeds.
Figure 2 shows graphs of electric field, 1, as a function of
electron velocity, y, for two sets of variables. A slight varia-
tion of v, results in two different paths, neither is an accept-
able solution.

Conclusions

For antiforce waves and for six different values of wave
speeds, the electron fluid dynamical equations have suc-
cessfully been integrated. The integration of the equations
become more difficult as the breakdown wave speed
decreases. There seems to be a cut-off point in the value of
o beyond which successful integration of the equations is
not possible. That is, there seems to be a cut-off point for
wave speeds.
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Fig. 2. Electric field, 1, as a function of electron velocity, y, for & = 4 and for two different combinations of parameter values.
a) y, = 0.710, k= 0.33, v, = 0.398502
b) y, = 0.710, k= 0.33, v, = 0.398501
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