
University of Arkansas, Fayetteville
ScholarWorks@UARK
Computer Science and Computer Engineering
Undergraduate Honors Theses Computer Science and Computer Engineering

5-2008

Holistic Characterization of Parallel Programming
Models in a Distributed Memory Environment
Christopher Bryan
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/csceuht

Part of the Programming Languages and Compilers Commons

This Thesis is brought to you for free and open access by the Computer Science and Computer Engineering at ScholarWorks@UARK. It has been
accepted for inclusion in Computer Science and Computer Engineering Undergraduate Honors Theses by an authorized administrator of
ScholarWorks@UARK. For more information, please contact scholar@uark.edu.

Recommended Citation
Bryan, Christopher, "Holistic Characterization of Parallel Programming Models in a Distributed Memory Environment" (2008).
Computer Science and Computer Engineering Undergraduate Honors Theses. 15.
http://scholarworks.uark.edu/csceuht/15

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fcsceuht%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csce?utm_source=scholarworks.uark.edu%2Fcsceuht%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=scholarworks.uark.edu%2Fcsceuht%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csceuht/15?utm_source=scholarworks.uark.edu%2Fcsceuht%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu

Holistic Characterization of Parallel Programming

Models in a Distributed Memory Environment

Chris Bryan

cjb04@uark.edu

April 23, 2008

An honor’s thesis submitted in partial fulfillment

of the requirements for the degree of Bachelor of

Science in Computer Science

By

Chris Bryan

May 2008,

University of Arkansas

Fayetteville, Arkansas

Contents

1 Introduction 2

1.1 Recent Emphases in Productivity, Leading to Holistic Characterization 2

1.2 Holistic Characteristics Themselves 3

1.3 Impact . 4

2 Background 6

2.1 Parallel Computing Overview 6

2.1.1 Data and Task Parallelism .. . 7

2.1.2 Distributed Memory and Message Passing 9

2.1.3 Shared Memory . 10

2.1.4 Distributed-Shared Memory 11

2.1.5 Today’s HPC landscape .12

2.2 MPI Overview .15

2.3 Titanium Overview .. . 16

2.4 Fortress Overview 19

3 Methodology 22

3.1 Performance Metrics 22

3.2 Programmability Metrics 23

3.2.1 Lines of Code and Number of Characters used 24

3.2.2 Sequential-to-Parallel Conversion effort 24

3.2.3 Parallel Conceptual Complexity 25

3.2.4 Code Development Time .28

3.2.5 Other Metrics Not Implemented Here 28

3.3 Coding Style and Expressivity Standards 29

3.4 Kernel Specifications 30

3.4.1 Matrix Multiply .30

3.4.2 Matrix Transform .34

3.5 Closing Methodology Notes 37

4 Results and Analysis 38

4.1 Hardware Setup and Testing Setup 38

4.2 Benchmark Results and Analysis 40

4.2.1 Shared Memory Multiply Results 40

4.2.2 Distributed Memory Multiply Results 45

4.2.3 Tusk/Tusk-Sun Multiply Results 48

4.2.4 Shared Memory Transform Results 51

4.2.5 Distributed Memory Transform Results 54

4.2.6 Tusk/Tusk-Sun Transform Results 58

4.2.7 Performance Results Notes 59

4.3 Productivity Results 60

4.3.1 Lines of Code and Number of Characters 61

4.3.2 Sequential-to-Parallel Conversion Effort 62

4.3.3 Parallel Conceptual Complexity 63

4.4 Code Development Time .. . 66

4.4.1 Implementations Problems 66

4.4.2 Productivity Notes .. 67

4.5 Holistic Evaluation 68

5 Conclusions and Future Work 69

6 Appendix A : Program Code 71

6.1 Fortress Code for Matrix Multiplication 71

6.2 Fortress Code for Matrix Transform 72

6.3 Sequential Java Code for Matrix Multiplication 72

6.4 Sequential Java Code for Matrix Transform 73

6.5 Sequential C Code for Matrix Multiply 73

6.6 Sequential C Code for Matrix Transform 75

6.7 “Naive” Titanium Code (Ti-Naive) for Matrix Multiply 76

6.8 “Real” Titanium Code (Ti-Real) for Matrix Multiplication 77

6.9 Titanium Code for Matrix Transform 78

6.10 MPI Code for Matrix Multiplication 79

6.11 MPI Code for Matrix Transform 80

7 Appendix B : Runtime Results 82

7.1 Multiplication Runtimes 83

7.1.1 SM MPI . 83

7.1.2 SM Ti-Real . 83

7.1.3 SM Ti-Naive . 83

7.1.4 SM Ti-Real . 84

7.1.5 DM MPI . 84

7.1.6 DM Ti-Real . 84

7.1.7 DM Ti-Naive . 84

7.1.8 TS-MPI . 85

7.1.9 TS-Ti-Real . 85

7.2 Transform Runtimes .. . 85

7.2.1 SM MPI . 85

7.2.2 SM Titanium . 85

7.2.3 DM MPI . 86

7.2.4 DM Titanium . 86

7.2.5 TS-MPI . 86

7.2.6 TS-Titanium . 86

List of Figures

1 PGAS memory model . 13

2 PGAS execution model .14

3 Matrix Multiplication : A * B = C .. . 31

4 Matrix Transform .35

5 SM Multiply of length 128x128 .. . 41

6 SM Multiply of length 256x256 .. . 41

7 SM Multiply of length 515x512 .. . 42

8 SM Multiply of length 1024x1024 42

9 SM Multiply of length 2048x2048 44

10 DM Multiply of length 128x128 w Naive Titanium Code 45

11 DM Multiply of length 128x128 47

12 DM Multiply of length 256x256 47

13 DM Multiply of length 512x512 47

14 DM Multiply of length 1024x1024 47

15 Tusk/Tusk-Sun Comparison Runs - Multiply with length 256. 49

16 Tusk/Tusk-Sun Comparison Runs - Multiply Matrix 1024 49

17 SM Transform - 128x128 Matrix 52

18 SM Transform - 256x256 Matrix 52

19 SM Transform - 512x512 Matrix 53

20 SM Transform - 1024x1024 Matrix 53

21 SM Transform - 2048x2048 Matrix 53

22 DM Transform - 128x128 Matrix 55

23 DM Transform - 256x256 Matrix 55

24 DM Transform - 512x512 Matrix 56

25 DM Transform - 1024x1024 Matrix 56

26 DM Transform - 2048x2048 Matrix 57

27 Tusk/Tusk-Sun Comparison Runs - Transform of length 256x256 58

28 Tusk/Tusk-Sun Comparison Runs - Transform of length 1024x1024 58

29 LoC Multiply . 61

30 NoC Multiply . 61

31 CpL Multiply . 61

32 LoC Transform . 62

33 NoC Transform . 62

34 CpL Transform . 62

List of Tables

1 MPI Example Code Complexity Score 27

2 Percent Conversion Efficiencies 62

3 Titanium Naive Matrix Multiply Parallel Complexity 63

4 Titanium Real Matrix Multiply Parallel Complexity 64

5 Fortress Matrix Multiply Parallel Complexity 64

6 MPI Matrix Multiply Parallel Complexity 64

7 Titanium Matrix Transform Parallel Complexity 65

8 Fortress Matrix Transform Parallel Complexity 65

9 MPI Matrix Transform Parallel Complexity 66

Acknowledgements
This project was supported in part by faculty research equipment awards from Sun Microsystems,

Dell Corporation, and an undergraduate research award fromthe Honors College of the University

of Arkansas, Fayetteville. In addition to this, this work owes enormous thanks to Wesley Emeneker

and Dr. Amy Apon, who provided invaluable assistance, guidance, and patience along the way.

Abstract
The popularity of cluster computing has increased focus on usability, especially in the area of

programmability. Languages and libraries that require explicit message passing have been the

standard. New languages, designed for cluster computing, are coming to the forefront as a way to

simplify parallel programming. Titanium and Fortress are examples of this new class of program-

ming paradigms. This work holistically characterizes these languages and contrasts them with the

standard model of parallel programming, and presents benchmark results of small computational

kernels written in these languages and models.

1

1 Introduction

High Performance Computing (HPC) with clusters of commodity computers has experienced enor-

mous growth in recent years in scientific and business computing environments. Despite this

growth, little work has been done in simplifying usability,and HPC is still difficult. Writing

programs for serial execution can be hard. Difficulties are only compounded when writing correct

parallel programs. Each node in an HPC cluster is independent from every other node. In order to

process data in parallel, the nodes have to share data. Sharing is usually done with message pass-

ing, a technique where data is sent between nodes over a network connecting them. The standard

parallel programming model has been one of explicit messagepassing, the widely used Message

Passing Interface (MPI) being the most popular in HPC. As HPC’s popularity increases, and the

need for parallel programming increases (especially with multicore architectures emerging), en-

hancing parallel usability becomes increasingly important [1, 2].

This work studies programmer productivity and language usability for the standard MPI and

two new developing programming languages, Titanium[3] andFortress [4], that are being de-

veloped to simplify the process of parallel programming. These languages have stated goals of

enhancing programmer productivity, andprogrammability, not only in their ability to do HPC, but

also by having an emphasis on high usability. This work examines these three parallel program-

ming models in a holistic way, studying and analyzing both language usability and benchmark

performance for two computational algorithms, a naive matrix multiply and a communication-

intensive matrix transformation.

1.1 Recent Emphases in Productivity, Leading to Holistic Characterization

Many historical analyses of parallel models consist of optimized benchmark codes and resulting

runtimes. With the rise in popularity of parallel programming on HPC systems, it has become clear

that runtime is no longer the only metric that counts. Programmer productivity should also be con-

sidered. The Defense Advanced Research Projects Agency (DARPA) High Productivity Computer

2

Systems (HPCS) initiative has recognized the importance ofusability and defines defines produc-

tivity as “a combination of programmability, portability and robustness,” [2]. The HPCS initiative

has solicited work to develop languages that focus not only on improving program runtime, but

development time as well [5, 2]. The two languages studied inthis work, Fortress and Titanium,

are designed to satisfy these goals.

Titanium (developed at the University of California-Berkeley) has three stated main goals:

performance, safety, and expressiveness [3]. Titanium is aparallel version of Java built in the so-

termed Partitioned Global Address Space (PGAS) paradigm. This means that data is partitioned

across processors, and may be declared as global or local. Fortress, a DARPA HPCS solicited

language, is stated as being “designed for producing robusthigh-performance software with high

programmability,” [4]. Fortress is an entirely new language built upon the concept of mathemat-

ical notation programming, and incorporates parallelism as an implicit part of the language that

may also be explicitly exploited. Both of these languages exemplify the new wave of parallel

programming that focuses on usability without neglecting performance.

The HPCS program’s goals are runtime and usability. Execution time is easy to measure, pro-

ductivity and programmability are not. These characteristics are much more qualitative in nature.

Measurement of the these characteristics, or theexpressivitiyof a language, is vague and often

a loosely defined term. Research in this topic has not produced a widely-accepted productivity

standard for measurement, or drawn any firm conclusion aboutwhat makes one language more or

less expressive than another, even in sequential languages[6, 7, 8, 9]. As a result, the general HPC

community has preferred to quantitative benchmarks such asthe NAS Parallel Benchmarks (NPB)

[10], Linpack [11] and High-Performance Linpack (HPL) [12], and the High Performance Com-

puting Challenge (HPCC) [13] that provide objective operations-per-second and timing results.

1.2 Holistic Characteristics Themselves

Much work into HPC system performance has been done at the expense of usability research.

This work looks at programmability as well as performance. Much of this work will examine the

3

holistic, or all-inclusive, qualities of Titanium, Fortress, and MPI. This is done through the use

of program chrestomathy, which is the development of similar programs written in the different

languages for the purpose of demonstrating differences in syntax, semantics, parallel conceptual-

ization, idioms, and performance.

This work shows that specifying a set of productivity and performance metrics allows for a

holistic comparison of languages. To do this, we take a set ofgeneralized, loosely applicable

characterizations:

• lines of code

• characters in code

• parallel constructors used

• documentation

• sequential-to-parallel complexity

and then implement a set of simple benchmark kernels. The process of writing the kernel and mea-

suring these characteristics leads to a conceptualizationof the language’s programmability, as well

as a general idea of the complexity of programming required to implement a certain application.

The focus of this work is on overall usability. However, application performance will not be

overlooked. Any parallel programming model or language that wishes to be taken seriously for

scientific computing must be able to supplement its development productivity with computational

results. Therefore, the kernels implemented, a matrix multiply and matrix transformation, will be

tested for both programmability and performance.

1.3 Impact

The emphasis in this work is on developing real conclusions from holistic productivity measure-

ments. However, the sum of these characterizations cannot be accumulated to form some sort of

objective productivity score to say that one parallel language is better than another. Although the

4

results of this work are qualitative, this research is stillvalid. It gives a real world sense of what

it is like to do parallel programming in these models. In addition, the metrics implemented here

may be further used for continuing research on these languages, or they may be rewritten in other

parallel programming models for further usability or performance testing.

5

2 Background

Modern high performance computing is defined by the use of parallelism. Parallel computing

is a form of computing in which multiple processors work simultaneously on a single problem

or application [14]. Parallel computation can be carried out by a single computer with multiple

internal processors, or multiple computers that communicate over a network. MPI, Titanium, and

Fortress all use parallelism in different ways to execute programs. This chapter gives an overview

and history of parallel computing, and defines the types of parallel computation. The history and

motivation for MPI, Titanium, and Fortress are discussed, and are examined in the context of the

current state of HPC langauge development.

2.1 Parallel Computing Overview

Parallel computing is not a new idea. The topic has been discussed since the late 1950s [15, 16],

and the idea of a parallel computer was described in the early1960s [17], with much more work

and important progress happening as that decade went on [18,19, 20].

Historically, parallel processing has either been done on symmetric multi-processor (SMP)

machines with large number of processors sharing a memory, or on vector machines. This approach

works well for many tasks, but is prohibitively expensive and has limited scalability. Distributed

systems made of physically independent processors and memories evidence better scalability and

price/performance as long as the programmer is sufficientlyclever.

Distributed systems make use of massively parallel processors (MPPs) all operating together.

This provides more cost-efficient scalability than the monolithic “big iron” machines of the 1980s

[21]. They do this by sending messages over a network to sharedata, a technique commonly called

message passing.

The migration from large SMP and vector machines began in the1980s and culminated with

Beowulf clusters, a type of system built using commercial-off-the-shelf components striving to

achieve HPC at a low cost [22, 21]. Beowulf clusters (simply denoted as clusters for the rest of

6

this paper) increased the emphasis on high-performance message passing.

Explicit message passing is generally regarded as hard to use by programmers. Data must

be explicitly decomposed and passed between memories. Thisrequires fine-grained control over

a program, and can become much more complicated than simply having a single address space

that is accessible by all processors, as is done with shared memory. Therefore, hybrids have been

developed and researched, including distributed-shared memory, which simulates shared memory

on a distributed system. In all of this, there are two fundamental types of parallelism that message

passing can implement,data parallelism, andtask parallelism.

2.1.1 Data and Task Parallelism

Data and task parallelism are two fundamental approaches toparallel programming. Their dif-

ference is in the way they approach the parallelism. Data parallelism uses multiple processors to

perform a set of computations on different data sets. Task parallelism uses multiple processors to

implement different paths of computation, i.e. tasks, in parallel.

In data parallelism, a single set of instructions is executed in parallel by different processors

using distributed data. The parallelism comes entirely from data partitioning. Data parallelism

generally scales well to larger problems [14]. Data parallel applications also resemble a single

program, which enhancesprogrammability. The data partitioning can be handled by the compiler

instead of the programmer, and so the program appears more like a sequential program in the way

that it is programmed.

Flynn’s taxonomy, a classification system based on execution type, defines this as Single In-

struction, Multiple Data [20]. Data parallelism can be implemented asloop-level parallelism. In

this model, the programmer is not responsible for communication between the processors, only

data distribution. Some notable implementations of data parallelism include High Performance

Fortran [23], ZPL [24], NESL [25], HPJava [26], and forall loops in OpenMP [27].

Data parallelism is attractive for its semantic simplicity. Hillis and Steele Jr. discuss several

data parallel algorithms [28]. There are, however, factorsthat limit the success of data parallel

7

languages.

1. The number of algorithms that may be performed is limited.

2. By being limited to performing identical operations in parallel, computations like divide-

and-conquer and adaptive algorithms are challenging to implement.

3. Data parallel languages rely on sophisticated compiler and runtime support that take control

away from programmers [29, 30, 31].

In contrast to data parallelism, task parallelism is definedby a program having multiple paths

of parallel execution. Each process, however, is free to follow its own path of execution. This is

known as Multiple Instruction, Multiple Data in Flynn’s taxonomy [20, 14]

In task parallelism, a program will spawnprocessesof execution that execute code in parallel

using multiple processors. The processes may all execute the same instructions, or may execute

different ones. Parallel programming usually maps these processes (orthreads, as they are some-

times called in shared memory), in an associative relationship with processors. This means that the

process is paired with a processor (usually in a one-to-one mapping), and the processes/processors

all work in parallel.

Some forms of task parallelism allow dynamic process creation, such as pthreads[32], Java

threads [33], MPI-2 [34], Charm++ [35], CC++ [36], Fortress[4], and OpenMP’s parallel blocks

[27]. When processes are static, that is, there is a fixed number of processes throughout the pro-

gram, the Single Program, Multiple Data (SPMD) model results [14]. With SPMD, all processes

are created at program startup and execute the same program,perhaps branching on conditional

statements to execute different code. Processes may be synchronized through use of barriers or

communication calls, but otherwise continue their own paths of execution. Examples of SPMD

programming models include MPI [37], SHMEM [38], and Titanium [39].

Data and task parallelism may be implemented where the view of memory is shared or dis-

tributed. A single view of memory by processes gives a globaladdress space (GAS) addressable

by all processes. Distributed memory requires processes use message passing to communicate with

8

each other. Message passing is usually used on distributed memory systems, and GAS program-

ming is usually implemented in shared memory systems. When GAS is implemented on distributed

memory systems (by use of implicit message passing), Distributed-Shared Memory (DSM) is the

result.

2.1.2 Distributed Memory and Message Passing

Distributed memory machines are made of independent nodes that have physically distinct com-

ponents, such as memories, CPUs, and disks. They must share data by message passing over the

network.

Distributed memory computer clusters have become the dominant HPC architecture in recent

years, especially as commodity cluster research has gainedfocus [40, 41, 42]. Commodity clusters

are defined by having their computer nodes and interconnectshaving commercial-off-the-shelf

(COTS) components [43]. Commodity clustering is a more cost-efficient way to get high-end

computation [43, 21]. Two important programs in the development of commodity clusters were

the Berkeley NOW (Network of Workstations) [41] and work by Thomas Sterling and Donald

Becker, who coined the term Beowulf clusters [22].

Distributed memory parallel programming usually utilizesthe message passing model for pro-

gram communication and coordination. In message passing, the programmer is left to explicitly

divide data and work across processes (which are mapped to processors), and is required to manage

communication between them [14].

Parallel Virtual Machine (PVM) was an early notable implementation of message passing [44].

PVM’s focus was on having the abilitity to communicate between a loosely-coupled, heteroge-

nous network of workstations, to achieve parallelism. Its emphasis was on providing a distributed

computing environment. The MPI standard was introduced in 1994, and quickly became thede

factostandard for HPC message passing [45]. MPI was specifically designed with HPC in mind,

and therefore it superceded PVM in this realm. Gropp and Luskprovide a good review on goals,

differences, and similarities between MPI and PVM [46].

9

The message passing model has traits that make it attractivefor parallel computation. Any

type of parallelizable computation may be rewritten using an abstract model of send and receieve

calls between processors, and message passing implementations can execute on both shared and

distributed memory machines [47, 48]. Additionally, message passing implementations like MPI

and PVM have highportability since they are implemented across a variety of hardware platforms

[48, 44]. However, because of its explicitness, message passing requires fine grained control over

data and program flow. This is bad because it is required. If only allowed, it could be good, but

instead programmers are forced to write restricted code that adheres to communication limitations.

2.1.3 Shared Memory

In the shared-memory paradigm, there is one addressable storage space to which processors have

access. Data must be kept consistent from simultaneous manipulation by the use of some form of

locking, and communication usually happens through the useof loads and stores between proces-

sors and memory.

Theglobal viewof data that shared memory provides means that all processors see and have

access to the same data. From a programmer’s view, it is very convenient then to share data.

However, it is difficult and expensive to scale “true” shared-memory machines to more than a few

tens of processors while still having memory access time be uniform [45, 14].

There are three notable methods for programming with sharedmemory systems. They are

Unix heavyweight processes, threads, and OpenMP. Unix processes were one of the earliest ways

to achieve task parallelism [17]. In Unix processes, there are two calls that are important,fork and

join . A fork statement generates a new path of parallel executionby the Unix system by creating a

child process. A join statement would terminate the child. The fork call creates an exact copy of the

parent process, including variables, except for a unique process ID. Processes share data through

explicit means that are written by the programmer, and also have their own private memories.

Threads can be thought of as lightweight processes working within a single process. Threads

are much less memory intensive than processes [49, 50]. And,because threads share the same

10

memory space, they have a global view of variables, a GAS viewof programming [14]. While

explicit communication is not needed between threads, raceconditions for data access and modifi-

cation are possible. It is the programmer’s responsibilityto ensure that this does not happen. Many

threads implementations, like Posix pthreads [32], contain ways to manage threads and handle syn-

chronization issues by using mutexes, locks, and conditionvariables. Though threading is better

than Unix processes, the threading standard (with pthreads) is not suitable for the scientific com-

munity. Pthreads has no Fortran bindings, it is too low-level, it doesn’t support data parallelism,

and although much faster than Unix processes, is still not performance oriented [27]. Therefore,

the OpenMP standard was introduced.

OpenMP is a higher level Application Programmer Interface (API) standard. It defines a set of

directives that the compiler transforms into parallel code. OpenMP is built on top of threads and

provides a higher-level way to do parallel processing on a shared memory machine. In OpenMP,

the parallelization of a program is done withpragma directives, which are set at the start of

blocks of parallelized code. OpenMP makes it easy to parallelize existing C/C++ and Fortran

code, and has support for data parallelism through parallelfor loops [27, 51], as well as dynamic

task parallelism throughpragma defined blocks. OpenMP is the most widely used shared memory

model for parallel HPC today [45, 52].

2.1.4 Distributed-Shared Memory

The hybrid of shared and distributed memory is the distributed-shared memory (DSM) model.

In DSM, there may be physically distributed and separate memories, but from a programming

standpoint there is a global view of memory shared between processors [14]. With a global address

space, programming may be done like the system is composed ofshared memory, and message

passing is not explicit. The challenge of DSM implementations is providing a level of abstraction to

shared memory that still produces efficiently running code.Although it can make use of compiler

optimizations, one-way communications, and remote-direct memory accesses to help speed up

computation, DSM has several drawbacks including communication overhead, network latency,

11

false sharing, coherence and page faults [53, 14].

DSM has been implemented in many different ways. Sometimes the entire system image is vir-

tualized [54, 55]. Software languages and libraries [56, 57, 58] provide another option. Hardware

[59, 60] is a third option, but none of these has been widely successful in widespread implementa-

tion.

DSM presents a view of multiple machines as if they were one. Historically, DSM has been a

niche market in HPC. This is because extracting adequate performance on DSM systems is usually

extremely difficult [14]. DSM has an “undisciplined” view ofdata in that any variable may be

accessed at any time by any processor [1]. These problems negatively impact performance to a

degree that makes DSM basically unusable for HPC.

2.1.5 Today’s HPC landscape

Currently, MPI is the dominant model for distributed programming and OpenMP is the most pop-

ular shared memory parallel model [1, 52]. Shared memory programming is generally considered

to be easier than message passing. However, shared memory machines are very expensive [61].

Commodity clustering can lead to more computing power at lower costs, but requires message

passing. Therefore, harder work is required to do message passing, but it is done anyway because

it is the best way currently to get high performance at a reasonable cost [62]. It would be nice

if ease of programming in the shared memory paradigm could beused to give high performance

applications on distributed memory. Ideally, we want a language that has high programmability,

like GAS programming, but also high performance like MPI.

There have been numerous approaches to producing these highproductivity languages. Shared

address space and DSM are one. However, pure DSM has many problems and has been discarded

as a serious HPC option. Therefore, research is trying to take the best parts of GAS and develop

models that are hybridized with message passing, forming models that have message passing per-

formance with the ease of shared memory programming. These models will have the convenience

of implicit parallelism through a global view of data with implicit communication, but achieve

12

high performance and scalability through use of clever compiler optimization and programmer

control of data layout and intraprocessor communication. The DARPA HPCS initiative and the

development of Partitioned Global Address Space languageslike Titanium and Unified Parallel C

are results of this research.

In 2002, DARPA launched the HPCS program. Its primary goal isto develop systems that

improve the overall productivity of high performance computing by reducing code development

time and complexity while retaining good performance.

The program itself is broken into three phases. Phase II of the program, which lasted through

July 2006, had funding for three languages being developed by three different vendors- Chapel

from Cray [63], X10 from IBM, and Fortress from Sun. Fortresswas dropped from the program at

the start of Phase III, and is now an open source project underthe direction of Sun [64].

The importance of the DARPA project is that it recognizes theneed for language productiv-

ity. The three main HPCS languages all feature GAS programming, while allowing the ability to

perform data and task parallelism, through loops or dyanmicprocess creation.

A specialized approach to DSM is the partitioned global address space (PGAS). In PGAS im-

plementations, there is a shared memory space that all processes may use to share variables, like in

shared memory, and at the same time facilitate implicit communication, like in DSM. Additionally,

there is also a private memory region for each process.

Figure 1: PGAS memory model

The word “partitioned” indicates that global data variables are divided up and stored in differ-

13

ent individual process memories. The data has a so-calledaffinity for a particular local memory

partition. Processors have fast access to local variables,and slower access time to global variables

that may reside in a remote partition of memory. The programmer and/or compiler may control

and exploit this data layout to produce optimized communication [65, 66]. Although optimizing

communication is not required for correctness, it is critical to achieving good performance on dis-

tributed memory systems [67]. A naively-written program may ignore data-locality exploitation,

but moving from shared memory to distributed memory would significantly impact performance.

In shared memory, all memory is considered local and all references behave as local references

[31]. On distributed memory remote puts and gets takes considerable time, even if the data is still

physically local to a node, because of global checking overhead associated with all global pointers.

Titanium, Co-Array Fortran [68], and Unified Parallel C [69]are three examples of PGAS lan-

guages. Within these languages, programmers use shared variables and may create shared objects

as well. One-sided communication is implicitly used to access remote data. This has been shown

to lead to faster communication than explicit two-sided message passing, and works well for prob-

lems that have data-dependent communications patterns that may be irregular [70, 66]. Titanium,

UPC, and CAF all use GASNet for their distributed messaging,which is a low-level network layer

that uses one-sided communication [71].

Figure 2: PGAS execution model

14

Each PGAS language also offers explicit communication functions to broadcast and collect

local data between processors as well as barriers to synchronize task execution. A typical program

from one of these languages might be structrued as follows (see Figure 2). First, data is scattered

to different processes, where each one performs it own threads of execution, using barriers for

synchronization. Communication is implicit, using fast one-sided messages when needed. Finally,

the data may be collected together to a single process.

2.2 MPI Overview

MPI is an industry standard API specification designed for HPC on multiprocessor and cluster

computers. Introduced in 1994 [14], the “primary goal of theMPI specification is to demonstrate

that users need not compromise among efficiency, portability, and functionality” [45]. The API

designers attempted to collect the best features of earliermessage passing systems, improve them

where appropriate, and standardize them for the parallel programming community.

History and Development MPI was devloped during 1993 and 1994 by a group of scientists,

vendors, and programmers called “the MPI Forum,” [72]. Whatthey created was a standard for a

message passing library designed for high-performance computation.

A second MPI specification, MPI-2, was defined in 1997 [34]. MPI-2 provides additional

features to the MPI-1 specification such as parallel I/O, C++and Fortran 90 bindings, remote

memory access, one-sided communication, and dynamic process management/creation. It should

be noted that MPI-2 is not simply MPI version 2. This work doestesting only with the MPI-1

specification, and as such the term MPI will refer to the MPI-1standard.

The MPI standard is not an implementation. That is left to individual vendors, of which there

are many. Two notable free implementations are MPICH [73] and LAM/MPI [74]. There are also

MPI implementations in many different programming languages [75, 76, 77, 78], and on many

different architectures [45, 14]. The entire MPI API (both MPI-1 and MPI-2) contains more than

300 routines [48], although many MPI applications are codedwith much smaller subsets of this

15

[14, 45, 48]. In C/C++ and Fortran, MPI is used as a set of routines that are inserted into source

code to control data communication between processes [14].

Parallelism and Communication In a program using MPI, there are a static number ofpro-

cesses, which are generally distributed among processors (this isleft up to individual implemen-

tations, however). Communication happens through send andreceive calls, either through point-

to-point messages, or collective operations such asbroadcasts, reductions, and scatters. This

processor-centric method allows for full control of communication and parallelism. Using MPI, a

programmer explicitly decomposes the data processing and sharing. Of widely used parallel mod-

els for HPC, MPI is in the class of most explicit [79, 80]. Because of this, MPI has been referred

to as the “assembly language” for parallel programming [48].

Other Language Notes MPI has been a very successful approach for achieving parallelism in

programs. It is widespread, portable, and achieves high performance. It has been described as

a “complete” model, whereby any parallel algorithm may be implemented [48]. Yet, MPI has

many difficulties. Some common issues raised about MPI include its complexity (as measured by

number of functions called), performance costs (especially with regard to communicating small

messages) and lack of compile and runtime help [48, 14, 81]. For a programming model to be a

successor to MPI, it needs to have the performance, scalability, and completeness of MPI, yet do

so in a more elegant and programmable fashion that raises overall productivity.

2.3 Titanium Overview

Titanium is a language designed for “high-performance parallel scientific computing” [3]. Tita-

nium is based on the Java programming language. The main thing that Titanium adds is SPMD

parallelism with PGAS support.

History and Development The Titanium project began in 1995 with the objective of building

a high-level language on the experience of GAS languages such as Split-C [82], AC [83], and

16

CC++ [36] [31, 3]. The motivation behind Titanium’s design was “to create a language design and

implementation enabling portable programming for a wide range of parallel platforms that strikes

an appropriate balance between expressiveness, user-provided information about concurrency and

memory locality, and compiler and runtime support for parallelism” [31]. The goal was to offer

Java’s object orientation with strong typing and safe memory management, while allowing for

local and global data sharing or passing between processes.

Titanium’s foremost goal is performance, followed by safety and expressiveness [3]. Safety

is meant in the sense that Titanium’s compiler not only detects errors statically, but also that it

can detect run-time errors accurately. Expressivity is claimed by use of built-ins like multidimen-

sional array support andforeach statements, which make for easier and more readable program

development, especially with grid-intensive applications.

Most of Titanium’s application work has come from development teams that are closely related

to the language compiler or language development effort. Notable Titanium programs include a

subset of the NAS Parallel Benchmarks [84], a 2D Poisson equation solver [85], Adaptive Mesh

Refinement programs [86, 87], and an Immersed Boundary simulation [88].

Parallelism and Communication The SPMD model of programming means that a Titanium

program has a fixed number ofprocessesassociated with it, in the same way as MPI-1. That is,

processes cannot be created dynamically. Within this, the processes themselves are not required

to be executing in a tightly synchronized, step-by-step basis. Different processes may follow their

own paths of execution, taking loops different amounts of time, just like MPI.

Titanium processes communicate with each other throughglobal variables and data structures

they share. These processes may transparently read and write data that reside on other procce-

sors using implicit, one-sided communication. Titanium also has constructs for facilitating explicit

collective communcation between processes usingexchangeandbroadcastcalls, and can usebar-

rier calls to enforce explicit process synchronization. Additionally, the Titanium keywordsingleis

used to ensure that desired variables do not have different values among processes, and that desired

17

calls are made by all processes.

The local memories associated with Titanium processes are given the name regions [39]. Ob-

jects are contained in the region of the process that createsthem, and pointers are used to reference

them. Global variables and objects may be pointed at by any Titanium process. The declaration

local means that the variable may only be referenced by the allocating process and it resides in the

local partition of memory.

The intent is that in shared (or uniprocessor) implementations, there is only one region, and so

global and local pointers are equivalent, and on distributed memory there is one region per proces-

sor. Variables in Titanium default to global. This makes porting Java programs easily, but may be

inefficient in parallel, as global pointers have overhead associated with them. A naive Titanium ap-

plication without local and global pointer exploitation might not run as well as a Titanium program

that did use data locality to its advantage.

The Titanium compiler performs analysis to optimize parallel code execution. This analysis can

do things like converting global pointers into less expensive local pointers when possible, overlaps

communication with computation, and preserves the illusion of sequential consistency. On shared

memory, accesses to the global memory space translate into conventional load/store instructions,

while in distributed memory, the GASNet layer is used to handle messaging [71, 3].

Other Language Notes Java was chosen as the base language (as opposed to C or C++) for Ti-

tanium because it is a semantically cleaner and simpler language, which makes it easier to extend

[31]. The type-safety of Java allows for better optimization in the compiler, as static information

can better be used for program analysis parallelization. Itshould be noted that the Titanium com-

piler translates code into C. There is no Java Virtual Machine or Just-In-Time compiler that runs

Titanium.

Since Titanium is an extension of Java, most basic Java programs may be run as Titanium

programs. Titanium does modify and add to some parts of Java though, for the purposes of making

efficient parallel code. Extra language features include immutable classes (similar tostructs in C),

18

multidimensional arrays, points and domains, single variables, explicit collective communicators,

and local and global references [39].

Multidimensional arrays are very important for HPC, so Titanium has included native sup-

port for them. In Java, multi-dimensional arrays are represented as arrays of arrays, and only

1-dimensional arrays are fully supported. In Titanium, arrays are indexed by integer tuples known

aspoints, and are built on sets of points, calleddomains. Arrays are built with special rectangular

domains called aRectDomains. Titanium also has aforeachcommand to execute a block of code

on each point in a domain, although this is used to ease readability and compiler checking, and

does not produce data parallelism (as eachforeach call is in only one process’s execution path).

The purpose of a foreach is for easing boundary work, making for less buggy and easier-to-read

code.

2.4 Fortress Overview

Fortress is called a ”novel” language for HPC. It is a built-from-the-ground-up effort by Sun,

aiming to facilitate the programming of next-generation parallel systems [2].

Fortress is an object-oriented, statically typed languagethat is interpreted. It uses a “compo-

nent” system that is similar to classes in Java, contained within a single “Fortress” or program

directory. The current compiler runs on top of a Java VirtualMachine, and only a small core of the

language specification is currently working. The program structure of Fortress is meant to reflect

scienctific notation, and its syntax, semantics, and parallelism reflect that.

History and Development The name Fortress is meant as a play off of the language Fortran,

specifically the thought of a “secure Fortran” [4]. The syntax and semantics of Fortress, though

built with elements from many programming languages, is designed to resemble mathematical

notation as closely as possible. Fortress was formerly partof the DARPA HPCS initiative, and is

now an open-source project overseen by Sun.

Sun’s philosophy is for Fortress to be a growable language. The language design strategy is

19

one that wherever possible, language features are to be provided through libraries, as opposed to

compiler hardwiring. This assumes that the implementationtechnology for Fortress will make use

of aggressive runtime performance measurement and optimization.

Parallelism and Communication Fortress is a PGAS language. It presents the user with a global

address space much like Titanium, instead of explicit message passing like MPI. Fortress uses

threads for task parallelism. Unlike Titanium and MPI-1, Fortress allows dynamic thread creation.

Furthermore in Fortress, parallelism is the default. Implicitly created threads are used to do parallel

operations, likefor loops anddo statements, as well astuple expressions, which are a special block

construct that execute expressions in parallel. Fortress includes atomic expressions for controlling

parallel interactions, or ensuring variables maintain consistency during modification.

Fortress will eventually allow for user-defined data locality with computation, for performance.

Especially for arrays, explicitly distributed data structures allow the automation of this. These data

structures are specified indistributionsto different local memories, where they are divided and

mapped among processors. Fortress allows explicit data locality using so-calleddistributionsor it

may be handled by the compiler. In Fortress, this work is delegated to libraries, and even at that,

distributionshandling libraries are not yet available.

Other Language Notes Fortress is built to resemble mathematical notation, and its syntax re-

flects that. The goal of Fortress is to translate chalkboard math writing into code that works as

seamlessly as possible. The language does things like type inference to achieve better readability,

operator overloading, and matching mathematical notation. Semicolons are optional, and Fortress

may be typed in ASCII or unicode characters.

For example, instead of using a “*” to denote multiplication, as ina*b, juxtaposition may be

used to mean the same thing,a b.

Fortress will also eventually allow values to be defined in terms of physical units or dimensions,

and will provide commonly used ones in Fortress standard libraries. A variablevelocityAcan be

defined using the unitsMeters/ Seconds. Physically defined values or dimensions will be statically

20

checked by the compiler. For example- seconds cannot be added to meters, and the library-supplied

dimensionAccelerationis equivalent toVelocity/ Timetypes.

21

3 Methodology

We have discussed the need for new, more usable and productive parallel languages. These lan-

guages must make it easier to read, write, optimize, and debug code. In short, new languages must

make the process of going from abstract algorithm and mathematical theory to high-performance

application as seamless as possible.

Historically, words likeproductivity, programmability, andusability have been vaguely de-

fined. Most research into programmer productivity has been only loosely connected, and there is

no standardized set of productivity benchmarks [7, 89, 6]. However, this should not imply that

productivity, programmability, and usability are unimportant. There is a high focus in enhancing

these elements of HPC [90, 1, 79]. Programs like the DARPA HPCS program and the Titanium

language out of the University of California-Berkeley seekto develop high-performance languages

that ease program development time [3, 5].

This work develops a set of productivity metrics that are used to roughly compare the “usabil-

ity” of different languages. This approach will not let us say Titanium is 80% usable. It will let us

say that Titanium is more usable than MPI, or vice versa. Implementing a program chrestomathy

can demonstrate semantic and syntactic differences between languages and APIs. A trivial exam-

ple of programming chrestomathy is seen in the ACM “Hello, World!” project [91]. This thesis

presents two relevant scientific applications for comparison between languages.

In this chapter, the performance and productivity benchmarks are explained. Additionally, the

kernels that are implemented are discussed.

3.1 Performance Metrics

The performance of the languages will be shown through runtimes. The time required to perform

the parallel distribution and computation is measured for each kernel. For each language, native

timing mechanisms are used to perform a timing of computation. For both kernels, the computation

of the runtime includes all communication, computation, and data gathering that happened in the

22

program, excepting matrix creation and population. The specific timing functions used are as

follows:

• sequential C -time()

• MPI (in C) - MPI Wtime()

• sequential Java -System.currentTimeMillis()

• Titanium - a Titanium Timer object

• Fortress -nanoTime()

Timing results are noted in the “Results and Analysis” chapter. It should be noted that the since

the kernels in C, Java, and Fortress were not timed, the timing mechanisms were merely included

so as not to skew the results of the other productivity metrics such as lines of code.

3.2 Programmability Metrics

A holistic characterization of a language cannot be based only on performance. Theprogramma-

bility, or ease of use, of each language, will be measured with the following metrics. They are

described in detail below.

• Lines of code, number of characters used, and characters perline

• Sequential-to-parallel conversion effort

• Parallel conceptual complexity

• Development time

It should be noted that the ideas and distinctions for the first three metrics are related to a paper by

Cantonnet et. al., a loose productivity study between UPC and MPI [92]. The specific details of

each metric are given below.

23

3.2.1 Lines of Code and Number of Characters used

Lines of code (LoC) itself is an imperfect programming measurement, and it has received much

criticism. However, it is still a valuable metric to record.A LoC measure can further be sup-

plemented by the total number of characters (NoC) used in theapplication. A single line may

contain one statement that is very long and drawn out. In thiscase, the NoC will compliment the

LoC by allowing us to determine the average number of characters per line (CpL) in each kernel,

represented simply by:

NoC/LoC = CpL (1)

Of course, the sophistication put into each line of code cannot be measured by this, merely

the physical output required to type the characters. The ease of programming, orprogrammability

of each line cannot be measured as well. These are shortcomings that must be kept in mind using

LoC, NoC, and CpL as productivity metrics. However, by comparing LoC, NoC, and CpL between

programming models, the code size of each benchmark can be shown.

To implement this measurement for each kernel, every line ofcode is counted, except for blank

lines and comments. Every character is also counted, exceptfor comments, and non-syntactically

required spaces and tabs.

3.2.2 Sequential-to-Parallel Conversion effort

This metric attempts to describe the effort required to convert code from a sequential base to

parallel. To measure this, we will use two efficiency equations defined as:

(LoCparallel − LoCsequential)/LoCsequential (2)

(NoCparallel − NoCsequential)/NoCsequential (3)

24

These equations show the difference between the sequentialcode and parallel code. To perform

this metric, the kernels will first be represented in its baselanguage.

• MPI - in sequential C code

• Titanium - in sequential Java code

• Fortress - does not have a base language, so this metric is notapplied to it

For MPI and Titanium, the sequentialized code will be modified to be parallel, and the effort

equation will be applied to it. A program with a lower number will mean that fewer steps are

needed for parallelization. The physical effort needed to parallelize the program will then be less.

If the program still achieves good performance, then it can reasonably be concluded that more

productivity is attained through ease of conversion while still having high performance.

3.2.3 Parallel Conceptual Complexity

“A conceptually complex programming environment is one in which the original parallel applica-

tion view is obscured as it compares to the original application view, and thus requires additional

work to maintain the correspondence with the original problem” [92]. Special effort is required to

transform a sequential version of the code into its corresponding parallel version. A conceptually

complex model may introduce many conceptual changes or additives that make the sequential and

parallel versions recognizable from each other. Parallel conceptual complexity of a program is de-

fined as the amount that a program must be modified from sequential code to make it parallelized.

This may take the form of synchronization calls, domain management calls, loops for different

tasks, or handling required to partition work among processes. Parallel conceptual complexity can

depend greatly on the underlying programming model.

The score is a positive value based on language constructs needed to parallelize a program.

A metric based upon this score shows parallel conceptual complexity. To produce this score,

each program written will be viewed. Parallel function calls, along with their parameters and task

references are counted, and summed together to produce the score.

25

There are different elements involved in parallelizing code. Elements for distributing data to

processes, elements for determining the amount of work, communicators, synchronization calls,

and other required functions are needed. We distinguish between them with the following call

types, which are slightly modified from the metrics used by Cantonnet et. al [92]:

• Work Distributors(WDs) - define how work is done by processes, or distribute tasks among

processes. The calls that distribute work areif , for , Fortresstuple, and Titaniumforeach

statements.

• Data Distributions(DDs) - define how data is distributed among processes, and define which

processes may access data. Calls toalloc, memset, textbffree,local, shared, andprivate,

as well as extra created objects or data structures, such as locally allocated arrays are data

distributors

• Communicators(Comms) - perform explicit communication calls between processes. These

may be point-to-pointsendand receives, or may be collective calls such asbroadcast or

scatter that MPI and Titanium provide, orcopy operations on arrays that Titanium does.

• Synchronization and Consistency calls(SCs) - ensure that all computation reaches a point

together, or that a variable is synchronized across all processes. These calls are defined as

barriers , singletypes in Titanium and MPI, andatomic constructs in Fortress.

• Miscellaneous Operations(Miscs) include other necessary calls within the program toensure

correct parallelization. Calls toinitialize or to orient the environment (such as finding the

number of processes) or to close down the parallel environment, such as MPI’sfinalize call,

as well as required library calls, are considered miscellaneous.

Each construct itself is further broken down into parameters, the function call itself, and task

references associated with it. Every parallel construct raises parallel complexity if it uses multiple

parameters, or makes references to process tasks or ranks.

• Parameters - the number of parameters within each constructused.

26

• Function calls - the specific function called (should be one for each call)s

• Rank / Size - references to specific processes, a particular process’s rank, or the number of

processes in the domain.

Here is some example MPI code:

14 MPI_Init(&argc, &argv);
15 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
16 MPI_Comm_size(MPI_COMM_WORLD, &p);
17 if (rank%2==0)
18 MPI_Send(3, 1, MPI_INT, dest, tag, MPI_COMM_WORLD);
.
.
.
27 if(rank%2==1)
28 MPI_Recv(&data, 1, MPI_INT, source, tag, MPI_COMM_WORL D, &status);
.
.
.
32 MPI_Barrier(MPI_COMM_WORLD);
33 MPI_Finalize();

The parallel conceptual complexity is represented in the following chart, which also gives a parallel

complexity score for the above code fragment- 37.

Table 1: MPI Example Code Complexity Score
WD DD Comm SC Misc Sub Totals Score

Params 2 13 1 6 22
Calls 2 2 1 4 9 37
R/S 2 2 2 6

Notes : Score comes 2 if, 1 MPISend, 1 MPIRecv, 1 MPIBarrier, 1 MPIInit, 1
MPI Commworld, 1 MPI Commsize, and 1 MPIFinalize statement.

Each line that adds to the conceptual complexity score performs some parallel-related call. It

should be noted that this does not take into account variabledeclarations that are used for parallel

work. For example, the MPI matrix multiply code usesAlocal matrices. The declaration of these

are not counted as parallel constructs. It is only when they are used in parallel calls that they are

counted, such as when they are parameters.

27

Each of these construct are summed together to produce a parallel conceptual complexity score

for each benchmark. The score illustrates the programmability of a parallel application. A lower

score means a less complex parallel program, and better programmability. Usability is positively

correlated with programmability, so a lower score translates into better usability. As an applica-

tion increases in size and complexity, the parallel conceptual complexity of a program becomes

increasingly important [92].

3.2.4 Code Development Time

Code development time measures how long it takes to develop each specific kernel. The code

development time for an application is a critical measure ofproductivity. More programmability

in a parallel model will lead to faster programming.

Unfortunately, specific time integrals were not measured inthe process of this work. However,

general remarks about development time are formulated for these kernels, and are found in the

“Results and Analysis” section.

3.2.5 Other Metrics Not Implemented Here

The metrics described above document important characteristics about parallel conversion for

codes. There are other metrics that are not implemented in this research, but could also serve

as useful studies for languages in a holistic way.

These include studying a model’s development resources in the form of documentation and

development tools, studying its debugging, visualization, and analysis tools, its compiler support,

and its acceptance by the general HPC user community. The scope of these is beyond this research

paper, but they are still important measures of a parallel model’s holistic evaluation. They are also

large factors in a model’s mainstream usage.

28

3.3 Coding Style and Expressivity Standards

To help maintain consistency between kernel implementations and different models, a series a of

expressivity standards will be enforced on the code. A coding standard makes the implementation

of a code follow a similar style, and is used to facilitate easier analysis and metric scoring. The

standards adhered to for development are:

1. No more than one variable declaration per line.

2. No more than one statement per line.

3. Brackets,do, andend keywords (used in Fortress) each reside in their own line.

4. Blank lines, comments, and non-required tabs and spaces will not add to LoC, NoC, or CpL.

5. “Built ins,” or functions meant to make programming easier to implement will be used if

such expressiveness exists, such asforeachcalls or or collective communication calls.

6. Programs will be written in as straightforward a way as possible. When possible, the easiest

form of parallelization will be used. This “quick and dirty way” will be noted if it is revised

at all, and both implementations will be noted. (It should benoted that this is only done to

Titanium programs.)

7. The code will be structured in a “pretty-print” style, with generally accepted indentions and

spacing.

These standards are being implemented for a three-fold reason.

• They maintain a uniform approach to code development acrossthree different programming

and semantical models.

• These standards emulate the “quick and dirty way” of programming, forsaking tedious opti-

mization to see if enhanced productivity results.

29

• The standards are being implemented in the hope of ensuring afair treatment of the bench-

marks, that they are all represented at an equal level of programming sophistication.

3.4 Kernel Specifications

The computational kernels selected for implementation area matrix multiply and a matrix trans-

formation. Each of these applications illustrate an important aspect of scientific computing, com-

putation and communication. They are naively solved through simple parallel means to illustrate

the different communication paradigms between MPI, Titanium, and Fortress.

3.4.1 Matrix Multiply

Matrix multiplication is one of the most fundamental operations in linear algebra, and one of the

most fundamental problems in scientific computing [93]. It serves as the main building block for

many different algorithms. As HPC deals with scientific calculations, matrix multiply is widely

used in parallel algorithms.

A matrix multiply takes two matrices,A andB, whereA has an equivalent number of columns

to B’s number of rows. IfA is anm ∗ n matrix, andB a n ∗ p matrix, the resulting matrix will

have dimensionsm ∗ p. If A ∗B = C, then each point inC, denoted asCij, may be represented as

Ci,j =

n∑

k=1

= Ai,k ∗ Bk,j = Ai,1 ∗ B1,j + Ai,2 ∗ B2,j + ... + Ai,n ∗ Bn,j

By using a set of threefor loops to iterate through the matrices, a naive implementation yields

a time complexity of O(n3). There are many other matrix multiplication implementations besides

a straightforward solution [94, 95, 96, 14], including Strassen’s algorithm [97] and Winograd’s

variation [98, 93], which both use clever techniques to reduce time complexity. However, this

paper implements the easy-to-understand method describedabove.

For performing the multiplication in parallel, each pointCij may be computed independently

by a different processor. Therefore, each process may work on computing a subset ofCij points.

30

Figure 3: Matrix Multiplication : A * B = C

If for loops are parallelizeable, then each pointCij may be trivially partitioned to processes. If

not, the simplest way to distribute work is by a row or column-deconstruction algorithm, which

divides up work evenly between processes. Using row-deconstruction, the matrix (for exampleA)

is broken up into chunks defined by an interval, and each process performs work upon a unique

chunk (called an Alocal matrix). EachAlocal would be of sizeinterval∗numberofcolumns. Each

process is then responsible for computing aClocal matrix, from matrix multiplication ofAlocal ∗B.

To solve a chunk of matrixA, a process needs only to have access to that particular submatrix

(Alocal matrix), and all of matrixB. For performing matrix multiplication usingAlocal∗B matrices,

the matrix must distribute a unique chunk to each process’Alocal matrix, and distribute all of

B to each process. Once this has happened, local computation may proceed in parallel without

intraprocess communication. As local computation completes, each chunk’s result matrix may be

gathered together into a result matrixC. Thus, this kernel may utilize bulk communication at the

beginning and end of computation, with parallel tasks running independently in between.

For computing the matrix multiply kernel, a number of simplifications were made for the pur-

pose of more easily discernible code, and to simplify overhead. Square matrices are used, and the

number of processes run must be a multiple of 2, to ensure thatrows are distributed correctly. The

specific steps taken in each implementation are given below.

MPI Implementation This implementation of a matrix multiply utilizes three collective MPI

calls-MPI Broadcast, MPI Scatter andMPI Gather. The basic steps in the MPI program are:

31

1. The root process allocates space for matricesA andC.

2. All processes allocate space for matricesAlocal, Clocal, andB.

3. The root process populates matricesA andB with values.

4. Matrix B is broadcast from the root process to all processes.

5. MatrixA is scattered from the root process among all processes. Eachcopy ofAlocal receives

part ofA from the root.

6. TheAlocal matrix is multiplied with matrixB in each process, resulting in aClocal matrix for

each process.

7. A collective gather call takes eachClocal and gathers it into matrixC, residing in the root

process.

Titanium Implementation Like MPI, Titanium allows use of copy operations to distribute data

structures among processes. However, using a global address space (GAS), we can simply view

the matricesA, B, andC as global. (They are implicitly global if not specified as local.)

There are two way this problem may then be solved- through GAS-only programming, and

through data copying between processes. With the “naive” GAS-only model, each process instan-

tiates a pointer for matricesA, B, andC and then points them to the global matricesA, B, andC. A

process only solves for part ofC by solving a certain number of rows from matrixA.

Our basic outline of steps in this code is:

1. All processes create pointersA, B, andC. (At the moment these are all null pointers.)

2. The root process creates global 2d arrays for matrixA, B, andC and populates them.

3. A broadcast call makes the root process’sB pointer pointed to by all processes’B variable.

This is repeated for matricesA andC.

32

4. Each process performs matrix multiplication on a subset of rows ofA, writing values directly

into C.

This is a naive approach to code since it uses a global addressspace only. On shared memory,

this application should perform well. However, for distributed memory, Titanium documentation

gives methods for copying a global array to local demesnes. Areal implementation meant for

distributed memory would certainly do this. Because of this, the code will be modified tocopy

arrayB to all processes, and to copy parts ofA into local matricesAlocal for each process. Local

computation will then proceed independently and sans interprocess communication, much like the

MPI code. The local results will be stored inClocal matrices, which are gathered together at the

end of computation to produce a final matrixC.

Implementing this requires the creation of additional matrices,Alocal andClocal. Alocal is for

copied parts ofA Clocal matrices are copied to the root process at the completion of each process’s

local computation. Thus, our basic steps are:

1. All processes create variablesA, B, C, Alocal, andBlocal.

2. The root process creates 2d arrays for matrixA, B, andC. It then populates matricesA andB

with values.

3. A broadcast call makes the root process’sB variable pointed to by all processes. This is done

for matricesA, B, andC. This is a necessary step to implement the array copy, otherwise

processes with null pointers will point to uninitialized arrays.

4. A portion of matrixA is copied to theAlocal matrix in each process’s local memory.

5. All of matrix B is copied to each process’s local memory.

6. Each process performs matrix multiplication ofAlocal ∗ B, the results are stored in the local

matricesClocal.

7. Clocals perform remote writes, copying the local matrices on each process to the correct part

of C in the root process.

33

Fortress Implementation The Fortress code for matrix multiply is implicitly parallel. Sincefor

loops are by default parallel, each for loop is evaluated in parallel by implicitly created threads of

execution, based upon compiler discretion. Therefore, theFortress code simply contains a triplet

of loops, one to step through the rows ofA, one to step through the columns ofB, and one to step

through the individual points being added toC. To prevent concurrent writing to a pointCij in the

matrix, the built-inatomic...dostatement is used. One could presumably do an optimization using

datadistributions. These were not supported at the time of this research, so this is not an option.

So the triplet offor loops was used.

The Fortress steps are simply.

1. Allocate matricesA, B, andC.

2. Use implicitly parallelfor loops to step through the matrix and compute each point, storing

the results in matrixC.

3.4.2 Matrix Transform

Like matrix multiplication, the matrix transform code illustrates an important concept in HPC. The

matrix multiply code can be heavily computation intensive,with the MPI and refined Titanium

code both communicating only at the beginning and end of the program. In contrast, this transform

code places a heavy emphasis interprocess communication. This code is written to emulate a

communication based application, that must communicate atevery step to achieve computation.

The matrix used for the computation, A, is square like in the multiply kernel, with sizeN*N. To

transform an individual pointAi,j, the value can exchanged be switched with the valueAN−1−i,N−1−j

(assuming indexing is from 0).

The emphasis on this matrix transformation kernel is in constantly sending back-and-forth data

between processors. This is a kernel that relies entirely oncommunication. For Titanium, the

processes may directly view the matrix as global and get from/put to it. For MPI, the matrix will

be divided up into row-spanning chunks among processes and distributed as submatrices. Points

34

Figure 4: Matrix Transform

in one chunk will be exchanged with points in another chunk. Because of the way the matrix is

partitioned, this communication will require back-and-forth communication. This communication

will be pairwise in a “ping-pong” pattern, as each pair of processors exchange matrix values back

and forth among their local matrices. When all matrix valueshave finished transposing among

submatrices, the submatrices will be gathered together back on the root process.

For simplicity and to ease bounds checking, the matrix is anNxN square. The number of

processors must be a power of 2, to allow for correct computation.

MPI Implementation For MPI, the matrix is scattered in intervals of rows among processes,

similar to the matrix multiplication. TheAlocal matrices are comprised of a set of rows fromA in

a logical ordering; process with rank 0 gets the first chunk ofrows, process 1 the second, etc. To

transform an individual pointAi,j , it must be switched with pointAN−1−i,N−1−j . With the scatter

partition breaking up rows, every call will require retrieving a remote value, and sending a remote

value back to another process. The communication itself will form a kind of ping-pong, back-and-

forth pattern between processes. Process 0 will communicate with process N-1-0, process 1 will

communicate with N-1-1, and so on.

Once all values have been transformed, the matrix will be gathered back to matrix A in the root

process. Thus, our basic steps are:

1. All processes allocate space forAlocal submatrices.

35

2. The root process allocates and populatesA locally.

3. A is scattered among processes, giving each process a filledAlocal.

4. Processes exchange data back and forth to transform the matrix.

5. The transformed submatrices are gathered back to the rootprocess.

There is a different way to implement this algorithm that must be mentioned. A smart scattering

of the matrix would send row i and row N-1-i to the same process. ValueAij could then be switched

with valueAN−1−i,N−1−j without interprocess communication. The communication savings would

be substantial, and the transform would perform much faster.

However, this way of implementing is purposely avoided. This is because we wish to illustrate

productivity and performance where constant communication is forced, as stated above. The point

of this kernel is in requiring communication at every step. Therefore, while this simple transform

may be more efficiently implemented, we are requiring an algorithm that does back-and-forth

communication.

Titanium Implementation The Titanium implementation of this can be done by having one

global array. Each process may transform a certain set of rows with another set of rows by trans-

parently accessing and exchanging data in the global array.For this, we are allowing a processor to

perform point switches both ways between a pointAij andAN−1−i,N−1−j . That is, a process may

transform all values in row i, and in row N-1-i. Communication will still happen by remote reads

and puts to the global matrix. Thus, our basic steps are:

1. The root process allocatesA as a global array and populates it.

2. All processes may directly do transform operations onA on their specified rows.

Like the MPI code, this transform could be more “smartly” done with copying. Chunks of

the matrix could be copied to each processor, and transformed in the same way as the MPI code.

However, this does not force communication at every step, and so is avoided.

36

Fortress Implementation Like matrix multiply, this Fortress kernel makes use of implicitly par-

allel for loops to elicit parallelism. By only looping over upper halfof the matrix, the values in the

top may be exchanged with values in the bottom. Therefore, using two implicitly parallel loops,

the top half or rows, and all columns may be traversed. Each point in this upper half will be ex-

changed with a value in the lower half, in anatomic do statement to ensure concurrency. Since

Fortress’s loops are implicitly parallel, and may execute out of order, the distribution of tasks to

processes is left up to the compiler.

Our basic steps here are:

1. Allocate and populate matrix A.

2. Using two loops, traverse the top half of the matrix, exchanging values with the bottom half

of the matrix.

3.5 Closing Methodology Notes

In the following section we present the results of implementing and benchmarking the kernels.

Additionally, we will holistically analyze the results of code development and compare all the

results in an evaluative sense, determining which languagegives the most performance, and which

language is the most programmable.

37

4 Results and Analysis

This chapter presents results and analysis of performance and programmability benchmarking.

Both MPI and Titanium were extensively tested on a test cluster at the University of Arkansas,

Fayetteville. At Fortress’s current state of language development and implementation, complete

performance testing was not possible. Some basic runtimes were done; and they ruled out the lan-

guage from any real evaluation. Even though Fortress was notseriously tested, the computational

kernels were written, and a limited set of programmability benchmarks were applied to it. MPI

and Titanium were evaluated both in performance testing, and in terms of programmability. This

allows for a complete holistic characterization for these languages. Testing to the limits of mem-

ory was not done though, the largest matrix sizes that were used were 2048x2048. This chapter

presents the results of both the benchmarks and the holisticcharacterizations.

For the multiply code, there are different codes compared. Since Titanium code has been

written in both “naive” and “real” implementations, Titanium code is distinguished as either Ti-

Naive, or Ti-Real. The MPI code is simply referred to as MPI.

4.1 Hardware Setup and Testing Setup

All runs were performed on “tusk.uark.edu.” This is a heterogeneous 16-core cluster consisting of

two 8-core nodes, called “Tusk” and “Tusk-Sun.” This allowsshared memory jobs of up to eight

cores on either node, or up to sixteen cores using both nodes for distributed memory jobs. Tusk is

an 8-core system consisting of two Intel Xeon quad core L53201.86 GHz CPUs. Each processor

core has 1MB of cache. Tusk-Sun consists of four dual-core AMD Opteron 8218 Processors. Each

CPU is rated at 2.6 GHz, and the system has 1 MB of cache per processor. Also, the cluster is

connected with a single 8-port Gigabit Ethernet switch. Each node runs Ubuntu Linux Server

edition 7.10. MPICH version 1.1.2 is installed. For some programs the Moab batch scheduler was

used to execute jobs.

38

Matrix Setup For each benchmark, several sizes of square matrices were used. The matrices

had sides of length equal to 128, 256, 512, 1024, or 2048. Thiswas hard-coded into the syntax

to make it easier to perform productivity analysis. Executables were generated for each needed

matrix size. Most shared memory runs were done on Tusk. When doing distributed runs, the cores

were divided evenly between Tusk and Tusk-Sun, in a 1 to 1, 2 to2, 4 to 4, or 8 to 8 ratio.

The matrices used “double” numbers, each of which take up 8 bytes of memory. The size of

memory of a matrix could then be represented aslength ∗ width ∗ 8 bytes. Matrices of size 128

and 256 were small enough to reside in cache.

Tusk and Tusk-Sun make up a heterogeneous system. They have different CPUs with different

cores, cache, and clockspeeds. This is valuable for testingreal-life scaling as the different systems

perform computation at different speeds. Running a distributed memory job using Tusk and Tusk-

Sun means that some part of computation will finish at a fasterrate than the other, and be required

to wait for the slowest denominator to catch up to barriers orcommunication. To evaluate the

difference between Tusk and Tusk-Sun running shared memoryjobs, a set of runs at matrix sizes

equal to 256 and 1024 were done on Tusk-Sun. For distinguishing when code is run on Tusk and

Tusk-Sun, the prefix T- or TS- is used on code. A matrix of size equal to 256 could fit totally in

cache on both systems.

Titanium Compilation Settings Titanium code invoked the Titanium compiler by using the

tcbuild command. The Titanium compiler was version 3.202 and was built with GCC 4.1.3. For

shared memory, code was compiled with thebackend=smpflag, which compiles specifically for

shared memory. For distributed memory, code was compiled using thebackend=mpi-cluster-

smp flag, which uses MPI for intranode communication. The GASNetmessage layer [71] is not

currently available on Tusk. It should be noted that the tcbuild command was not invoked with

either –optimize, nor –lqi as options, as the Titanium compiler build was not done with local

qualification inference enabling. Code was run either usingPBS scripts, or from command line

using anmpirun.mpich command. Performance was identical using either method to execute the

39

application.

MPI Compilation Settings MPICH version 1.1.2 was used. MPI files were compiled with

mpicc, and run using thempirun.mpich command, or by PBS script. PBS scripts were used

for most MPI distributed memory jobs.

Fortress The Fortress interpreter was called directly by use of thefortresscommand. This parses

and evaluates the program, albeit slowly compared to Titanium and MPI’s execution. At the time of

this research, the limitations imposed by this made performing scalability and performance testing

impossible. Also, it was impossible to test process parallelism as the ability to manually control

processes was not then implemented in the language core. To that end, the Fortress code is still

presented in the index. A limited productivity characterization and usability score for Fortress are

calculated, but with Fortress’s rapid rate of change, thesecharacterizations may not be valid for

long.

4.2 Benchmark Results and Analysis

In this section, we present all code benchmark results and analyze the performance of each. Both

shared and distributed memory results are presented for 2, 4, and 8 cores. Additionally, bench-

marks with 16 cores from distributed memory testing are presented. Shared memory runs were

done on the node Tusk, except for runs distinguished in Section 4.2.3 and 4.2.6 as being done on

the node Tusk-Sun.

4.2.1 Shared Memory Multiply Results

Two Titanium programs were written to do matrix multiplication, a “naive” and a “real” applica-

tion. These programs are referred to as Ti-Naive and Ti-Real. These programs are compared with

the matrix multiply MPI code in the Figures 5 through 9.

As expected during shared memory benchmarks, “Ti-Real” and“Ti-Naive” have similar run-

40

time on Figures 5 though 9, showing nearly identical performance and scaling. In an shared mem-

ory environment, there is only one memory region, and all processes allocate out of this shared

pool [67]. Thus, for all processes to get data from matrixA, and to put data in matrixC, only

a simple load is required. On shared memory this is a local operation. Note that this is not the

case for distributed memory. See the section 4.2.2. Thus theTi-Naive code is not penalized for its

“global” references to arrays , as they are translated into local references.

The Ti-Naive code is slightly faster than Ti-Real on all shared memory runs, as shown in

Figures 5 through 9. The reason for this is that Ti-Real does copy operations between matrixA

andAlocal, B and (local copies of)B, andC andClocal. These copies, while migrating data that is

local, still take a small amount of time. The separation between Ti-Real and Ti-Naive exhibits a

consistent scale, and thus grows slightly as the matrix sizeincreases from 128∗128 to 2048∗2048.

For each copy operation,N ∗ N ∗ 8 bytes are copied between local memory addresses, where

N=length of the matrix. Each process will do this twice in a Ti-Real application, once to copy data

from A to Alocal and once to write data fromClocal to the root’sC matrix. Additionally, an extra

N ∗N ∗8 bytes are copied in copyingB to B from the root process to “local”B’s for each process.

The other computation/communication between Ti-Real and Ti-Naive takes the same amount of

time.

Figure 5: SM Multiply of length 128x128

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 2 3 4 5 6 7 8

T
im

e
(s

ec
on

ds
)

Processors

Ti-Real
Ti-Naive

MPI

Figure 6: SM Multiply of length 256x256

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 3 4 5 6 7 8

T
im

e
(s

ec
on

ds
)

Processors

Ti-Real
Ti-Naive

MPI

41

Shared Memory 128x128 Figure 5 shows shows multiplication times of two128∗128 matrices.

The Ti-Real and Ti-Naive code exhibit extremely similar runtime and scaling, nearly 1.97 times

as processors double. The MPI code does not showing any scaling at all. The matrix sizes are so

small that the time spend allocating local matrices and scattering the matrix among them overrides

any gains achieved by parallel computation.

Each Titanium code in Figure 5 runs more slowly than the MPI, approximately 6 times slower

for 2 processors, and 1.5 times slower for 8 processors. Since the MPI code doesn’t scale at all,

the gap between execution time gets smaller as Titanium processors increase.

Shared Memory 256x256 Figure 6 shows the256 ∗ 256 matrix multiplication. This matrix still

fits in cache on Tusk. The runtimes are still extremely fast because of this. The MPI scalability

is moderate as well, 1.59 times from 2 to 4 processes, and 1.37times from 4 to 8 processes. The

Titanium code again shows nearly 2x scalability, going fromslightly over a second to almost .2

seconds from 2 to 8 cores. According to the O(n3) complexity, this code should take 8 times as

long to compute as the 128x128 matrix code. This is verified bythese results. Despite Ti-Real and

Ti-Naive code also showing almost exactly the same runtimes, they are still about 7 to 4 times as

slow as the corresponding MPI code for a given amount of cores.

Figure 7: SM Multiply of length 515x512

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2 3 4 5 6 7 8

T
im

e
(s

ec
on

ds
)

Processors

Ti-Real
Ti-Naive

MPI

Figure 8: SM Multiply of length 1024x1024

 0

 10

 20

 30

 40

 50

 60

 70

 2 3 4 5 6 7 8

T
im

e
(s

ec
on

ds
)

Processors

Ti-Real
Ti-Naive

MPI

42

Shared Memory 512x512 Figure 7 shows results of matrix multiply in shared memory when

the matrix is too big to fit in cache. MPI runtime on 2 processesis increased to over a second, and

times for Titanium are over 8 seconds. This is the first size for shared memory that shows MPI

scaling as processor size increases. Runtime for MPI code goes from almost 1.2 seconds to .7 to

.4 seconds. This is a little over 1.7x scaling as processors double. The Titanium code still scales

like expected, at nearly 1.99x scaling as processors double. According to the O(n3) complexity,

this code should take 8 times as long to compute as the 256x256matrix code. This is true for both

Titanium and MPI, as they take about 8 times longs to compute.At 2 processes, the MPI code runs

around 7 times as fast as the Titanium code, and around 5 timesas fast for 8 processes. The better

scalability of the Titanium codes closes the ratio a little bit here.

Figure 7 is the first graph to show the distinction between theTi-Naive and Ti-Real runtime

that is easily discernible. In the Ti-Real code, the cost of copying arrays that are larger than cache

size hurts its performance, and gives a little bit of a gap between the Ti-Real and Ti-Naive code.

Shared Memory 1024x1024 Figure 8 exhibits a large jump in timing from Figure 6. The Ti-

tanium timings range from around 70 seconds for 2 processors, to just under 20 seconds for 8

processors. The MPI code likewise goes from 26 to 12 seconds runtime. Ti-Real and Ti-Naive

experience nearly identical scaling of 1.98x processes double, and take nearly 8 times as long to

compute as the 512x512 matrix, thus verifying the 0(n3) complexity. The MPI code experience

scaling of 1.53x from 2 to 4 cores, and 1.34x from 4 to 8 cores. The Titanium runs are between 2.7

times and 1.4 times as slow as the MPI code across the same number of cores.

Shared Memory 2048x2048 Figure 9 shows the longest runtimes for shared memory matrix

multiplication. The Ti-Real code goes from a runtime of around 584 seconds to about 147 seconds,

exhibiting 1.98x scaling as cores double. The Ti-Naive codegoes from 534.5 to 133.4 seconds,

and shows an even better 1.999x scaling as cores double. The MPI code goes from runtimes of

429 to 249 to 180 seconds as cores double, scalings of 1.79x and 1.33x. One very interesting point

here is that Titanium’s code actually runs faster than MPI’scode for 8 cores. With 2 cores, the

43

Figure 9: SM Multiply of length 2048x2048

 0

 100

 200

 300

 400

 500

 600

 2 3 4 5 6 7 8

T
im

e
(s

ec
on

ds
)

Processors

Ti-Real
Ti-Naive

MPI

Titanium code runs approximately 1.25x-1.36 times as slow as the MPI code, or between 100 and

150 seconds slower. At 4 cores the code is between 55 and 30 seconds slower. At 8 cores the

Titanium code is between 40 and 50 seconds faster, or 1.23 times and 1.35 times as fast. This is

the only time that this happens in all shared memory multiplyruns. As Titanium’s scaling is still

almost 2x as processors increase, it is able to overtake the MPI code in runtime. The Titanium

code also continues to show consistent verification of the O(n3) complexity, as the code takes

approximately 8 times as long to compute as the 1024x1024 code.

One note will be made here about the difference between Ti-Real and Ti-Naive scaling. With

8 cores doing this problem, the Ti-Naive code runs 1.09 timesfaster than the Ti code.

Shared Memory Multiply Notes For all shared memory runs, Titanium showed excellent scal-

ability, around 1.98x to 1.99x for all runs. The Ti-Naive code showed scalability near 1.999x as

cores doubled, and thus was slightly faster at computation as problem size increased. With 8 cores

doing 2048x2048 matrices, the Ti-Naive code took about 533 seconds and the Ti-Real code about

583 seconds. The average speedup of Ti-Naive code over Ti-Real code was 1.09x- this speedup

is consistent over different problem sizes and cores. It is interesting note that, for shared memory

jobs, the more naive GAS-only approach is the programming style that generates faster computa-

tion, even if only slightly by a factor of 1.09x.

44

When the matrix sizes were above 256x256, the MPI code exhibited scaling from around 1.7x

to 1.3x. The fact that MPI could not scale as efficiently as Titanium meant that when the problem

size became big enough, and there were enough processes, that the Titanium code would be faster

that the MPI code. For our runs, this only happened using 8 cores with matrices sized 2048x2048.

It is hypothesized that Titanium will continue to show similar scaling with larger matrix sizes and

more processes, as long as memory access is uniform.

4.2.2 Distributed Memory Multiply Results

The matrix multiply kernels were made to be run on distributed memory as well as shared memory.

The runtime graphs and analysis are presented in this section. The first analysis deals with the Ti-

Naive code on distributed memory. The code exhibited such bad performance it was decided to

discontinue running it for shared memory, as runtime for larger problem sizes would quickly cause

runtime to get out of hand- taking hours, days, weeks, and even months to perform a single matrix

multiply.

This was the only set of distributed runs that the Ti-Naive code. Although Ti-Naive and Ti-Real

(called Titanium (Tusk) in figures) have nearly identical performance on shared memory, using a

global array is shown to be very costly at times.

Figure 10: DM Multiply of length 128x128 w Naive Titanium Code

-100

 0

 100

 200

 300

 400

 500

 600

 700

 800

 2 4 6 8 10 12 14 16

T
im

e
(s

ec
on

ds
)

Processors

Ti-Naive
Ti-Real

MPI

45

DM 128x128 using Ti-Naive We will discuss this set of runs first, as this is the only time that Ti-

Naive code was tested on distributed memory and message passing. The Ti-Naive code performs

very well and exhibits almost 2x scalability in shared memory. However, on distributed memory

its use of GAS programming cripples solution’s computationperformance.

The Ti-Naive code exhibits runtimes from almost 650 secondsfor 2 processors to just over 500

seconds with 8 processors, and exhibits no better scalability than 1.14x as cores double (this from

2 to 4 cores). The Ti-Real and Ti-MPI code, discussed in the next paragraph section, both complete

computation in under .3 seconds for the same problem.

Although no extensive analysis of the remote calls made is done for all matrix sizes, we will

note on it here, due to the extraordinarily bad performance.A 128∗128 matrix has 16,384 elements

in it. For solving a point in the result matrix,Cij , a process through a row of matrixA and a column

of matrix B, adding the result toCij. This requiresN accesses to get values from theA row, N

accesses to get values from theB column, and an additional2N accesses toCij, one to get the

current value, and then one to put the modified value back intoit. Therefore, for multiplying 2

N ∗N matrices, Ti-Naive code requiresN ∗N ∗N ∗N ∗ 2N , or 2N4 accesses. For our128 ∗ 128

matrix running on tusk, there are 536,870,912 global calls.For the region that the array resides

on, this global call does not take as long as a truly memory-remote call, but there is still overhead

associated with doing the global call at all. This is clearlyunacceptable for parallel computation.

DM 128x128 The distributed memory run times of Ti-Real and MPI are presented in Figure 11.

The matrices size here is small enough to reside entirely in cache, and runtimes are extremely

fast. The MPI code exhibits no scalability at all between processes. The overhead associated

with copying the data overwrites any performance gains due to being performed in parallel. The

Titanium code shows some scaling from 2-8 cores, although at16 cores it faces into the same

copying overhead that MPI does, and its scalability suffers.

DM 256x256 Figure 12 shows the results of matrix multiplication with sides of length 256. At

this size, the Titanium code shows scaling above 1.9x from 2 to 4, and 4 to 8 cores. From 8 to

46

Figure 11: DM Multiply of length 128x128

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 2 4 6 8 10 12 14 16

T
im

e
(s

ec
on

ds
)

Processors

Titanium (DM)
MPI (DM)

Figure 12: DM Multiply of length 256x256

 0

 0.5

 1

 1.5

 2

 2 4 6 8 10 12 14 16

T
im

e
(s

ec
on

ds
)

Processors

Ti-Real
MPI

16 processes, its scaling goes down to 1.66x. The MPI code runs scales 1.75x from 2 to 4 cores,

and doesn’t exhibit scaling after this as cores increase. Running at 2 cores, the Ti-Real code is

10.8 times slower than the MPI code. Since the MPI code does not scale while the Titanium code

does, the gap between the Titanium and MPI goes from 1.81 seconds to .1 seconds, as on 16x

cores the Titanium code is 2.45 times slower than the MPI code. The Titanium code here takes

approximately 8 times as long to compute as the code for the 128x128 matrix, although the MPI

code only takes approximately 4 times as long.

Figure 13: DM Multiply of length 512x512

 0

 5

 10

 15

 20

 2 4 6 8 10 12 14 16

T
im

e
(s

ec
on

ds
)

Processors

Ti-Real
MPI

Figure 14: DM Multiply of length 1024x1024

 0

 20

 40

 60

 80

 100

 120

 140

 2 4 6 8 10 12 14 16

T
im

e
(s

ec
on

ds
)

Processors

Ti-Real
MPI

47

DM 512x512 Figure 13 presents runtimes for512x512 matrices. The Titanium code exhibits

scalability above 1.8x as cores double, with its highest being 1.96x from 2 to 4 cores. The MPI

code exhibited scaling close to 1.6x as cores increased. At 2cores, the Titanium code was 3.4 times

as slow as the MPI code, this changed to 2 times slower at 16 cores, thanks to Titanium’s better

scalability. The Titanium code is approximately takes 8 times as long to compute as the 256x256

code, while the MPI code takes about 20 times as long.

DM 1024x1024 The largest distributed memory runs were done at matrix size1024 ∗ 1024. The

runtime graph is presented in Figure 14. Like all other distributed memory runs, the Titanium code

is overall still slower than the MPI code. It still exhibits good scalability though, at a rate of almost

2x per core doubling, except when going from 8 to 16 cores where it only scales by a factor of

1.4x. The MPI code displays a speedup of between 1.7x and 1.8xas cores double. The MPI code

is 2.86 times faster than the MPI code at 2 processes, and 2.72times faster than MPI with 16 cores.

The Titanium code takes around 8.75 times as long to compute as the 512x512 code. The MPI

code takes around 14 times as long.

DM Multiply Notes Although Titanium showed consistently better scalabilitythan MPI on dis-

tributed memory, but was still consistently slower overallthan MPI. The scaling of Titanium in

distributed memory was less for some larger process sizes, notably the1024 ∗ 1024 matrix where

scaling is only 1.4x when going from 8 to 16 cores. The respective MPI scaling at that size matrix

from 8 to 16 cores is almost 1.8x.

4.2.3 Tusk/Tusk-Sun Multiply Results

This section compares performance between Tusk and Tusk-Sun doing the multiply code. It is

meant to illustrate how the kernels perform on different systems. All runs that were used for

the shared memory datasets were based off of runs on Tusk. Distributed runs used half of their

processes from Tusk, and half from Tusk-Sun. A subset of the matrices were run on Tusk-Sun as

well, and they are presented here. The kernels were run with matrix sizes256∗256 and1024∗1024.

48

The256 ∗ 256 sized matrices fit in cache on both systems.

Much previously analyzed data comes from the shared memory and DM runs for corresponding

matrix size. These runtimes are presented and analyzed in detail in Sections 4.2.1 and . For

clarification, runs on Tusk will be referred to as Ti-Real-TU, Ti-Naive-T, or MPI-TU. Distributed

memory results are referred to as Ti-Real-DM or MPI-DM for the Multiply Code.

Figure 15: Tusk/Tusk-Sun Comparison Runs -
Multiply with length 256

 0

 0.5

 1

 1.5

 2

 2 3 4 5 6 7 8

T
im

e
(s

ec
on

ds
)

Processors

Ti-Real (DM)
Ti-Real (Tusk-Sun)

Ti-Real (Tusk)
Ti-Naive (Tusk)

MPI (DM)
MPI (Tusk-Sun)

MPI (Tusk)

Figure 16: Tusk/Tusk-Sun Comparison Runs -
Multiply Matrix 1024

 0

 20

 40

 60

 80

 100

 120

 2 3 4 5 6 7 8

T
im

e
(s

ec
on

ds
)

Processors

Ti-Real (DM)
Ti-Real (Tusk-Sun)

Ti-Real (Tusk)
Ti-Naive (Tusk)

MPI (DM)
MPI (Tusk-Sun)

MPI (Tusk)

Tusk/Tusk-Sun Multiply 256x256 Figure 15 presents a number of runtime plots. The only plots

previously not analyzed are the ones for plotting TiReal andMPI on Tusk-Sun. These results are

referred to as TS-Ti-Real and TS-MPI.

The MPI code across these three runs all are closely clustered together. The Tusk code is

slightly faster than the DM- or TS- runs. There is a good reason for this. Since the multiply code

is rather computationally intensive (as opposed to communicationally intensive like the transform

code), processor computation is the limiting factor in the code. The multiply code distributes data

at the beginning of computation and each process independently solves its part of the result. The

big limiting factor then is processor speed.

At the end of computation agather call takes all the answer matrices and compiles them to

a final result matrix. Completion is not allowed until all processes finish computing their local

49

answers and copy data to the result matrix. Tusk-Sun computes data more slowly than Tusk as

seen by the difference in results between TS-MPI and T-MPI. When doing the DM-MPI job, the

local matrices solved by Tusk finish faster than the matricesfinished by Tusk-Sun. Since thegather

call must block for all processes to call before continuing execution, Tusk-Sun limits performance

of DM-MPI and DM-Titanium to at least as slow as that of TS-MPIand TS-Ti-Real, respectively.

With small matrices, the difference in TS-MPI and DM-MPI is negligible. When MPI-DM

communicates, it must send data over the network. When TS-MPI does so, it goes over the system

bus. The data communication of the matrices is small, and so there is not a large difference in

times between “local” data transfer that TS-MPI does, and the network communication of MPI-

DM. Recall that with small matrices, the ability to scale is limited as well by communication

overhead on shared memory and DM runs. This applies to Tusk-Sun runs as well. Since MPI-Tusk

communicates over its own local bus, and has a faster computation ability, it has faster runtime.

The Titanium shared memory codes are all almost identical inruntimes. The Ti-Real-T, Ti-

Naive, and Ti-Real-TU code all have negligible runtime differences between them. They exhibit

similar scalability as the cores are doubled, and all three are notably faster than the Ti-Real-DM

code.

Tusk/Tusk-Sun Multiply 1024x1024 Figure 27 displays results for the larger matrix sized tested

on Tusk-Sun-1024 ∗ 1024. Like the matrix size=256 results, the MPI-TU code runs faster than the

TS-MPI and MPI-DM code. The TS-MPI and MPI-DM, which are limited by computation speed,

still close together in runtimes and show similar scaling. The MPI-DM code is slightly slower

than the TS-MPI code, as its communication is over a network,and not between local memory, as

TS-MPI.

The TS-Ti-Real code is surprisingly slower than the Ti-Real-TU code, and very close to the

Ti-Real-DM code.

There is a visible difference in runtimes between the Ti-Real-DM and TS-Ti-Real code. Both

codes are limited by the computation speed of Tusk-Sun. The TS-Ti-Real code runs entirely on

50

Tusk-Sun and only uses its processors. The Ti-Real-DM code runs half on Tusk and half on Tusk-

Sun, and uses abarrier to wait for all computation to finish. Since the Tusk-Sun computation

happens slower than the Tusk computation, it must wait at that long to complete. The overhead of

doing global calls as opposed to local copies is now seen, as the -DM code is between 20 and 40

seconds slower than the corresponding TS- code. The Ti-Real-TU code is faster than both of them,

as it has faster local computation, and does its communication through local copies.

4.2.4 Shared Memory Transform Results

The matrix transform operation was done with two programs- aping-pong communicating MPI

program and a Titanium program using a global array. Both programs tested heavy communication

between different processes and process memory.

The results for the shared memory transform code is below. The Titanium code relies on a

global data structure that each process accesses and modifies. On the shared memory, these data

accesses are memory loads and stores- extremely fast. Therefore the Titanium code is much,

much faster than the corresponding MPI code for all matrix sizes and number of processes. It is

difficult to see the runtimes and scaling of the Titanium codein these graphs. The exact timing

measurements may be referenced in the Appendix to see validation that the Titanium code does

scale.

Shared Memory Transform 128x128 Figure 17 shows the MPI and Titanium runtimes for do-

ing the transform. The MPI code is much slower than the Titanium code- at 2 cores the MPI code

is over 1000 times slower, and is over 300 times slower at 8 cores. This is because the Titanium

code ping pongs messages through abstract global references. These are translated to simple loads

and stores for the Titanium code, giving it runtimes of around 0.0005 seconds. The Titanium code

does not scale between processes at this time, as the overhead with distributing the intervals makes

the parallel evaluation gain negligent.

The MPI code, however, does benefit from scaling, exhibitingabout a 2x speedup from 2 to 4

51

Figure 17: SM Transform - 128x128 Matrix

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 2 3 4 5 6 7 8

T
im

e
(s

ec
on

ds
)

Processors

MPI
Titanium

Figure 18: SM Transform - 256x256 Matrix

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 3 4 5 6 7 8

T
im

e
(s

ec
on

ds
)

Processors

MPI
Titanium

cores, and a 1.5x speedup from 4 to 8 cores. It should be noted however, that the overall runtime

is so small, however, that these results may easily differ enough to skew the performance scaling.

Shared Memory Transform 256x256 The Titanium code is still extremely fast, between 1090

times faster for 2 and 4 cores, and 660 times faster for 8 cores. Although not discernible in the

graph, the Titanium runtime does drop slightly, from .0026 to .0014 to .001 seconds, with speedups

of 1.82 times and 1.31 times. The MPI code exhibits a 1.99 times and 1.96 times scaling. The

Titanium code scales somewhat from 2 to 4 cores (a 1.82 times scaling), therefore Titanium code is

still almost 1000 times as fast as the MPI code at 4 cores (specifically, .00140 seconds to 1.39565

seconds). The MPI code exhibits high scalability in this dataset, as doubling processors nearly

halves the computation speed. The MPI code here takes 4 timesas long to compute as the code for

the 128x128 matrix, which is consistent with the O(n2) complexity of this problem.

Shared Memory Transform 512x512 Figure 19 shows the runtimes from transforming a512 ∗

512 matrix. The Titanium code is fast as expected, having 2x scalability, even with its limited

runtime. The MPI code likewise exhibits scaling of near 2x and 1.62x for going from 2 to 4 to 8

processes. The MPI code takes 1200, 1000, and 1050 times as long as the Titanium program to

complete. It also takes 4 times as long to compute as the 256x256 MPI code, which is consistent

52

Figure 19: SM Transform - 512x512 Matrix

-2

 0

 2

 4

 6

 8

 10

 12

 2 3 4 5 6 7 8

T
im

e
(s

ec
on

ds
)

Processors

MPI
Titanium

Figure 20: SM Transform - 1024x1024 Matrix

-10

 0

 10

 20

 30

 40

 50

 2 3 4 5 6 7 8

T
im

e
(s

ec
on

ds
)

Processors

MPI
Titanium

with the O(n2) complexity.

Shared Memory Transform 1024x1024 Figure 20 shows the runtime for a1024 ∗ 1024 matrix.

The Titanium code is between 1400 times and 1200 times as fastas the MPI code, and exhibits 2x

scaling as processes increase. The MPI code also exhibits very good scaling near 2x as processes

are doubled. The scaling between 2 and 4 processes is actually 2.16x on MPI from 2 to 4 processes.

The MPI code approximately takes 4 times as long to compute asthe 256x256 MPI code, which is

consistent with the O(n2) complexity.

Figure 21: SM Transform - 2048x2048 Matrix

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

 2 3 4 5 6 7 8

T
im

e
(s

ec
on

ds
)

Processors

MPI
Titanium

53

Shared Memory Transform 2048x2048 Figure 21 shows the largest matrix size transposed,

2048x2048. Following all other matrix sizes, the Titanium code was extremely fast- between .13

and .03 seconds. The scaling was also almost perfectly 2x as processes increased.

The MPI code exhibited a 2.27x speedup from 2 to 4 cores. From 4to cores, it had a 1.7x

speedup. The MPI code was in general 1240 times to 1000 times times slower than the Titanium

code. The MPI code also displayed consistent O(n2) complexity, taking approximately 4 times as

long as the 1024x1024 code to compute.

Shared Memory Transform Notes The GAS ability of the Titanium code is fully exploited on

shared memory, where the global references in this code are simply converted to local references.

These references make the matrix transform code trivially fast, as data communication is optimized

to be local. The MPI code cannot recognize this though. The standard is not designed to, and

therefore all interprocess communication is explicit. Thematrix must be decomposed between

processes and explicitly transformed through back and forth communication, even though matrix

copies reside in local memory reach of other. This is unfortunately a limitation of the MPI standard,

and an advantage of the Titanium compiler.

The shared memory transform code demonstrates the ability of the Titanium compiler to opti-

mize communication when jobs are run on shared memory. This makes this communication inten-

sive benchmark run extremely fast on Titanium when global references are used. Unfortunately,

remote calls take much longer in distributed memory.

4.2.5 Distributed Memory Transform Results

The Titanium and MPI code port seamlessly to distributed memory. The relative performances

between the two kernels across matrix sizes and number of processes is now completely different.

Whereas the Titanium compiler cleverly realized that the shared memory code could make global

references local, distributed memory affords no such luxury. Global references to the global array

are now truly global in Titanium. This therefore does a true distributed-communication test be-

54

tween Titanium and MPI. There are 5 graphs presented displayed the runtimes between the two

kernels for the different matrix sizes, Figures 22 through 25.

Figure 22: DM Transform - 128x128 Matrix

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 4 6 8 10 12 14 16

T
im

e
(s

ec
on

ds
)

Processors

Titanium (DM)
MPI (DM)

Figure 23: DM Transform - 256x256 Matrix

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12 14 16

T
im

e
(s

ec
on

ds
)

Processors

Titanium (DM)
MPI (DM)

DM Transform - 128x128 Matrix The runtimes for a128 ∗ 128 matrix are shown in Figure 22.

The Titanium run codes are very different looking than they were on the equivalent shared memory

job, even though the code is the same. The Titanium code is nowapproximately 2.2 times slower

than the MPI code across cores, and exhibits decreasing scaling, 1.6x to 1.3x to 1.1x from 2 to 4,

to 8, to 16 processes.

The MPI code exhibits moderately better scaling as processes double, 1.8x scaling from 2 to4,

1.6x from 4 to 8 and 1.3x from 8 to 16. This is because the MPI code partitions the array to

pairwise communicating processes. The processes only communicate with each other to transpose

their submatrices. The Titanium processes do accesses on the global array in the root process’s

memory region. There is contention for bus access here, and as processes increase, this affects

scaling negatively.

DM Transform - 256x256 Matrix Figure 23 displays the runtimes for matrix transform of size

256x256. Like the128x128 transform, the MPI code exhibits better runtime. It’s scalability is also

slightly better than Titanium as processes double, 1.75x to1.56x, 1.57x to 1.3x, and 1.42 to 1.18x

55

Figure 24: DM Transform - 512x512 Matrix

 0

 10

 20

 30

 40

 50

 2 4 6 8 10 12 14 16

T
im

e
(s

ec
on

ds
)

Processors

Titanium (DM)
MPI (DM)

Figure 25: DM Transform - 1024x1024 Matrix

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 2 4 6 8 10 12 14 16

T
im

e
(s

ec
on

ds
)

Processors

Titanium (DM)
MPI (DM)

as processors go from 2 to 16. The MPI code is between 2.31 and 3.78 times as fast as the Titanium

code, as more processors are added this increases slightly due to Titanium’s lower scalability. Both

codes justify the O(n2) complexity of this problem by taking approximately 4 timesas long to

solve as they did for the 128x128 matrix.

DM Transform - 512x512 Matrix Figure 24 shows the transform timings for the512 ∗ 512

matrix. The Titanium code shows scaling of 1.56x, 1.40 times, and 1.11x between core sets, and

the MPI code scaling of 1.65x, 1.72x, and 1.47x. The Titaniumis between 2.35 and 4.1 times

as slow as the MPI code- this increases as cores go up. Both theMPI and Titanium code take

approximately 4 times as long to compute as they did for the 256x256 matrix.

DM Transform 1024x1024 Matrix Figure 24 shows the runtimes for the the1024∗1024 matrix.

The trends represented by all previous sets hold true for this one as well. MPI is faster and it ex-

hibits better scalability due to its pairwise communication. The MPI code is between 2.38 and 4.1

times as fast, exhibiting scaling of 1.68x, 1.67x, and 1.46xas processes double. The Titanium code

has scaling of 1.61x, 1.34x, and 1.11x as processes double. The MPI code takes approximately 4.5

times as long to compute, and the Titanium code takes approximately 4 times as long, which are

both consistent with the O(n2) complexity.

56

Figure 26: DM Transform - 2048x2048 Matrix

 0

 100

 200

 300

 400

 500

 600

 700

 2 4 6 8 10 12 14 16

T
im

e
(s

ec
on

ds
)

Processors

Titanium (Tusk)
MPI (Tusk)

DM Transform - 2048x2048 Matrix Figure 26 shows the results for the2048 ∗ 2048 matrix.

These results are similar to those in the smaller matrix runs. Titanium had scaling of 1.6x, 1.35x,

and 1.08x as processes doubled. The MPI code had scaling of 1.68x, 1.73x, and 1.45x as processes

doubled. The MPI code was 2.37x to 4.1x times as fast as the Titanium code. Both the Titanium and

MPI code maintained the O(n2) complexity, each taking 4 times as long to solve as the 1024x1024

matrix.

DM Transform Notes The transform code behaved much differently on distributedmemory than

shared memory. One interesting thing to note is that the MPI code consistently scales better than

the Titanium code, especially when processes jump from 8 to 16. The Titanium code scales very

poorly at this size. This is because the global array in Titanium resides solely in a single memory

region. All processes that are not in this region (half the processes, which reside remotely on the

other node) require remote references over the network to get and put data in the matrix. This

slows down the scaling, as half the cores are attempting to access a single region of memory.

The MPI code uses pairwise communication between decomposed submatrices. The back and

forth communication scales consistently as processes are doubled. Therefore, MPI code as a whole

scales better than the Titanium code.

One solution to this Titanium problem is using a truly distributed array that is still global [31].

57

A matrix defined as thus would be distributed between regionsat startup, but still viewed as local.

The Titanium code was not optimized to do this, however, and worse scaling is the result.

4.2.6 Tusk/Tusk-Sun Transform Results

This section is similar to the previous comparison between the Tusk and Tusk-Sun Multiply (4.2.3).

In these graphs, there are six plots. Three are for Titanium,and three are for MPI. Each code is

run on distributed memory, shared memory on Tusk, and sharedmemory on Tusk-Sun. They are

notated as T-Ti/MPI, TS-Ti/MPI, and DM-Ti/MPI.

Figure 27: Tusk/Tusk-Sun Comparison Runs -
Transform of length 256x256

-2

 0

 2

 4

 6

 8

 10

 2 3 4 5 6 7 8

T
im

e
(s

ec
on

ds
)

Processors

Titanium (DM)
Titanium (Tusk-Sun)

Titanium (Tusk)
MPI (DM)

MPI (Tusk-Sun)
MPI (Tusk)

Figure 28: Tusk/Tusk-Sun Comparison Runs -
Transform of length 1024x1024

-10

 0

 10

 20

 30

 40

 50

 60

 70

 2 3 4 5 6 7 8

T
im

e
(s

ec
on

ds
)

Processors

Titanium (DM)
Titanium (Tusk-Sun)

Titanium (Tusk)
MPI (DM)

MPI (Tusk-Sun)
MPI (Tusk)

Tusk/Tusk-Sun Transform 256x256 Figure 27 shows a number of different runs. The two Tita-

nium codes that run on Tusk and Tusk-Sun in shared memory are both extremely fast due to use of

local loads and stores. The number of total accesses made is so small that the runtimes between the

T-Ti and TS-Ti codes are negligible. On distributed memory,the DM-Ti code is much slower than

either shared memory code, taking approximately 10 secondsto compute the matrix transform,

compared to less than .003 seconds for the shared memory code.

The T-MPI, TS-MPI, and DM-MPI code all exhibit similar scaling. The performance jumps

observed, where T-MPI is faster than TS-MPI, which is fasterthan DM-MPI, was first observed

58

on the earlier comparison of multiply comparisons between Tusk and Tusk-Sun. See Figures 15

and 16 for those runtimes. These differences happen becausethe T-MPI code is processed the

fastest. The TS-MPI code requires at least the lowest commonprocessor speed due to agather

call collecting data at the end of program completion, and then requires extra speed for remote

message passing over the network, as opposed to across a single memory.

Tusk/Tusk-Sun Transform 1024x1024 Figure 28 shows similar scaling and performance trends

to the transform with matrix size=256 ∗ 256. The DM-Ti code is not seen in this graph- with 8

processors its runtime is 72 seconds. The MPI code still exhibits the similar scaling as seen in

Figures 27, 15, and 16, with distributed memory being the slowest.

4.2.7 Performance Results Notes

The performance results across differing platforms, matrix sizes, number of cores, and on shared

and distributed memory demonstrate some important computational differences between the Tita-

nium and MPI code.

First, the programming model of Titanium is a double-edged sword. The ability to use GAS

is an advantage on shared memory runs. A “naive” GAS abstracted Titanium multiply kernel is

shown to perform better on shared memory than an optimized “real” application- one that would

normally be written following a parallel decomposition model. Additionally, by using the GAS

for a matrix transform in shared memory, communication is shown to consistently be almost 1000

times as fast as equivalent MPI code. The Titanium code also shows better scaling for shared

memory jobs, getting near 2 times speedup as processes double.

Despite these observations, the Titanium code usually performs more slowly than the MPI

though, for shared memory multiply jobs, except in the2048 ∗ 2048 multiply using 16 processes.

This is in our opinion a compiler problem, one that could be fixed with a faster C compiler, as

opposed to the gcc compiler used by the Titanium compiler. Further research would be required to

validate or refute this.

59

When the Titanium and MPI code is compiled and run on distributed memory, the naive Tita-

nium code immediately shows problems with computation efficiency. The problem of the global

address space is exposed, and the programming style is exposed as flawed for distributed imple-

mentation. One set of distributed runs is done with the naivecode. This is sufficient to demonstrate

the inefficiency of this model.

By slightly modifying the code to do data copying, the Titanium multiply performs at a com-

parable runtime level to the MPI code. The distributed runs still slower than the MPI code, but it

exhibits the expected scalability of a parallel application.

Once again, this slow performance is hypothesized to be due to the use of unoptimized backend

compiler work. The MPI backend was used instead of the GASNetlayer recommended by Tita-

nium documentation and research. Using a different backendcould improve parallel performance

significantly for all distributed runs, but this must be studied in future work.

For distributed memory transform runs, the Titanium code exhibits worse scaling as the number

of processes increases. At 16 cores, scalability is very low. The MPI code scales much better, due

to its pairwise communication scheme. The Titanium code is slowed by network contention with

all remote processes accessing a single region of memory. Bydistributing the array among memory

regions, it is expected that this problem will be resolved, and the Titanium code will have better

scalability.

4.3 Productivity Results

This section presents results from programmability testing done on the programs. We first show the

lines of code (LoC), number of characters (NoC), and characters per line (CpL) for each applica-

tion. Then the efficiency equations are applied to get the sequential-to-parallel conversion effort of

the MPI and Titanium code. The parallel conceptual complexity is scored for each language, and

notes on code development time are given. At the end of this section the results of each benchmark

are summed.

60

4.3.1 Lines of Code and Number of Characters

The lines of code, number of characters, and average number of characters per line are presented

here. In both programs, MPI has the most LoC and NoC, by a wide margin. Titanium and Fortress

both use fewer lines and characters, even though Titanium has relatively high CpL. One reason

that Titanium has Java as a base language is because Java is a compact language [31], and its

conciseness is illustrated against C code here.

Figure 29: LoC Multiply

 0

 20

 40

 60

 80

 100

 120

Seq C MPI Java Ti-Real Ti-Naive Fortress

Lo
C 62

102

29

61

43
39

Figure 30: NoC Multiply

 0

 500

 1000

 1500

 2000

Seq C MPI Java Ti-Real Ti-Naive Fortress

N
oC

1142

1864

577

1222

895

575

Figure 31: CpL Multiply

 0

 5

 10

 15

 20

 25

Seq C MPI Java Ti-Real Ti-Naive Fortress
C

pL

18.42 18.27
19.90 20.03

20.82

14.74

Figures 29, 30, and 31 show LoC, NoC, and CpL results for the multiply code. The Titanium

code has less LoC than the sequential C code, and much less than the MPI code. The Titanium

code LoC is double that of the sequential Java code. Both parallel codes require a good deal of

extra lines, with MPI code using 40 additional lines of code,and Ti-Real code an additional 32

LoC. The Ti-Naive code only added 14 LoC from the sequential Java code, and exhibited similar

performance to the Ti-Real on shared memory testing.

Figures 32, 33, and 34 are the tables for the Transform code. The Titanium code required 16

additional LoC, and used 317 NoC. The MPI code more than doubles the sequential C LoC, and

uses an additional 742 NoC.

The MPI code in both programs exhibited a high increase in LoCand NoC. The CpL actually

decreased in both programs, however. This is because of the high number offor loops used in

coding. Since the coding standards require brackets to reside on their own line, each for loop uses

2 brackets that each reside on their own line. This increasesLoC, and lowers CpL as a line only

61

Figure 32: LoC Transform

 0

 20

 40

 60

 80

 100

 120

Seq C MPI Java Ti-Real Fortress

Lo
C

53

115

23

39 38

Figure 33: NoC Transform

 0

 500

 1000

 1500

 2000

Seq C MPI Java Ti-Real Fortress
N

oC 932

1674

407

724

511

Figure 34: CpL Transform

 0

 5

 10

 15

 20

 25

Seq C MPI Java Ti-Real Fortress

C
pL

17.59

14.55

17.70
18.56

13.45

has 1 character on it. The same standard applies to Titanium,but through use offoreach calls,

Titanium cuts down on the number of stated loops, and uses less 1 character, bracket lines. In fact,

the use of lessfor loops actually helps make the Titanium code have a higher CpLthan the Java

code in all programs.

Fortress overall has the lowest NoC. As Fortress desires to emulate mathematical notation, it

has concisely expressed syntax. NoC was lowered through useof semantics like concise for loops

and being able to print by simply using aprint command, as opposed toSystem.out.print that

Java and Titanium use. The semantics forfor loops are also more concise than those of C or

Java/Titanium.

4.3.2 Sequential-to-Parallel Conversion Effort

Sequential-to-parallel conversion displays the effort required to code from a sequential base into

parallel. This is communicated through two equations that measure the difference in LoC and NoC

between the sequential and parallel versions of code. The evaluated conversion efforts are shown

in Table 2.

Table 2: Percent Conversion Efficiencies
Multiply Transform

MPI Ti naive Ti-Real MPI Ti
LoC % Effort 64.5% 48.28% 110.34% 116.98% 43.48%
NoC % Effort 63.22% 55.11% 111.79% 79.61% 66.89%

62

The results from Figure 2 show that MPI’s transform code requires the most effort into writing

new lines of code. The Titanium multiply code requires the most effort in NoC. This makes sense

as Titanium utilizes some clever communicationless boundschecking to perform copy operations

between processors. This overhead code is the biggest causeof the high percentages for Titanium.

See lines 42-53 in Appendix A, Titanium Matrix Multiply, to see the specific code.

Although less LoC were added to Titanium code in both multiply and transform code from

Java, the effort percentage is still higher. This is becausethe base Java code is half of what the base

C code is.

4.3.3 Parallel Conceptual Complexity

In this section, we apply the complexity metrics defined in section 3.2 to the benchmark code, and

develop a ”score” for each benchmark and language. This benchmark measures the complexity

of certain constructs by evaluating their parameters. The tables below break down the parallel

conceptual complexity of the codes and give scores for each code. The tables are divided into

Work Distributors (WD), Data Distributors (DD), Communicators, Synchronization and Consis-

tency (SC) calls, and other miscellaneous calls.

Table 3: Titanium Naive Matrix Multiply Parallel Complexity
WD DD Comm SC Misc Sub To-

tals
Score

Params 13 6 19
Calls 6 3 1 2 12 40

R/S 4 3 2 9
Notes : Score comes from 2 if, 1 foreach, 3 for, 3 broadcast, 1 barrier, 1 Ti.thisProc, and
1 Ti.numProcs statements.

The basic, “naive” Titanium code has a score of 40, as shown inTable 3. By slightly altering

the code to distribute and collect data, the score goes up 48,as shown in Table 4. The modified

code uses 3 copy operations to copy data from 2 global arrays into local arrays, and then copy a

local array back to part of a global array. This only requires6 extra parameters, 2 for each copy

operation, and keeps the complexity scores very similar.

63

Table 4: Titanium Real Matrix Multiply Parallel Complexity
WD DD Comm SC Misc Sub To-

tals
Score

Params 9 3 12 24
Calls 5 3 6 1 2 17 48

R/S 2 3 2 7
Notes : Score comes from 2 if, 2 foreach, 1 for, 3 local, 3 broadcast, 3 copy, 1 barrier, 1
Ti.thisProc, and 1 Ti.numProcs statements.

Table 5: Fortress Matrix Multiply Parallel Complexity
WD DD Comm SC Misc Sub To-

tals
Score

Params 15 15
Calls 5 1 6 21

R/S
Notes : Score comes 5 for loops and 1 atomic..do statement.

Table 5 shows that Fortress has a score of 21. The Fortress code only uses a set of 3 nested

for loops to perform its matrix multiply (the other 2 are for populating the array). Anatomic..do

statement is used to ensure modification consistency when a data point is modified. This keeps

Fortress’s parallel conceptual complexity extremely low.Besidesthe atomic..dostatement, this

code looks almost exactly like sequential code. This is veryimportant for Fortress- the languages

wants parallelism implicit and sequentialism must be explicitly requested. Therefore its parallel

complexity must be low. This is achieved in this code.

Table 6: MPI Matrix Multiply Parallel Complexity
WD DD Comm SC Misc Sub To-

tals
Score

Params 24 7 21 1 6 59
Calls 10 5 3 1 5 24 91

R/S 3 3 2 8
Notes : Score comes from 3 if, 7 for, 2 malloc, 1 memset, 2 free,1 MPI Scatter,
1 MPI Bcast, 1 MPIGather, 1 MPIBarrier, 1 include “mpi.h”, 1 MPIInit, 1
MPI Commrank, 1 MPICommsize, and 1 MPIFinalize statement.

The MPI multiply code has a high complexity score- 91, almostdouble the score for Ti-Real

64

code, and triples the Ti-Naive score. Even when the Ti-Real code does array copying similar to the

MPI code, the gap is still large. This means that coding parallel operations to do a matrix multiply

in MPI is much more complex than in Titanium.

Table 7: Titanium Matrix Transform Parallel Complexity
WD DD Comm SC Misc Sub To-

tals
Score

Params 10 3 13
Calls 5 1 1 2 9 29

R/S 4 1 2 7
Notes : Score comes 2 if, 1 foreach, 2 for, 1 broadcast, 1 barrier, 1 Ti.thisProc, and 1
Ti.numProcs statement.

The Titanium transform code is 29. The two notable parallel calls here are abroadcast and

barrier call, used to point processes to the global array, and to ensure that all computation has

finished at the end of the code. The transform code then uses the GAS provided to do implicit

communication. This keeps its score low.

Table 8: Fortress Matrix Transform Parallel Complexity
WD DD Comm SC Misc Sub To-

tals
Score

Params 12 12
Calls 4 1 5 17

R/S
Notes : Score comes 4 for loops and 1 atomic..do statement.

Table 8 shows the complexity score for the Fortress transform code is 17. The transform code

is very similar to the Fortress multiply code, requiring 1 lessfor loop than the multiply code. It

therefore has a similar score to the multiply code.

The MPI code has a score of 113 for the more communication intensive matrix transform code.

The Titanium score is barely more than 1/4 of the MPI transform score.

Part of this is due to the heavy use offor loops in the MPI code. Titanium’s built-inforeach

loop that eases bounds checking. Instead of nestingfor loops, which are expensive in LoC, NoC,

65

Table 9: MPI Matrix Transform Parallel Complexity
WD DD Comm SC Misc Sub To-

tals
Score

Params 23 7 42 6 78
Calls 9 5 6 5 25 113

R/S 2 6 2 10
Notes : Score comes 2 if, 7 for, 2 malloc, 1 memset, 2 free, 1 MPIScatter, 2 MPISend,
2 MPI Recv, 1 MPIGather, 1 include “mpi.h”, 1 MPIInit, 1 MPI Commrank, 1
MPI Commsize, and 1 MPIFinalize statement.

and parameters, aforeach makes boundary checking handled by the compiler, and makes code

shorter and easier to read.

Another advantage for Titanium is that its function calls usually use less variables than similar

MPI code. MPI communicators used in these programs have between five and eight parameters in

every construct. The most that Titanium has in a communicator is two.

One more thing to note is that by when the naive Titanium code is modified to do data copying,

it closely resembles the MPI code’s layout and structure. This is meant in the way that it explicitly

partitions and scatters theA matrix among processes, so each one has a smallerAlocal matrix. In

this sense, the Titanium code strays completely away from its GAS abilities, and behaves in the

same vein as a message passing language by copying parts of data structures, like the MPI code.

4.4 Code Development Time

As stated in the Methodology section, no strict timers were kept to record code development time.

However, this section will lay out three debugging problemsthat each required a considerable

amount of time to overcome. Each problem led to multiple hours of debugging, and required

outside assistance for help in a solution. There was one notable problem for each language.

4.4.1 Implementations Problems

This section will discuss some notable problems that each required a considerable amount of time

to overcome. Each problem led to multiple hours of debugging, and required outside assistance for

66

help in a solution. There was one notable problem for each language.

MPI : TheMPI Scatter call required numerous hours of debugging, profiling, and testing. The

problem encountered withMPI Scatter was that it only allocates a contiguous chunk of memory,

and the C array was not allocated contiguously. This required a complete rewrite of the array

allocation method, after other debugging attempts had failed.

Titanium : The broadcast A from x call in Titanium takes the pointer A in every process

and points it toward the A located in process x. This is a common source of performance faults

because all references to A are remote. If A is a pointer to an array located in process x’s region,

then all array accesses are remote calls as well. This is the problem that the naive Titanium code

has when running on distributed memory. This is a difficult todebug problem because it is still

a semantically correct way to program, and still maps well toshared memory. There has been

Titanium based research into unintentionally referencingglobal pointers [99, 67].

Fortress : The biggest problem with Fortress right now is that only a tiny core of the language is

implemented, and a large portion of the language specification does not work. This is said to have

changed with the release of Fortress version 1.0 on April 1st, 2008. The lack of available support

and reference material for Fortress currently in the community makes for learning a language

especially difficult. One particular problem that this workencountered with Fortress is its current

inability to cast strings to integers from a command line argument. This is hopefully corrected in

the new release.

4.4.2 Productivity Notes

Titanium and Fortress generally have much better scores in complexity than MPI. The LoC and

NoC for these languages is also much lower than MPI. TitaniumCpL is generally high, and it has

a high score for converting the Java multiply code to a “real”Titanium application. The low scores

in parallel complexity heavily favor Titanium over MPI, though. All three programs experienced

67

some sort of implementation difficulty that requires a workaround, so it can be concluded that

development in all three languages can still lead to required debugging. The overall parallel com-

plexity scores, as well as the far lower LoC and NoC, all show that Titanium is an easier parallel

model in which to program.

4.5 Holistic Evaluation

Reviewing the performance trends here, it is notable that both MPI and Titanium can scale in

widely different ways depending on implementation and reliance on GAS programming and global

variables. Titanium code that relies on GAS in shared memoryis actually optimized code, but in

distributed memory this code is hurt by the global references.

For distributed matrices, Titanium usually exhibits better scalability for the multiply code,

and MPI for the transform code. However, for all distributedruns, MPI is shown to give better

performance using this system setup. Therefore, the performance edge is given to MPI, as it

usually has faster runtimes, especially for distributed memory.

For productivity measurements such as LoC, conversion effort, and conceptual complexity, Ti-

tanium is consistently better than MPI (except for the conversion efficiency of the refined Titanium

multiply code). This is especially notable in the parallel conceptual complexity metrics, where

MPI is 2-3 times as complex as Titanium. Many people have saidthat MPI is a complex way to

perform parallel computation, and these benchmarks quantify these statements. Therefore, Tita-

nium is determined to be more usable and programmable than MPI, as it receives generally better

productivity scores.

It should be noted that Fortress was not evaluated to a final score. It is merely presented in some

productivity results. Because Fortress is not a complete standard yet, it is impossible to quantify

productivity scores on it. However, implementing some basic metrics on Fortress show that even

with only a small subset of the language working, good programmability looks promising. Future

work on the language should provide more concrete analysis of both performance and productivity

abilities of the language, and provide a better holistic characterization of the language.

68

5 Conclusions and Future Work

This paper performs research on three parallel programmingmodels, two languages and one stan-

dard. It gives a history of HPC and parallel computing, and gives a state of the description on MPI,

Titanium, and Fortress.

Titanium and Fortress are parallel languages, and MPI is themessage passing standard for

HPC. Titanium and MPI use an SPMD style of parallelism by running statically created threads

in parallel and communicating by sharing or copying data. Fortress is designed to be implicitly

parallel. Currently this is shown throughfor loops andtuple operations.

Titanium threads can communicate through a global address space, partitioned among pro-

cesses, or may copy parts of data structures between memory regions. By using a GAS, Titanium

has a shared-memory illusion of programming, where a globalvariable may be seen by all pro-

cesses. Titanium is a PGAS language though. Each memory region has local memories as opposed

to the global one. Data may be copied or located in local memory. This can have performance ad-

vantages in distributed memory.

Two important HPC problems were coded, a matrix multiply anda matrix transform. The

multiply stresses computation, and the transform communication.

It is shown that programming a “naive” Titanium multiply kernel using only GAS program-

ming is faster than a refined “real” implementation of the code on a shared memory machine. In

distributed memory, using “naive” GAS-only programming leads to intense performance degra-

dation. For large and complex programs that implement both shared data structures and copying,

special care must be taken to ensure that GAS references to variables are not done at such a rate

that they impede performance in the way that the multiply kernel did. Debugging global variables

can be extremely difficult, and further research has been done on this [99], because a semantically

correct program with undesired global accesses is difficultto spot. By using the “real” Titanium

kernel, the multiply kernel performs well and shows reasonable scaling on distributed memory.

The Titanium transform kernel exhibits less scalability than the MPI transform kernel as cores

increase in distributed memory. This is because the MPI codecommunicates in a pair-wise way

69

over the network, and the Titanium code communicates with the data structure that was in only

one process region. The same code in shared memory averages about 1000 times the speed of the

MPI code, due to its compiler optimization. Global accessesare changed to local ones.

Titanium is usually slower than MPI in most runs, except for the shared memory transforms.

It is likely that a better compiler build will increase Titanium performance, but further work needs

to be done. It is possible that using different build optionswith the Titanium compiler, such as the

Intel C compiler, or using the GASNet messaging layer, can bring Titanium’s runtimes closer to

or even below MPI’s. It has been shown that one-sided communication paradigms are faster than

two-way MPI [66], but to do so, they must make use of “smart” data partitioning and locality, as

opposed to a “naive,” purely GAS-based approach.

It is also reasonable to scale the programs to larger problems sets to further test scalability.

Titanium’s distributed memory scalability is close to MPI’s, with both programs exhibiting slightly

less scalability as the number of processes increases from 8to 16 cores. Tusk and Tusk-Sun only

comprise 16 cores. We do not scale beyond that.

In regards to productivity testing, it is shown that Titanium is more programmable and produc-

tive than MPI, and that Fortress shows great promise as a productivity language. The current state

of Fortress cripples full productivity and performance testing. Future work can glean more about

these characteristics.

70

6 Appendix A : Program Code

6.1 Fortress Code for Matrix Multiplication
1 component mm
2 export Executable
3
4 make_matrix(m:ZZ32, n:ZZ32): Array[\RR64, (ZZ32,ZZ32) \] =
5 array[\RR64\](m,n)
6
7 (*
8 print_matrix(rows:ZZ32, cols:ZZ32, mat:Array[\RR64, (ZZ32,ZZ32)\]):() = do
9 println "printing"
10 for i <- seq(0#rows)
11 do
12 for j <- seq(0#cols)
13 do
14 print mat[i,j] " "
15 end
16 println " "
17 end
18 end
19 *)
20
21 run(args:String...):()=do
22 N :ZZ32 = 256
23 tt:RR64 := (t2 - t1) / 10ˆ6
24
25 println "Creating matrices with sides of length " N
26 A = make_matrix(N,N) (* create matrices *)
27 B = make_matrix(N,N)
28 C = make_matrix(N,N)
29
30 for i <- 0#N-1
31 do (* Populate matrices *)
32 for j <- 0#N-1
33 do
34 A[i,j] := i+j
35 B[i,j] := i+j
36 C[i,j] := 0
37 end
38 end
39
40 println "Doing matrix multiply" (* Start timing *)
41 t1 := nanoTime()
42 for i<- 0#N-1 (* Do matrix multiplication *)
43 do
44 for j <- 0#N-1
45 do
46 for k <- 0#N-1
47 do
48 atomic
49 do
50 C[i,j] := C[i,j] + A[i,k] B[k,j]
51 end
52 end
53 end
54 end
55 t2 := nanoTime() (* Stop timing *)
56 tt := (t2 - t1) / 10ˆ6
57 println "Time to complete matrix multiplication = " (tt/1 000.0) " seconds"
58 end
59 end

71

6.2 Fortress Code for Matrix Transform
1 component transform
2 export Executable
3
4 make_matrix(m:ZZ32, n:ZZ32): Array[\RR64, (ZZ32,ZZ32) \] =
5 array[\RR64\](m,n)
6
7 (*
8 print_matrix(rows:ZZ32, cols:ZZ32, mat:Array[\RR64, (ZZ32,ZZ32)\]):() = do
9 println "printing"
10 for i <- seq(0#rows) do
11 for j <- seq(0#cols) do
12 print mat[i,j] " "
13 end
14 println " "
15 end
16 end
17 *)
18
19 run(args:String...):()=do
20
21 N :ZZ32 = 512
22
23 println "Creating matrix with sides of length " N
24 A = make_matrix(N,N)
25
26 for i <- 0#N-1
27 do (* Populate matrices *)
28 for j <- 0#N-1
29 do
30 A[i,j] := (N i)+j
31 end
32 end
33 println "Doing matrix transform"
34 t1 := nanoTime()
35 for i<- 0#N-1
36 do (* Do rotate *)
37 for j <- 0#N-1
38 do
39 atomic
40 do
41 temp:ZZ32:=A[i,j]
42 A[N-1-i,N-j-1] = A[i,j]
43 A[i,j] = temp
44 end
45 end
46 end
47 t2 := nanoTime()
48 tt := (t2 - t1) / 10ˆ6
49
50 println "Time to complete matrix multiplication = " (tt/1 000.0) " seconds"
51
52 end
53 end

6.3 Sequential Java Code for Matrix Multiplication
1 public class mm
2 {
3 public static void main(String[] args)
4 {
5 // variables
6 int N = 512; // matrices are size NxN
7 double[][] A; // instantiate matrices
8 double[][] B;

72

9 double[][] C;
10
11 System.out.println("Creating matrices of size "+N);
12 A = new double[N][N];
13 B = new double[N][N];
14 C = new double[N][N];
15
16 for(int i=0;i<N;i++)
17 for(int j=0;j<N;j++)
18 {
19 A[i][j]=(i+j); // populate A
20 B[i][j]=(i+j); // populate B
21 C[i][j]=0.0; // zero C
22 }
23
24 System.out.println("Doing matrix multiply.");
25 double t1 = System.currentTimeMillis(); // start timing
26 for(int i=0;i<N;i++) // do matrix multiply
27 for(int k=0;k<N;k++)
28 for(int j=0;j<N;j++)
29 C[i][j] += A[i][k] * B[k][j];
30 double t2 = System.currentTimeMillis(); // stop timing
31
32 System.out.println("Time to complete matrix multiplic ation = "+(t2-t1)/1000);
33 }
34 }

6.4 Sequential Java Code for Matrix Transform

1 class transform 2 3 public static void main(String[] args)4 5 // variables 6 int N; 7 double[][] a; 8 N = 512; 9 a = new double[N][N]; // our matrix

10 11 for(int i=0;i¡N;i++) 12 for(int j=0;j¡N;j++) 13 a[i][j]=i*N+j; // populate A 14 15 double t1 = System.currentTimeMillis(); // start timing 16

for(int i=0;i¡N/2;i++) 17 for(int j=0;j¡N;j++) 18 19 double temp = a[i][j]; // switch 2 points 20 a[i][j] = a[N-1-i][N-1-j]; 21 a[N-1-i][N-1-j] = temp;

22 23 double t2 = System.currentTimeMillis(); // stop timing 24 /* 25 for(int i=0;i¡N;i++) 26 27 for(int j=0;j¡N;j++) 28System.out.print(a[i][j]+”

”); 29 System.out.println(””); 30 31 */ 32 System.out.println(”Time to complete matrix rotate = ”+(t2-t1)/1000); 33 34

6.5 Sequential C Code for Matrix Multiply
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4 #include <time.h>
5 //void print_matrix(int, int, double **);
6 double ** allocate_matrix(int,int);
7 void deallocate_matrix(double ** array, int row_dim);
8
9 main(int argc, char * argv[])
10 {
11 // variables
12 double ** A; // our 3 matrices
13 double ** B;
14 double ** C;
15 int N = 512; // matrices are NxN
16 int i; // iterator values
17 int j;
18 int k;
19 clock_t t1; // timing variables
20 clock_t t2;
21 float ratio = 1./CLOCKS_PER_SEC;
22
23 printf("Creating matrices of size %d\n",N);
24 A = allocate_matrix(N,N); // allocate matrices
25 B = allocate_matrix(N,N);

73

26 C = allocate_matrix(N,N);
27 for(i = 0; i < N; i++)
28 for(j = 0; j < N; j++)
29 {
30 A[i][j] = (i+j); // populate A
31 B[i][j] = (i+j); // populate B
32 C[i][j] = 0.0; // zero C
33 }
34
35 printf("Doing matrix multiply\n");
36 t1 = clock(); // start timing
37 for(i = 0; i < N; i++) // do matrix multiply
38 for(j = 0; j < N; j++)
39 for(k = 0; k < N; k++)
40 C[i][j] += A[i][k] * B[k][j];
41 t2 = clock(); // stop timing
42
43 printf("Time to complete matrix multiplication

= %f seconds\n",ratio * (long)t1 + ratio * (long)t2);
44
45 deallocate_matrix(A,N); // deallocate matrices
46 deallocate_matrix(B,N);
47 deallocate_matrix(C,N);
48 }
49 // common C methods
50 double ** allocate_matrix(int rows, int cols)
51 {
52 int i;
53 double ** mat;
54 double * mat2;
55
56 mat2= (double *)malloc(rows * cols * sizeof(double));
57 memset(mat2,0,rows * cols * sizeof(double));
58 mat=(double **)malloc(rows * sizeof(double *));
59 for(i=0;i<rows;i++){
60 mat[i]=&(mat2[i * cols]);
61 }
62 return mat;
63 }
64
65 void deallocate_matrix(double ** array, int row_dim)
66 {
67 int i;
68 for(i=1; i<row_dim; i++)
69 array[i]=NULL;
70 free(array[0]);
71 free(array);
72 }
73 / *
74 // pretty print a matrix
75 void print_matrix(int rows, int cols, double ** mat)
76 {
77 int i;
78 int j;
79
80 for(i=0;i<rows;i++)
81 {
82 printf("%g",mat[i][0]);
83 for(j=1;j<cols;j++)
84 {
85 printf(",%g ",mat[i][j]);
86 }
87 printf("\n");
88 }
89 }
90 * /
91
92

74

6.6 Sequential C Code for Matrix Transform
1 #include <stdio.h>
2 #include <time.h>
3 #include <stdlib.h>
4 #include <string.h>
5
6 //void print_matrix(int, int, double **);
7 double ** allocate_matrix(int,int);
8 void deallocate_matrix(double ** , int);
9
10 main(int argc, char * argv[])
11 {
12 // variables
13 int N = 8; // matrix is NxN size
14 double ** a;
15 int i; // iterator values
16 int j;
17 double temp;
18 clock_t t1;
19 clock_t t2;
20 float ratio = 1.0/CLOCKS_PER_SEC;
21
22 a = allocate_matrix(N,N); // allocate matrix
23
24 for(i = 0; i < N; i++) // populate matrix
25 for(j = 0; j < N; j++)
26 a[i][j] = i * N+j;
27
28 t1 = clock(); // start timing
29 for(i = 0; i < N/2; i++) // do transform
30 for(j = 0; j < N; j++)
31 {
32 temp = a[i][j];
33 a[i][j] = a[N-1-i][N-1-j];
34 a[N-1-i][N-1-j] = temp;
35 }
36 t2 = clock(); // stop timing
37
38 printf("Time to do transform = %f seconds\n",ratio * (long)t1 + ratio * (long)t2);
39 deallocate_matrix(a,N);
40 }
41
42 double ** allocate_matrix(int rows, int cols)
43 {
44 int i;
45 double ** mat;
46 double * mat2;
47 mat2= (double *)malloc(rows * cols * sizeof(double));
48 memset(mat2,0,rows * cols * sizeof(double));
49 mat=(double **)malloc(rows * sizeof(double *));
50 for(i=0;i<rows;i++)
51 {
52 mat[i]=&(mat2[i * cols]);
53 }
54 return mat;
55 }
56
57 void deallocate_matrix(double ** array, int row_dim)
58 {
59 int i;
60 for(i=1; i<row_dim; i++)
61 array[i]=NULL;
62 free(array[0]);
63 free(array);
64 }
65
66 / *

75

67 void print_matrix(int rows, int cols, double ** mat)
68 {
69 int i;
70 int j;
71
72 for(i=0;i<rows;i++)
73 {
74 printf("%g",mat[i][0]);
75 for(j=1;j<cols;j++)
76 {
77 printf(",%g ",mat[i][j]);
78 }
79 printf("\n");
80 }
81 }
82 * /

6.7 “Naive” Titanium Code (Ti-Naive) for Matrix Multiply
1 public class mm_naive
2 {
3 public static void main(String[] args)
4 {
5 // variables
6 int single N; // matrices are NxN
7 int rank = Ti.thisProc(); // titanium variables
8 int size = Ti.numProcs();
9 Timer t = new Timer();
10 N = 512; // our matrix is size NxN
11 int interval = N / size; // number of rows of Alocal and Cloca l
12
13 // create multidimensional arrays
14 Point<2> l = [0, 0];
15 Point<2> h = [N, N];
16 RectDomain<2> r = [l : h];
17 double [2d] A = new double[r]; // matrices default to globa l
18 double [2d] B = new double[r];
19 double [2d] C = new double[r];
20
21 if(rank==0) // root process populates matrices
22 {
23 System.out.println("Creating matrices with sides of le ngth = "+N);
24 System.out.println(" Interval for each process = "+inte rval);
25 foreach(p in A.domain())
26 { // populate A
27 A[p] = p[1] + p[2]; // populate A
28 B[p]=p[1]+p[2]; // populate B
29 C[p]=0; // zero C
30 }
31 System.out.println("Doing parallel matrix multiply.");
32 t.start();
33 }
34
35 B = broadcast B from 0; // super inefficient... every
36 A = broadcast A from 0; // reference is a remote read..
37 C = broadcast C from 0; // not good for distributed memory
38
39 for(int i=interval * rank;i<interval * rank+interval;i++) // do multiplication
40 for(int k = 0; k < N;k++)
41 for(int j=0;j<N;j++)
42 C[i,j] += A[i,k] * B[k,j];
43
44 Ti.barrier(); // barrier ensures completion
45 if(rank==0)
46 {
47 t.stop();

76

48 System.out.println("Time to complete matrix multiplic ation
and communication = "+t.secs()+ " seconds");;

49 }
50 }
51 }

6.8 “Real” Titanium Code (Ti-Real) for Matrix Multiplicati on
1 public class mm
2 {
3 public static void main(String[] args)
4 {
5 // variables
6 int N; // matrices are NxN
7 int rank = Ti.thisProc(); // titanium variables
8 int size = Ti.numProcs();
9 Timer t = new Timer(); // timer object
10 N = 512; // our matrix is size NxN
11 int interval = N / size; // number of rows of Alocal and Cloca l
12
13 // create multidimensional arrays
14 Point<2> l = [0, 0];
15 Point<2> h = [N, N];
16 RectDomain<2> r = [l : h];
17 double [2d] A; // matrices default to global
18 double [2d] B;
19 double [2d] C;
20
21 if(rank==0) // root process populates matrices
22 {
23 System.out.println("Creating matrices with sides of le ngth = "+N);
24 System.out.println(" and local matrices with lengths of rows = "+interval);
25 A = new double[r]; // instantiate matrices
26 B = new double[r];
27 C = new double[r];
28 foreach(p in A.domain())
29 {
30 A[p] = p[1] + p[2]; // populate A
31 B[p]=(p[1]+p[2]); // populate B
32 C[p]=0; // zero C
33 }
34 System.out.println("Distributing matrices and doing m atrix multiply");
35 t.start(); // start timing
36 }
37 Ti.barrier();
38 A = broadcast A from 0; // doing this gives each process
39 B = broadcast B from 0; // a pointer to A,B,and C,so we can
40 C = broadcast C from 0; // do a copy operation
41
42 int startIndex = rank * interval; // local bounds handling,
43 int endIndex = startIndex+interval-1; // each process co pies a unique
44 Point<2> startPoint = [startIndex, 0]; // portion of A to i ts Alocal
45 Point<2> endPoint = [endIndex, N];
46 RectDomain<2> myPart = [startPoint:endPoint];
47
48 double [2d] local Alocal = new double[myPart]; // create l ocal arrays
49 double [2d] local Blocal = new double[r];
50 double [2d] local Clocal = new double[myPart];
51
52 Alocal.copy(A.restrict(myPart)); // copy A to Alocal ma trices
53 Blocal.copy(B); // copy B to Blocal matrices
54
55 foreach(p in Alocal.domain()) // do local matrix multipl ication
56 {
57 Clocal[p] = 0;
58 for(int k=0;k<N;k++)

77

59 Clocal[p] += Alocal[p[1],k] * Blocal[k,p[1]];
60 }
61
62 C.copy(Clocal); // copy Clocals to C (in proc 0)
63 Ti.barrier(); // barrier ensures all processes finish
64 if(rank==0)
65 {
66 t.stop(); // stop timing
67 System.out.println("Time to complete matrix multiplic ation

and communication = "+t.secs()+ " seconds");
68 }
69 }
70 }

6.9 Titanium Code for Matrix Transform
1 public class transform
2 {
3 public static void main(String[] args)
4 {
5 // variables
6 int N; // matrices are NxN
7 int rank = Ti.thisProc(); // titanium variables
8 int size = Ti.numProcs();
9 Timer t = new Timer(); // timer object
10 N = 2048; // our matrix is size NxN
11 int interval = N / size; // each process responsible for an
12 // interval of the matrix
13
14 Point<2> l = [0, 0]; // create matrix
15 Point<2> h = [N, N];
16 RectDomain<2> r = [l : h];
17 double [2d] a = new double[r]; // matrix defaults to global
18
19 if(rank==0) // root process populates matrix
20 {
21 System.out.println("Creating matrices with sides of le ngth = "+N);
22 System.out.println(" Interval for each process = "+inte rval);
23 foreach(p in a.domain()) // populate A
24 a[p] = p[1] + p[2];
25 System.out.println("Doing matrix transform");
26 t.start(); // start timing
27 }
28
29 a = broadcast a from 0; // point all processes to the matrix
30
31 for(int i = interval * rank/2; i <interval * rank/2+interval/2;i++) // do transform
32 for(int j=0;j<N;j++)
33 {
34 double temp = a[i,j];
35 a[i,j] = a[N-1-i,N-1-j];
36 a[N-1-i,N-1-j] = temp;
37 }
38
39 Ti.barrier(); // barrier to ensure completion
40 if(rank==0)
41 {
42 t.stop(); // stop timing
43 System.out.println("Time to tranpose = ");
44 System.out.println(t.secs());
45 }
46 }
47 }

78

6.10 MPI Code for Matrix Multiplication
1 #include <stdio.h>
2 #include <string.h>
3 #include <stdlib.h>
4 #include <mpi.h>
5 //void print_matrix(int, int, double **);
6 double ** allocate_matrix(int,int);
7 void deallocate_matrix(double ** array,int row_dim);
8
9 main(int argc,char ** argv)
10 {
11 // variables
12 double ** A; // our 3 matrices
13 double ** B;
14 double ** C;
15 int N = 1024; // matrices are NxN
16 int i; // iterator variables
17 int j;
18 int k;
19 double t1; // timing variables
20 double t2;
21 // additional MPI variables
22 double ** Alocal; // local matrices
23 double ** Clocal;
24 int rank; // process rank
25 int size; // number of processes
26 int interval; // number of rows of Alocal and Clocal
27
28 MPI_Init(&argc,&argv); // start up MPI
29 MPI_Comm_rank(MPI_COMM_WORLD,&rank); // find each pro cess’s rank
30 MPI_Comm_size(MPI_COMM_WORLD,&size); // find number o f processes
31 interval=N/size; // interval to go over
32
33 if(rank==0)
34 {
35 printf("Number of processes : %d\n",size);
36 printf("Creating matrices with sides of length %d\n",N) ;
37 printf(" and submatrices of size %d * %d\n",interval,N);
38 }
39
40 B=allocate_matrix(N,N); // every process alloctes for B , Alocal, and Clocal
41 Alocal=allocate_matrix(interval,N);
42 Clocal=allocate_matrix(interval,N);
43
44 if(rank==0) { // only process 0 allocates for A and C
45 A=allocate_matrix(N,N); // only 0 allocates matrices A a nd C
46 C=allocate_matrix(N,N);
47 for(i=0;i<N;i++)
48 for(j=0;j<N;j++)
49 {
50 A[i][j]=(i+j); // populate A
51 B[i][j]=(i+j); // populate B
52 }
53 printf("Distributing matrices and doing matrix multipl y.\n");
54 t1=MPI_Wtime(); // start timing
55 }
56 // Scatter matrix A among processes
57 // Matrix A will be distributed into
58 // local Apart matrices of size (interval)xN
59 MPI_Scatter(A[0],interval * N,MPI_DOUBLE,Alocal[0],
interval * N,MPI_DOUBLE,0,MPI_COMM_WORLD);
60
61 // Broadcast matrix B to everybody
62 // so every process has a local copy
63 MPI_Bcast(* B,N* N,MPI_DOUBLE, 0, MPI_COMM_WORLD);
64 for(i=0;i<interval;i++) // each process does its own loc al
65 for(j=0;j<N;j++) // matrix muliply

79

66 { // Alocal * B = Clocal
67 Clocal[i][j]=0.0;
68 for(k=0;k<N; k++)
69 Clocal[i][j]+=Alocal[i][k] * B[k][j];
70 }
71 // MPI_Gather takes the Clocal matrices and
72 // gathers them in C on process 0
73 MPI_Gather(Clocal[0],interval * N,MPI_DOUBLE,C[0],
interval * N,MPI_DOUBLE,0,MPI_COMM_WORLD);
74 MPI_Barrier(MPI_COMM_WORLD);
75 if(rank==0)
76 {
77 t2 = MPI_Wtime();
78 printf("Time to complete matrix multiplication
and communication = %f seconds\n",t2-t1);
79 deallocate_matrix(A,N); // only process 0 deallocates A and C
80 deallocate_matrix(C,N);
81 }
82 deallocate_matrix(Clocal,interval); // everyone deal locates Alocal,
83 deallocate_matrix(Alocal,interval); // Clocal, and B
84 deallocate_matrix(B,N);
85 MPI_Finalize(); // Close down MPI environment
86 }
87
88 double ** allocate_matrix(int rows, int cols)
89 {
90 int i;
91 double ** mat;
92 double * mat2;
93
94 mat2= (double *)malloc(rows * cols * sizeof(double));
95 memset(mat2,0,rows * cols * sizeof(double));
96 mat=(double **)malloc(rows * sizeof(double *));
97 for(i=0;i<rows;i++){
98 mat[i]=&(mat2[i * cols]);
99 }
100 return mat;
101 }
102 void deallocate_matrix(double ** array, int row_dim)
103 {
104 int i;
105 for(i=1; i<row_dim; i++)
106 array[i]=NULL;
107 free(array[0]);
108 free(array);
109 }
110 / *
111 void print_matrix(int rows, int cols, double ** mat)
112 {
113 int i;
114 int j;
115 for(i=0;i<rows;i++){
116 printf("%g",mat[i][0]);
117 for(j=1;j<cols;j++){
118 printf(",%g",mat[i][j]);
119 }
120 printf("\n");
121 }
122 }
123 * /

6.11 MPI Code for Matrix Transform
1 #include <stdio.h>
2 #include <string.h>
3 #include <stdlib.h>

80

4 #include <mpi.h>
5
6 //void print_matrix(int,int,double **);
7 double ** allocate_matrix(int,int);
8 void deallocate_matrix(double ** array, int row_dim);
9
10 main(int argc, char * argv[])
11 {
12 // variables
13 int N = 2048; // matrix is NxN size
14 double ** a;
15
16 int i; // iterator values
17 int j;
18 double temp; // temp value
19 double t1;
20 double t2;
21 // additional MPI variables
22 double ** alocal; // local matrix
23 int rank; // process rank
24 int size; // number of processes
25 int interval; // number of rows of Alocal
26 int buddy;
27 MPI_Status status; // needed for MPI_Recv calls
28
29 MPI_Init(&argc, &argv); // start up MPI
30 MPI_Comm_rank(MPI_COMM_WORLD, &rank); // find each pro cess’s rank
31 MPI_Comm_size(MPI_COMM_WORLD, &size); // number of pro cesses
32 interval = N / size; // interval to go over
33 buddy = size - 1 - rank; // each process finds its buddy
34
35 alocal = allocate_matrix(interval, N); // all processes allocate for Alocal
36
37 if(rank==0)
38 {
39 a = allocate_matrix(N,N); // only process 0 allocates A
40 for(i = 0; i < N; i++)
41 for(j = 0; j < N; j++)
42 a[i][j] = i * N+j ; // populate matrix
43 t1 = MPI_Wtime(); // start timing
44 }
45 // Scatter matrix A among processes
46 // Matrix A will be distributed into
47 // local Apart matrices of size (interval)xN
48 MPI_Scatter(a[0],interval * N,MPI_DOUBLE,alocal[0],
interval * N,MPI_DOUBLE,0,MPI_COMM_WORLD);
49
50 if(rank % 2 == 0) // even numbered process work-
51 { // send a variable and receive
52 for(i = 0; i < interval; i++) // one back
53 for(j = 0; j < N; j++)
54 {
55 MPI_Send(&alocal[i][j],1,MPI_DOUBLE,buddy,0,MPI_C OMM_WORLD);
56 MPI_Recv(&alocal[i][j],1,MPI_DOUBLE,buddy,0,MPI_C OMM_WORLD,&status);
57 }
58 }
59 else // rank % 2 == 1 // odd numbered process work-
60 { // receive a variable and
61 for(i = interval-1; i>=0 ; i--) // send one back
62 for(j = N-1; j>=0; j--)
63 {
64 MPI_Recv(&temp,1,MPI_DOUBLE,buddy,tag,MPI_COMM_WO RLD,&status);
65 MPI_Send(&alocal[i][j],1,MPI_DOUBLE,buddy,tag,MPI _COMM_WORLD);
66 alocal[i][j] = temp;
67 }
68 }
69 // MPI_Gather takes the Alocal matrices and
70 // gathers them in A on process 0

81

71 MPI_Gather(alocal[0],N * interval,MPI_DOUBLE,a[0],
N* interval,MPI_DOUBLE,0, MPI_COMM_WORLD);
72
73 if(rank==0)
74 {
75 t2 = MPI_Wtime(); // stop timing
76 printf("Time for transform = %f seconds\n",t2-t1);
77 deallocate_matrix(a,N); // only process 0 deallocates A
78 }
79 deallocate_matrix(alocal,interval); // everyone deal locates Alocal
80 MPI_Finalize(); // Close down MPI environment
81 }
82
83 double ** allocate_matrix(int rows, int cols)
84 {
85 int i;
86 double ** mat;
87 double * mat2;
88
89 mat2= (double *)malloc(rows * cols * sizeof(double));
90 memset(mat2,0,rows * cols * sizeof(double));
91 mat=(double **)malloc(rows * sizeof(double *));
92 for(i=0;i<rows;i++){
93 mat[i]=&(mat2[i * cols]);
94 }
95 return mat;
96 }
97
98 void deallocate_matrix(double ** array, int row_dim)
99 {
100 int i;
101 for(i=1; i<row_dim; i++)
102 array[i]=NULL;
103 free(array[0]);
104 free(array);
105 }
106
107 / *
108 void print_matrix(int rows, int cols, double ** mat)
109 {
110 int i;
111 int j;
112
113 for(i=0;i<rows;i++){
114 printf("%g",mat[i][0]);
115 for(j=1;j<cols;j++){
116 printf(",%g",mat[i][j]);
117 }
118 printf("\n");
119 }
120 }
121 * /

7 Appendix B : Runtime Results

This appendix presents the timing results done for the purposes of performance testing. The tables

are grouped into multiplication and transform sets. Each set is broken up into shared and disributed

memory (SM or DM) for either the Titanium or MPI codes. Withineach table, the matrix size is

82

given by an “N=” notation, and the left side of the table denotes the number of processes used,

either 2, 4, 8, or 16 (in DM). The corresponding right half of the table are the resulting runtimes,

in seconds.

7.1 Multiplication Runtimes

7.1.1 SM MPI

N=128

2 .01855

4 .01708

8 .01953

N=256

2 0.13671

4 0.08593

8 0.06250

N=512

2 1.18994

4 0.68847

8 0.44482

N=1024

2 26.27783

4 17.07666

8 12.78466

N=2048

2 428.61914

4 239.85498

8 180.03515

7.1.2 SM Ti-Real

N=128

2 0.13197

4 0.06658

8 0.03404

N=256

2 1.04984

4 0.52681

8 0.26616

N=512

2 9.06815

4 4.55791

8 2.28854

N=1024

2 72.10291

4 36.14697

8 18.34434

N=2048

2 583.92459

4 292.06047

8 146.46946

7.1.3 SM Ti-Naive

N=128

2 0.13023

4 0.06508

8 0.03287

N=256

2 1.04116

4 0.52017

8 0.25983

N=512

2 8.32400

4 4.16212

8 2.08140

N=1024

2 66.83434

4 33.35030

8 16.69746

N=2048

2 533.53498

4 266.83239

8 133.40978

83

7.1.4 SM Ti-Real

N=128

2 0.13023

4 0.06508

8 0.03287

N=256

2 1.04116

4 0.52017

8 0.25983

N=512

2 8.32400

4 4.16212

8 2.08140

N=1024

2 66.83434

4 33.35030

8 16.69746

N=2048

2 533.53498

4 266.83239

8 133.40978

7.1.5 DM MPI

N=128

2 0.04296

4 0.02246

8 0.02636

16 0.04150

N=256

2 0.18554

4 0.10595

8 0.08300

16 0.13085

N=512

2 4.87402

4 2.96142

8 1.78027

16 1.16064

N=1024

2 70.3999

4 41.5986

8 23.2465

16 13.0468

7.1.6 DM Ti-Real

N=128

2 0.25329

4 0.13098

8 0.08042

16 0.06110

N=256

2 2.00124

4 1.02044

8 0.53530

16 0.32069

N=512

2 16.54163

4 8.40617

8 4.35345

16 2.35468

N=1024

2 200.99825

4 100.19784

8 51.05700

16 35.54844

7.1.7 DM Ti-Naive

N=128

2 644.53131

4 565.15021

8 549.74546

16 504.23612

84

7.1.8 TS-MPI

N=256

2 0.18017

4 0.11523

8 0.08837

N=1024

2 70.92020

4 39.92431

8 25.04785

7.1.9 TS-Ti-Real

N=256

2 1.01042

4 0.51061

8 0.25621

N=1024

2 140.21077

4 70.20393

8 33.04511

7.2 Transform Runtimes

7.2.1 SM MPI

N=128

2 0.69531

4 0.31347

8 0.20117

N=256

2 2.77734

4 1.39564

8 0.71191

N=512

2 10.19363

4 4.56770

8 2.81975

N=1024

2 44.95256

4 20.74497

8 10.49023

N=2048

2 159.02994

4 69.50846

8 41.11551

7.2.2 SM Titanium

N=128

2 0.00068

4 0.00048

8 0.00063

N=256

2 0.00255

4 0.00140

8 0.00107

N=512

2 0.00837

4 0.00457

8 0.00268

N=1024

2 0.03219

4 0.01612

8 0.00867

N=2048

2 0.12833

4 0.06405

8 0.03417

85

7.2.3 DM MPI

N=128

2 1.11523

4 0.62011

8 0.39160

16 0.30078

N=256

2 4.23632

4 2.40429

8 1.53222

16 1.07910

N=512

2 16.67968

4 10.10677

8 5.86979

16 3.98307

N=1024

2 66.00651

4 39.17057

8 23.42968

16 15.98437

N=2048

2 267.17317

4 158.35026

8 91.32682

16 62.85807

7.2.4 DM Titanium

N=128

2 2.45000

4 1.52135

8 1.11541

16 1.01922

N=256

2 9.80000

4 6.24960

8 4.83559

16 4.08406

N=512

2 39.36402

4 25.19878

8 18.04365

16 16.16923

N=1024

2 157.40089

4 97.58733

8 72.62399

16 65.53650

N=2048

2 635.39621

4 379.23796

8 279.02332

16 257.77633

7.2.5 TS-MPI

N=256

2 3.95117

4 2.21386

8 1.13346

N=1024

2 65.65917

4 34.05468

8 17.83496

7.2.6 TS-Titanium

N=256

2 0.00257

4 0.00143

8 0.00107

N=1024

2 0.03219

4 0.01612

8 0.00867

86

References

[1] L. V. Kalé, “New Parallel Programming Abstractions andthe Role of Compilers,” inIPDPS,

2006.

[2] M. Weiland, “Chapel, Fortress and X10: Novel Languages for HPC,” tech. rep., The Univer-

sity of Edinburgh, October 2007.

[3] Kathy Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto, Ben Liblit, Arvind Krish-

namurthy, Paul Hilfinger, S. Graham, D. Gay, P. Colella, and A. Aiken, “Titanium: A High-

Performance Java dialect,” inACM 1998Workshopon Javafor High-PerformanceNetwork

Computing, (New York, NY 10036, USA), ACM Press, 1998.

[4] E. Allen, D. Chase, J. Hallett, V. Luchango, J.-W. Maessen, S. Ryu, and G. L. S. Jr., “The

Fortress Language Specification.”

[5] J. Kepner and D. Koester, “HPCS Application Analysis andApplication,” 23 September

2003.

[6] L. Prechelt, “An Empirical Comparison of Seven Programming Languages,”Computer,

vol. 33, no. 10, pp. 23–29, 2000.

[7] M. Felleisen, “On the Expressive Power of Programming Languages,” inESOP’90 3rd

EuropeanSymposiumon Programming,Copenhagen,Denmark (N. Jones, ed.), vol. 432,

pp. 134–151, New York, N.Y.: Springer-Verlag, 1990.

[8] J. Cai and R. Paige, “Towards Increased Productivity of Algorithm Implementation,”

SIGSOFT Softw. Eng. Notes, vol. 18, no. 5, pp. 71–78, 1993.

[9] P. J. Landin, “The next 700 programming languages,”Commun.ACM, vol. 9, no. 3, pp. 157–

166, 1966.

87

[10] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R.L. Carter, L. Dagum, R. A. Fatoohi,

P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan, S. K.

Weeratunga, and S. K. Weeratunga, “The NAS Parallel Benchmarks– Summary and Prelim-

inary Results,” inSupercomputing’91: Proceedingsof the1991ACM/IEEE conferenceon

Supercomputing, (New York, NY, USA), pp. 158–165, ACM, 1991.

[11] J. J. Dongarra, “The LINPACK Benchmark: An Explanation,” in Proceedingsof the 1st

InternationalConferenceonSupercomputing, (New York, NY, USA), pp. 456–474, Springer-

Verlag New York, Inc., 1988.

[12] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary, “HPL - A Portable Implementation of

the High-Performance Linpack Benchmark for Distributed-Memory Computers.”

[13] P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F. Lucas, R. Rabenseifner, and

D. Takahashi, “The hpc challenge (hpcc) benchmark suite,” in SC ’06: Proceedingsof the

2006 ACM/IEEE conferenceon Supercomputing, (New York, NY, USA), p. 213, ACM,

2006.

[14] B. Wilkinson and M. Allen,Parallel Programming: Techniquesand ApplicationsUsing

NetworkedWorkstationsandParallelComputers. Upper Saddle River, NJ, USA: Prentice-

Hall, Inc., 1999.

[15] S. Gill, “Parallel Programming,”ComputerJournal, vol. 1, pp. 2–10, April.

[16] J. Holland, “A Universal Computer Capable of Executingan Arbitrary Number of Subpro-

grams Simultaneously,” vol. 16, pp. 108–113, 1959.

[17] M. Conway, “A Multiprocessor System Design,” vol. 4, pp. 139–146, 1963.

[18] G. M. Amdahl, “Validity of the Single Processor Approach to Achieving Large Scale Com-

puting Capabilities,” inReadingsin ComputerArchitecture, (San Francisco, CA, USA),

pp. 79–81, Morgan Kaufmann Publishers Inc., 2000.

88

[19] A. Bernstein, “Analysis of Programs for Parallel Processing,”ElectronicComputers,IEEE

Transactionson, vol. EC-15, no. 5, pp. 757–763, Oct. 1966.

[20] M. Flynn, “Some Computer Organizations and Their Effectiveness,” IEEE Trans. on

Comput., vol. C-21, pp. 948–960, 9 Septmber 1972.

[21] S. L. Graham, M. Snir, and e. Cynthia A. Patterson,

Getting Up to Speed: The Future of Supercomputing. The National Academies Press,

2004. Report of National Research Council of the National Academies Sciences.

[22] Beowulf Cluster Computing with Linux. Cambridge, MA, USA: MIT Press, 2002.

[23] D. B. Loveman, “High Performance Fortran,”IEEE Paralleland DistributedTechnology,

vol. 01, no. 1, pp. 25–42, 1993.

[24] B. L. Chamberlain, S.-E. Choi, E. C. Lewis, C. Lin, L. Snyder, and W. D. Weathersby, “ZPL:

A Machine Independent Programming Language for Parallel Computers,”IEEETransactions

onSoftwareEngineering, vol. 26, no. 3, pp. 197–211, 2000.

[25] G. E. Blelloch, “NESL: A Nested Data-Parallel Language(Version 2.6),” tech. rep., Pitts-

burgh, PA, USA, 1993.

[26] B. Carpenter and G. Fox, “HPJava: A Data Parallel Programming Alternative,”Computing

in ScienceandEngg., vol. 5, no. 3, pp. 60–64, 2003.

[27] L. Dagum and R. Menon, “OpenMP: An Industry-Standard API for Shared-Memory Pro-

gramming,”IEEE ComputationalScienceandEngineering, vol. 05, no. 1, pp. 46–55, 1998.

[28] W. D. Hillis and J. Guy L. Steele, “Data Parallel Algorithms,” Commun. ACM, vol. 29,

no. 12, pp. 1170–1183, 1986.

[29] K. Kennedy, C. Koelbel, and H. Zima, “The Rise and Fall

of High Performance Fortran: An Historical Object Lesson,” in

89

HOPL III: Proceedings of the third ACM SIGPLAN conference onHistory of programming languages,

(New York, NY, USA), pp. 7–1–7–22, ACM, 2007.

[30] P. Mehrotra, “Invited Lecture: Data Parallel Programming: The Promises and Limitations of

High Performance Fortran,” inACPC, p. 114, 1993.

[31] K. Yelick, P. Hilfinger, S. Graham, D. Bonachea, J. Su, A.Kamil, K. Datta, P. Colella, and

T. Wen, “Parallel Languages and Compilers: Perspective From the Titanium Experience,”

Int. J.High Perform.Comput.Appl., vol. 21, no. 3, pp. 266–290, 2007.

[32] F. Mueller, “A library implementation of POSIX threadsunder Unix,” in Proceedingsof

theWinter1993 USENIX TechnicalConferenceand Exhibition, (San Diego, CA, USA),

pp. 29–41, 1993.

[33] E. Tilevich and Y. Smaragdakis, “Portable and efficientdistributed threads for Java,” in

Middleware’04: Proceedingsof the 5th ACM/IFIP/USENIX internationalconferenceon

Middleware, (New York, NY, USA), pp. 478–492, Springer-Verlag New York, Inc., 2004.

[34] M. P. I. F. MPIF, “MPI-2: Extensions to the Message-Passing Interface.” Technical Report,

University of Tennessee, Knoxville, 1996.

[35] L. V. Kale and S. Krishnan, “CHARM++: A Portable Concurrent Object Oriented System

Based on C++,” tech. rep., Champaign, IL, USA, 1993.

[36] C. Kesselman, “High performance parallel and distributed computation in compositional

CC++,” SIGAPPAppl. Comput.Rev., vol. 4, no. 1, pp. 24–26, 1996.

[37] J. J. Dongarra, S. W. Otto, M. Snir, and D. Walker, “An Introduction to the MPI Standard,”

tech. rep., Knoxville, TN, USA, 1995.

[38] K. Parzyszek,Generalized portable shmem library for high performance computing. PhD

thesis, Ames, IA, USA, 2003. Co-Major Professor-Ricky A. Kendall and Co-Major

Professor-Robyn R. Lutz.

90

[39] P. N. Hilfinger, D. Bonachea, D. Gay, S. Graham, B. Liblit, G. Pike, and K. Yelick, “Titanium

Language Reference Manual,” tech. rep., Berkeley, CA, USA,2001.

[40] M. W. Mutka and M. Livny, “The Available Capacity of a Privately Owned Workstation

Environment,”Perform. Eval., vol. 12, no. 4, pp. 269–284, 1991.

[41] D. A. Patterson, D. E. Culler, and T. E. Anderson, “A casefor NOW (networks of worksta-

tion),” in PODC’95: Proceedingsof theFourteenthAnnualACM Symposiumon Principles

of DistributedComputing, (New York, NY, USA), p. 17, ACM, 1995.

[42] S. Zhou, X. Zheng, J. Wang, and P. Delisle, “Utopia: a Load Sharing Facility for Large,

Heterogeneous Distributed Computer Systems,”Software- PracticeandExperience, vol. 23,

no. 12, pp. 1305–1336, 1993.

[43] M. Baker, “Cluster Computing White Paper,” 2000.

[44] V. S. Sunderam, “PVM: A Framework for Parallel Distributed Computing,”Concurrency,

PracticeandExperience, vol. 2, no. 4, pp. 315–340, 1990.

[45] W. Gropp, E. Lusk, and A. Skjellum,UsingMPI (2nded.): PortableParallelProgramming

with theMessage-PassingInterface. Cambridge, MA, USA: MIT Press, 1999.

[46] W. Gropp and E. Lusk, “Goals Guiding Design: PVM and MPI.”

[47] J. J. Dongarra, S. W. Otto, M. Snir, and D. Walker, “A Message Passing Standard for MPP

and Workstations,”Communications of the ACM, vol. 39, no. 7, pp. 84–90, 1996.

[48] W. Gropp, “Learning from the Success of MPI,” inHiPC ’01: Proceedingsof the 8th

InternationalConferenceon High PerformanceComputing, (London, UK), pp. 81–94,

Springer-Verlag, 2001.

[49] D. Bouillet, “Advantages Of Pthreads For InterprocessCommunication.”

[50] G. J. Narlikar, “Pthreads for Dynamic and Irregular Parallelism,” pp. ??–??, 1998.

91

[51] B. Kuhn, P. Petersen, and E. O’Toole, “OpenMP Versus Threading in C/C++,”Concurrency

- PracticeandExperience, vol. 12, no. 12, pp. 1165–1176, 2000.

[52] M. SuB, A. Podlich, and C. Leopold, “Observations on thePublicity and Usage of Parallel

Programming Systems and Languages: A Survey Approach,” tech. rep., University of Kassel,

Wilhelmhöher Allee 73, D-34121 Kassel, Germany, 2007.

[53] H.-H. Wang, K.-C. Li, K.-J. Wang, and S.-H. Lu, “On the Design and Implementation of

an Effective Prefetch Strategy for DSM Systems,”The Journal of Supercomputing, vol. 37,

pp. 91–112(22), July 2006.

[54] M. Chapman and G. Heiser, “Implementing Transparent Shared Memory on Clusters Using

Virtual Machines,” inATEC’05: Proceedingsof theUSENIX AnnualTechnicalConference

2005onUSENIX AnnualTechnicalConference, (Berkeley, CA, USA), pp. 23–23, USENIX

Association, 2005.

[55] R. Lottiaux, P. Gallard, G. Vallee, C. Morin, and B. Boissinot, “OpenMosix, OpenSSI

and Kerrighed: A Comparative Study,” inCCGRID ’05: Proceedingsof the Fifth IEEE

InternationalSymposiumon Cluster Computingand the Grid (CCGrid’05) - Volume 2,

(Washington, DC, USA), pp. 1016–1023, IEEE Computer Society, 2005.

[56] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and

W. Zwaenepoel, “Treadmarks: Shared Memory Computing on Networks of Workstations,”

Computer, vol. 29, no. 2, pp. 18–28, 1996.

[57] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon, “The Midway Distributed Shared Mem-

ory System,” tech. rep., Pittsburgh, PA, USA, 1993.

[58] M. R. Eskicioglu and T. A. Marsland, “Shared Memory Computing on SP2: JIAJIA Ap-

proach,” inCASCON’98: Proceedingsof the1998conferenceof theCentrefor Advanced

Studieson Collaborativeresearch, p. 12, IBM Press, 1998.

92

[59] K. Gharachorloo, M. Sharma, S. Steely, and S. V. Doren, “Architecture and Design of Al-

phaServer GS320,”SIGARCHComput.Archit. News, vol. 28, no. 5, pp. 13–24, 2000.

[60] J. Laudon and D. Lenoski, “The SGI Origin: a ccNUMA Highly Scalable Server,”SIGARCH

Comput.Archit. News, vol. 25, no. 2, pp. 241–251, 1997.

[61] S. HZ, S. JP, O. L, and B. R, “Message Passing and Shared Address Space Parallelism on an

SMP Cluster,”ParallelComputing, vol. 29, pp. 167–186, 2003.

[62] E. Strohmaier, J. J. Dongarra, H. W. Meuer, and H. D. Simon, “Recent Trends in the Mar-

ketplace of High Performance Computing,”ParallelComput., vol. 31, no. 3+4, pp. 261–273,

2005.

[63] B. Chamberlain, D. Callahan, and H. Zima, “Parallel programmability and the chapel lan-

guage,”Int. J.High Perform.Comput.Appl., vol. 21, no. 3, pp. 291–312, 2007.

[64] Sun, “Sun Labs Programming Language Research Group.” Fortres website.

[65] C. Bell, W.-Y. Chen, D. Bonachea, and K. Yelick, “Evaluating

support for global address space languages on the Cray X1,” in

ICS ’04: Proceedings of the 18th annual international conference on Supercomputing,

(New York, NY, USA), pp. 184–195, ACM, 2004.

[66] K. Yelick, D. Bonachea, W.-Y. Chen, P. Colella, K. Datta, J. Duell, S. L. Graham, P. Har-

grove, P. Hilfinger, P. Husbands, C. Iancu, A. Kamil, R. Nishtala, J. Su, M. Welcome,

and T. Wen, “Productivity and Performance Using Partitioned Global Address Space]Lan-

guages,” inPASCO’07: Proceedingsof the2007internationalworkshoponParallelsymbolic

computation, (New York, NY, USA), pp. 24–32, ACM, 2007.

[67] B. Liblit, “Local Qualification Inference for Titanium,” Aug. 26 1998. CS263/CS265

semester project report.

93

[68] R. W. Numrich and J. Reid, “Co-array Fortran for Parallel Programming,”SIGPLANFortran

Forum, vol. 17, no. 2, pp. 1–31, 1998.

[69] U. Consortium, “UPC Language Specifications, v1.2,” tech. rep., 2005.

[70] D. Bonachea and J. Duell, “Problems with Using MPI 1.1 and 2.0 as Compilation Targets for

Parallel Language Implementations,” in2nd Workshopon Hardware/SoftwareSupportfor

High PerformanceScientificandEngineeringComputing(SHPSEC-03), 2003.

[71] D. Bonachea, “GASNet Specification, v1.1,” tech. rep.,Berkeley, CA, USA, 2002.

[72] W. Gropp and E. Lusk, “Dynamic process management in an MPI setting,” pp. 530–533,

1995.

[73] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A High-Performance, Portable Implementa-

tion of the MPI Message Passing Interface Standard,”ParallelComputing, vol. 22, pp. 789–

828, Sept. 1996.

[74] G. Burns, R. Daoud, and J. Vaigl, “LAM: An Open Cluster Environment for MPI,” in

Proceedingsof SupercomputingSymposium, pp. 379–386, 1994.

[75] L. Dalcı́n, R. Paz, and M. Storti, “MPI for Python,”J.ParallelDistrib.Comput., vol. 65, no. 9,

pp. 1108–1115, 2005.

[76] J. Willcock, A. Lumsdaine, and A. Robison, “Using MPI with C# and the common language

infrastructure,” inJGI ’02: Proceedingsof the2002joint ACM-ISCOPEconferenceon Java

Grande, (New York, NY, USA), pp. 238–238, ACM, 2002.

[77] B. Carpenter, G. Fox, S.-H. Ko, and S. Lim, “mpiJava 1.2:API Specification.”

[78] E. Ong, “MPI Ruby: Scripting in a Parallel Environment,” Computingin ScienceandEngg.,

vol. 4, no. 4, pp. 78–82, 2002.

94

[79] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A.

Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A.Yelick, “The Landscape

of Parallel Computing Research: A View from Berkeley,” Tech. Rep. UCB/EECS-2006-

18, Electrical Engineering and Computer Sciences, University of California at Berkeley,

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html, December 2006.

[80] D. B. Skillicorn and D. Talia, “Models and languages forparallel computation,”

ACM Computing Surveys, vol. 30, no. 2, pp. 123–169, 1998.

[81] P. B. Hansen, “An Evaluation of the Message-Passing Interface,”SIGPLAN Not., vol. 33,

no. 3, pp. 65–72, 1998.

[82] D. E. Culler, A. C. Arpaci-Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta, T. von

Eicken, and K. A. Yelick, “Parallel programming in Split-C,” in Supercomputing, pp. 262–

273, 1993.

[83] W. W. Carlson and J. M. Draper, “Distributed data accessin AC,” SIGPLAN Not., vol. 30,

no. 8, pp. 39–47, 1995.

[84] K. Datta, “The NAS Parallel Benchmarks in Titanium,” Tech. Rep. UCB/EECS-2006-5,

EECS Department, University of California, Berkeley, Jan 2006.

[85] G. Balls, “A Finite Difference Domain Decomposition Method Using Local Corrections for

the Solution of Poisson’s Equation,” 1999.

[86] P. McCorquodale and P. Colella, “Implementation of a Multilevel Algorithm for Gas Dynam-

ics in a High-Performance Java Dialect.”

[87] G. Pike, L. Semenzato, P. Colella, and P. N. Hilfinger, “Parallel 3D Adaptive Mesh Refine-

ment in Titanium,” inPPSC, 1999.

[88] E. Givelberg and K. Yelick, “Distributed Immersed Boundary Simulation in Titanium,”

SIAM J. Sci. Comput., vol. 28, no. 4, pp. 1361–1378, 2006.

95

[89] A. Funk, V. Basili, L. Hochstein, and J. Kepner, “Application of a Development Time Pro-

ductivity Metric to Parallel Software Development,” inSE-HPCS’05: Proceedingsof the

SecondInternationalWorkshopon SoftwareEngineeringfor High PerformanceComputing

SystemApplications, (New York, NY, USA), pp. 8–12, ACM, 2005.

[90] J. Shalf, “The new landscape of parallel computer architecture,”

Journal of Physics Conference Series, vol. 78, pp. 2066–+, July 2007.

[91] H. Chhetri and C. Okoye, “Hello, World! Page.” Hello, World! Project.

[92] F. Cantonnet, Y. Yao, M. Zahran, and T. El-Ghazawi, “Productivity Analysis of the UPC

Language.”

[93] K. Li and V. Y. Pan, “Parallel Matrix Multiplication on aLinear Array with a Reconfigurable

Pipelined Bus System,”IEEE TransactionsonComputers, vol. 50, no. 5, pp. 519–525, 2001.

[94] R. P. Brent, “Algorithms for Matrix Multiplication,” Tech. Rep. TR-CS-70-157, Stanford

University, Mar 1970.

[95] H. Cohn, R. Kleinberg, B. Szegedy, and C. Umans, “Group-theoretic algorithms for matrix

multiplication,” Nov 2005.

[96] N. Eiron, M. Rodeh, and I. Steinwarts, “Matrix Multiplication: A Case Study of Algorithm

Engineering,” inProceedingsWAE’98, (Saarbru̇cken, Germany), Aug 1998.

[97] V. Strassen, “Gaussian elimination is not optimal,”

[98] D. Coppersmith and S. Winograd, “Matrix Multiplication via Arithmetic Progressions,” in

Proceedingsof the19-thannualACM conferenceonTheoryof computing, pp. 1–6, 1987.

[99] J. Su and K. Yelick, “Automatic Communication Performance Debugging in PGAS Lan-

guages,” tech. rep., October 2007.

96

	University of Arkansas, Fayetteville
	ScholarWorks@UARK
	5-2008

	Holistic Characterization of Parallel Programming Models in a Distributed Memory Environment
	Christopher Bryan
	Recommended Citation

	cpl_transform.ps

