University of Arkansas, Fayetteville ScholarWorks@UARK

Computer Science and Computer Engineering Undergraduate Honors Theses

Computer Science and Computer Engineering

5-2008

Developing Subgrade Inputs for Mechanistic-Empirical Pavement Design

Meagan Berlau University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/csceuht Part of the <u>Civil and Environmental Engineering Commons</u>, and the <u>Computer Sciences</u> <u>Commons</u>

Recommended Citation

Berlau, Meagan, "Developing Subgrade Inputs for Mechanistic-Empirical Pavement Design" (2008). *Computer Science and Computer Engineering Undergraduate Honors Theses.* 11. http://scholarworks.uark.edu/csceuht/11

This Thesis is brought to you for free and open access by the Computer Science and Computer Engineering at ScholarWorks@UARK. It has been accepted for inclusion in Computer Science and Computer Engineering Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu.

DEVELOPING SUBGRADE INPUTS FOR MECHANISTIC-EMPIRICAL PAVEMENT DESIGN

DEVELOPING SUBGRADE INPUTS FOR MECHANISTIC-EMPIRICAL PAVEMENT DESIGN

An Honors Thesis submitted in partial fulfillment of the requirements for Honors Studies in Civil Engineering

> By Meagan Berlau

May 2008 University of Arkansas This thesis is approved for recommendation to the Honors College

Thesis Advisor:

Dr. Kevin Hall

Thesis Committee:

Dr. Robert Elliot

Dr. Norman Dennis

Thesis Duplication Release

I hereby authorize the University of Arkansas Libraries to duplicate and distribute this honors paper in any format (including electronic based distribution) when needed for research and/or scholarship.

Agreed:_____

Refused:_____

Acknowledgements

First, I would like to thank my thesis director Dr. Kevin Hall for his support and advice throughout this project. Without his guidance, this project would not be possible. Thanks are also extended to the members of my thesis committee, Dr. Robert Elliott and Dr. Norman Dennis. In addition, I could not have completed this project without the help that I have received from Trent Ellis. His support this past year has been invaluable. I would also like to thank my father, Chuck Berlau, for his constant encouragement and moral support.

Table of Contents

1. Introduction	1
2. Literature Review	
2.1 Resilient Modulus	
2.2 Index Property Correlations	6
2.3 R-Value Test	
2.4 R-Value Correlations	
3. Experimental Design	
4. Results	
4.1 Correlations Involving R-Value	
4.2 Analyzing Correlations	
4.3 MEPDG Tests	
4.3.1 Current MEPDG Correlation	
4.3.1.1 Thicker Cross Section	
4.3.1.2 Thinner Cross Section	
4.3.2 Pavement Failures with New Correlation	
4.3.2.1 Thicker Cross Section	
4.3.2.2 Thinner Cross Section	
5. Discussion and Conclusions	40
6. References	
Appendix A	
Appendix B	55
Appendix C	

List of Figures

Figure 1. Resilient Strain Example	5
Figure 2. Stabiliometer Diagram	. 12
Figure 3. California Kneading Compactor	. 15
Figure 4. Thinner Pavement Cross Section	. 19
Figure 5. Thicker Pavement Cross Section	. 20
Figure 6. Relationship Between the (Resilient Modulus to R-Value) ratio and the R-va	lue
of Arkansas Soils	. 21
Figure 7. Mr ² /R Plot	. 23
Figure 8. Resilient Modulus over R-value vs. R-value Sorted by R-value	. 24
Figure 9. Comparrison of Predicted Mr/R and Actual Mr/R	. 26
Figure 10. Comparison of Correlations	. 27
Figure 11. Total Rutting vs. Time, Thicker Cross Section, Current Correlation	. 28
Figure 12. Bottom-Up Cracking vs. Time, Thicker Cross Section, Current Correlation	. 29
Figure 13. IRI vs. Time, Thicker Cross Section, Current MEPDG Correlation	. 30
Figure 14. Total Rutting vs. Time, Thinner Cross Section, Current Correlation	. 31
Figure 15. Bottom-Up Fatigue vs. Time, Thinner Cross Section, Current Correlation	. 32
Figure 16. IRI vs. Time, Thinner Cross Section, Current Correlation	. 33
Figure 17. Total Rutting vs. Time, Thicker Cross Section, New Correlation	. 34
Figure 18. Bottom Up Cracking vs. Time, Thicker Cross Section, New Correlation	. 35
Figure 19. IRI vs. Time, Thicker Cross Section, New Correlation	. 36
Figure 20. Total Rutting vs. Time, Thinner Cross Section, New Correlation	. 37
Figure 21. Bottom Up Cracking vs. Time, Thinner Cross Section, New Correlation	. 38
Figure 22. IRI vs. Time, Thinner Cross Section, New Correlation	. 39
Figure 23. Resilient Modulus vs. R-value	. 56
Figure 24. Resilient Modulus vs. R-value Squared	. 56
Figure 25. Resilient Modulus vs. R-value Cubed	. 57
Figure 26. Resilient Modulus Squared vs. R-value Cubed	. 57
Figure 27. Square Root of Resilient Modulus vs. R-value	. 58
Figure 28. Resilient Modulus vs. Square Root R-value	. 58
Figure 29. Resilient Modulus vs. Log(R-value)	. 59
Figure 30. Log(Resilient Modulus) vs. R-value	. 59
Figure 31. Resilient Modulus vs. Ln(R-value)	. 60
Figure 32. Ln(Resilient Modulus) vs. R-value	. 60
Figure 33. (Resilient Modulus/R-value) vs. R-value	. 61
Figure 34. (Resilient Modulus Squared/R-value) vs. R-value	. 61

1. INTRODUCTION

The Resilient Modulus (M_R) of a subgrade soil is an essential input into the flexible pavement design models contained in the American Association of State Highway and Transportation Official's new pavement design guide, the Mechanistic-Empirical Pavement Design Guide (MEPDG). For most inputs required for pavement design, there are three levels of input that can be used within the MEPDG system. Level One requires the engineer to enter a value for subgrade Resilient Modulus based on the results of Resilient Modulus tests conducted in the laboratory. Level Two allows the user to input values for other soil property tests including California Bearing Ratio (CBR), and resistance value (R-Value). The program then converts these numbers to Resilient Modulus values using empirical correlations. When a pavement designer does not have access to detailed data about the subgrade soil, Level Three inputs can be used. These inputs are educated guesses for the Resilient Modulus of the subgrade soil based on the AASHTO soil type entered.

While Level Three inputs may not provide accurate data to allow an engineer to design pavements with a high reliability, the tests required to use Level One inputs are costly, time consuming, and are rarely run for a variety of reasons. Because soil environmental conditions can affect the results of a resilient modulus test; it is imperative that laboratory tests be performed on soil samples that replicate the moisture content, density, stress state, and degree of saturation of soil in the field. The expense and difficulty of mimicking in situ soil conditions for a subgrade soil makes running laboratory resilient modulus tests an uncommon practice.

1

This leaves Level Two as the likely method of determining resilient modulus for use in the MEPDG system. The correlations used in the MEPDG procedure, however, are based upon test data run on soil samples from across the country. Since soil properties vary greatly across the country, the default correlation equations contained in Level 2 models of the MEPDG are most likely a poor representation of soils commonly found throughout the state of Arkansas. The sheer volume of soils all over the country and the extreme variance in the properties between different soil types leads to a rather poor Rvalue correlation in the design guide for soils specifically found in the state of Arkansas.

If the Arkansas State Highway and Transportation Department continues favoring R-value correlations as the Level 2 soil property input in MEPDG, correlations that apply specifically to the soils found in the state of Arkansas should be developed. If no acceptable correlation can be developed, it may be in the best interest of the AHTD to abandon using R-value correlations and, either: (a) adopt a new method of determining resilient modulus, perhaps through backcalculation of Falling Weight Deflectometer data; or (b) expand the current resilient modulus testing program

2. LITERATURE REVIEW

2.1 Resilient Modulus

In 1986, the American Association of State Highway and Transportation Officials (AASHTO) updated its original design guide to begin using Resilient Modulus as a measure of subgrade soil strength instead of the soil support value that had previously been used. The subgrade support value was the first attempt to include subgrade soil properties in pavement design and ranged from 1 to 10. The 1986 AASHTO guide introduced the following relationship between resilient modulus and the subgrade support value:

$$S_i = 6.24 \times \log_{10} M_R - 18.72$$
(1)

Where: S_i = Subgrade Support Value

M_R=Resilient Modulus (psi)

The 1986 design guide also proposed that correlations should be developed between resilient modulus and either California Bearing Ratio values or R-value since, at that time, many state transportation agencies did not have the equipment necessary to run resilient modulus tests. The original correlations proposed in the design guide are extremely basic and are based on the bulk stress of the soil sample, but they represent the first step taken by the American Association of State Highway and Transportation Officials to incorporate resilient modulus into the pavement design equation.

The resilient modulus of subgrade soils has evolved from its less-than-perfect inclusion in the 1986 design guide into the required subgrade input to the MEPDG design system for flexible pavement. The resilient modulus estimates the elastic modulus of a subgrade soil; it is a measure of the stress to strain ratio for quickly applied loads. This

3

loading is similar to the loading conditions that a subgrade soil will experience in the field. When a load is quickly applied and released, the strain is divided into resilient, or recoverable, strain and permanent, or plastic, strain (Woodbridge).

The most common way to measure the resilient modulus of a subgrade soil is using a repeated load triaxial test in which vertical load pulses are applied for 0.1 second durations with 0.9 second rest periods (NAPA). There is a marked difference in the stiffness exhibited by a subgrade soil in the conventional triaxial test compared the stiffness from the repeated load test. In the repeated load test, the soil sample is exposed to a cyclic vertical loading cycle and constant horizontal pressure (Farrar, et al.). From the test, the recoverable, or resilient, strain in the soil specimen is measured as "the rebound deformation resulting from removal of the the deviator stress divided by the original height of the sample (Woodbridge)." The Resilient Modulus is then calculated

as
$$M_R = \frac{\sigma_d}{\varepsilon_R}$$

.....(2)

where: M_R = Resilient Modulus σ_D =repeatedly applied deviator stress ε_R =recoverable axial strain (NAPA)

The resilient modulus can also be described as the slope of the hysteresis loop developed in the stress vs. strain plot once there is no further significant increase in permanent strain due to cyclic loadings and elastic strain is the only type the specimen undergoes (Farrar, et al.). The importance of determining the resilient modulus of a subgrade soil lies in its ability to predict the rutting potential of a subgrade soil; the resilient modulus test most closely replicates the traffic loading conditions experienced by subgrade soils once used in highway construction.

Figure 1. Resilient Strain Example (Huang)

The results of the resilient modulus test is dependent on a large number of factors including stress duration, frequency, grain size, void ratio, saturation, confining pressure, and stress level (Thornton). There is no significant correlation between any single soil property (grain size, plasticity, clay and silt content) and resilient modulus. However, according to research done by Su, et al., as moisture content increases, resilient modulus decreases. The degree of saturation, a property that combines the density and moisture content of a soil, exhibits the same effect on resilient modulus as moisture content. The deviator stress also affects the resilient modulus of a soil in both cohesive and cohesionless soils; as deviator stress increases, resilient modulus decreases (Su, et al.), particularly in cohesive soils.

It is imperative that deviator stress levels used during the resilient modulus test are determined based on the traffic loading anticipated (Su, et al.). It is also noted in the research, however, that once a confining pressure of approximately 6 psi is reached, the curve of the plot relating deviator stress to resilient modulus becomes flatter, so a confining stress of 6 psi is appropriate for almost all tests. Even though there is no true correlation between any single soil index property and resilient modulus, the effect that index properties can have on the results of a resilient modulus test needs to be considered.

2.2 Index Property Correlations

Since the Resilient Modulus test is not often run due to the cost and time necessary to get accurate results for soil samples that mimic the properties of the subgrade soil encountered in road construction, much research has been done on finding new ways to correlate various soil properties that are simple to obtain to the Resilient Modulus value of a soil.

Carmichael and Stuart attempted to derive a correlation for resilient modulus using soil index properties and measurements taken during a triaxial test. Their results, however, showed that a general equation could not be written for all soil types. Fine grained and coarse grained soils were separated and distinct correlations were developed for each soil type. The equations for both coarse (Equation 3) and fine grained soils (Equation 4) are based on the plasticity index, water content, percent passing the No. 200 sieve, confining stress, deviator stress, and bulk stress used during the triaxial test, and a correction for soil type (Carmichael, et al.).

$$M_{R} = 37.431 - 0.4566(PI) - 0.6179(\%W) - 0.1424(s200) + 0.1791(CS) \dots (3) - 0.3248(DS) + 36.422(CH) + 17.097(MH)$$

 $\log(M_R) = 0.523 - 0.0225(\%W) + 0.544(\log T) + 0.173(SM) + 0.197(GR) \dots (4)$

where:

MR= Resilient Modulus (ksi) PI= Plasticity Index %W= Water Content (%) CS= Confining Stress (psi) DS= Deviator Stress (psi) T= Bulk Stress (psi) (DS+3CS) DD= Dry Density (pcf) S200=Percentage Passing No. 200 Sieve SS= Soil Suction CH=1 for CH Soil, 0 otherwise (MH, ML, or CL soil) MH=1 for MH soil, 0 otherwise (CH, ML, or CL soil) SM = 1 for SM Soil, 0 otherwise GR = 1 for GR Soil, 0 otherwise

A study performed by Woodbridge found that plasticity index, clay content, and optimum moisture content contributed most to determining resilient modulus of cohesive soils. From her study, Woodbridge developed various correlations between soil index properties resilient modulus for cohesive soils throughout Arkansas. Her equations using only the inputs deemed significant, include:

For deviator stresses of 4 psi:

For deviator stresses of 8 psi

$$M_R = 9.18 + 0.1601PI + 0.1393CL - 0.5860W$$
(6)

where:

MR= Resilient Modulus (psi)

PI = Plasticity Index (percent)

CL = Clay Content (percent)

W = Optimum Moisture Content (percent)

Woodbridge also developed additional equations that include various other soil properties, but proposed that including these additional properties in the correlations did not greatly improve the correlation.

According to Farrar, et al., the San Diego Road test provided the majority of data used in determining resilient modulus correlations for fine grained soils, specifically an A-7-6 clay. From the San Diego Road Test data, Jones and Witczak developed the following correlation:

$$\log M_R = -.111(w\%) + .0217(S\%) + 1.179$$
(7)
where:
 M_R = Resilient Modulus (ksi)

S%=Degree of Saturation

w%= Water Content

According to Thompson and Robnett, degree of saturation was determined to be the most important soil property predictor of resilient modulus. They determined resilient modulus as a function of degree of saturation for fine grained soils based upon the following equations: For soils at 95% AASHTO T99 maximum dry density:

$$M_{R} = 32.9 - .334(S\%)$$
.....(8)

For soils at 100% AASHTO T99 maximum dry density:

$$M_R = 45.2 - .428(S\%)$$
(9)

where:

M_R= Resilient Modulus (ksi)

S% = Degree of Saturation

Farrar and Turner studied various methods for determining resilient modulus from both R-value of Wyoming soils and index properties of the soils. However, their research included running modified R-value tests in addition to the standard Hveem test. The modified tests were run on samples that were not prepared in accordance with AASHTO T190. Instead, the samples were prepared from material passing the ³/₄" sieve and a given amount of water to create a certain moisture content (Farrar, et al). From their research, Farrar and Turner recommend the following equation for use with typical Wyoming subgrade soils:

> $M_{R} = 34280 - 359 * (S\%) - 325(\sigma_{d}) + 236(\sigma_{3}) + 86PI + 107(S200)....(10)$ where: M_R= Resilient Modulus (psi) S%= Degree of Saturation σ_{d} =deviator stress (psi) σ_{3} =confining stress (psi) PI= plasticity index

In addition to the recommended equation using soil index properties, Farrar and Turner also developed Equation 11 using R-value data:

$$LN(M_{R}) = 7.157 + .039R_{VM} - 0.049\sigma_{d} + 0.04\sigma_{3} + 1.013X_{C}$$
 (11)

where: $LN(M_R)$ = natural logarithm resilient modulus (psi)

 R_{VM} =modified R-value X_C = 1 for clay soils and 0 otherwise σ_d =deviator stress (psi) σ_3 =confining stress (psi)

The equation including the R-value did not provide as tight of a correlation as the correlation corresponding to index properties. However, Farrar and Turner's analysis showed that the results of their prediction equation fit with previous attempts at correlating soil properties with resilient modulus; any difference was noted as the equations being written for Wyoming subgrade soils specifically.

The California Bearing Ratio test is a common test used for correlations. The CBR test measures "the percentage of the soil load required to produce a .1 inch deflection compared to a standard crushed stone (Thornton 6)." The test is run with a standard piston with an area of 3 in² penetrating the soil at a rate of .05 inches/minute. At each 0.1 inch interval up to 0.5 inches, pressure is measured. To determine the CBR value, the ratio of the recorded pressure to the pressure necessary to produce the same

10

penetration in a high-quality crushed stone is calculated. The CBR value is most often calculated at 0.1 inch penetration is used unless the ratio at 0.2 inches is greater. The CBR Test is run in accordance with AASHTO T-193. Currently, MEPDG models Resilient Modulus as (NCHRP):

$$M_{R} = 2555(CBR)^{.64}$$
(12)

Where: M_R= Resilient Modulus (psi)

CBR= California Bearing Ratio (percent) as determined by AASHTO T-193

According to Woodbridge, Resilient Modulus has also been predicted as:

 $M_{R} = B * CBR....(13)$

Where: MR= Resilient Modulus (psi)

B=1500 for CBR \leq although value may vary from 750 to 3000

CBR= California Bearing Ratio (percent)

However, Woodbridge warns that the CBR test cannot accurately mimic the repeated load effects with which Resilient Modulus is associated. Additionally, she states that sometimes CBR can be so unreliable as to exhibit an inverse relationship with Resilient Modulus.

2.3 R-Value Test

Using the R-value test and subsequent correlations to estimate the Resilient Modulus is a source of contention amongst academics. In the early 1930s, F.N. Hveem used a modified triaxial test to attempt to develop a relationship between the vertical load applied to a soil specimen and the horizontal stresses that are induced if the material is horizontally confined. The device he constructed based on a triaxial test setup was originally used as a way to measure stability of bituminous paving specimens, thus his machine became known as the Stabiliometer. Hveem's original experiments involved subjecting a paving specimen to loads representing typical traffic loads that are frequently repeated over a period of time. In the stability test, horizontal stress is measured at every 1000 pounds of vertical load up to 6000 pounds (400 psi), which Hveem believed to be the ultimate stress developed from truck traffic (Farrar, et al.).

Figure 2. Stabiliometer Diagram

http://pavementinteractive.org/index.php?title=Image:Stabilometer.jpg

The stabiliometer was then used to measure the same properties in subgrade soils, a value Hveem coined as the "R-value." The R-value test measures the resistance a soil offers to transmitting vertical load in the horizontal direction (Thornton) and is specified by ASTM D2884 and AASHTO T190. When a passing wheel load exerts a downward vertical force on a subgrade soil, the soil resists the force through friction between soil particles. However, if the vertical force is greater than the frictional force offered by supporting soil particles, the soil moves in the only path available for movement, the lateral direction (Doyle). During the test, when the vertical stress on the soil specimen reaches 160 psi, horizontal stress is measured. The value of 160 psi holds significance as the "average value of vertical stress developed in a typical pavement subgrade (Farrar, et al. 8)." But, according to studies performed by Hveem, the number holds no influence on the output of the equation. Similar R-values were calculated with vertical pressure values ranging from 100 to 400 psi. Data from the test is converted to an R-value with the relationship:

$$R = \frac{100}{\frac{2.5}{D}(\frac{P_V}{P_H} - 1) + 1}$$
 (14)

where: R= Resistance Value P_H =Horizontal Stress at P_V =160 psi P_V = Vertical Stress (160 psi)

D= lateral displacement due to horizontal pressure measured as the displacement of the stabilometer fluid necessary to increase horizontal pressure from 5 to 100 psi measured as number of turns of stabiliomter pump handle

This relationship presents a soil's resistance to plastic flow as a ratio of vertical pressure to horizontal pressure on a scale of 0 to 100. A value of 0 indicates that the soil has no shear resistance, much like a liquid, and all applied vertical load is converted to a lateral pressure. A value of 100 indicates that the soil is able to resist all applied vertical loads without transmitting the loads to horizontal pressure (Doyle). This relationship,

however, includes slight modification to account for the roughness of the soil specimen. If the correction for this roughness factor was ignored, the equation would simplify to:

$$R = (1 - \frac{P_H}{P_V}) * 100$$
 (15)

where: R= Resistance Value

P_H=Horizontal Stress at P_V=160 psi

 P_V = Vertical Stress (160 psi)

which truly is a direct representation of R-value as simply applied vertical pressure and the horizontal pressure that results (Farrar, et al.).

Some stipulations must be followed before running the test, however. The test is only to be used on materials that pass the #4 sieve and is not valid for materials that possess high resistance to lateral deformation (Thornton). Additionally, soil specimens are compacted at moisture contents that will cause them to be nearly saturated at exudation pressures of approximately 300 psi. In order to make the test best mimic subgrade soil conditions, it is imperative that the soil be compacted with an apparatus that mimics the loading conditions and the kneading motion of rollers and tires. The compactor invented by Hveem to accomplish this condition is now known as the California kneading compactor.

Figure 3. California Kneading Compactor

http://www.asphaltwa.com/wapa_web/modules/05_mix_design/05_hveem.htm

The tamping foot of the compactor has an area of approximately 3 square inches and provides stresses similar to those a steel drum or rubber-tired pneumatic roller would exert on a subgrade soil (Farrar, et al.), however pressure can be adjusted to achieve the correct soil unit weight.

During testing, the exudation pressure in the sample must mimic the state of density and water content that the material may be subject to in the field (Thornton). This exudation pressure is defined as the pressure when moisture exudes from the soil sample with any additional increase in load, or when the soil specimen is loaded to saturation and any additional load is carried by pore water instead of soil particles (Farrar, et al.). An exudation pressure of 300 psi is seen as presenting the worst case moisture content and density that is experienced in the field (Farrar, et al.); however this exudation pressure causes moisture contents that are higher than are found in Colorado highways (Hines). Some studies show that A-7-6 soils compacted at 300 psi exudation pressure were 9.1% over optimum. When performing R-value tests to be used for correlations with Resilient

Modulus, it is important to consider what moisture content is used. Different highway departments use R-values that correspond to different moisture contents and densities.

2.4 R-Value Correlations

The relationship between R-value and resilient modulus is not as well studied as the relationship between Resilient Modulus and California Bearing Ratio (CBR). As a result, the correlation between R-value and Resilient Modulus has been adjusted to fit with the better known test (Woodbridge). The original correlation determined from data from the San Diego Road Test,

$$M_R = 772 + 369R$$
(16)

was altered to

$$M_{R} = 1155 + 555R....(17)$$

to better correlate with data from the CBR test (Farrar, et al.). Other states have developed correlations based upon the soils found locally. For instance, Idaho developed two correlations (Su, et al.):

$$M_R = 1455 + 57R$$
 for fine grained soils.....(18)

$$M_R = 1600 + 38R$$
 for coarse grained soils.....(19)

For fine-grained soils in Idaho, mainly low plasticity silts, the following correlation was developed for a deviator stress of 6 psi, bulk stress of 3 psi, and an R-value over 20 (Farrar, et al.):

$$M_R = 1.6 + .038 * R$$
(20)

According to tests run by the Colorado Department of Transportation, plotting resilient modulus against the average R-value from tests run on a sample both before and after the resilient modulus test presented a correlation of (Su, et al.):

$$M_R = 3500 + 125R$$
(21)

According to the report, this correlation is very similar to the current correlation used in design for fine grained soils when the R-value is less than 50. However, when the R-value is higher than 50, the modulus calculated from the equation is significantly lower than what is predicted with the current design standard.

3. EXPERIMENTAL DESIGN

Data was gathered from the Arkansas State Highway and Transportation Department representing various soils throughout the state of Arkansas. AHTD ran both R-value and resilient modulus tests on soil samples from various locations across the state. Soil types contained in the data are:

A-2-Silty or Clayey Gravel

A-4-Silt

A-6-Clay

A-7-6-Clay

"Ran" and "Reported" values for both R-value and Resilient Modulus tests were both provided reported. The "Reported" value for a test is the lowest Resilient Modulus value given (and therefore not appropriate for developing a correlation), so for determining a correlation, Resilient Modulus Ran and R-value Ran values were used. A new correlation between R-value and resilient modulus will be attempted by plotting resilient modulus against R-value. This approach was attempted for all soils, as well as splitting the data by soil type (fine grained vs. coarse grained). Additionally, the data was to be plotted against various combinations of the R-values and resilient modulus values as follows (plots can be found in Appendix A):

- R-value²
 R-value³
 R-value⁴
 Mr²
- 5. Square Root R-value

6. Square Root Resilient Modulus
7. log R-value
8. log Mr
9. ln R-value
10. ln Mr
11. Mr/R-Value
12. Mr²/R-value

in an attempt to determine the most accurate correlation. Resilient modulus values calculated from any new correlations were compared to the reported values from the AHTD data and the correlation currently used by the MEPDG software (NCHRP),

$$M_R = 1155 + 555R$$
(22)

Further analysis of the sensitivity of MEPDG to changes in R-value was also evaluated using two pavement designs as shown in Figures 4 and 5.

Figure 4. Thinner Pavement Cross Section

3" Hot Mix Asphalt (Surface)
4" Hot Mix Asphalt (Binder)
5" Hot Mix Asphalt (Base)
12" Crushed Stone Base

Figure 5. Thicker Pavement Cross Section

Additional information on inputs into MEPDG can be found in Appendix B.

R-values of 5, 10, 15, 20, 25, 30, 35, 40, and 45 were input into the program as Level 2 correlations for resilient modulus. The pavement distresses of bottom-up fatigue cracking, IRI, and total rutting that result from the varying R-values were plotted versus time for both the thicker and thinner pavement sections. Then, the same pavement sections were used, but Resilient Modulus was input as a Level 3 correlation calculated from R-values of 5, 10, 15, 20, 25, 30, 35, 40, and 45 using the correlation developed from the AHTD data. Bottom-up fatigue cracking, IRI, and total rutting were plotted vs. time. Using these plots, the sensitivity of MEPDG to variance in Level 2 R-value inputs were analyzed. Furthermore, the variance in fatigues using the correlation developed from the AHTD data to calculate Level 3 resilient modulus inputs were studied.

4. **RESULTS**

4.1 Correlations Involving R-Value

Plotting Resilient Modulus against R-value does not lead to very promising results. Even separating the data by soil type does not lead to any significant correlation. Furthermore, the various geometric combinations of R-value and Resilient Modulus also seem to move towards a dead end in terms of developing a usable correlation. However, once the ratio (Resilient Modulus to R)-value versus R-value for all soil types is plotted, a more significant relationship begins to develop, illustrated in Figure 6.

Figure 6. Relationship Between the (Resilient Modulus to R-Value) ratio and the R-value of Arkansas Soils

A power-function regression equation can be developed from this plot as follows:

$$\frac{M_R}{R} = 12998 * R^{-1.163}$$
(23)
$$R^2 = .8973$$

Where: M_R=Resilient Modulus (psi)

R=R-value

The R-squared value of this correlation seems to suggest that plotting the ratio of Resilient Modulus to R-value vs. R-value could lead to a usable correlation for Arkansas soils. In an attempt to further refine the correlation, the ratio of the square of Resilient Modulus to R-value vs. R-value is plotted (Figure 7). Contrary to what is expected, the tightness of this of this correlation seems to diminish as evidenced by the lower Rsquared value.

Figure 7. Mr²/R Plot

A power-function regression was developed as follows:

$$\frac{M_R^2}{R} = 20000000R^{-1.3226} \qquad (24)$$
$$R^2 = .7391$$

Where: M_R=Resilient Modulus (psi)

R=R-value

Subdividing the data by soil type did not result in a more refined correlation, as shown in Figures 23-34 in Appendix B.

To try to further refine the correlation, the data was split into soils with R-values below 25 and those with R-values above 25. Different plots were developed for each soil group. Figure 8 shows the plots of Resilient Modulus/R-value vs. R-value split by soil group.

Figure 8. Resilient Modulus over R-value vs. R-value Sorted by R-value

The correlations developed from these plots include:

$$\frac{M_R}{R} = 9605.9R^{-1.033}$$

$$R^2 = .7536$$
(25)

For $R \ge 25$:

$$\frac{M_R}{R} = 30522R^{-1.401}$$
....(26)
$$R^2 = .7991$$

Contrary to what is expected, splitting up the data does not further refine the correlation. In fact, the attempt at refinement seemed to make the correlation worse.

4.2 Analyzing Correlations

The Mr/R correlation seems to have the tightest fit of the data. A regression line fit through the origin yields a slope of .9298, which is relatively close to a unity equation that would be expected in the predicted and actual M_R/R values were equivalent. However, when the predicted (M_R/R) is plotted against actual (M_R/R) depending on R-value, the correlation appears to become less robust when the ratio exceeds 1000 (Figure 9).

Figure 9. Comparrison of Predicted Mr/R and Actual Mr/R

The Resilient Modulus generated from the correlation currently in use in MEPDG (Equation 22) was compared to the Mr /R correlation developed using Arkansas data (Equation 23). Figure 10 shows how incorrectly the MEPDG correlation predicts Resilient Modulus using R-value for soils commonly seen in Arkansas. The Mr/R correlation is a much tighter fit for soils in Arkansas.

Figure 10. Comparison of Correlations

4.3 MEPDG Tests

The potential importance of the new subgrade soil correlation is highlighted by running

MEPDG trials. The sections which follow describe the results of an MEPDG-based

study.
4.3.1 Current MEPDG Correlation

4.3.1.1 Thicker Cross Section

Figure 11 shows the MEPDG estimate of total rutting with varying levels of R-value for the subgrade soil (Level 2 input). Inspection of the curves shown in Figure 11 leads to the following observations:

- Total rutting is significantly affected by the R-value
- Total rutting decreases with an increase in R-value
- As R-value increases, the difference in total rutting (the effect of varying R-value) decreases.

Figure 11. Total Rutting vs. Time, Thicker Cross Section, Current Correlation

Figure 12 shows the MEPDG estimate of bottom up cracking with varying levels of Rvalue for the subgrade soil (Level 2 input). Inspection of the curves shown in Figure 12 leads to the following observations:

- Bottom up cracking is significantly affected by the R-value
- Bottom up cracking decreases with an increase in R-value
- As R-value increases, the difference in bottom up cracking (the effect of varying R-value) decreases.

Figure 12. Bottom-Up Cracking vs. Time, Thicker Cross Section, Current Correlation

Figure 13 shows the MEPDG estimate of IRI with varying levels of R-value for the subgrade soil (Level 2 input). Inspection of the curves shown in Figure 13 leads to the following observations:

- IRI is affected by the R-value
- IRI decreases with an increase in R-value
- As R-value increases, the difference in IRI (the effect of varying R-value) decreases.

Figure 13. IRI vs. Time, Thicker Cross Section, Current MEPDG Correlation

4.3.1.2 Thinner Cross Section

Figure 14 shows the MEPDG estimate of Total Rutting with varying levels of R-value for the subgrade soil (Level 2 input). Inspection of the curves shown in Figure 14 leads to the following observations:

- Total rutting is significantly affected by the R-value
- Total rutting decreases with an increase in R-value
- As R-value increases, the difference in total rutting (the effect of varying R-value) decreases.

Figure 14. Total Rutting vs. Time, Thinner Cross Section, Current Correlation

Figure 15 shows the MEPDG estimate of Bottom Up Cracking with varying levels of Rvalue for the subgrade soil (Level 2 input). Inspection of the curves shown in Figure 15 leads to the following observations:

- Bottom Up Cracking is affected by the R-value
- Bottom Up Cracking decreases with an increase in R-value
- As R-value increases, the difference in Bottom Up Cracking (the effect of varying R-value) decreases.

Figure 15. Bottom-Up Fatigue vs. Time, Thinner Cross Section, Current Correlation

Figure 16 shows the MEPDG estimate of IRI with varying levels of R-value for the subgrade soil (Level 2 input). Inspection of the curves shown in Figure 16 leads to the following observations:

- IRI is affected by the R-value in the long run
- IRI decreases with an increase in R-value
- As R-value increases, the difference in IRI (the effect of varying R-value) decreases.

Figure 16. IRI vs. Time, Thinner Cross Section, Current Correlation

4.3.2 Pavement Failures with New Correlation

4.3.2.1 Thicker Cross Section

Figure 17 shows the estimate of Total Rutting with varying levels of R-value for the subgrade soil using the Arkansas-specific correlation (Level 3 input). Inspection of the curves shown in Figure 17 leads to the following observations:

- Total rutting is slightly affected by the R-value
- Total rutting increases with an increase in R-value
- As R-value increases, the difference in total rutting (the effect of varying R-value) decreases.

Figure 17. Total Rutting vs. Time, Thicker Cross Section, New Correlation

Figure 18 shows the estimate of Bottom-up Cracking with varying levels of R-value for the subgrade soil using the Arkansas-specific correlation (Level 3 input). Inspection of the curves shown in Figure 18 leads to the following observations:

- Bottom-up Cracking is affected by the R-value
- · Bottom-up Cracking increases with an increase in R-value
- As R-value increases, the difference in Bottom-up Cracking (the effect of varying R-value) decreases.

Figure 18. Bottom Up Cracking vs. Time, Thicker Cross Section, New Correlation

Figure 19 shows the estimate of IRI with varying levels of R-value for the subgrade soil using the Arkansas-specific correlation (Level 3 input). Inspection of the curves shown in Figure 19 leads to the following observations:

- IRI is not significantly affected by the R-value
- As R-value increases, the difference in IRI (the effect of varying R-value) shows no significant change.

Figure 19. IRI vs. Time, Thicker Cross Section, New Correlation

4.3.2.2 Thinner Cross Section

Figure 20 shows the estimate of Total Rutting with varying levels of R-value for the subgrade soil using the Arkansas-specific correlation (Level 3 input). Inspection of the curves shown in Figure 20 leads to the following observations:

- Total rutting is slightly affected by the R-value
- Total rutting increases with an increase in R-value
- As R-value increases, the difference in total rutting (the effect of varying R-value) decreases.

Figure 20. Total Rutting vs. Time, Thinner Cross Section, New Correlation

Figure 21 shows the estimate of Bottom Up Cracking with varying levels of R-value for the subgrade soil using the Arkansas-specific correlation (Level 3 input). Inspection of the curves shown in Figure 21 leads to the following observations:

- Bottom Up Cracking is slightly affected by the R-value
- Bottom Up Cracking increases with an increase in R-value
- As R-value increases, the difference in Bottom Up Cracking (the effect of varying R-value) remains constant.

Figure 21. Bottom Up Cracking vs. Time, Thinner Cross Section, New Correlation

Figure 22 shows the estimate of IRI with varying levels of R-value for the subgrade soil using the Arkansas-specific correlation (Level 3 input). Inspection of the curves shown in Figure 22 leads to the following observations:

- IRI is slightly affected by the R-value
- IRI increases with an increase in R-value
- · As R-value increases, the difference in IRI (the effect of varying R-

value) remains constant.

Figure 22. IRI vs. Time, Thinner Cross Section, New Correlation

5. DISCUSSION AND CONCLUSIONS

It is clear that the current R-value to Resilient Modulus MEPDG correlation may lead to significantly under-designed pavements when R-value for Arkansas soils is beyond approximately 25, especially in thinner pavements and over-designed pavements when R-value is 10 or below. There seems to be little true correlation between R-value and Resilient Modulus at all; even the newly developed correlation begins to break down at higher R-values due to a lack of data and the mathematical manipulations performed on the data when developing the correlation. When using the current MEPDG correlation, there is a significant difference in pavement failures over the course of 20 years for both the thin and thick pavement sections for varying R-values. When a soil has a low Rvalue, the effect of R-value on predicted pavement performance is pronounced. The thinner payement does not have the same capacity to diminish the applied traffic loads and the loading effects are increased. Any slight variance in the lower R-values can lead to very different failures than what is expected from the MEPDG output. This means that a pavement that is even slightly underdesigned with regards to R-value with the current MEPDG correlation can experience extreme rutting failures more quickly.

Interestingly, the Arkansas-specific correlation exhibits an inverse trend: Resilient Modulus decreases with increasing R-value. Even though the new R-value correlation drastically improves using R-value as a predictor of Resilient Modulus, it is important to keep in mind that the R-value test is a static test measuring how a soil reacts to a vertical load in a lateral direction while Resilient Modulus measures how a soil reacts to a cyclic loading pattern much like what a soil would experience under a pavement. Using a static test to predict a dynamic soil property will not provide the most accurate results, but it

40

seems that the two soil properties should exhibit a direct correlation. Additionally, the correlations was developed using a limited amount of data. In order to develop the best possible correlation, additional data should be gathered. Because of this discontinuity in the data and the lack of data, the testing procedures used to obtain both Resilient Modulus and R-value should be reviewed to make sure the measured values are correct and more R-value and Resilient Modulus tests should be run.

If the data is deemed correct and if AHTD chooses to continue using R-value correlations as their way to determine Resilient Modulus in MEPDG, consideration must be given to abandoning the default MEPDG correlation and using a more Arkansas soil specific correlation. While the new correlation is not a perfect solution and certainly does not match the accuracy of using Resilient Modulus test data as a Level 3 input in MEPDG, it is a much closer match for soils commonly found throughout the state of Arkansas. Since the new correlation more closely follows the pattern of data and does not show much variance in Resilient Modulus with changes in R-value, the variances in R-value do not cause the dramatic separation in data that the current MEPDG correlation causes for both thin and thick pavement cross sections. If the R-value of a soil is measured slightly higher than the actual R-value of the soil, the effect on pavement failures will not be as dramatic as what could happen if the incorrect R-value was input to MEPDG using the current correlation.

6. **REFERENCES**

- American Association of State Highway and Transportation Officials AAHSTO Guide for Design of Pavement Structures, Washington D.C., (1986).
- Carmichael, R.F. and Stuart, E. "Prediction Resilient Modulus: A Study to Determine the Mechanical Properties of Subgrade Soils." *Transportation Research Record 1043*, TRB, Washington D.C. 145-148. (1985).
- Doyle, Lynn Curtis. A Further Correlation Study of the AASHO Coefficients of Relative Strength of Flexible Pavement Components with California R-Test Values Using Unstabilized Base and Subbase Materials from Arkansas. Master's Thesis, University of Arkansas. (1967).
- Farrar, Michael J., and Turner, John P. Resilient Modulus of Wyoming Subgrade Soils. Mountain Plains Consortium No. 91-1. University of Wyoming. Laramie, Wyoming. (1991).
- Hines, Charles R. (1978) Correlation of Subgrade Modulus and Stabilometer "R" Values. Federal Highway Administration RD-78-S0841. Colorado Division of Highways, Denver, Colorado (1978).
- Huang, Y.H. Pavement Analysis and Design, Prentice Hall, pp. 316-317, (1993).
- Interim Mechanistic-Empirical Pavement Design Guide Manual of Practice. National Cooperative Highway Research Program, Transportation Research Board, National Academies, Washington DC. (2007).
- National Asphalt Pavement Associaton. NAPA Guide for Hot Mix Asphalt Pavements. (CDROM), Lanham, Maryland. (2002).
- Su, Cheng-Kuang, and Yeh, Shan-Tai. Resilient Properties of Colorado Soils. Staff Materials Branch Report 89-9. Colorado Department of Highways Denver, Colorado. (1989).
- Thornton, Sam I. *Correlation of Subgrade Reaction with CBR, Hveem Stabilometer, or Resilient Modulus.* Arkansas State Highway and Transportation Department. Little Rock, Arkansas. (1983).
- Woodbridge, Ronota Ann. Predicting Subgrade Resilient Modulus From Other Soil Properties. Master's Thesis, Civil Engineering Department, University of Arkansas. (1989).

APPENDIX A

AHTD DATA

AHTD RESI	ENT MC	SUULUS	TEST	RESULT	s	(2	4/04	-4/1/0	7)					
			SOILS	%		MA	L O D T	FIELD						
DOCK # LAB #	JOB NAME	DATE TEST	TYPE	PASS.#200	LLP	DEI	N MOIS	T MOIST	. STA.#	CO.	RV REPORTED RV	2AN JOBN	NAME	
20041115 RV324	061026	5/3/04	A-6 (7)	99	35 14	115	14	22	106+00	60	9	OAK ST LOOP RD. (GRAHAM RD.)) (JACKSONVILLE)	
20041125 RV329	020048	5/4/04	A-4 (3)	84	22 06	5 112	15	20	6+00	35	8	PLUM BAYOU (BR.& APPRS.)(S)		
20041216 RV378	020384	5/11/04	A-4 (0)	88	ND NF	106	3	23	6+00	35	2	MAIN DITCH STR & APPRS. (S)		
20041211 RV372	070237	5/11/04	A-6 (6)	99	28 14	101	13	9	249+00	10		PIKE CO LINE - EAST (S)		
20041210 RV371	070237	5/11/04	A-6 (7)	80	28 1	1 104	19	19	209+00	10		PIKE CO LINE - EAST (S)		
20041209 RV370	070237	5/11/04	A-4 (0)	83	16 02	2 122	10	15	113+00	10		3 PIKE CO LINE - EAST (S)		
20041213 RV374	070237	5/11/04	A-4 (2)	75	24 06	5 111	15	25	369+00	10		PIKE CO LINE - EAST (S)		
20041212 RV373	070237	5/11/04	A-6 (10)	81	29 15	5 114	14	21	321+00	10	5	5 PIKE CO LINE - EAST (S)		-
20041312 RV395	040420	5/14/04	A-4 (6)	87	27 09	113	14	21	143+00	72	15	2 TOWNSHIP RD FUTRALL DR (GR)	REGG AVE.FAYETTEVILLE)	
20041359 RV418	061104	5/21/04	A-4 (0)	26	20 06	5 121	12	15	201+00	60	20) FOXCROFT RD-MISS AVE SAFETY	/ IMPVTS	
20041355 RV414	110131	5/21/04	A-4 (5)	67	ND NF	114	14	18	20+00	48	10	T-40 OVERPASS		-
20041323 RV406	050146	5/24/04	A-4 (8)	91	29 11	106	16	21	23+00	67	24	HWY.62/HWY 175 SPUR SIG&INTE	ERS IMPVTS(CHEROKEE VLG	F
20041320 RV403	061085	5/24/04	A-6 (6)	71	30 1	1 112	16	15	184+00	60	11	1 HWY 5 - HWY 107 STR & APPRS ((S)	-
20041319 RV402	061085	5/24/04	A-4 (2)	73	23 06	5 115	15	21	109+00	60		I HWY 5 - HWY 107 STR & APPRS ((S)	-
20041401 RV439	110463	5/27/04	A-7-6(16)	- 13	41 25	100	19	35	138+00	48	9	140 NORTH WIDENINGS		
20041415 RV453	040416	6/10/04	A-4 (1)	62	24 06	5 116	12	18	110+00	65	10) HWY 451 PLANTERS RD SIG & INT	TERS IMPUTS	
20041412 RV450	040397	6/11/04	A-4 (4)	61	27 11	111	17	20	315+00	72	11) LINCOLN PRAIRIE GROVE		
20041411 RV449	040397	6/11/04	A-4 (5)	20	27 11	107	14	21	219+00	72		LINCOLN PRAIRIE GROVE		
20041410 RV448	040397	6/11/04	A-4 (1)	45	23 0(3 116	14	16	114+00	72		LINCOLN PRAIRIE GROVE		
20041641 RV506	100566	6/23/04	A-6 (10)	89	33 18	3 108	16	17	288+00	28	9	PARAGOULD-BIG SLOUGH DITCH	(F)	
20041640 RV505	100566	6/23/04	A-6 (4)	58	27 13	3 114	14	14	224+00	28		PARAGOULD-BIG SLOUGH DITCH	(F)	
20041639 RV504	100566	6/23/04	A-6 (8)	17	31 12	2 106	17	22	160+00	28		PARAGOULD-BIG SLOUGH DITCH	(F)	
20041642 RV507	100566	6/23/04	A-4 (0)	63	20 00	3 114	12	13	312+00	28		PARAGOULD-BIG SLOUGH DITCH I PARAGOULD-BIG SLOUGH DITCH I	(F)	
20041688 RV549	090153	6/30/04	A-7-6(20)	78	43 27	7 95	23	20	115+00	4	5	LITTLE SUGAR CREEK STRS & AP	PRS	
20041660 RV525	100433	6/30/04	A-4 (2)	89	25 04	112	14	25	419+00	16	10	I GREEN COUNTY LINE-SOUTH STR	RS & APPRS (S)	
20041650 RV515	100570	6/30/04	A-4 (3)	85	24 05	5 116	15	29	207+00	28	25	3 HOOKER-WEST STR & APPRS (S)		
20041649 RV514	100570	6/30/04	A-4 (0)	65	ND NF	11	12	12	115+00	28		3 HOOKER-WEST STR & APPRS (S)		
20041714 RV565	30078	7/12/04	A-6 (9)	67	34 1	101	9	æ	184+00	29		I-30-AVE. A (HWY 278 B) (HOPE) (S	S)	
20041713 RV564	30078	7/12/04	A-6 (14)	62	¥ 8	9 9	4	20	112+00	29	7	I-30-AVE. A (HWY 278 B) (HOPE) (S	S)	
									BORING					
20041835 RV602	030295	7/20/04	A-4 (3)	22	28		16	15	ŧ,	46	9	JEFFERSON AVE & HWY 245 INTE	ERCHANGE IMPUTS	Т
20041834 RV601	030295	7/20/04	A-4 (0)	ខ	20	116	13	56	1+00	46		3 JEFFERSON AVE & HWY 245 INTE	ERCHANGE IMPUTS	1
20041972 RV650	020044	7/30/04	A-7-6(24)	8	49 29	9 95	24	21	316+00	21	~ 2	5 MCGEHEE-MCARTHUR BRS.& APF	PRS. (S)	

Table A1. AHTD Soil Properties

AHTD RESI	LENT MC	SULUS	TESTF	RESUL'	ß	(5/	4/04-	4/1/0	7)				
DOCK # I AB #	JOB NAME	DATE TEST	SOILS	% >ASS.#200	۵ =	MAX	MOIS	FIELC) STA#	00	RV REPORTED	RV RAN	JOBNAME
20041971 RV649	020044	7/30/04	A-6 (7)	76	30	1 112	14	21	214+00	21		IN OL AND	MCGEHEE-MCARTHUR BRS.& APPRS. (S)
20041970 RV648	020044	7/30/04	A-4 (6)	8	28 1(0 115	14	22	113+00	21			MCGEHEE-MCARTHUR BRS.& APPRS. (S)
20041996 RV656	040405	7/30/04	A-6 (9)	82	31 12	2 108	16	10	14+63	72	<5	\$	TOWN BRANCH STR. & APPS. (S. GARLAND AVE.)
20041943 RV638	R20097 R20097	7/30/04	A-7-6(18) A-4 (2)	78 80	42 22	1108	4 7	88	261+00 173+00	б о			HWY 82(LAKE VILLAGE) FAIR VIEW (F) HWW 82(LAKE VII.I AGE) FAIR VIEW (F)
20041941 RV636	R20097	7/30/04	A-4 (3)	86	25 06	111	3 22	3€	101+00	n 6	7	2	HWY 82(LAKE VILLAGE) FAIR VIEW (F)
20041944 RV639	R20097	7/30/04	A-7-6(21)	80	45 2	7 96	23	23	285+00	6		\$≥	HWY 82(LAKE VILLAGE) FAIR VIEW (F)
20042009 RV669	040423	8/5/04	A-6 (8)	82	27 12	2 116	13	18	190+00	72		13	HWY-16 (FAYETTEVILLE) (S)
20042008 RV668	040423	8/5/04	A-4 (3)	73	25 0	7 114	14	14	126+00	72	12	12	HWY-16 (FAYETTEVILLE) (S)
20042153 RV681	110422	8/5/04	A-7-6(29)	74	61 33	6 95	25	52	144+00	9	<5	Ş	14TH ST-HWY 38 (WEST MEMPHIS) (S)
20042189 RV691	050044	8/9/04	A-6 (9)	8	30	11	4	2	151+00	23	10	æ	MAIN STRCROSS STR. (SEARCY) (S)
20042399 RV717	061146	8/25/04	A-4 (0)	29	2	99	9	2	58+00	60	25	20	HWY 70 GRADE REVISION (NLR) (S)
20042466 RV/59	0/0261	9/6/04	A-4 (0)	4/		123	2	∞ 8	103+00	2	25	32	HWY 6/ UKAINAGE IMPROVEMENIS (AKKAUELPHIA)
20042462 RV/51	110229	9/0/04	A-0 (13) A 4 (8)	0 8	34 10		7 4	2 2	00+4CI	8 8	٥	٥	IN.IMARIAININA-UINIUN PAUIFIC UVERPASS (S) NI MADIANNA LINION DACIFIC OVEDDASS (S)
20042460 RV749	110229	9/8/04	A-6 (13)	6	37 1	104	= f	58	20+00	66			N.MARIANNA-UNION PACIFIC OVERPASS (S)
20042616 RV826	C456	9/15/04	A-4 (4)	86	27 0(5 113	15	29	MM+0.5	47	12	12	COUNTY RD. E764 FROM HWY61S TO HWY 239
20042547 RV798	030182	9/17/04	A-7-6(7)	57	45 1	5 107	17	28	204+00	37			RED RIVER - HWY.29
20042546 RV797	030182	9/17/04	A-7-6(17)	75	41 2!	5 104	19	22	172+00	37	<5	<5	RED RIVER - HWY.29
20042545 RV796	030182	9/17/04	A-4 (0)	64	22 0	3 115	14	21	116+00	37		13	RED RIVER - HWY.29
20042549 RV800	030182	9/17/04	A-4 (0)	87	ND NF	P 109	15	25	372+00	37			RED RIVER - HWY.29
20042631 RV835	090165	9/21/04	A-4 (4)	68	28 08	3 107	16	36	116+00	4		22	PINNACLE HILLS PKWY./HORSEBARN RD. WIDENIGN(ROGERS
20042598 RV816	061015	9/22/04	A-4 (2)	5 8	25 0	7 116	14	25	174+00	60		19	KELLOGG CREEK-BAYOU METRO (S)
20042597 RV815	061015	9/22/04	A-6 (5)	63	32 1	1 120	12	7	118+00	60	10	9	KELLOGG CREEK-BAYOU METRO (S)
20042651 RV842	FA2607	9/23/04	A-4 (4)	99	30 30	9 108	17	15	116+00	26	8		LITTLE MAZARN CREEK (S)
20042706 RV853	061135	9/26/04	A-4 (0)	20	Z Q	121	£	~	125+00	26	16	02	QUACHITA RIVER-NORTH (HOT SPRINGS) (S)
20042745 RV865	090152	9/30/04	A-7-6(28)	59 I	65 4	96	2	8	121+00	÷ ۵	<5 22	÷2	BRANCH OF HUZZAH CREEK STR. APPRS. (S)
20042/64 RV884	100306	10/5/04	A-4 (0)	41	ž 2	122	5	5	206+00	9	20	46	HVY 158-SI FRANCIS RIVER (S)
20042/63 RV883	100306	10/5/04	A-/-6(16)	2	43.20	104	5	<u>چ</u>	166+00	92		Ŷ	HVY 158-SI FRANCIS RIVER (S)
20042965 KV900	061135	10/21/04	A-4 (b)	9	32	55	₹;	28	150+00	92	01	00	QUACHIA RIVER-NUKIH (HUI SPRINGS) (S)
200429/4 KV904	0/0244	10/2//04	A-4 (0)	÷,			F	2	135+00	9	25	R 5	SALINE RIVER STR. & APPRS.
20043254 KV984	040130	11/19/04	A-4 (U)	= 8		411	2;	2	00+//9	2	P. 0	4	I-54U/HVY 59 INTERCHANGE MOUL& FRONTAGE RUS.(VAN)
20043223 RV9/4	061035	12/1/04	A-0 (14) A-4 (0)	30	18 0	120	= ∓	4 5	274+00	<u>ہ</u>	0 00	2 ~	DIG CREEN UITUT STR.& AFFRS.(S) HMV 367-1530 (S)
20043179 RV947	061035	12/1/04	A-4 (2)	5 83	23 00	117	: C	2 2	234+00	62	0	•	HWY 367-1-530 (S)
20043178 RV946	061035	12/1/04	A-4 (2)	69	24 08	3 116	13	17	178+00	62		4	HWY 367-1-530 (S)
20043182 RV950	061035	12/1/04	A-4 (0)	60	ND N	P 120	12	14	378+00	62		63	HWY 367-1-530 (S)
20043181 RV949	061035	12/1/04	A-4 (0)	37	16 02	2 117	13	14	322+00	62			HWY 367-1-530 (S)
20043214 RV971	030285	12/2/04	A-6 (9)	20	35 16	5 111	16	20	83+00	31		9	HWY 369-EAST (S)
20043213 RV970	030285	12/2/04	A-7-5(43)	68	76 4	6/	45	5	27+00	ञ	\$	÷	HWY 369-EAST (S)
20043213 RV970	INFO	12/2/04	A-7-5(43)	8	76 4	1	45	5	27+00	99		7	FOR INFORMATION ONLY
20043240 RV989	040344	12/5/04	A-4 (7)	82	29 10	110	16	2	1+00	65	11	11	HWY 45 REALIGNMENT (BACKBONE MTN.)
20043422 RV1022	030026	12/21/04	A-4 (2)	89	22 06	5 116	<u>ت</u>	4	166+00	99	:	1	REDWING-DEQUEEN
20043421 RV1021	030026	12/21/04	A-4 (1)	25	20 0	122	=	4	102+00	99	13	13	REDWING-DEQUEEN
20043420 RV1020	030026	12/21/04	A-4 (4)	8	1/	116	<u>۳</u>	2	62+00	99			REDWING-DEQUEEN
20043423 RV1023	030026	12/21/04	A-6 (11)	6	32 1	113	<u>e</u> ;	5	222+00	99		<u>م</u>	REDWING-DEQUEEN
20043541 KV1055	R20150	1/5/05	A-4 (1)	88 5	0 67	102	<u>۽</u> ۽	£ 6	146+00	40		20	NORTH GRADY-SOUTH GRADY (S)
20043540 KV1054	KZU15U	CU/C/L	A-b (14)	95 95	33 10 10 10 10 10 10 10 10 10 10 10 10 10		2 X	ਤ ਵ	82+UU	40	Y	Y	ΝΟΚΙΗ GRAUY-SOUTH GRAUY (S) Μιλάτι σάλην εριπή σάλην (ε)
ZUU43333 KV 1033	NCI UCI	CD/C/I	1/21/0-1-H	2	40 4	2	2	2	00+00	04	9	9	

AHTD RESI	ENT MC	SULUS	TEST	RESUL	۶	(5/	4/04	4/1/0	(2)				
DOCK # LAB #	JOB NAME	DATE TEST	SOILS	% PASS.#200	E L	DEN	NOIS	T MOIS	D T. STA.#	Ő	RV REPORTED	RV RA	JOBNAME
20043542 RV1056	R20150	1/5/05	A-7-6(21)	81	44 27	7 101	22	27	186+00	40			NORTH GRADY-SOUTH GRADY (S)
20050156 RV9	050158	2/1/05	A-4 (4)	68	24 07	7 110	4	22	201+00	73	20	32	HWY 87 DRAINAGE IMPRV (HIGGINSON) (S)
20050244 RV34	090154	2/14/05	A-7-6(13)	23	51 32	102	\$ 8	3 20	380+00	4		13	GENTRY-SOUTH (S)
20050242 RV32	090154	2/14/05	(c) 0-H	0/	30 11	108	° 4	2 8	260+00	4 4	11	÷	GENTRY-SOUTH (S) GENTRY-SOUTH (S)
20050497 RV106	040111	3/21/05	A-2-4 (0)	19	ND NF	108	13	12	119+00	. 65	28	73	CHEROKEE CREEK STR & APPRS (S)
20050450 RV97	R60080	3/21/05	A-6 (8)	23	34 12	2 105	22	35	334+00	60	10	22	I-40-MCCAIN BLVD & WILDWOOD-KIEHL AVE.(F)
20050449 RV96	R60080	3/21/05	A-6 (6)	75	27 11 19 02	1 114	77	9 ₽	149+00	09		W	II-40-MCCAIN BLVD & WILDWOOD-KIEHL AVE.(F)
20050492 RV128	090148	3/22/05	A-4 (8)	8	29 10	108	16	38	246+00	84	10	9	
20050491 RV127	090148	3/22/05	A-4 (5)	85	28 07	108	15	19	174+00	4			HWY 412- NORTH (S)
20050490 RV126	090148	3/22/05	A-4 (5)	86	29 07	108	15	24	111+00	4			HWY 412- NORTH (S)
20050698 RV149	080286	4/26/05	A-4 (0)	53	ND	122	₽	9	15+00	75	10	47	CARTER CREEK STR & APPRS. (S)
20050777 RV153	020419	4/27/05	A-4 (0)	62		113	77	85	15+00	40	15	23	WELLS BAYOU STR & APPRS. (S)
20050912 RV183	003948	5/4/05	A-4 (0)	9 6.		105	7	2 4	300+00	899	2		HWY 70-RED WING (S)
20050911 RV182	003948	5/4/05	A-4 (3)	8	23 07	1117	12	29	236+00	99		26	HWY 70-RED WING (S)
20050986 RV192	061156	5/11/05	A-4 (2)	53	29 05	114	14	14	25+00	26	15	51	COOPER CREEK STR & APPRS (S)
20050983 RV189	061155	5/12/05	A-7-6(42)	8	66 44	8	77	41	107+00	62	₹5	ŝ	BRANCH OF DEPOT CREEK STR & APPRS
20051120 RV215	090178	5/20/05	A-6 (12)	66	31 14		£ 8	۶ ۹	301+00	4	c	•	HWY 72 WIDENING & HWY 112/81H SI.INTERS.
20051103 RV214	9/1060	GU/02/G	A-6 (19)	22	200	104	28	20	00+611	4 5	× 4	× 4	HWY /2 WIDENING & HWY 112/8TH ST.INTERS.
20051193 KV241	001/10	GU/17/G	A-1-b(22)	5	32 26	31.1	36	\$	368+00	0	٩L	<u>e</u> :	HWY 3-HUI SPRINGS VILLAGE (PASSING LANES)(S)
20051192 RV 240	01/00//0	20/17/0	A-4 (1)	24	21 10	110	2 9	= =	00+62	9 ¢		47	ITAVT 3-RUI SPRINGS VILLAGE (PASSING LANES)(S) CEORCIA DIACE DAAD EAST AMIDE DAADI, AMILI REDDVI (S)
20051256 RV262	040351	6/8/05	A-6 (10)	ŧ 08	35 14	110	2 4	⊇ (°	49+00	1	10	24	GEORGIA RIDGE ROAD-EAST (WIRE ROAD) (MULBERKT) (3) GEORGIA RIDGE ROAD-EAST (MIRE ROAD) (MILI RERRY) (3)
20051262 RV268	040437	6/8/05	A-4 (0)	88	NDN	104	4	2	61+20	11	20	3	HWY 64/HWY 59 INTERS. IMPVTS (VAN BUREN)
20051421 RV303	050163	6/17/05	A-4 (4)	99	27 09	116.4	14	12	14+00	23	18	4	BRANCH OF CADRON CREEK STRS. & APPRS.
20051372 RV299	080223	6/17/05	A-4 (4)	99	25 10	111.	16	12	6987+00	23	15	15	40/HWY25, HWY64 INCHG (GR & STR)
20051371 RV298	080223	6/17/05	A-4 (2)	88	24 06	112.0	4	16	10+50	23			I40/HWY25, HWY64 INCHG (GR & STR)
20051530 RV352	061118	7/13/05	A-6 (9)	88	30 11	105	14	9	10+00	. 60	12	12	FOURCHE CREEK STR & APPRS. (HINDEMAN G.C.)
20051485 RV344	090179	7/13/05	A-6 (8)	<u>9</u>	26 11	11	5	24	305+00	4	9	9	GREENHOUSE RD HWY 71B
20051484 RV 343	6/1060	7/13/05	A-b (12)	88	31 15	LLL O	2	5	281+00	4	71	21	GREENHOUSE RU HWY /16
20051483 RV342 20051649 RV408	100611	GU/2L//	A-6 (9) A-4 (3)	8/	32 14	1110 C	3 2	2 2	233+00	4		35	GREENHOUSE RU HWY /1B VALLEY VIEW-GIRSON (S)
20051648 RV407	100611	7/27/05	A4 (3)	22	24 08	115.	3	15	210+00	9		3	VALLEY VIEW-GIBSON (S)
20051647 RV406	100611	7/27/05	A-6 (10)	94	30 12	106.8	3 17	21	250+00	16	5	9	VALLEY VIEW-GIBSON (S)
20051784 RV422	R30050	8/2/05	A-2-4(0)	31	ND NF	119.	12	9	150+00	31	19	63	HWY 27 HEMPSTEAD CO.LINE (NASHVILLE) (S)
20051829 RV444	R30011	8/8/05	A-6 (7)	8	26 12	112.0	55	2	34+00	20		ŝ	HWY 24- CLARK CO. LINE (S)
20051828 KV443	R30011	GU/8/8	A-4 (U)	48	20 05	113	3 4	72	00+6/	2 2	ţ	4 E	HWY 24- CLARK CO. LINE (S) HMAY 24. CLARK CO. LINE (S)
20051975 RV469	R70058	8/16/05	A-2-4(0)	33		116.6	4 E	2	81+00	82	30	3 2	HWY 167 IMPROVEMENTS (JUNCTION CITY) (F)
20052006 RV472	110469	8/18/05	A-6 (9)	11	32 16	105.	15	19	111+00	48	9	9	CYPRESS CREEK STR & APPRS (S)
20052044 RV485	061039	8/23/05	A-6 (10)	69	38 16	101.	9	3	134+00	62	15	22	HWY 35 RAILROAD OVERPASS BENTON (S)
20052043 RV484	061039	8/23/05	A-2-4(0)	26		121	₽ ¥	99	118+00	62		88	HWY 35 RAILROAD OVERPASS BENTON (S)
Z0052145 KV532	020137	CU/0/5	A-4 (4)	8	200	I DI	₽ •	3	305+00	40		2	
20052143 RV530	020137	50/9/6	A-7-6(28)	26	43 28	96.8	2	16	161+00	40	\$	Ş	SOUTH GRADY - NORTH GOULD
20052198 RV567	020415	9/8/05	A-4 (1)	61	22 06	119	12	16	357+00	2	10	27	HAMBURG-NORTH (PASSING LANES) (S)
20052197 RV566	020415	9/8/05	A-4 (2)	86	22 04	1118.	12	14	201+00	2			HAMBURG-NORTH (PASSING LANES) (S)
20052196 RV565	020415	9/8/05	A-6 (12)	8	35 16	105.0	19	38	165+00	2		\$	HAMBURG-NORTH (PASSING LANES) (S)
20052362 RV610	080236	9/20/05	A-4 (0)	8	21 03	116.	<u>د</u>	с :	301+00	89	14	26	HWY 247 WIDENING
20052361 RV609	080236	30/06/0	A-4 (3)	۶) دە	23 01	112.	9 4	19	253+00	89 0			HWY 24/ WIDENING
20052363 RV611	00736	31/20/05	A-6 (7)	3 22	20 11	110	2 4	- 55	20'RT	8 8		14	HWY 24/ WIDENING HMY 247 MIDENING
20052441 RV644	080204	9/21/05	A4 (1)	36	25 2	107	2 12	1	511+00	38	14	: @	HWY 7 EAST & 140 SOUTH (RUSSELLVILLE BY-PASS)
20052440 RV643	080204	9/21/05	A4 (7)	33	26 9	108.0	11	13	455+00	28	:	50	HWY 7 EAST & 1-40 SOUTH (RUSSELLVILLE BY PASS)
20052439 RV642	080204	9/21/05	A-4 (2)	69	22 7	116.2	3	17	131+00	<mark>28</mark>			HWY 7 EAST & I-40 SOUTH (RUSSELLVILLE BY-PASS)

AHTD RESI	LENT MO	SULUS	TEST	RESULT	s	(5/4	/04-	4/1/07					
DOCK # LAB #	JOB NAME	DATE TEST	SOILS	% PASS.#200	LL LL	MAX	0PT MOIST	FIELD MOIST.	STA.#	Ö	RV REPORTED	RV RAN	JOBINAME
20043542 RV1056	R20150	1/5/05	A-7-6(21)	20	44 27	101	22	27	186+00	40			NORTH GRADY-SOUTH GRADY (S)
20052692 RV692	060529	10/11/05	A-6 (17)	94	37 18	95.0	22	33	143+00	43			HWY. 70 NORTH (HWY. 13) (CARLISLE)(S)
20052691 RV691	060529	10/11/05	A-6 (18)	36	39 18	102.1	4	23	111+00	43	\$	\$8	HWY.70 NORTH (HWY.13) (CARLISLE)(S)
20052644 RV677	090024	10/11/05	A-4 (6)	5 20	28 10	110.8	2 42	20	LM .94	84	2	20	HWT.412 IMPROVEMENTS (SILOAM SPRINGS) (S)
20052643 RV676	090024	10/11/05	A-4 (2)	20	30	111.0	15	16	LM .74	4			HWY 412 IMPROVEMENTS (SILOAM SPRINGS) (S)
20052647 RV680	090024	10/11/05	A-4 (2)	50	26 9 26	110.5	15	20	LM 2.47	4.			HWY 412 IMPROVEMENTS (SILOAM SPRINGS) (S)
20052646 KV6/9	090024	30/11/01	A-4 (3)	5 2	20 P	115.1 100 2	4	200	LM 1.4	4 4	u	ų	HWY 412 IMPROVEMENTS (SILOAM SPRINGS) (S) HMAY 413 IMPDOVEMENTS (SILOAM SPRINGS) (S)
20052546 RV655	SA6242	10/11/05	A-4 (0)	46	19 50	124.0	= =	14	107+00	t 62	9	25	HURRICANE CREEK STR. & APPRS. (S)
20052717 RV701	100609	10/19/05	A-4 (5)	88	26 08	110.9	15	0	459+00	28	\$	\$	HWY 412 - HWY 135 (PARAGOULD)(S)
20052835 RV726	030152	10/27/05	A-6(6)	61	30 15	101.2	19	0	217+00	29		\$	HOPE EMMETT STRS. & APPRS. (S)
20052834 RV725	030152	10/27/05	A-7-6(38)	5	61 37	91.7	54	•	11+00	53	\$	÷۵	HOPE EMMETT STRS. & APPRS. (S)
20053247 RV867	090116	1/4/06	A-6(15)	88	36 18	109.8	1	3 9	444+00 206+00	44	10	15	WASHINGTON CO.LINE - HWY 45(F)
20053245 RV865	090116	1/4/06	A-0(13)	09	- 6 6 8 0 8	66	50	7 4	311+00	1		28	WASHINGTON COLLINE - TIWT 43(L) WASHINGTON COLLINE - HWY 45(F)
20053249 RV869	090116	1/4/06	A-4(0)	69	ND NP	110.8	9	27	556+00	44		21	WASHINGTON CO.LINE - HWY 45(F)
20053248 RV868	090116	1/4/06	A-4(4)	8	24 7	114.1	14	7	508+00	44			WASHINGTON CO.LINE - HWY 45(F)
20053254 RV873	080284	1/9/06	A-4(5)	76	29 8	111.8	16	14	LM 0.2	58	9	6	HWY64-140(WEIR RD) (RUSSELLVILLE) (S)
20060056 RV50	020399	90//1/1	A-4(6)	60	8 /2	112.9	4	2	124+00	2 0	12	91	HWY 133 NORIH - CO.RD - 411 (S)
20060055 KV49	020399	1/1//06	A-4(2)	29	27 1	119.6	21	9	12+00	2 2	ų	4	
20060143 RV73	100608	1/31/06	A-6(11)	2 G	31 10	107.5	≥ @	<u> </u>	334+00	5	9	9	PARK ST HWY 90 (POCAHONTAS) (S)
20060202 RV104	080283	2/13/06	A-6(6)	29	33 12	110.5	1	20	402+00	7	10	28	HWY 65B SOUTH - HWY 336 (CLINTON) (S)
20060201 RV103	080283	2/13/06	A-6(4)	5 5	30 12	113.4	16	22	314+00	71			HWY 65B SOUTH - HWY 336 (CLINTON) (S)
20060254 RV139	009702	2/14/06	A-4(0)	99	21 3	116.6	1 3	21	242+00	~			HWY 103 SOUTH - HWY 311 (GREEN FOREST) (S)
20060253 RV138	009702	2/14/06	A-4(4)	ខ	33 9	107	18	23	122+00		9	9	HWY 103 SOUTH - HWY 311 (GREEN FOREST) (S)
20060501 RV250	030321	3/2/06	A-4(0)	52	d N N	118.1	13	24	445+00	46			GREENWICH VILLAGE - CO.RD.13 (S)
20060500 RV249	030321	3/2/06	A-4(0)	8		112.2	14	£ (405+00	46	Ļ	ç	GREENWICH VILLAGE - CO.RD.13 (S)
20060499 KV248	030321	3/2/06	A-4(1)	80	30 9	111.8	9 9	18	581+00	46 46	<u>0</u>	38	GREENWICH VILLAGE - CU.KU. 13 (S) GREENMICH VII LAGE - CO.RD 13 (S)
20060503 RV252	030321	3/2/06	A-2-4(0)	8 8		115.9	14	9	533+00	46		38	GREENWICH VILLAGE - CORPUS (S)
20060502 RV251	030321	3/2/06	A-6(7)	72	31 13	112.1	16	19	493+00	46		3	GREENWICH VILLAGE - CO.RD.13 (S)
20060509 RV255	030321	3/2/06	A-6(8)	64	37 16	110.6	17	20	717+00	46			GREENWICH VILLAGE - CO.RD.13 (S)
20060505 RV254	030321	3/2/06	A-4(2)	47	27 10	117.5	13	7	629+00	46			GREENWICH VILLAGE - CO.RD.13 (S)
20060593 RV265	080294	3/16/06	A4(1)	88	21 5	116.1	<u>ت</u>	9	10+85	89	16	9	PRAIRE CR STR.&APPRS.(EAST B ST.)(RUSSELLVILLE)(S)
20060642 RV282	R60081	3/1//06	A-6 (16)	88	32 19	109.6	24	5	480+00	09	¢,	\$	HWY 440-REDMOND RD (PHI) F
20060/10 KV302	060920	3/23/06	(c) 4-4	53	33 54 54 54 54 54 54 54 54 54 54 54 54 54	115./	2 ¢	314	104+00	90	5 ¢	e g	WHILE UAK BAYOU - 1-4U (F) SEADOV CITV I MITS-MODTH (S)
20060771 RV338	060497	3/24/06	A-6 (9)	11	36 14	107.7	2 @	10	129+00	09	9	16	BEAR PAW DRIVE - BROCKINGTON ROAD (S)
20060788 RV354	050159	3/30/06	A-4 (1)	24	23 8	118.2	12	9	107+00	32	15	20	HWY 233 SOUTH - HWY 69 (BATESVILLE) (S)
20060854 RV369	020417	4/3/06	A-6 (12)	6	33 13	107.2	11	24	226+00	-	9	و	LA GRUE BAYOU & RELIEF STR & APPRS (S)
20060828 RV362	040443	4/3/06 5/44/06	A-6 (9)	6	31 14	110.1	9	50	412+00	8	ø	٥	BRANCHOF WASHBURNCREEKSIR&APPRS.(SOUTHOFHWY.10)(S)
20061193 RV450	020275	5/11/06	A-6(10)	52	34 16	110.9	2 42	6	220+002	24		17	HWY 167 BYPASS (SHERIDAN)(S)
20061192 RV449	020275	5/11/06	A-6(12)	62	35 17	101.1	20	19	148+00	27			HWY 167 BYPASS (SHERIDAN)(S)
20061197 RV454	020275	5/11/06	A-6(5)	69	27 11	114.	15	22	428+35	27			HWY 167 BYPASS (SHERIDAN)(S)
20061196 RV453	020275	5/11/06	A-4(3)	69	26 8	112.1	9	8	382+35	27	4	22	HWY 167 BYPASS (SHERIDAN)(S)
20061199 RV456	020275	5/11/06	A-7-6(21)	6/	46 2/	98.3	52	22	510+00	21	12	12	HWY 16/ BYPASS (SHERIDAN)(S)
20061324 RV557	X02023	5/17/06	A-6(10)	2 8	29 14	109.7	16	19	12+00	21	5	9	DITCH 6 ROUTE 54 (DRAINAGE REVIEW)
20061366 RV565	FA2418	5/26/06	A-7-6(20)	80	46 25	101.7	20	12	103+00	24	1	11	HWY.186-EAST(RECONST)(S)
20061387 RV573	090225	6/2/06	A-4(0)	17	dN ON	114.9	12	9	13+85	2	10	32	HWY7/HWY206INTERSIMPVTS(BOONE CO.)(S)
20061545 KV552	080305	6/5/06	A-7-6(20)	25 F	4/ 23	1.86	92 7	5	498+00	8	9	٥	HWY64 WEST S.CHURCH (GR&STR)(VILONIA BYPASS)
20061544 RV551	080305	00/G/9	A-b(b)	e r	20 12	113.5	5 ¥	7 28	369+30	38		ų	HWY64 WEST S.CHURCH (GR&STR)(VILONIA BYPASS) HMV64 MFET & CHURCH (CD8 STD)(VII ONIA BYDASS)
20061547 RV554	080305	6/5/06	A-4(1)	22	20 2 1	116.7	2 2 2	50	584+75	38		7∞	HWY64 WEST S.CHURCH (GR&STR)(VILONIA BYPASS)
20061546 RV553	080305	6/5/06	A-7-6(20)	85	47 22	99.1	23	21	524+75	3			HWY64 WEST S.CHURCH (GR&STR)(VILONIA BYPASS)
20062014 RV652	080306	7/13/06	A-4(3)	62	25 9	117.0	14	15	833+00	23		33	S. CHURCH RD - HWY 64 EAST (GR&STR)(VILONIA BYPASS)
20062013 RV651	080306	7/13/06	A-6(9)	62	32 13	108.4	¢	19	745+00	88	9	9	S.CHURCH RD - HWY 64 EAST (GR&STR)(VILONIA BYPASS)
20062012 RV650	080306	7/13/06	A-6(7)	63	34 15	109.0	18	20	654+85	23	_		S.CHURCH RD - HWY 64 EAST (GR&SIR)(VILONIA BYPASS)

	ORTED RV RAN JOBNAME	2 12 HWY.12-EUREKA SPRINGS (PASSING LANES)(S)	9 9 OSAGE CREEK STR & APPRS (S)	U ZU HUKKICANE CK & COUCH BKANCH STKS.&APPKS(S)	E	35 ILLINOIS RIVER - HWY 412(3)	45 HWY 71 - GREENWICH VILLAGE (S)	8 18 HWY 71 - GREENWICH VILLAGE (S)	0 30 NIX CREEK STR& APPRS (PRESTON)(TEXARKANA)(S)	OUACHITA RIVER - BANGS SLOUGH (S)	OUACHITA RIVER - BANGS SLOUGH (S)	8 26 OUACHITA RIVER - BANGS SLOUGH (S)	45 OUACHITA RIVER - BANGS SLOUGH (S) 5 F HWV 56 HWV 755 (S)	10 HWY 59 - HWY 255 (S)	5 5 BALLARD CREEK STR&APPRS.(S)	61 LITTLE CREEK&ILLINOIS BAYOU STR & APPRS (S)	3 13 LITTLE CREEK&ILLINOIS BAYOU STR & APPRS (S)	2 13 17 12/11/11/2/12/94 E SIO&INTERSEMPTUIS(CAVE SPERINGS) (S) 5. <6 ROLITH COLITID - HAAY 169 M/ DI IMAR(S)		SOUTH GOULD - HWY, 159 W. DUMAS(S)	SOUTH GOULD - HWY 159 W. DUMAS(S)	8 8 HWY29 B- LINCOLN ST (GREENWOOD ST)(HOPE)(S)	HWY45-CITYLIMITS-FAYETTEVILLE(S)	15 42 HWY45-CITYLIMITS-FAYETTEVILLE(S)	61 HWY45-CITYLIMITS-FAYETTEVILLE(S)	/ 15 HWY, 5/ - ASH SI, (PRESCULI)		6 14 GREEN FOREST EAST (S)	HOT SPRINGS WEST PASSING LANES	HOT SPRINGS WEST PASSING LANES	11 HOT SPRINGS WEST PASSING LANES	I/ PUT SPRINGS WEST FASSING LANES HOT SPRINGS WEST PASSING LANES	7 7 HOT SPRINGS WEST PASSING LANES	BURLINGTON-BEAR CREEK SPRINGS BASE & SURF	6 7 16 BURLINGTON-BEAR CREEK SPRINGS BASE & SURF	BURLINGTON-BEAR CREEK SPRINGS BASE & SURF	22 BURLINGTON-BEAR CREEK SPRINGS BASE & SURF	26 BLIRE INGTON-BEAR CREEK SPRINGS BASE & SURF	S <5 U.P. RAILROAD OVERPASS (STUTTGART) (S)	6 32 MULBERRY RIVER STR&APPRS NORTH OF PARADISE (S)	22 HWY 65 IMPROVEMENTS (GOULD) (S)	HWY 65 IMPROVEMENTS (GOULD) (S)		5 <5 HWY 65 IMPROVEMENTS (GOULU) (S)		INTERNATION DIVIDUAL INTERNATION DIVIDUAL AND A DIVIDUA	5 15 1-40 / HWY 25 & HWY 64 INTERCHANGE (GR & STR)
	RV REP	12	6	7	4	/		~~~	20			~	4	/	9		₩ ₩		/			~		26	r	_ \	\$ 	9					-		1				4	16			-	Ŷ			1
	8	~	~ !		4	4 4	46	1 46	9 46	2	~		- U	59	72	58	. 58	3 4	10	2	21) 29	72	22	22	2	0 00	8) 26) 26	8	24	26	5	5	5	2			5 24	76	92 (22	9/2		3	0 23
7)	STA.#	26+00	113+15	114+0(235+0(35+00	253+00	205+00	104+00	230+00	158+00	118+00	310+01	168+00	143+00	205+00	114+0(169+00	00+66	21+00	225+00	109+00	227+0(187+00	43+00	13/+00	192400	522+00	315+00	259+00	142+0(10+96V	447+00	298+00	230+00	174+00	458+00	322+00	167+00	114+75	648+00	580+00	10+2LG	10+29/	10+00/	010000	0+6669
4/1/0	FIELD	4	4	2	2 8	38	96	1	12	13	24	9	9 7	2 50	0	12	4	2 9	1	1	렸	12	9	9	5 5	5	- 4	54	20	18	; 9	= ~	° ₽	42	26	26	⁴	2 (25	12	19	2	38	20	3 4	D	و
1/04-	OPT MOIST	9	tt (2	2 2	5 0	9	16	11	1	1	14	5- C	3 6	18	13	с ;	200	16	2 œ	27	14	14	15	12	<u>e</u> -	- 6	е С	15	18	32	2 9	24	19	29	26	9 2 8	5	9	12	19	16	11	5	5 5	2	÷
(5/4	MAX	104.2	115.4	119.2	104.4 06.2	100.3	105.4	109.6	118.3	121.9	120.0	117.0	1.90L	106	106.4	113	116.6	105.5	108	104.9	88.9	114.6	111.6	109	119.1	1.601	118 6	117.2	111	105.9	<u>93.5</u>	109 5	101.5	100.2	87.6	91.1	110.8	109.4	105.9	117.1	103	108.6	1101.4	110.6	110.1	110.1	123.1
S	LL	35 15	28 14	18	40 ZZ E0 22	31 10	36 21	33 15	d QV	DN DV	19 06	23 07	29 16	3 5	31 17	ND NP	26 11	17 CV		34 19	88 67	24 09	21 05	25 08		20 02		d N N	29 09	UD NP	49 24	4 8 2 0	36 14	48 22	50 24	49 24	23 05	31 16	34 23	Ц Д	30 14		30 13			5	23 06
RESULT	% PASS.#200	99	78	2	99	44	2	89	61	20	33	47	08	2 68	72	56	54	2 8	8 96	6	67	58	45	69	33	<u>و</u> د	202	46	48	42	91	5 69	73	56	78	74	47	0	91	42	86	60	90	¥ 8	76	50	5
TESTF	SOILS F	A-6(8)	A-6(9)	A-4(U)	A-6(12)	A-4(1)	A-6(16)	A-6(8)	A-4(0)	A-2-4(0)	A-2-4(0)	A-4(0)	A-6(10)	A-6(9)	A-6(10)	A-4(0)	A-6(3)	A-0(14)	(JC)0-1-2	A-6(17)	1-7-6(74)	A-4(2)	A-4(0)	A-4(2)	A-2-4(0)	A-4(5)	4-1-b(24) A-4(0)	A-4(0)	A-4(2)	A-4(0)	A-7-6(24)	(ci)0-1-4	A-6(9)	1-7-6(10)	A-7-6(20)	4-7-6(18)	A-4(0)	(b/9-V-	A-6(19)	A-4(0)	A-6(13)	A-4(0)	A-b(11)	A-4(2)	A-4(0)	17)+-H	A-4(0)
SULUS	ATE TEST	7/18/06	7/20/06	//31/06	7/31/06	7/31/06	8/4/06	8/4/06	8/7/06	8/16/06	8/16/06	8/16/06	00/9L/8	8/28/06	8/29/06	8/30/06	8/30/06	2 90/0C/0	9/9/9	9/9/9	9/1/06	9/11/06	9/12/06	9/12/06	9/12/06	9/13/06	10/16/06	10/16/06	10/20/06	10/20/06	10/20/06 /	10/20/06	10/20/06	11/6/06 4	11/6/06 4	11/6/06 /	11/6/06	11/6/06	11/13/06	11/13/06	12/12/06	12/12/06	90/21/21	12/12/06	12/12/06	121 14/ 00	12/14/06
ENT MO	OB NAME	190073	190197	940026	190196 00106	90196	130052	30052	130342	170268	170268	170268	1/0268	40439	140442	08818	008818	107060	20002	20092	20092	130290	140440	140440	140440	43002b	90.196	90229	161059	161059	61059	101039	61059	190003	190003	190003	90003	50006	120326	140441	120448	120448	120448	120448	80.206	002300	180296
AHTD RESILE	DOCK # LAB # J	20062096 RV684 0	20062105 RV693 0	20062311 KV815 0	20062465 KV805 0	20062463 RV803 0	20062517 RV863 R	20062516 RV862 F	20062521 RV867 0	20062620 RV910 0	20062619 RV909 0	20062618 RV908 0	20062621 KV911 0	20062745 RV960 0	20062975 RV1050 0	20062758 RV973 0	20062757 RV972 0	20062302 RV 1041 U	20063139 RV1126 R	20063138 RV1125 R	20063141 RV1128 R	20063190 RV1138 0	20062916 RV1033 0	20062915 RV1032 0	20062914 RV1031 0	20063198 KV1146 F	20063614 RV1760 0	20063613 RV1283 0	20063447 RV1245 0	20063446 RV1244 0	20063445 RV1243 0	20063430 RV 1240 U	20063448 RV1246	20063765 RV1370 0	20063764 RV1369 0	20063763 RV1368 0	20063768 RV1373 0	20063766 RV1371	20063855 RV1386 0	20063682 RV1292 0	20063986 RV1480 0	20063985 RV1479 0	20063984 KV14/8 U	20063988 KV1482 0	2000330/ RV 1401 U	1 +001 AN 001 +0007	20064157 RV1503 0

		JOBNAME	HWY67/HWY51 INTERS IMPVTS ARKADELPHIA	HWY 266 - BRUCE ST. (CONWAY) (S)	HWY71DENVER/MTZION/SIG&INTERS.IMPVTS(GREENWOOD)(S)	TERRE ROUGE CREEK STR & APPRS	HWY 7 EAST & I-40 SOUTH (RUSSELLVILLE BY-PASS)	HWY 7 EAST & I-40 SOUTH (RUSSELLVILLE BY-PASS)	1540-HWY 64B (S)	1540-HWY 64B (S)	1540-HWY 64B (S)	LITTLE SANDY CREEK STR & APPRS. SPRINGDALE	SHADY GROVE RDHWY 270	W.FORK WHITE RIVER (FAYETTEVILLE) (S)	BUFFALO RIVER BR. & APPRS (PRUITT)(S)	CO.RD.46-BUFFALO RIVER (SAFETY IMPROVEMENTS)(S)	
		RV RAN	28	\$	5		63		6	14	48	26	24	19	25	9	
		RV REPORTED	12	<5	9	80				14		15	12	15	15	9	
		CO.	10	23	65	50	58	58	17	17	17		26	72	51	51	
		STA.#	25+00	169+00	108+00	102+00	517+00	437+00	162+00	318+00	266+00	19+00	LM 3.45	44+00	138+00	124+00	
/1/07)	FIELD	MOIST.	18	23	21	18	18	16	0	0	0	24	12	27	12	8	
-/04-4	DPT	MOIST	15	16	20	12	11	18	18	15	12	17	18	15	14	18	
(5/4	MAX	DEN	113.9	111.5	106.6	119.4	119.8	108.8	107.1	112.4	109.1	104.5	106.5	114	117.4	103.8	
		Ē	13	3	18	N N	UF NF	14	3	6	ž	3	3	HN (60	21	
2 L		LL	26	23	35	Z	N	31	33	28	Z	31	37	N	25	33	
RESUL	%	PASS.#200	62	74	81	39	22	76	61	62	99	54	91	46	28	67	
TEST	SOILS	TYPE	A-6(8)	A-6(7)	A-6(13)	A-4(0)	A-4(0)	A-6(9)	A-6(6)	A-4(3)	A-4(0)	A-6(4)	A-6(13)	A-4(0)	A-2-4(0)	A-6(12)	
SULUS		DATE TEST	1/19/07	1/23/07	2/5/07	3/5/07	3/8/07	3/8/07	3/9/07	3/9/07	3/9/07	3/28/07	3/28/07	4/13/07	4/19/07	4/20/07	
ENT MC		JOB NAME	070305	080273	040469	030323	080204	080204	040431	040431	040431	040475	P06070	040474	009784	090213	
RESIL		LAB #	RV17	RV28	RV35	RV41	RV53	RV52	RV55	RV58	RV57	RV75	RV70	RV98	RV110	RV119	
AHTD		DOCK #	20070085	20070113	20070161	20070269	20070284	20070283	20070286	20070289	20070288	20070484	20070469	20070570	20070686	20070679	

Table A2. AHTD Resilient Mod	lul	li
------------------------------	-----	----

000000	96	93	00	61	16	37	66	16	000	86	96	98	95	38	101	36	16	101	10	26	96	96	37	97	38	16	16	30	685	66	99	56	37	50	66	96	92	66	16	101	66	16	36	92	104	26	96	36	16	
HALFT POOL INT	2005	9511	01111	6485	7143	5053	4720	124	6114	7314	7763	7738	9118	5883	5945	12622	9679	2042	0100	2000	9188	10209	8652	7476	5445	13015	9656	1001	0859	6626	8478	13050	6369	12/21	11107	7476	10935	6384	1078	2070	6631	6950	6528	8318	7915	6323	6445	7488	2888	
	9650	9871	1020	6849	6943	5411	5175	6103	5831	7419	8082	7996	9663	5850	5854	13 195	1919	5364 6336	6017	5765	9696	10154	8679	7266	5963	12828	65001	C 100	R454	7128	9243	13065	7036	1400	11361	7332	11367	6469	0/08	4020	6639	7279	6655	8506	8683	6218	6240	7320	10213	
COLO DE COLO	RR/Q	10453	11111	7187	6901	5892	5870	10110	6004	7495	8641	8332	6065	6975	6643	13740	1300	4330	6368	6009	10271	10255	8811	7139	6528	12763	96101	1021	CEAD	7842	10392	12970	1341	1004	11531	7342	11836	6656	2171	16736	6771	7693	6702	6893	6096	6143	6078	7369	10617	
1000	6365	11324	1034	7493	7100	6507	6681	6013	6640	7612	9222	8828	10229	6424	1111	14447	1020	7402	6661	5774	10785	10685	9108	7373	7122	13044	10437	1010	9769	8972	11962	12807	7872	02.14	11873	7696	12262	6857	7686	0200	6951	8292	7143	8976	10368	6164	6192	7578	11223	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100	12410	10000	1367	7463	7289	6249	13000	6008	8205	10231	3605	10495	1394	1626	15397	6005	2000	CUVL	6238	11330	11288	9405	8176	7827	14046	10988	0400	7447	10577	13809	12820	8916	COLS	12410	8407	12632	7381	8142	10110	7492	3355	7910	9462	11466	6615	6733	8061	12130	00000
0400	6166	10769	40424	7192	8867	5838	5308	1/83	1162	8550	9082	9279	9804	7432	6467	13910	1435	4030	6497	7385	9991	12364	10595	9330	6127	15865	11462	10205	E3621	7676	9436	14783	8337	1000	12774	9217	11520	7667	103/6	10001	2003	8073	1961	9310	8196	8020	8043	8901	11559	
	9601	11223	0000	1648	8803	6467	5910	1843	1647	8841	9700	9708	10450	7445	6702	14807	9921	7206	2020	7212	10882	12431	10956	9251	6915	15954	11666	1000	8053	8247	10472	15297	3594	90044	13081	9174	12085	7938	10153	10202	8166	8570	3406	9731	9108	7962	7915	8872	17183	
14.74	1033	11986	10033	8211	8725	7299	6801	10104	1367	9140	10467	10238	11107	7652	7734	15618	6/34	7024	7695	7218	11634	12679	11466	6006	1611	16087	06/11	11054	1001	9226	12077	15636	8585	6476	13412	9212	12582	8175	21.56	1113/	8411	9213	8419	10045	10084	7956	7834	8962	UUDC1	00071
TAFF	668)	12854	0003	8774	8998	8117	3048	6161	7447	9545	11264	10505	11628	8336	9129	16549	9629	0.350	6130	7354	12361	12945	12319	9750	3619	16143	12242	#100	62.23	10635	14176	15565	9744	01001	13840	5443	13028	8522	10093	1443	3639	1966	9025	10418	11108	8168	7994	9260	13215	10010
10110 C	8/00	13701	17039	9513	9585	9240	2016	0245	8122	10006	12464	11740	12371	9435	10887	17669	10801	0020	3696	7804	13304	13746	13757	10906	9427	16378	13022	3724	61671	12635	16762	16472	11114	66111	14449	10275	13565	9160	10/00	1001	9089	10957	10100	11009	12357	8503	8541	10016	15065	
	Ini	11558	10210	7615	10740	6782	5577	9154	1636	1266	9948	10345	10013	8741	6462	14377	0435	7603	2001	8834	10008	14051	11883	10981	6490	18012	12548	10000	8963	7967	10013	15279	6330	BAth	13707	10912	11461	8625	12021	EACK SACK	3816	0843	9105	9812	8231	1956	6514	10285	12482	1040
0000	1967	12073	12240	8310	10812	7617	6184	59.65 0.614	1976	9848	10840	10899	10992	5088	7270	15737	1916	0300	7868	8853	11137	14312	12220	11055	7626	18163	13181	1000	6976	8593	10974	16110	9962	0000	14347	11127	12103	9125	11965	00001	9369	9603	9411	10531	9425	9613	9615	10410	13144	
0000	2002	12939	10001	10001	11212	8757	7280	10135	2010	10655	12264	11933	11980	10013	9412	17165	103/9	0260	2000	9013	12469	14855	12867	11300	9120	18397	13/01	1040	10224	9926	12587	16960	10240	2000	15029	11529	12804	10026	12061	6764	10261	10843	10019	11340	10687	6665	9813	10370	14378	
Contraction of the second	8755	14131	02001	9783	11121	9551	6069	10449	PC96	11360	13472	12965	12602	10734	11053	18070	11522	0000	10102	6261	13541	16468	13811	11930	10297	19105	13938	12130	10597	11872	14962	17614	11209	11201	16595	11861	13737	10722	12291	21001	10962	11876	10542	12029	11845	10333	0986	10735	16509	
10404	10166	15130	10463	10631	11669	10794	10417	10610	0840	12184	14729	14010	13339	11645	12465	19002	00/21	10001	11030	9782	14338	15814	14911	12839	11332	19293	14/15	12002	11302	13691	17213	18104	12345	41723	15239	12113	13937	11405	65/21	8102	11540	12942	11341	12554	12940	10777	10226	11620	15520	
0.000.0 0.000.0	-0.22421 0.35512	-0.16719 0.18753	0770C 0 10100-0-	-0.16832 0 21660	-0.04642 0.40125	-0.27392 0.31885	-0.38635 0.19695	-0.09026 0.39804	0 01238 0 45522	-0 11153 0 30360	-0.20777 0.30021	-0.16013 0.31339	-0.13212 0.16067	-0.16757 0.42611	-0.36299 0.23636	-0.14559 0.17689	08062 0 51/070	0 10400 0 02201-	01 200 0 0 200 0 0 200 0 0	-0.04919 0.40092	-0.17378 0.16159	-0.07193 0.31550	-0.09019 0.40047	-0.09019 0.40047	-0.28036 0.26959	-0.03940 0.31490	-0.0/850 0.24936	COCCC 0 00011-0-	-0.00404 0.20200-0-0-00200-0-0-00200-0-0-00200-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	-0.33327 0 21626	-0.35034 0.18472	-0.05071 0.24090	-0.17686 0.29871	0-020 0 77020 0	0.08311 0 22708	-0.07319 0.36760	-0.10233 0.07023	-0.12731 0.35321	-0.019/1 0.388/5	100000 0 20201 0-	0 11112 0 34566	0 20612 0 26212	-0.14095 0.33877	-0.11131 0.22086	-0.25648 0.06895	-0.04928 0.42165	-0.03928 0.39371	-0.06897 0.31242	-0 16008 0 75410	A
	1100	12090	12045	7878	5697	7185	9565	10000	4269	7272	0695	8679	10781	6069	10238	15317	1400	7410	7//35	4720	11984	9374	6465	6465	8267	11162	9/40	0110	5969	11617	16003	11909	8068	0441	11282	6547	13189	6321	0735	6003	6372	8822	6787	6683	13200	6003	5074	6727	11507	
		5059	1000	65849	6901	5053	4720	0103	5609	7314	7763	7738	9118	5850	5854	12622	9036	2005	6693	5609	9188	10154	8652	7139	5445	12763	9696	1000	6380	6626	8478	12807	6969	1210	11107	7332	10935	6384	1055	25.47	100	6950	6628	8318	7915	6143	6078	7320	EBSB	1
	0041115	0041125	1100171 100	0041210	0041209	0041213	0041212	0041312	0041355	0041323	0041320	0041319	0041401	0041415	0041412	0041411	0041410	1101100	0011639	279.100	0041688	0041650	0041650	0041649	0041714	0041713	0041635	004 1039	1201100	0041970	0041996	0041943	0041542	1 12 100	0042009	0042008	0042153	0042189	0042599	0047400	0042461	0042460	0042616	0042547	0042546	0042545	0042549	0042631	2696700.	

AHTD RE	SILENT M	AODULUS	TEST RESUL	FO 1 Mr mei 16	14/04-4/1/0	() 31 Sac 3 Mr nei 16	Son 2 Mr nei 16	San 6 Mr nei 16	San 5 Mr nei (4)	San 7 Me nei (2)	Sac 8 Mr nei (4)	San 9 Mr nei (2)	Sec 10 Mr nei (2)	San 11 Mr nei 121	San 12 Mr nei 121	San 13 Mr nei 121	San 14 Mr nei 17	Sac 16 Mir cel	% COMP
20042745	6969	10054	-0.26772 0.15195	11005	10331	9366	7807	6383	9884	9133	8406	7479	6405	8754	8181	7581	6856	6969	101
20042764	6064	4432	0.00340 0.49129	11410	11081	10831	10666	10690	8640	8371	8329	8635	8887	6363	6963	6064	0679	6804	96
20042763	2840	6850	-0.46326 0.15618	6615	5709	4760	3720	2958	5930	4826	3955	3369	3103	5519	4503	3781	3241	2840	97
20042965	10609	12819	-0.16115 0.22051	16898	15856	14744	13776	13190	15799	14368	13294	12504	12056	13364	12222	11475	10918	10609	8
200429/4	1125	0671	-0.12618 0.42620	14054	13018	(1671	12085	6/911	12230	11141	0000	10701	8/66	9139	7260	1842	7240	1125	20 00
FCCFLOG	10052	4120	-0.04758 0.25662	16220	14548	13915	13263	12631	13846	87621	12966	12630	12188	10082	10419	10626	10787	10803	36
20043180	7034	5893	-0.06282 0.43845	12575	12058	11811	11537	11421	10503	9632	9245	9312	9433	7850	7268	7034	7127	7360	66
20043179	9309	12619	-0.22593 0.25019	17229	15800	14293	12646	11541	15529	14129	12821	11739	10816	12517	11495	10625	5924	9309	96
20043178	5000	7191	-0.31596 0.37703	11659	10248	1968	7487	6804	9645	7890	5861	6341	6012	7823	6290	5485	5150	5000	96
20043182	6823	5765	-0.19028 0.50028	13366	11993	10783	9576	9011	10330	8518	7785	7617	7565	7288	6164	6823	5942	6263	66
20043181	7084	6779	-0.10367 0.34822	11973	11200	10793	10421	10338	10338	9438	8862	8648	8737	8279	7582	7191	7084	8161	97
20043214	5065	4591	-0.06623 0.30264	7731	7788	7411	6816	6336	6491	6283	6252	6167	5869	5301	5147	6090	5120	5065	98
20043213	8443	10221	-0.13612 0.12600	11859	11217	10385	9626	9024	11154	10569	10064	9568	9061	9879	9368	5037	8745	8443	98
20043213	8443	10221	-0.13612 0.12600	11859	11217	10385	9625	9024	11154	10559	10064	9568	9051	9879	9358	2037	8745	8443	98
20043240	6148 0er	35/5	0.26380 0.30630	12635	110-01	10284	2932	6/8/	10893	9993	0000	1833	193	8/30	1840	1150	6584	6148	55 00
77606007	000	0010	0.00000 0.0000	10104	403C0+	1110	0400	2000	01730	10010	3222	1270	0100	200	0100	2001	C011	6000	00
UCASHUUC	2673	SEAF	020000 0 20241 0-	16006	HELP+	13281	116.41	10400	12128	11696	10687	0000	0403	10050	8770	CBUS	1202	2120	100
ECTEPUOC	4754	SAAS	TE890 0 86898 0-	10012	10141	849.	6489	1625	1916	P682	19001	6079	2410	1733	6700	6861	6223	4764	88
20043541	6193	5473	-0 06953 0 37214	10477	9876	9637	1885	9293	8721	8035	7762	7800	7850	5982	6411	6193	6216	6385	96
20043540	5105	7393	-0.26106 0.28241	10264	9232	8474	7366	6574	5003	7899	7087	6476	6869	7524	6521	6988	5485	5105	96
20043539	2772	8876	-0.56685 0.13169	7385	6223	4809	3491	3647	7022	5677	4528	3544	2833	6468	6272	4253	3393	2772	101
20043542	9910	11047	-0.09792 0.12361	13170	12598	11965	11242	10497	12265	11620	11246	10894	10453	10922	10533	10295	10135	9910	96
20050156	7708	6337	-0.02698 0.37050	12471	12307	12131	11547	11372	10180	9704	9649	9810	9862	8168	7783	7708	7866	8085	97
20050244	12745	13984	-0.11375 0.20701	19024	18315	17142	15742	14598	17193	16508	15887	15251	14325	14348	13745	13477	13212	12745	66
20050243	7887	8409	-0.13736 0.28497	13293	12466	11312	10256	9527	11402	10711	10223	9776	9191	8830	8375	8306	8139	7887	66
20050242	7782	8002	-0.13912 0.34261	13783	12688	11864	11065	10550	11963	10736	10140	9748	9432	9060	8381	0008	7881	7762	96
20050497	6239	4535	0.01492 0.47634	11118	11048	10981	10927	11013	8935	8558	8547	8932	9170	6373	6239	6447	6684	6738	100
20050450	5598	8923	-0.27705 0.19784	10518	9425	8481	1373	2999	9541	8360	7440	6770	6214	8479	7401	6513	6869	5558	36
20050449	10761	14102	-0.19307 0.21747	18250	14149	15597	13948	12872	16559	15154	14127	13113	12210	14055	12947	12082	11375	10761	88
20050448	2003	1533	-0.0/451 0.415//	108d1	14015	14051	13402	13343	13224	DOSLU .	112/16	11384	ELGLI	1000	8/16	2000	AND A	0/56	50 00
26400002	1002	2010	14040 0 10000 0	20101	JENCI	2000	12021	01401	10070	0C420	10071	0077	1000	2421	1002	2102	0165	E41E	200
10000000	8261	7627	-0.10074 0.35520	13087	10001	12261	11505	11069	10101	11013	10489	10195	0060	8700	8301	8261	0000	2770	50
20050598	6669	6304	0 19034 0.41874	13392	11398	1986	8740	8543	10381	8171	7308	7238	7385	7418	6040	6999	5897	1364	36
20050777	6291	4748	0.01288 0.45559	11203	10994	1087)	10351	10965	9464	8884	3819	9007	9263	6395	6291	6739	6950	7187	97
20050913	8323	8905	-0.13972 0.31187	14194	13266	12674	11806	11470	12501	11305	10642	10221	10000	10290	6309	8706	8442	8323	
20050912	7506	5331	0.07680 0.41145	12121	12393	12852	13093	13411	9890	9857	10090	10695	11369	7505	7623	8115	8555	8433	101
20050911	7575	7263	-0.13265 0.39995	14205	13212	12293	11239	10675	11404	10794	10159	9768	9452	9694	8070	18/1	7567	7575	97
20050986	7020	8942	-0.23648 0.34658	13969	12656	11555	10488	1686	12536	10807	9710	9024	8630	10059	8503	7628	7228	7020	96
20050383	5023	8/30	0.29853 0.12402	1016	6128	1204	1160	0205	6619	14/2	1/90	L/RG	5105	1299	6/03	1613/	2064	5023	200
0111007	COCA	100	0.40200 0.00000-0-0	01001	0101	1100	0543	7020	004C	PLCO	2790	7454	2002	000	0400	0000	0110	2000	8
20061193	4170	1922	-0.41194 0.31683	10139	9709	1882	ENS	5335	8962	7626	6376	6417	1818	7672	6266	1923	4576	4170	10
20051192	6321	5767	-0.13451 0.48455	13334	12004	11111	10407	10141	10244	9193	8578	8403	8403	7513	6591	6321	6362	6563	97
20051256	8612	7054	-0.01674 0.38305	14281	14126	13683	13319	13030	12267	11569	11511	11462	11439	8612	8826	8913	9171	9378	96
20051255	5772	7329	-0.24313 0.35942	12112	10826	9688	8435	7749	10276	9022	8137	7409	6901	7634	6986	6427	6037	5772	96
20051262	6156	5105	-0.03439 0.38963	10331	9685	9740	9555	3664	8703	8117	1971	8011	8165	6607	6326	6156	6329	6666	88
20051421	6783	9484	-0.31745 0.37527	14886	13156	11675	9831	8980	12893	10810	9456	8484	6582	10101	8437	1343	6764	6489	66
20051372	10214	11924	0.17337 0.28172	17895	16842	15475	13469	12018	15974	14741	13781	12687	11556	11718	11500	11173	10748	10214	66
200515/1	10044	2040	-0.10540 0.35505	2010	0041	10/01	10214	17611	00/14	00271	TAAC	1011	1070	10103	2102	10000	1020	10004	20
20061486	0470	9125	-0.04021 0.30022	16266	98874	13435	12121	CF011	13546	19763	12108	14602	11148	+179	0.540	ORGE	1020	0470	96
20051484	8930	8400	101045 0 33861	14970	14102	13178	12003	11200	13055	12259	11695	11172	10605	8930	0000	6138	6093	8960	3
20051483	5658	6970	-0.33581 0.40650	11637	10204	8933	2409	6427	9995	8119	7024	6273	5728	7314	6141	5404	6000	4668	96
20051549	7108	26097	-0.04852 0.36142	11489	11109	11103	10756	10657	9571	9658	8750	8671	8363	7902	7344	7108	7129	1393	96
20051548	4920	5718	-0.21933 0.38168	10092	100	8371	1364	5847	8220	7028	6379	6111	5949	6999	5558	5133	4971	4920	66
20051547	6906	13670	-0.13528 0.29646	11538	10905	10393	8138	9217	5958	9089	8550	8307	8134	8526	7703	1224	1002	6906	8
20051784	6037	1997	0.02036 0.42114	10087	10058	10161	10135	10397	8291	7833	7833	8513	8558	5384	6037	6120	6424	6764	38

AHTD RE	SILENT A	MODULUS	TEST RESU	LTS (5	14/04-4/1/0	7)	San & Mr nei 15	San 6 Mr no. 161	San 5 Me nei 141	Can 7 Me not [1]	Car 8 Mr mi / //	Can O It's not [1]	The set of the set of	San 11 Me no. (2)	San 17 Mr no. (7)	San 13 Mr no. (2)	Can 14 Mr noi 17	San 16 Minne	N COND
20051329	2663	7513	-0.58676 0.19183	7209	5873	4503	3220	2865	6508	4858	3739	3097	2811	5816	4268	3376	2856	2663	66
20051828	7687	8371	-0.16646 0.37693	14684	13794	12972	11879	11362	12468	11209	10406	9974	9996	3995	8961	8278	7868	7687	98
20051827	1203	6555	0 09429 0 38659	12508	11732	11327	11074	10934	10544	9644	9135	9004	9107	8340	7569	1231	7203	1321	36
2005000	4982	3966	0.01/25 0.51245	9366	3300	3211	0176	1949	1386	8000	69/4	1324	1824	5275	4362	9019	1240	6090	88
20052040	4045	110213	0.6256 0.20780 0.20781	100	7100	5443	10/01	3325	10.00	0220 6479	1767	27+7	2005	7873	6847	0000 A22A	2675	2043	0 8
20052042	6786	5034	0.01755 0.43529	11497	11236	11335	11503	11819	11100	8876	8823	11.0	9718	7144	6798	4.785	1166	7368	26
20052145	6642	6964	-0.13858 0.31844	11382	10606	10105	9376	3926	9851	9113	8556	8224	7975	7958	7311	6969	6761	6642	96
20052144	1655	4260	-0.56541 0.16298	4143	3232	2573	1960	1902	3723	2715	2168	1880	1721	3554	2544	2045	1790	1655	96
20052143	6785	6228	-0.50220 0.11154	5442	4655	3735	2927	2435	5208	4135	3401	2855	2461	2613	3803	3203	2730	2387	96
20052198	6097	8683	-0.11558 0.37829	16228	15158	14262	13296	12843	13711	12722	11989	11573	11317	10188	9614	9282	9160	2606	96
20052197	7040	7958	-0.19374 0.38474	14216	12977	11795	10565	10031	11629	10633	9757	9185	8758	9197	8072	7515	7219	7040	38
20052196	0000	9255	-0.53626 0.24362	115/16	00201	0000	6/0/-	1810	21101	6041	1/36	1010	1991	8141	1315	0000	2000	2000	205
2012/2012	0310	8018	-0.13015 0.39354	19993	140.02	13869	12804	1221	12/20	11038	11139	10848	29001	1996	20130	0000	0770	0318	8 8
10020002	2030	4000	11000 0 00000 0-	19701	6051	0000	1010	0700	1012	4010	4/30	45/0	1024	0100	1004	1902	0140	0595	8
20062362	10445	11995	-0.14217 0.26739	18037	16689	15587	14728	13377	16116	Paste	13870	13190	19666	P000	11742	11524	11224	10045	8
20052441	8326	7785	0.10399 0.36795	14441	13460	1283)	12049	116447	12116	11321	10777	10433	10237	9223	8662	8421	8328	8331	8
20052440	8530	9634	-0.16371 0.31432	15269	14072	12963	11786	11113	13258	12285	11398	106678	10122	10206	9577	9133	8759	8530	8
20052439	6208	9144	-0.30216 0.33848	13933	12322	10715	9051	8160	11595	10090	3856	8023	7433	9403	7996	7089	6560	6208	66
20052692	2274	7679 -58	5778.00000 0.19018	7109	5294	373*	2457	3630	6519	4546	3224	2586	2293	5007	4250	3092	2508	2274	102
20052591	4767	8127	-0.33380 0.26871	10653	9692	8237	6631	2695	8382	8067	7136	6222	5435	7471	6633	6947	6321	4767	98
20052617	8420	10430	-0.18463 0.25856	14961	13800	12494	11161	10311	12894	12121	11330	10575	9768	10627	9878	9396	8898	8368	66
20052544	9511	10205	-0.13620 0.27693	16075	14994	13673	12489	11668	13269	12613	12139	11625	11054	11024	10339	10007	9816	9511	38
20052543	8968	9765	-0.12903 0.25796	14336	13817	1307)	11919	10956	127338	11819	11328	10855	10277	10442	9966	9531	9266	8968	96
20052647	6235	8579	-0.29038 0.42153	15328	13823	11973	1997	8775	12251	10667	9494	8737	8017	9360	7966	7147	6729	6235	102
20052546	9383	9329	-0.04680 0.33846	17500	16774	16095	16302	14731	14066	13837	13674	13491	13320	11166	10867	10902	11089	11144	36
20052545	6120	3664	-0.26950 0.32997	13339	12289	10937	9205	1811	10538	9754	3856	8032	7234	6839	1962	1254	6697	6120	8
01020000	10001	1000	0 41040 0.07101.0	1000 J	00001	10000	14741	1000+	142/0	20001	10071	2000	11030	1000	0000	0000	1010	0000	8 3
1112002	11012	12021	0.14010 U.23/02	10000	12/14	11/32	10010	10031	12101	10111	10024	UCSE+	1001	1061	2320	11011	12067	12052	8 8
M1803000	10037	9869	-0.07341 0.21630	1111	02021	1312)	12273	11530	12548	12196	11911	11603	11187	10624	10043	10003	10165	1003	8
20053247	11866	13916	0 12138 0 14126	-6748	02051	15101	13908	12935	16392	14625	17071	13464	12782	13807	13465	12644	12284	11856	3
20053246	10060	13436	-0 19442 0.19128	16843	15646	14282	12721	11589	16023	13694	12920	12057	11178	13158	12105	11369	10712	10050	97
20053245	10043	9517	-0.07132 0.30535	16090	15306	14861	14208	13631	13895	13090	12746	12622	12342	11088	10550	10377	10424	10043	96
20053249	7647	3922	-0.17999 0.31450	13951	13012	12043	10961	10274	12137	10975	10237	9752	9261	9938	8958	8346	7989	7647	38
20053248	10987	12328	-0.13651 0.24635	17629	16735	15585	14318	13600	15812	14716	13907	13307	12664	13031	12263	11717	11349	10987	96
20053254	8125	14515	-0.33908 0.21541	16713	14667	12965	10893	9652	16513	13180	11365	9978	9066	13195	11336	9849	8798	8125	96
20060056	11045	9660	-0.03912 0.32922	17701	16998	16195	16471	15109	15270	14759	14456	14197	13982	11045	11135	11333	11603	11750	96
20060055	1237	8929	-0.11903 0.37720	16548	15726	14770	13732	13145	13769	12691	12135	11767	11478	10638	9963	9457	9374	9237	100
20050145	2862	0013	-0.543/8 0.23/60	8793	1330	210	10104	4355	1035	7750	0910	4024	1210	0000	1075	40/4	4163	2002	20
20080302	0000	1018	-0.000-0 0.0000-0-	16186	4100	01/00	12906	6714	0000	LTCC1	1011	1919	11279	0140	4033	0400	2000	0000	10
20060201	4113	5870	-0.35357 0.38967	10497	8436	6964	6590	5142	7803	5956	5115	4870	4749	6215	4689	4146	4113	4171	100
20060254	8442	7580	-0.08721 0.37570	14700	13911	13163	12320	11787	11590	11240	10888	10650	10399	9229	8561	8549	8503	8442	96
20060253	6696	12057	-0.30214 0.16097	13131	11979	10194	8511	7325	11355	10859	9782	8530	7323	10250	9356	8530	7621	9699	66
20060501	8086	7465	-0.12078 0.43215	15372	14385	13499	12564	12178	12356	11472	10876	10584	10338	9355	8531	8175	8112	8086	67
20060500	8149	7215	-0.07365 0.37964	13906	13082	12363	12079	12035	11918	11148	10666	10506	10473	8828	8314	8149	8230	8373	36
20060499	9374	3874	-0.09936 0.35502	16007	15383	14735	13681	13092	13204	12528	12105	11877	11583	10790	1007	6537	3486	9374	16
20060504	65/1	84/3	-0.24008 0.35844	14224	13166	11635	10043	2485	11535	61/01	9/04	81/8	0/6/	1189	8235	1632	1807	1999	8
20060502	0100	2001	5/060 0 40000 0-	1/401	14001	12342	14057	114433	14302	13013	10401	13202	4022L	2000	00100	0,000	75501	07401	8
20060509	9519	65F8	0.06100 0.33331	15833	15154	12071	13197	12493	12814	67261	12562	12265	11829	6136	0564	0874	10078	10055	8
20060505	10643	9303	0.01594 0.35036	18165	17633	16863	16069	15646	16427	15198	14996	14837	14506	10643	11263	11639	11964	12068	96
20060593	7393	7912	-0.17862 0.39299	14340	13097	12164	11259	10693	12243	10631	3835	9403	9167	1906	8250	7594	7404	2393	96
20060542	6711	10525	-0.26906 0.17918	12424	11167	9734	8355	7401	10909	9837	3856	5262	7243	9512	8591	7856	7247	6711	97
20060710	12160	12645	0.10830 0.25031	18669	17914	17012	15/93	14793	16491	15741	15063	14450	13788	13645	12977	12634	12395	12150	96
20060732	1375	11679	-0.1012 U.50001	14653	13367	113211	12332	8769	12/140	11/58	10404	9203	8267	11001	9786	86/33	8017	1375	66
20060788	7752	7775	0 13157 0.35431	13759	12793	11975	11160	10744	11588	10646	10051	9721	9481	9112	8302	7942	1793	1752	96

AHTD RE	SILENT N	NODULUS	TEST RESUL	TS (5	14/04-4/1/0	7)	San A Me nei 151	Car 6 Mr no. 161	Can 6 Mr nei 141	Can 7 Me noi 141	Car & Me nei 141	Can O Mr noi 141	Car 10 Lives (1)	San 11 Mr no. 121	San 12 Mr no. (2)	Can 13 Mr no. (2)	Can 14 Mr noi 17	Can 16 Minut	N LOND
20060354	6130	8367	-0 23724 0 28430	11951	10752	9608	0275	7807	10589	2676	8584	7851	7265	8345	7570	7001	6239	6130	15
20060828	5913	11560	-0.40358 0.27289	14234	12408	10432	8222	7161	12613	10614	8926	7658	6800	10320	8618	7367	6483	5913	86
20061194	9534	9634	0 07034 0 29178	16057	15331	17614	13572	12999	13324	12974	12790	12510	12117	10842	10405	10362	10444	10435	56
20061193	8125	3042	-0.09976 0.28491	12925	12240	11524	10733	10227	11081	10596	10174	9870	9489	3863	8502	8338	8238	8125	15
20061192	8641	9614	-0.13044 0.22395	13495	12696	12057	11008	10174	11793	11201	10726	10282	9740	10151	9504	9215	8952	8641	100
20061197	8590	9364	-0.14111 0.28895	14898	13837	12735	11510	10810	12292	11734	11200	10642	10044	10090	9441	9162	8927	8690	98
20061196	4863	4836	-0.19791 0.11665	5640	5099	4198	3782	4012	5072	4205	3764	3751	3910	4781	3966	3580	3593	3869	97
20061199	10178	10101	-0.07112 0.19562	14201	13740	13122	12178	11305	12371	12151	11980	11654	11124	10565	10361	10389	10380	10178	97
20061198	9686	3554	-0.07713 0.36415	16128	15277	14552	13/31	13251	13637	13014	12427	12125	11843	9963	9814	9719	9704	9686	96
20061324	6549	9042	-0.23197 0.23925	12013	11142	10001	8709	7653	10566	9534	3692	7926	7275	9134	0808	7525	7007	6999	88
20061366	12367	13174	-0.10356 0.21003	17833	17491	16793	16499	14302	16553	15418	15069	14643	13812	13895	13279	12819	12632	12367	61
20061387	7420	6276	-0.04936 0.39315	12376	12113	12013	11639	11451	10511	9790	9561	9643	9727	8238	7650	7420	7555	1785	36
20061545	6131	16407	-0.47342 0.11367	14153	12052	9870	7745	6693	13565	11510	9520	7759	6633	12246	10352	8526	7138	6131	61
20061544	8812	13469	-0.26680 0.24767	17245	15643	14073	12231	11035	15681	13911	12468	11326	10344	13274	11602	10359	9527	8812	61
20061543	4311	10999	0.49786 0.18529	10571	8298	6924	5866	5118	10591	8000	6349	5394	4849	9226	685	5460	4705	4331	101
20061547	8581	9776	-0.17419 0.32528	15595	14275	1328)	12407	11955	13895	12054	11219	10743	10488	11257	69711	8952	8707	8681	8
20061546	2001	19961	-0.33288 0.12922	19990	13952	1220	6/00L	8/43	14626	13012	11481	8155	1000	130/2	1168/	10365	9126	8135	200
20062014	0805	0299	0.29707 0.38886	12292	10420	9066	1641	1989	5085	6738	5895	5564	5412	1302	6254	5481	5127	5080	5
20062013	5000	3006	69660 0 00000 0 00000	9450	8606	1965	63/50	9769	8221	(615	0004	6208	5965	2003	1963	6000	0180	0.000	
20062012	4484	1796	-0.36033 0.01/60	(415	10/0	DOEC .	4868	45.55	2002	1719	0800	4650	4936	1855	6947	1000	4/40	1010	not.
20062090	2082	6095	0.3112/ 0.44/91	C096	1628	1210	0000	0164	1220	0626	1915	43/0	4160	1100	44.32	3916	3752	3625	100
1120000 1100 COLOR	1902	5003	-0.10000 0.51409	17001	10104	14013	12042	12021	25021	5006+	14050	1211	0/01	B1210+	076A	2304	2113	1000	00
11070000	0000	14/4	01000 0 0000 0	E POPO	00101	10001	11771	40467	19440	00271	11000	10111	0100	2000	tore to	0000	00100	0000	8
C0+20002	0130	NCUC+	CC+C7/0 E1707/0-	0106+	+1030	14003	00711	10101	1040	21/21	10011	10001	0103	07201	CREAT	2000	2005	0120	in d
20062462	2300	1202	0.4040 0.10040	13030	0707	1002	10155	10505	10101	10010	00211	10244	0100	0101	20001	2021	2100	04/6	7 13
21420002	10031	01611	0 13654 0 24448	Paca-	16110	14763	13065	11944	14563	13653	12872	10101	11300	11106	19636	10870	10487	10030	00
20062516	11739	11663	UTPCC D CPTRO D.	17006	16753	15512	14474	13712	16246	LC3E1	14166	12694	13154	E1061	12005	11968	11868	92711	30
20062521	7056	6063	-0 01222 0 43034	12156	11793	11663	115570	11679	10148	9617	9336	9617	9833	7370	7056	7064	7361	1707	34
20062520	6749	1370	0 21087 0 44059	14377	12941	11611	10353	2126	12184	10483	19391	8028	8537	8505	7562	6922	6763	6749	16
20062619	8796	1006	0 16388 0 38869	16907	15655	64571	12969	12249	14676	13141	12103	11423	10794	10110	6300	5103	9038	8795	96
20062618	6261	8475	-0.26253 0.37684	13769	12406	11002	1695	9036	12092	10587	9402	8557	7967	9121	8063	7162	6640	6261	66
20062621	3060	10777 -64	5721.00000 0.19740	9695	7739	5666	4084	3470	8937	6951	5230	4043	3349	1374	5902	4512	3595	3060	96
20062746	9526	13794	-0.22806 0.16952	16277	15166	13873	11905	10321	14757	13780	12797	11570	10327	12637	11851	11230	10477	9625	98
20062745	4888	8925	-0.37716 0.30628	11633	10302	8870	7216	6315	10527	8901	7598	6556	5785	8379	7072	6039	5387	4888	2
20062975	10145	11894	-0.13587 0.17735	15250	14316	13325	12068	11010	14059	13347	12660	11881	11019	11301	11224	10943	10639	10145	38
20062758	5728	5491	-0.14073 0.42835	10851	10054	9512	8942	3619	9307	8303	7785	7514	7381	6880	6102	5788	5728	5743	96
20062757	10548	11697	-0.13844 0.25072	17054	15961	14815	13524	12706	15271	14127	13370	12697	12056	12060	11512	11166	10873	10548	2
20062982	11789	12043	-0.09006 0.21816	17140	16413	15481	14312	13591	16594	14929	14428	13857	13255	12352	12263	12164	12040	11789	96
20063140	6077	9414	-0.24423 0.13236	10275	9423	7608	1170	6198	9581	8787	7992	7127	6317	7937	7652	7212	6662	6077	97
20063139	6894	6107	-0.07214 0.36301	11309	10706	10415	10063	9963	10058	9243	8807	8710	8693	7432	7026	6894	6948	7807	96
20063138	7293	11245	-0.23811 0.13124	12135	11219	1002)	8626	1574	11529	10516	9588	8506	2700	9654	9212	8598	7955	7293	96
20063141	1021	1998	-0.12999 0.08999	9450	8930	8361	1111	1902	9150	8684	0529	1/68	1267	1858	1808	1623	1363	1027	8
20063190	1005	8491	-0.2030/ 0.33312	134/9	12561	11315	10124	1006	11921	10539	3663	1653	8465	1206	8335	1153	1319	1005	205
01670000	1000	0022	0110210 10201 0	3306+	67061	62691	10021	0224	10+71	1011	10001	0010	01001	1100	2040	0000	1000	2000	6 10
20062910	F 163	4716	0.02450 0.04540 0.	105201	10212	10031	0708	0000	8745	8222	VCUS	8008	8126	5301	5065	F037	6390	2012	e a
20063198	1251	1976	0 22269 0 32103	14484	13207	72611	10483	9718	13046	11673	10416	9548	8863	9607	8980	8317	7800	7461	8
20063294		0	0 00000 0 00000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20063614	7327	6443	-0.08122 0.40739	13601	12355	11883	11258	11076	10868	9981	9609	9440	9460	6508	7541	7327	7456	1691	97
20063513	7808	7138	0.09853 0.39145	13740	13054	12391	11591	11417	11488	10656	10202	10028	9862	8799	8153	7388	7857	7808	35
20063447	10525	10879	-0.12842 0.30476	17663	16385	15431	14149	13469	15469	14291	13458	13113	12636	11976	11265	10938	10702	10526	36
20063446	3675	2805	-0.01195 0.53977	7870	7472	7360	7129	201-2	6245	5410	5321	5551	5768	4008	3676	3844	4212	4574	16
20063445	7682	12705	-0.28395 0.17368	14248	12947	11365	9522	8491	13358	11978	10739	9459	8363	11016	10153	9314	8446	7682	66
20063450	7658	9373	-0.19755 0.27323	13458	12178	11162	1007	9519	12552	11049	9986	9269	8777	9410	8765	8216	7844	7658	3 3
20063445	4815	7045	07672 0 C2444 0	10011	1034	0040	0701	5453	10559	6126	9769	2120	1001	1323	0300	1702	1400	4813	205
20063766	112871	10143	01010 0 24114 0	16159	15686	15067	14694	14624	14762	14461	14266	14185	14036	11096	11387	11765	12082	1001	1
20063764	9413	10336	-0.10610 0.17611	13548	12878	12013	11060	10517	12157	11758	11402	10912	67701	22701	10063	9842	1200	9413	8
20063763	11699	12544	-0 09750 0.17905	16458	15735	14963	13881	12853	16322	14590	14107	13577	12839	12506	12337	12209	12007	11699	38

	% COMP	38	100	66	100	98	97	8	66	101	86	96	35	36	67	96	96	38	97	96	96	96	95	38	96	36	100	5	2
	Seq 15 Mr psi	8170	1103	9438	4355	7869	3937	6447	6311	7167	6644	7145	6684	6573	10050	11869	1178	4512	6350	10518	6969	4142	7759	8795	5075	7748	5182	8449	6941
	eq 14 Mr psi (2)	8552	8837	10182	4979	8042	4189	6362	6532	7320	6327	7235	6491	6780	10559	12600	9472	5105	6362	10610	7432	4580	8281	8550	9521	8105	5240	9281	7603
	q 13 Mr psi (2) S	8912	9367	10863	1878	8312	4522	6353	6199	7542	5840	7509	6581	7130	11158	13025	10316	6060	6402	10800	8231	6356	7805	8476	10038	8800	6370	9920	8288
	ed 12 Mr psi (2) Se	9355	9708	11473	6778	8824	5005	6551	7204	1941	5637	8034	7119	7853	11947	13460	11489	7489	6843	11261	9250	6872	10259	8734	10775	6966	5932	10634	9032
	eq 11 Mr pei (2) Se	9736	9689	12171	7834	9786	5714	7058	7810	8465	5891	5117	8319	8940	12926	13723	12880	8943	7808	11796	10381	9287	11693	9266	11811	11374	6938	11055	99655
	eg 10 Mr psi (4) Se	9644	8259	10637	4691	9824	4343	7945	7452	8579	8347	8727	8242	8003	11294	13332	10096	5018	8126	12818	8021	4907	8975	10987	10467	8901	6616	10428	7729
	ed 9 Mr psi (4) Se	10260	9339	11777	5499	10235	4689	7970	7846	2668	8262	9054	8210	8358	12250	14349	1111	5843	8358	13270	8871	5632	9813	11045	11183	9518	6768	11634	8628
	Sec 8 Mr psi (4) S	10847	10258	12827	6634	10758	5125	7957	8283	6402	7624	9687	8484	9006	13197	15492	12412	7118	6643	13874	8656	6777	10985	11136	11979	10613	7141	12652	9604
	Seg 7 Mr psi (4)	11547	10978	13914	7804	11537	5741	8342	8068	10088	7639	10706	9324	10151	14296	16415	14005	8951	9431	14718	11366	8621	12574	11696	12909	12175	8013	13692	40638
	Seq 6 Mr psi (4)	12484	11585	15140	9232	12711	6700	9103	9872	11190	8074	12271	11149	11961	15767	17566	16885	11133	10901	16112	13097	11282	14789	12785	14150	14316	6096	15019	11880
	Seq 5 Mr psi (5)	10409	7870	10392	4717	11224	4476	9018	8150	9482	9838	9897	9689	8995	11702	13498	10593	5229	9749	14435	8677	1613	9630	12819	11095	6896	7402	11262	7885
	Seq 4 Mr pst (5)	11135	9128	12327	5735	11810	4947	9238	8712	9931	9663	10333	9859	9483	12803	14885	11708	6350	10198	15115	9700	6064	10639	13135	12004	10474	7865	12174	8818
(Seq 3 Mr psi (6	12309	10499	14040	7379	12982	5656	9629	9631	10699	1596	11355	10542	10632	14323	16660	13641	8570	11161	16420	11452	7440	12451	13736	13522	11931	8798	13837	10300
14/04-4/1/0	5) Sec 2 Mr psi (6)	13172	11540	15418	8689	14010	6414	9852	10140	11410	9404	12646	11147	11732	15642	17935	15357	10429	11913	17336	13076	9425	13946	14153	14533	43402	9882	15409	11696
TS (5	SEO 1 Mr psi (6	13975	12162	16592	9504	15067	7143	10319	10785	12247	9446	14082	12490	13110	16383	19047	17173	12275	12879	18415	14390	11544	15701	14958	15314	15272	11109	16777	12772
EST RESUL	K2 K5 S	0.15186 0.28317	-0 19832 0.09269	-0.20965 0.22256	-0.42848 0.17732	-0.16457 0.38152	-0.27213 0.18442	-0.07823 0.34968	-0.16673 0.28938	-0.14555 0.30844	0.03796 0.41277	-0.20490 0.36564	-0.17719 0.39861	0.23509 0.33927	-0.19864 0.21126	0.15467 0.21775	-0.28126 0.23691	0.51513 0.25637	0.16788 0.46173	-0.12477 0.36154	-0.30225 0.28025	-0.53708 0.27570	-0.30267 0.26264	-0.07981 0.41331	-0.19267 0.24125	-0.28459 0.25652	-0.23678 0.41466	-0.21543 0.31481	-0.26840 0 18611
IODULUS 1	RAN KI Mr	9265	1:727	12784	9843	8393	6159	5766	7220	7772	4274	8265	5797	8395	13275	14165	8771	11209	6262	10353	10851	10748	12267	7374	11591	11794	6103	11042	11031
ESILENT M	REPORTED RM	8170	\$071	9438	4365	7859	3937	6353	6311	7167	5637	7146	6491	6673	10050	11859	8771	4512	6350	10518	6069	4142	65/1	8475	9075	7748	5182	8449	6941
AHTD RE	DOCK# Mr	0063768	10063757	90063756	10063855	0063682	10063936	0063935	10063984	0063988	76063987	0064158	0064157	0064159	0070058	20070085	20070113	101010161	0070259	10070284	90070283	0070286	0070289	0070238	90070484	0070469	0070570	0070686	90070679

APPENDIX B

RESILIENT MODULUS RAN VS. R-VALUE RAN CORRELATIONS

Figure 23. Resilient Modulus vs. R-value

Figure 24. Resilient Modulus vs. R-value Squared

Figure 25. Resilient Modulus vs. R-value Cubed

Figure 26. Resilient Modulus Squared vs. R-value

Figure 27. Resilient Modulus vs. Square Root R-value

Figure 28. Square Root of Resilient Modulus vs. R-value

Figure 29. Resilient Modulus vs. Log(R-value)

Figure 30. Log(Resilient Modulus) vs. R-value

Figure 31. Resilient Modulus vs. Ln(R-value)

Figure 32. Ln(Resilient Modulus) vs. R-value

Figure 33. (Resilient Modulus/R-value) vs. R-value

Figure 34. (Resilient Modulus Squared/R-value) vs. R-value

APPENDIX C

SAMPLE MEPDG INPUT FILES

Project: Thicker R=5 Level 3.dgp

General Information

Design Life	20 years	
Base/Subgrade construction:	August, 2006	
Pavement construction:	September, 2006	
Traffic open:	October, 2006	
Type of design	Flexible	

Description:

Analysis Parameters

Performance Criteria			Limit	Reliability
Initial IRI (in/mi)			63	
Terminal IRI (in/mi)		172	90	
AC Surface Down Cracking (Long, Cracking) (ft/mile):			2000	90
AC Bottom Up Cracking (Alligator Cracking) (%)			25	90
AC Thermal Fracture (Transv	erse Cracking) (ft/mi):		1000	90
Chemically Stabilized Laver (Fatigue Fracture)			25	90
Permanent Deformation (AC Only) (in):			0.25	90
Permanent Deformation (Tota	l Pavement) (in):		0.75	90
Reflective cracking (%):	, , , ,		100	
Location:	Favetteville			
Project ID:	Thinner Section R=5			
Section ID:				
Date:	2/22/2008			
Station/milepost format:				
Station/milepost begin:				
Station/milepost end:				
Traffic direction:	East bound			
Default Input Level				
Default input level	Level 3, Default and	historical agenc	y values	
Traffic				
Initial two-way AADTT:		2500		
Number of lanes in design direction:				
Percent of trucks in design direction (%):				
Percent of trucks in design lar	95			

Traffic -- Volume Adjustment Factors

Operational speed (mph):

Monthly Adjustment Factors (Level 3, Default MAF)

	Vehicle Class									
Month	Class 4	Class 5	Class 6	Class 7	Class 8	Class 9	Class 10	Class 11	Class 12	Class 13
January	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
February	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
March	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
April	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
May	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
June	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
July	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
August	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
September	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
October	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
November	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
December	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

60
Vehicle Class Distribution

(Level 3, Default Distribution) AADTT distribution by vehicle class

Class 4	1.8%
Class 5	24.6%
Class 6	7.6%
Class 7	0.5%
Class 8	5.0%
Class 9	31.3%
Class 10	9.8%
Class 11	0.8%
Class 12	3.3%
Class 13	15.3%

by period beginning: Midnight 2.3% Noon 5.9%

Hourly truck traffic distribution

manight	2.3%	NOON	5.9%
1:00 am	2.3%	1:00 pm	5.9%
2:00 am	2.3%	2:00 pm	5.9%
3:00 am	2.3%	3:00 pm	5.9%
4:00 am	2.3%	4:00 pm	4.6%
5:00 am	2.3%	5:00 pm	4.6%
6:00 am	5.0%	6:00 pm	4.6%
7:00 am	5.0%	7:00 pm	4.6%
8:00 am	5.0%	8:00 pm	3.1%
9:00 am	5.0%	9:00 pm	3.1%
10:00 am	5.9%	10:00 pm	3.1%
11:00 am	5.9%	11:00 pm	3.1%

Traffic Growth Factor

Vehicle	Growth	Growth
Class	Rate	Function
Class 4	4.0%	Compound
Class 5	4.0%	Compound
Class 6	4.0%	Compound
Class 7	4.0%	Compound
Class 8	4.0%	Compound
Class 9	4.0%	Compound
Class 10	4.0%	Compound
Class 11	4.0%	Compound
Class 12	4.0%	Compound
Class 13	4.0%	Compound

Traffic -- Axle Load Distribution Factors Level 3: Default

Traffic -- General Traffic Inputs

Mean wheel location (inches from the lane	18
marking):	
Traffic wander standard deviation (in):	10
Design lane width (ft):	12

Number of Axles per Truck

Vehicle	Single	Tandem	Tridem	Quad
Class	Axle	Axle	Axle	Axle
Class 4	1.62	0.39	0.00	0.00
Class 5	2.00	0.00	0.00	0.00
Class 6	1.02	0.99	0.00	0.00
Class 7	1.00	0.26	0.83	0.00
Class 8	2.38	0.67	0.00	0.00
Class 9	1.13	1.93	0.00	0.00
Class 10	1.19	1.09	0.89	0.00
Class 11	4.29	0.26	0.06	0.00
Class 12	3.52	1.14	0.06	0.00
Class 13	2.15	2.13	0.35	0.00

Axle Configuration	
Average axle width (edge-to-edge) outside	8.5
dimensions,ft):	
Dual tire spacing (in):	12
Axle Configuration	
Tire Pressure (psi)	120
Average Axle Spacing	
Tandem axle(psi):	51.6
Tridem axle(psi):	49.2
Quad axle(psi):	49.2
Climate	
iom filo:	
icm nie.	C:\DG2002\Projects\StLouis.icm
Latitude (degrees minutes)	36.01
Longitude (degrees minutes)	-94 1
Elevation (ft)	1247
Depth of water table (ft)	10
StructureDesign Features	
HMA E* Predictive Model:	NCHRP 1-37A viscosity based model.
HMA Rutting Model coefficients:	NCHRP 1-37A coefficients
Endurance Limit (microstrain):	None (0 microstrain)
StructureLayers Layer 1 Asphalt concrete Material type: Layer thickness (in):	Asphalt concrete 3
Conoral Proportion	
General	
Reference temperature (F°):	70
······································	
Volumetric Properties as Built	
Effective binder content (%):	11.5
Air voids (%):	7
Total unit weight (pcf):	150
Poisson's ratio:	0.35 (user entered)
<u>Thermal Properties</u> Thermal conductivity asphalt (BTU/hr-ft-F°): Heat capacity asphalt (BTU/lb-F°):	0.67 0.23
Asphalt Mix	
Cumulative % Retained 3/4 inch sieve:	0
Cumulative % Retained 3/8 inch sieve:	25
	20
Cumulative % Retained #4 sieve:	55

Asphalt Binder

Option: A VTS: Superpave binder grading 9.7150 (correlated) -3.2080 (correlated)

High temp.		Low temperature, °C					
°C	-10	-16	-22	-28	-34	-40	-46
46							
52							
58							
64							
70							
76							
82							

Thermal Cracking Properties

Average Tensile Strength at 14°F: Mixture VMA (%) Aggreagate coeff. thermal contraction (in./in.) Mix coeff. thermal contraction (in./in./°F):

Mid. Low High Load Temp. Temp. Temp. Time -4ºF 14ºF 32ºF (sec) (1/psi) (1/psi) (1/psi) 4.62E-07 6.83E-07 9.25E-07 1 2 5.02E-07 7.88E-07 1.15E-06 5.6E-07 9.51E-07 1.55E-06 5 10 6.09E-07 1.1E-06 1.93E-06 20 6.61E-07 1.27E-06 2.41E-06 50 7.38E-07 1.53E-06 3.22E-06 100 8.02E-07 1.76E-06 4.02E-06

Layer 2 -- Asphalt concrete

% Passing #200 sieve:

Material type: Layer thickness (in):	Asphalt co 4	oncrete
General Properties		
<u>General</u>		
Reference temperature (F°):	70	
Volumetric Properties as Built		
Effective binder content (%):	10.5	
Air voids (%):	8	
Total unit weight (pcf):	145	
Poisson's ratio:	0.35 (user	entered)
Thermal Properties		
Thermal conductivity asphalt (BTU/hr-ft-F°):		0.67
Heat capacity asphalt (BTU/lb-F°):		0.23
A 1 1/ B#*		
Asphalt Mix		
Cumulative % Retained 3/4 inch sieve:	7	
Cumulative % Retained 3/8 inch sieve:	20	
Cumulative % Retained #4 sieve:	35	

4

393.49

0.000005

0.000013

18.5

Asphalt Binder

°∩	_10	-16	_22	-28	-34	Т
High temp.			Low	temperatu	re, °C	
VTS:	-3.2080 (correlated)					
A			9.7150 (co	rrelated)		
Option:			Superpave	binder gra	ding	

°C	-10	-16	-22	-28	-34	-40	-46
46							
52							
58							
64							
70							
76							
82							

Layer 3 -- Asphalt concrete

Material type: Layer thickness (in):	Asphalt concrete 5
General Properties	
General	
Reference temperature (F°):	70
Volumetric Properties as Built	
Effective binder content (%):	10
Air voids (%):	8
Total unit weight (pcf):	140
Poisson's ratio:	0.35 (user entered)
Thermal Properties	
Thermal conductivity asphalt (BTU/hr-ft-F°):	0.67
Heat capacity asphalt (BTU/lb-F°):	0.23

Heat capacity asphalt (BTU/lb-F°):

Asphalt Mix

Cumulative % Retained 3/4 inch sieve:	15
Cumulative % Retained 3/8 inch sieve:	25
Cumulative % Retained #4 sieve:	30
% Passing #200 sieve:	4

Asphalt Binder Option:

A VTS:

Superpave binder grading 9.7150 (correlated) -3.2080 (correlated)

High temp. Low temperature, °				re, °C	, °C			
	°C	-10	-16	-22	-28	-34	-40	-46
	46							
	52							
	58							
	64							
	70							
	76							
	82							

Layer 4 -- Crushed stone

Unbound Material:	Crushed stone
I nickness(in):	12
Strength Properties	
Input Level:	Level 3
Analysis Type:	ICM inputs (ICM Calculated Modulus)
Poisson's ratio:	0.35
Coefficient of lateral pressure,Ko:	0.5
Modulus (input) (psi):	30000
ICM Inputs	
Gradation and Plasticity Index	
Plasticity Index, PI:	1
Liquid Limit (LL)	6
Compacted Layer	No
Passing #200 sieve (%):	8.7
Passing #40	20
Passing #4 sieve (%):	44.7
D10(mm)	0.1035
D20(mm)	0.425
D30(mm)	1.306
D60(mm)	10.82
D90(mm)	46.19

0:	
Sieve	Percent Passing
0.001mm	
0.002mm	
0.020mm	
#200	8.7
#100	
#80	12.9
#60	
#50	
#40	20
#30	
#20	
#16	
#10	33.8
#8	
#4	44.7
3/8"	57.2
1/2"	63.1
3/4"	72.7
1"	78.8
1 1/2"	85.8
2"	91.6
2 1/2"	
3"	
3 1/2"	97.6
4"	97.6

<u>Calculated/Derived Parameters</u> Maximum dry unit weight (pcf): Specific gravity of solids, Gs: Saturated hydraulic conductivity (ft/hr): Optimum gravimetric water content (%): Calculated degree of saturation (%):

127.2 (derived) 2.70 (derived) 0.05054 (derived) 7.4 (derived) 61.2 (calculated)

Soil water characteristic curve parameters:

Default va	alues
------------	-------

Parameters	Value	
а	7.2555	
b	1.3328	
C	0.82422	
Hr.	117.4	

Layer 5 -- A-6

Unbound Material: Thickness(in): A-6 Semi-infinite

Strength Properties

Input Level:Level 3Analysis Type:ICM inputs (ICM Calculated Modulus)Poisson's ratio:0.35Coefficient of lateral pressure,Ko:0.5Modulus (input) (psi):9999

ICM Inputs

Gradation and Plasticity Index Plasticity Index, PI: Liquid Limit (LL) Compacted Layer Passing #200 sieve (%): Passing #40 Passing #4 sieve (%): D10(mm) D20(mm) D60(mm) D90(mm)

33 No 63.2 82.4 93.5 0.000285 0.0008125 0.002316 0.05364 1.922

16

Sieve	Percent Passing
0.001mm	
0.002mm	
0.020mm	
#200	63.2
#100	
#80	73.5
#60	
#50	
#40	82.4
#30	
#20	
#16	
#10	90.2
#8	
#4	93.5
3/8"	96.4
1/2"	97.4
3/4"	98.4
1"	99
1 1/2"	99.5
2"	99.8
2 1/2"	
3"	
3 1/2"	100
4"	100

Calculated/Derived Parameters Maximum dry unit weight (pcf): Specific gravity of solids, Gs: Saturated hydraulic conductivity (ft/hr): Optimum gravimetric water content (%): Calculated degree of saturation (%):

Soil water characteristic curve parameters:

107.9 (derived) 2.70 (derived) 1.95e-005 (derived) 17.1 (derived) 82.1 (calculated)

Default values

Parameters	Value
а	108.41
b	0.68007
С	0.21612
Hr.	500

Distress Model Calibration Settings - Flexible

AC F	Fatigue k1 k2 k3	Level 3: NCHRP 1-37A coefficients (nationally calibrated values) 0.007566 3.9492 1.281
AC F	Rutting k1 k2 k3	Level 3: NCHRP 1-37A coefficients (nationally calibrated values) -3.35412 1.5606 0.4791
	Standard Deviation Total Rutting (RUT):	0.24*POWER(RUT,0.8026)+0.001
The	r mal Fracture k1	Level 3: NCHRP 1-37A coefficients (nationally calibrated values) 1.5
	Std. Dev. (THERMAL):	0.1468 * THERMAL + 65.027

CSM Fatigue k1 k2	Level 3: NCHRP 1-37A coefficients (nationally calibrated values) 1 1
Subgrade Rutting Granular: k1 Fine-grain: k1	Level 3: NCHRP 1-37A coefficients (nationally calibrated values) 2.03 1.35
AC Cracking AC Top Down Cracking C1 (top) C2 (top) C3 (top) C4 (top)	7 3.5 0 1000
Standard Deviation (TOP)	200 + 2300/(1+exp(1.072-2.1654*log(TOP+0.0001)))
AC Bottom Up Cracking C1 (bottom) C2 (bottom) C3 (bottom) C4 (bottom) Standard Deviation (TOP)	1 1 0 6000 1.13+13/(1+exp(7.57-15.5*log(BOTTOM+0.0001)))
CSM Cracking C1 (CSM) C2 (CSM) C3 (CSM) C4 (CSM) Standard Deviation (CSM)	1 1 0 1000 CTB*1
IRI IRI HMA Pavements New C1(HMA) C2(HMA) C3(HMA) C4(HMA)	40 0.4 0.008 0.015

IRI HMA/PCC Pavements

C1(HMA/PCC)	40.8
C2(HMA/PCC)	0.575
C3(HMA/PCC)	0.0014
C4(HMA/PCC)	0.00825