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ABSTRACT 

 

 Alpha-phase aluminum oxide thin films were created using an Isoflux ICM-10 dual target 

inverted cylindrical magnetron sputtering system using mid-frequency AC power supplies.  

Alpha alumina films were deposited at a magnetron power of 6 kW, 50% oxygen partial pressure 

by volume, and -35 V DC bias.  Film thickness, substrate material, and position and orientation 

within the deposition chamber were varied. 

 To ensure the deposition conditions are suitable for alloys, the substrate temperature was 

measured using temperature indicating liquids.  The experimental results, supported by Explicit 

Euler numerical analysis, revealed a steady state temperature of ~480°C at 6kW. 

 Transmission electron microscopy (TEM) was used to study alumina films deposited on 

stainless steel with and without an alpha-phase chromium oxide template layer.  The selected 

area electron diffraction (SAED) patterns indicate that, for both cases, the films tend be 

predominately alpha-phase with discernable gamma-phase components. 

 Alpha alumina thin films were deposited on titanium to assess their viability as corrosion 

and wear resistant biomedical implants.  Corrosion resistance tests indicated that the coated 

titanium had improved performance and stability compared to the uncoated titanium.  However, 

the coefficient of friction increased with the applied film. 

 Films were deposited on surgical stainless steel substrates to investigate the adsorption of 

a model protein (BSA, bovine serum albumin).  Results indicate that there was a 50% reduction 

in protein adsorption for samples with the alumina coating compared to those with no coating.   
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PREFACE 
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 It is the aim of this work to investigate the potential of a unique magnetron sputtering 

system to deposit alpha-phase aluminum oxide thin films.  This material is notoriously difficult 

to synthesize at temperatures less than 1000°C.  The current trend in magnetron sputtering is 

toward DC, DC pulsed, and HiPIMS (High Power Impulse Magnetron Sputtering) processes.  

The Isoflux system used utilizes mid-frequency AC power supplies; the results gleaned from the 

system are inherently different than those obtained by other laboratories.  In addition, the 

inverted cylinder design and unbalanced magnetron create the potential for far higher growth 

rates than traditional planar magnetron systems.  Finally, the size of the ICM-10 system and the 

capabilities of Isoflux, Inc. make rapid commercialization of any alpha-alumina bearing process 

relatively straightforward. 

 This work would not have been possible without the financial support of the National 

Science Foundation.  The research was funded under grants # DMI-0400167 and #0739659. 
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A BRIEF INTRODUCTION 

 

 An Isoflux ICM-10 dual target inverted cylindrical unbalanced magnetron sputtering 

system was used to deposit alpha-phase aluminum oxide coatings on a variety of substrates.   

Alpha-phase aluminum oxide is a unique material that is of great interest for a number of 

engineering applications.  Alumina may be used in optical coatings, dielectrics, cutting tools, 

thermal barrier coatings, and biomedical instruments and implants.  However, the use of alpha 

alumina is currently restricted by contemporary deposition methods.  Alpha alumina is typically 

deposited using chemical vapor deposition (CVD) methods where substrate temperatures 

typically reach 1000°C.  While this ensures a good bond between coating and substrate, the 

thermal expansion mismatch can cause residual stresses to be induced upon cooling.  

Additionally, the high substrate temperatures preclude the application of the coating to certain 

temperature-sensitive substrates including polymers and alloys.  Physical vapor deposition 

(PVD) processes have represented a viable alternative to CVD, offering reduced substrate 

temperatures. 

 The sputtering system used is a departure from traditional experimental setups.  The 

ICM-10 is considerably more voluminous, allowing large batches of parts to be coated 

simultaneously.  Also, the design exposes a large area of sputter target material to the generated 

plasma, resulting in a high deposition rate.  The unbalanced magnetic field allows ions to migrate 

to the substrate position near the center of the chamber.  This dramatically increases the ion 

bombardment at the coating.  It is this high ion bombardment that is expected to be the 

mechanism form alpha alumina production at low temperatures. 

 I believe that it will be possible to form pure alpha-alumina films using this system 

without that aid of a chromium oxide template layer at 480°C.  The importance of this 
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development could not be overstated.  The ready availability of a piece of equipment that could 

perform this feat in a “turn-key” manner would allow the technology to spread rapidly.  The 

estimated market for PVD alpha alumina thin films in the coating industry is ~$400 million.  The 

potential market for biomedical alpha alumina films is expected to be ~$3-5 billion by the end of 

the decade.
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Abstract 

 Alpha-phase aluminum oxide thin films were deposited at 480°C by AC inverted 

cylindrical magnetron sputtering on nickel coated transmission electron microscopy (TEM) grids 

and stainless steel substrates.  Several previous studies have demonstrated that an alpha phase 

was possible at low temperature if a chromium template layer was present.  However, here we 

show that alpha phase is possible without the chromium oxide layer.  The presence of alpha 

phase alumina has been confirmed by TEM.  Cross-sectional TEM observations have indicated 

deposition rates as high as 270 nm/h.  This intriguing result is attributed to the unique 

characteristics of the sputtering system which provides more energetic species at the substrate. 
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I. Introduction 

 Alpha-phase aluminum oxide coatings have been the subject of great interest over the 

past thirty years.  Alpha alumina is chemically and mechanically stable at temperatures upward 

of 1000°C and has a melting point of 2053°C [1].  In addition, the alpha-phase exhibits great 

hardness (24 GPa) and wear resistance [2].  Alpha alumina is widely considered to be the best 

coating for preventing substrate oxidation at high working temperatures [3].  It is insoluble in 

inorganic acids and only susceptible to boiling hydrofluoric acid and molten salts at temperatures 

greater than 1000°C [4]. 

 These exceptional properties make alpha-phase alumina useful for numerous demanding 

engineering applications.  The metalworking industry is constantly seeking a cutting tool to 

perform at higher cutting speeds in an effort to increase productivity and minimize costs.  A 

cutting tool capable of dry machining would be preferable; the extraneous use of lubricants adds 

cost and environmentally harmful waste.  Due to its stability at elevated temperatures, Al2O3 is 

the ideal coating material for high speed cutting tools.  The most desirable form of crystalline 

alumina coating for cutting tool application is the thermodynamically stable α-phase, commonly 

known as corundum; this phase has a hexagonal rhombohedral crystal structure. 

 The formation of these phases is often dependent on the coating technology employed, 

with substrate temperature being the most influential parameter.  An increase in substrate 

temperature has been correlated to the creation of crystalline phases and the considerable 

improvement of mechanical and chemical layer properties [5]. 

 Alpha alumina can be deposited by chemical vapor deposition (CVD) [6] and physical 

vapor deposition (PVD) [7-13].  In CVD processes, the deposition temperature is near 1000°C.  

This process generally ensures good bonding between the substrate and the grown film, but the 
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thermal expansion mismatch leads to the buildup of residual stress upon cooling that adversely 

affect adhesion through crack generation.  These CVD methods also prohibit the coating of high 

speed steel (HSS).  PVD offers viable alternatives to high temperature deposition.  PVD 

techniques such as e-beam evaporation, pulsed laser deposition, and sputtering have been used to 

deposit amorphous Al2O3 coatings at low temperatures.  To obtain an alpha phase, though, the 

amorphous film is subjected to a temperature of 750°C or more during post-synthesis annealing. 

 An alternative approach is to grow alumina on an alpha-phase chromium oxide template 

layer.  Alpha alumina and alpha chromium oxide are isostructural [1].  The chromium oxide is 

considerably easier to form at low temperatures and has only small lattice mismatches with alpha 

alumina of 4.0% and 4.7% for the a and c axes, respectively [14].  The ionic radii difference 

between Al (III) and Cr (III) is approximately 12 % [1].  The two oxides form a system of total 

solubility [15].  These properties make alpha chromia well-suited as a template layer for the 

growth of alpha alumina at low temperatures.  Following this methodology, Jin et al. [16], 

Morikawa et al. [17], Andersson et al. [18], and Aryasomayajula et al. [19] have reported that 

alpha alumina could be deposited using a chromium oxide template layer.  The lowest 

temperature for the deposition of alpha-alumina in the literature is 280°C [18], and the maximum 

deposition rate reported is 150 nm/h [19]. 

 In this paper we report on the deposition of alpha alumina at 480°C [20] without a 

chromium oxide template layer.  A study of alumina films deposited both with and without the 

template layer shows no significant difference, based on transmission electron microscopy 

diffraction studies.  In all films, the presence of a gamma-phase component increases with film 

thickness. 
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II. Experimental 

 Aluminum oxide thin films of varying thickness and layer configuration were deposited 

using an Isoflux ICM-10 dual target AC inverted cylindrical unbalanced magnetron sputtering 

system.  As in all sputtering processes, ions in the plasma are directed toward the target wall 

where they impart enough energy to liberate material from the sputtering targets.  High-purity 

oxygen is metered to the chamber through a mass flow controller and allowed to react with the 

sputtered metal species to produce the desired oxide coating. Because this system utilizes 

alternating current, two sputtering targets act as alternating anode and cathode at a frequency of 

40 kHz.  The aluminum targets are 99.9% pure; chromium targets are also 99.9% pure. 

 The deposition chamber is approximately 33 cm in diameter and provides roughly 30 cm 

of deposition space in the vertical direction.  The magnetron is powered by an Advanced Energy 

PE-II AC power supply; substrate biasing is applied by an Advanced Energy MDX DC power 

supply. 

 The substrates for these experiments were 316 stainless steel and nickel coated TEM 

grids.  Prior to deposition the substrates were cleaned in an ultrasonic acetone bath for 20 

minutes.  Samples were then rinsed, dried, and blown free of debris before being placed under 

vacuum in the chamber.  Base pressures of 0.2 mPa were attained.  Just before the deposition, 

substrates were further cleaned by plasma etching using and argon plasma and -80 V of DC 

biasing. 

 Films were deposited on 316 stainless steel for periods of 0.5, 1, 2, and 3 hours without a 

chromia template layer.  Additionally, films were deposited for 6 hours on a chromia layer of 

approximately 200 nm thickness.  To avoid a decrease in deposition rate during the 6 hour 

experiment, targets were de-poisoned after every hour of deposition in situ.  A mechanical 
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shutter was raised to place a barrier between the substrates and the target.  Then, an argon plasma 

was used to sputter away the insulating layer of aluminum oxide that develops on the target.  

This process was carried out for 300 seconds; the shutter was then lowered and gas flow rates 

suitable for deposition were re-established to continue deposition.  The deposition pressure was 

0.27 Pa.  Magnetron power was maintained at 6 kW with an Ar/O2 ratio of 1:1 during the 

deposition step.  Table I shows the complete deposition parameters.  In addition, films were 

grown in a number of orientations with respect to the sputtering targets to assess the effect of 

location and orientation on deposition rate, film phase, and morphology. 

 Subsequent to deposition, coated substrates were allowed to cool under vacuum until they 

reached room temperature.  This process avoids a rapid cooling that may induce film cracking. 

 The films were analyzed by transmission electron microscopy.  For samples deposited on 

stainless steel, a focused ion beam was used to create a cross-section with a thickness of 

approximately 125 nm.  Diffraction patterns were obtained for points both near the substrate and 

near the surface of the film. 

 

III. Results and Discussion 

 Results in the literature have suggested that alpha-alumina grown at low temperatures can 

only be produced with the aid of an isostructural alpha chromia template [16-19].  However, 

TEM studies of 100 nm-thick films grown on substrates perpendicular to the sputtering target 

indicated a pure alpha-phase (Figure 1). 

 To better investigate the need for the template layer, thicker films, both with and without 

the template layer, were deposited and analyzed with TEM.  Figure 2 shows a TEM micrograph 

of an 800 nm alumina film deposited on stainless steel with no template for 3 hours.  The high 
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deposition rate of ~270 nm/h can be explained by the substrate’s position within the chamber.  

The substrate surface was parallel to the sputtering target at a distance of approximately four 

inches.  Previous samples grown perpendicular to the target were limited to 150 nm/h [19].  

Figures 3 and 4 are the selected area electron diffraction (SAED) patterns for the film near the 

stainless steel and several hundred nanometers away, respectively.  Note that the films at both 

locations are mostly alpha-phase with the presence of some gamma, and that the number of 

diffraction rings corresponding to the gamma phase is increased further away from the steel.   

 For comparison, alumina was deposited on a chromia template layer.  This deposition 

was for six hours, and, while the substrate was parallel to the target as before, the distance was 

increased to nine inches.  Figures 5 and 6 are the SAED patterns near and far from the chromia 

layer, respectively.  The results here are much the same as for the alumina film without the 

template layer.  The film is predominantly alpha-phase, becoming less pure throughout its 

thickness.  Note that this film, due to the process of repeated target de-poisoning, is effectively a 

multilayer film.  The mechanical shutter used to block the deposition of metallic aluminum 

during this crucial step is not entirely effective.  Very thin layers of this aluminum can be seen 

deposited throughout the alumina film (Figure 7).  Because thick layers of alumina have been 

observed in the aforementioned samples to degenerate into a more gamma-like film, it is hoped 

that these aluminum layers would break up that process, resulting in a more consistently alpha-

phase film throughout the entirety of its thickness.  Figure 7 also shows the presence of a 100 nm 

thick layer of pure chrome layer.  This film is deposited at the beginning of the deposition run as 

a consequence of the plasma etching step when no oxygen is present.  While the deposition rate 

of this film was greatly decreased by the increased distance between the target and substrate, the 

phase of the films was not affected.  The deposition rate decreases over time due to a target 
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poisoning effect.  Each deposition interval between de-poisoning steps was a one hour, but the 

thickness of latter layers is clearly decreased when compared to the first three.  It is apparent that 

the de-poisoning step used was not sufficiently long to avoid a rate reduction.  Again, the film 

phase appears unaffected; however, it is clear that the morphology of the film is altered.  The 

film is rough and non-uniform, perhaps a consequence of inconsistent ion flux at this location 

inside the deposition chamber.  High magnification cross sectional TEM was used to observe 

grains between 5 and 10 nm in size. 

 To our knowledge, this is the first demonstration of PVD alpha alumina without the aid 

of a template layer.  It is theorized that the unique design of the sputtering system used (with an 

inverted cylindrical configuration and unbalanced magnetic fields) creates a high current density 

(10-20 mA/cm2) that, in combination with the higher ion energies due to the negative substrate 

bias, is sufficient to overcome the energy barriers to the creation of alpha-phase alumina.  The 

unbalanced magnetic fields promote the migration of ions from the sputtering targets to the 

substrate platform. These migrating ions will also have additional energy due to the negative 

substrate bias.  Thus, high ion bombardment (both density and energy) may be the key to the 

development of an alpha-phase film.  It should also be noted that, while our deposition 

temperatures (480°C) are low compared to CVD methods (1000°C), they are higher than the 

previous PVD methods used to deposit alpha phase (200-250°C).  This combination of substrate 

temperature and high ion bombardment (both density and energy) is unique to this magnetron. 

 As previously mentioned, it appears that the thicker films contain more gamma phase 

than do the thinner films.  In fact, only the 100nm film is purely alpha phase.  One possible 

explanation is the continued heating of the substrate with time.  The substrate enters the chamber 

at room temperature.  During deposition, the temperature increases to the steady state value of 



 23

480°C.  During this increase of temperature, the coefficient of thermal expansion mismatch 

between the substrate and the deposited film could lead to stress which affects the resulting 

phase.  Alternatively, it is possible that poisoning of the targets is responsible.  Recall that with 

time the aluminum targets become poisoned which reduces the sputtering rate.  Thus, the ratio of 

oxygen to aluminum in the plasma changes, this ratio has been previously shown to affect the 

phase of the deposited film [19]. 

 

IV. Conclusions 

 TEM Investigations of alumina thin film growth by AC reactive magnetron sputtering 

have shown that, even without the use of a chromium template layer, a film that is predominately 

alpha-phase can be deposited at temperatures near 480°C.  A 100 nm-thick film was found to be 

entirely alpha-phase, while thicker films exhibited more gamma-phase constituents, possibly due 

to the increasing substrate temperature or to the decreasing amount of sputtered aluminum during 

deposition.  The production of alpha-phase alumina without a template is believed to be the first 

such result of its kind, and was independent of substrate orientation and position within the 

chamber.  In addition, these films are deposited approximately 3 times more quickly than other 

PVD processes presented in the literature.  These films are believed to be well suited to 

biomedical applications, where chromium oxide is not desired.  Additionally, the production of 

cutting tool coating by PVD could be economized by simplifying the deposition process. 
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Table 1 - Deposition parameters for chromium oxide and aluminum oxide coatings. 

 

Parameter Chromium Oxide Aluminum Oxide 

Ar/O2 Ratio 1:1 1:1 

Substrate Biasing (V) -35 - 35  

Magnetron Power (W) 6000 6000 

Base Pressure (mPa) 0.2 0.2 

Deposition Pressure (Pa) 0.27 0.27 
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Figure 1: TEM selected area electron diffraction for a 100 nm alumina film on   

 nickel-coated carbon TEM grid.  This film is purely alpha-phase alumina. 

Figure 2: TEM micrograph of an 800 nm alumina film deposited directly on 316   

 stainless steel with no chromium layer.  The deposition rate is nearly 270   

 nm/h. 

Figure 3: SAED pattern from 800 nm alumina acquired in the inner part of the layer. 

Figure 4: SAED pattern from 800 nm alumina acquired in the outer part of the layer.  

Figure 5: SAED pattern from alumina on chromia acquired in the inner part of the   
 alumina layer.  
 
Figure 6: SAED pattern from alumina on chromia acquired in the outer part of the   
 alumina layer.  
 
Figure 7: Cross sectional TEM micrograph of a layered alumina film on a chromia   
 template.
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Abstract 

Alpha alumina thin films were deposited on titanium to assess their viability as corrosion 

and wear resistant biomedical implants.  The films were deposited at 480°C by AC inverted 

cylindrical magnetron sputtering technique.  No substrate heating (neither before, during, or after 

deposition) was used.  Films were obtained at 6 kW and a 50% oxygen partial pressure by 

volume.  The alpha phase was determined by transmission electron microscopy.  Corrosion 

resistance tests indicated that the coated titanium had improved performance and stability 

compared to the uncoated titanium.  However, the coefficient of friction increased with the 

applied film. 
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I. Introduction 

 

 Alpha-phase aluminum oxide is well known for its hardness and wear resistance [1].  

These properties make alpha-phase alumina useful for several engineering applications requiring 

a hard coating [2].  These films are employed as coatings for magnetic read-write heads of hard 

disks [3], cutting tools [2], and a number of other components that will be subjected to great 

wear.  Aluminum oxide exists in an amorphous structure or an array of metastable phases.  The 

thermodynamically stable alpha-phase has a hexagonal rhombohedral crystalline structure and is 

the most desirable form for many high wear applications. 

 The deposition of alpha alumina by chemical vapor deposition (CVD) at temperatures 

near 1000°C has been well established [4].  This process generally ensures a good metallurgical 

bond between the substrate and the coating, but the thermal expansion mismatch between the 

two leads to residual stresses that can generate cracking of the film.  

 Physical vapor deposition, in contrast, is suitable at temperature as low as 280°C [5].  

PVD includes electron beam evaporation, plasma spraying, gas detonation, laser ablation, RF 

sputtering, DC- and pulsed DC magnetron sputtering, and mid-frequency AC magnetron 

sputtering, each of which has been used to deposit amorphous alumina coatings.  For an alpha 

phase, however, post-deposition heating in excess of 750°C is required, eliminating the low 

temperature benefit of the PVD process [6-13].   

 An alternative approach is to promote the growth of alpha alumina using an alpha-phase 

chromium oxide template layer.  Jin et al. [14], Morikawa et al. [15], Andersson et al. [5], and 

Aryasomayajula et al. [16] have reported that alpha alumina can be deposited using a chromium 

oxide template layer.  Because alpha alumina and alpha-phase chromium oxide are isostructural 

[17], the deposition of alpha-alumina is encouraged by the presence of the chromia layer.   
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For this application, however, it is desired to have alpha-alumina directly on titanium 

substrates (no template layer).  As detailed here, our preliminary depositions with a template 

layer have been successful, and the stated advantages of alumina make it an ideal coating for hip 

and knee replacements.  The reduction in wear rates would increase the working lifetime of the 

implant and thus reduce the likelihood that a replacement procedure would be required during a 

patient’s lifetime.  Also, lower wear would translate into a reduction of debris from the implant 

surfaces.  Particles generated by wear of prosthesis surfaces often cause pain and swelling in the 

surrounding tissue and can eventually lead to loosening of the device [18, 19].  Additionally, 

α−Al2O3 is less likely to decompose in the body than the other less stable alumina structures 

[20].  Finally, it has been reported that ceramic oxides have an advantage over other ceramic 

coatings for prostheses because the body’s natural joint lubricants bond better to surfaces 

containing oxygen. 

  

II. Experimental 

 Thin films of aluminum oxide were deposited on medical grade titanium alloy substrates 

using an Isoflux ICM-10 dual target AC inverted cylindrical unbalanced magnetron sputtering 

system.  In this system, two sputtering targets act as alternating anode and cathode at a frequency 

of 40 kHz.  High-purity gas is supplied to the chamber and allowed to react with the sputtered 

metal species to form an oxide coating.  The plasma is sustained with an argon working gas.   

 The sputtering chamber is approximately 13 inches in diameter and provides roughly 12 

inches of deposition space in the vertical direction.  The magnetron is powered by an Advanced 

Energy PEII alternating current power supply that is operated at 6 kW for this experiment.  

Voltage biasing of -35 V was supplied by an Advanced Energy MDX DC power supply.   
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 Prior to deposition, the substrates were cleaned in an ultrasonic acetone bath for 20 

minutes.  Samples were then rinsed, dried, and blown free of dust debris before being placed 

under vacuum in the chamber.  Base pressures of 1.5x10-6 Torr were attained.  Just before 

deposition, substrates are further cleaned by plasma etching using an argon plasma and -80 V of 

DC biasing.  Chromium rings of 99.9% purity were sputtered for 15 minutes at 6 kW with an 

Ar/O2 ratio of 1:1 to create a Cr2O3 template layer.  The deposition chamber was then vented and 

aluminum sputtering targets (99.99% pure) were installed.  Once the desired base pressure was 

attained again, aluminum oxide was deposited for a period of 6 hours.  The deposition pressure 

was 2 mTorr.  Substrate temperatures during deposition have been shown to be approximately 

480°C [21].  Subsequent to deposition, coated substrates were allowed to cool under vacuum to 

avoid film cracking.  This coating has been observed to be approximately 750 nm thick in total.  

The films were analyzed by TEM for phase analysis.  The wear behavior was studied using a 

pin-on-disc type tribometer to obtain the coefficient of friction.   

The corrosion behavior of the coatings was studied by electrochemical methods.  A 

Princeton Applied Research (PAR) flat cell (Figure 1) was used.  The electrolyte, a Hank’s 

solution, is a simulated body fluid and was obtained from Mediatech, Inc.  Potentiodynamic 

scans and electrochemical impedance spectra (EIS) were determined using the Solartron 

multistat and a frequency analyzer.  Prior to the polarization scan the samples were kept in 

solution to establish the free corrosion potential (Ecorr).  Electrochemical impedance 

experiments were performed at the open circuit potential.  Subsequently, the potentiodynamic 

polarization curves were obtained with a scan rate of 1mV/s. 
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Figure 1:  Flat corrosion cell used for corrosion study (Princeton Applied Research). 

 

III. Results and Discussion 

 Transmission electron microscopy has been used in the past to determine the phase of this 

film.  This TEM work confirms that, near the chromia pre-coat, the alumina is alpha-phase [16].  

In other work, we confirmed a pure alpha phase for alumina directly on a nickel TEM grid, 

although the film was only 80 nm thick. 

 The polarization curves on bare titanium and the alumina-coated titanium are shown in 

Figures 2 and 3.  These scans were repeated 3 times in each case.  From the inspection of the 

polarization curves, the onset of passivity in the case of bare titanium occurs at higher potential 

compared to that of the coated sample.  The passivity in titanium occurs due to oxide formation.  

In the case of the coated samples, the presence of the alumina film shows a passive behavior at 

lower potentials.  At higher potentials the coated sample appears to develop pitting.  However, 

SEM examination of sample did not reveal any pits; the film was very stable without any 

indication of dissolution.  
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Figure 2: Polarization curves measured on bare titanium surface. 

 

 
 

Figure 3: Polarization curves measured on alpha-alumina coated titanium surface. 

 

Electrochemical impedance experiments were performed at the open circuit potential.  

The impedance spectra obtained at different exposure times during the immersion in Hank's 

simulated body fluid are shown in Figures 4, 5 and 6.  They are displayed in both complex 
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impedance (Nyquist diagram) and Bode amplitude and phase angle plots.  The Nyquist plots are 

relatively featureless, but the Bode plots indicate changes in the electrochemical characteristics 

of the system with time.  It was observed that upon immersion of the uncoated specimen in the 

electrolyte, variations in the impedance spectra occurred with exposure time, which resulted 

from the evolution of the film on the bare titanium sample.  Changes are not noticeable for 

coated samples with time elapsing.  Even after 158 hours of exposure, an almost stationary 

behavior was reached.  These observations clearly show that the alumina coating is very stable 

and provide the desired corrosion resistance. 

 

Figure 4: Impedance spectra recorded for Ti in Hank’s solution at various times. 
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Figure 5: Impedance spectra recorded for αααα-alumina coated sample in Hank’s solution immediately 

after exposure. 

 

 

Figure 6: Impedance spectra recorded for αααα-alumina coated sample in Hank’s solution after 158hrs 

exposure. 
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The plots displayed in Figure 4 exhibit two time constants at longer exposure times.  That 

is, they can be divided into two distinct frequency regions: the time constant in the high-

frequency part, which arises from the uncompensated ohmic resistance due to the electrolytic 

solution and the impedance characteristics resulting from the penetration of the electrolyte 

through a porous film, and the low-frequency part accounting for the processes taking place at 

the substrate/electrolyte interface.  Such a behavior is observed in metallic materials covered by 

a porous film, and can be described in terms of an equivalent circuit which accounts for the 

different electrochemical processes occurring in the system. 

For the interpretation of the electrochemical behavior of the system, a physical model of 

the electrochemical reactions occurring on the electrodes is necessary.  The electrochemical cell, 

because it presents an impedance to a small sinusoidal excitation, may be represented by an 

equivalent circuit [22, 23].  An equivalent circuit consists of various arrangements of resistances, 

capacitors, and other circuit elements, and provides the most relevant corrosion parameters 

applicable to the substrate/electrolyte system.  After testing a number of different electrical 

circuit models in the analysis of the impedance spectra obtained at different exposure times, the 

appropriate equivalent circuits were obtained.  The equivalent circuits consist of the following 

elements: a solution resistance Rs of the electrolyte, electrical leads, etc., the capacitance Cpe1 of 

the coating layer, the charge transfer resistance associated with the penetration of the electrolyte 

through the pores or pinholes existing in the coating R1, and the Warburg element W1 due to the 

impedance associated with diffusion. 

A reasonable fit to the equivalent circuit for a given impedance spectra was established 

by admitting a relative error of less than 1% for the real and imaginary parts of the impedance.  
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Next, the quality of fitting was judged by the error distribution versus the frequency comparing 

experimental with simulated data for different models.  Thus, when Ti is exposed to the Hank's 

solution, its EIS spectra exhibit behavior typical of a film on the metallic substrate.  Electrolyte 

penetration occurs through the pores of the film, thus exposing the underlying metal to the 

physiological environment.  At longer exposure time EIS spectra reflect the fact that the film is 

changing its characteristics forming a double layer TiO2.  In this case, the double-layer titanium 

oxide film is hypothesized to consist of a Ti–TiO2 inner-TiO2 outer porous unsealed layer. 

The behavior of samples coated with alumina layer was similar to that of Ti in the 

beginning except for the Warburg impedance.  The Warburg impedance accounts for the Faradic 

process - namely, the transfer of ions across the coating which is pre-existing in this case.  

Interestingly, the impedance spectra and the equivalent circuit did not change with time for the 

case of coated samples.  As shown in Figure 7 and 8, the coating morphology after 158 hours 

(Figure 7) was virtually unchanged from the original form (Figure 8).  This indicates that the 

alumina layer is a stable passive layer. 

 

Figure 7: αααα-Al2O3 coating sample after 158hrs exposure to Hank’s solution 



 47

 

Figure 8: An SEM view of the surface of a coated alumina film prior to corrosion test. 

 

The friction characteristics of the coating as well as the base material are shown in Figure 

9.  Contrary to the expectation, the friction coefficient of the coating tends to be higher than the 

uncoated sample.  The reasons for the rougher than expected films is currently being 

investigated. 

 

Figure 9: Friction coefficients of coated and uncoated titanium samples. 
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IV. Conclusions 

 Approximately 750 nm of alumina was deposited on titanium samples using unbalanced 

magnetron sputtering.  TEM results indicate a film of mixed phase with an alpha dominance.  

Corrosion resistance of the alumina films was significantly better than the uncoated titanium 

samples.  Further, the coated titanium retained its morphology after 158 hours of exposure to a 

Hank’s solution, demonstrating its stability.  These data indicate the viability of such a coating 

for biomedical implants, though the unanticipated increased coefficient of friction needs further 

study. 
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Abstract 

Bulk alumina has been shown to exhibit reduced protein adsorption, a property that can 

be exploited for developing alumina-coated surgical instruments and devices.  Alpha alumina 

thin films were deposited on surgical stainless steel substrates to investigate the adsorption of a 

model protein (BSA, bovine serum albumin).  The films were deposited at 480°C by AC inverted 

cylindrical magnetron sputtering.  Films were obtained at 6 kW and 50% oxygen partial pressure 

by volume. The presence of alpha phase alumina has been shown by transmission electron 

microscopy.  Results indicate that there was a 50% reduction in protein adsorption for samples 

with the alumina coating compared to those with no coating.   
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I. Introduction  

 While the material properties of alpha-phase aluminum oxide have been studied 

extensively, little is known about the protein adsorption characteristics of alumina thin films.  

Alumina is a biomedical material that is generally classified as bioinert and has been used for 

implants and prostheses for several decades [1].  In view of its high hardness (24 GPa) [2], 

resistance to abrasive wear [2], stability at temperatures upward of 1000°C [3], and 

biocompatibility, thin alumina coatings are a promising material of choice for value-added 

applications in the biomedical implant and surgical instrument industries.  Alumina-coated 

stainless steel blades are expected to retain a sharpened edge longer when subjected to hard 

tissue cutting applications, and the corrosion of alumina-coated stainless steel bone implants can 

be significantly reduced in vivo, resulting in lengthened service lives. 

 Aluminum oxide is commonly found in nature with an amorphous structure or an array of 

metastable crystallographic phases (γ, η, θ, δ, and κ).  The thermodynamically stable alpha-phase 

has a hexagonal rhombohedral crystal structure and is the most desirable variant of alumina for 

intensive wear applications. 

 Compared to polymeric biomedical materials such as silicones and some metals and 

alloys, bulk alumina has been shown to exhibit reduced (low and partial surface coverage) 

protein adsorption [4, 5].  In addition, alumina is expected to be a thromboresistant material [6].  

These unique characteristics can be exploited for developing alumina-coated surgical instruments 

and biomedical devices that are easy to clean to appropriate levels, thus making the otherwise 

single-use devices reusable.  The surfaces of these instruments and devices can be coated with 

alumina by CVD (chemical vapor deposition) or PVD (physical vapor deposition) methods. 
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 The synthesis of alpha alumina by chemical vapor deposition (CVD) has been 

extensively investigated and replicated in industry [7].  In CVD, however, the temperature of 

deposition is roughly 1000°C; while this ensures a good bond between the substrate and coating, 

the thermal expansion mismatch leads to the accumulation of residual stresses that adversely 

affect the adhesion of the film.  In addition, the high deposition temperatures can result in 

inefficiencies in an industrial setting as more time must be allowed for cooling of the coated 

substrate. 

 Physical vapor deposition processes present a suitable alternative to CVD while 

alleviating some of the problems associated with high deposition temperatures.  PVD techniques 

typically include electron beam evaporation, plasma spraying, gas detonation, laser ablation, RF 

sputtering, DC- and pulsed DC magnetron sputtering, and mid-frequency AC magnetron 

sputtering.  Each of these techniques has been used to deposit amorphous alumina coatings that 

were subsequently converted to an alpha-phase during post-deposition heat treatment at 

temperatures in excess of 750°C [8-15]. 

 An alternative approach is to promote the growth of alpha alumina using an alpha-phase 

chromium oxide template layer.  Andersson et al. [16], Jin et al. [17], Morikawa et al. [18], and 

Aryasomayajula et al. [19] have independently reported that alpha alumina could be deposited 

using a chromium oxide template layer.  Alpha alumina and alpha-phase chromium oxide are 

isostructural [3]; the deposition of alpha-alumina is facilitated by the presence of the chromia 

layer [20].  In the recent past we have succeeded in producing alpha-alumina coatings at a 

deposition rate of ~125 nm/h [19] with substrate temperatures during deposition shown to be 

approximately 480°C [21]. 
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 Surfaces coated with an alumina film are expected to be more easily cleaned by 

conventional hospital cleaning methods, compared to uncoated ones, and remain relatively 

scratch-free due to their high hardness and wear resistance.  The residual (protein) bioburden 

after cleaning is also expected to be significantly reduced, a feature highly desirable for reducing 

costs in the health care industry through reuse of adequately cleaned otherwise single-use 

devices and instruments.  The reduction of surface scratching is expected to mitigate bio-soiling 

despite repeated operation cycles.  For the work presented and discussed in this paper, protein 

adsorption studies on alpha alumina-coated surgical stainless steel substrates using a model 

protein (BSA, bovine serum albumin) have been conducted and compared to studies of an 

uncoated control. 

 

II. Experimental 

 Thin films of aluminum oxide were deposited on stainless steel surgical blades using an 

Isoflux ICM-10 dual target AC inverted cylindrical unbalanced magnetron sputtering system.  

Two aluminum targets (99.99% purity) act in concert as alternating anode and cathode.  High-

purity oxygen is supplied to the chamber and allowed to react with the sputtered aluminum to 

form the alumina coating.  The plasma is sustained with an argon working gas.  The Ar/O2 ratio 

is 1:1. 

 The deposition chamber is approximately 35 cm in diameter and provides roughly 30 cm 

of deposition space in the vertical direction.  The magnetron is powered by an Advanced Energy 

PE-II alternating current power supply operating at 40 kHz; substrate biasing is supplied by an 

Advanced Energy MDX DC power supply.   
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 The surgical steel blades are of the #10 design and are stainless steel.  Prior to deposition 

the blades were cleaned in an ultrasonic bath of acetone for 20 minutes.  Samples were then 

rinsed with acetone, dried, and blown free of debris with compressed nitrogen before being 

placed under vacuum in the deposition chamber.  Base pressures of 1.5x10-6 Torr were attained.  

Just before deposition substrates are further cleaned by plasma etching using an argon plasma 

and -80 V of DC biasing. 

 Half of the samples were given a pre-coating of chromium oxide.  Chromium targets of 

99.9% purity were sputtered for 15 minutes at 6 kW with an Ar/O2 ratio of 1:1.  The remainder 

of the samples had no such template layer before alumina deposition. 

 Aluminum oxide was deposited for a period of 6 hours.  Alumina films between 0.5 and 1 

micron thickness were desired.  The films produced were observed to be on the order of 750 nm 

thick.  To avoid a decrease in deposition rate during the experiment, targets were depoisoned 

after every hour of deposition in situ.  A mechanical shutter was raised to place a physical barrier 

between the substrates and the targets.  An argon plasma was used to sputter away the 

accumulated insulating layer of aluminum oxide that develops on the target during oxide 

deposition.  This process was carried out for 450 seconds; the shutter was then lowered and gas 

flow rates suitable for oxide synthesis were re-established to continue deposition.  The deposition 

pressure was 2 mTorr.  Complete deposition parameters are given in Table I. 

 Subsequent to deposition, coated substrates were allowed to cool under vacuum until they 

reached room temperature.  This process avoids rapid cooling that may induce film cracking.  

The films were analyzed using XRD, TEM, SEM, EDS, AFM, and FTIR in reflectance mode. 

 Fourier transform infrared spectroscopy is a powerful technique for studying protein 

adsorption onto solid surfaces [22, 23].  Compared to various other techniques used for studying 
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protein adsorption, FTIR has the key advantage that spectra can be obtained quickly and easily in 

a variety of environments such as in solutions and on solid surfaces of ceramics, metals, and 

polymers.  For protein adsorption studies, coated and uncoated blades were kept in 10 mM BSA 

solution for one hour.  Subsequently, the blades were vacuum dried.  A Nicolet 6700 FTIR in 

reflectance mode was used before and after protein adsorption.  FTIR data were collected for 

wavenumbers between 2000 and 1000 cm-1; resolution was 2 cm-1.  A white, titanium dioxide 

background was used.  A KBr beam splitter and DTGS-KBr detector were employed. 

 

III. Results and Discussion 

 X-ray diffraction studies were used in conjunction with past TEM results on this coating 

to determine the crystallographic phase.  Figure 1 shows the XRD results for an alumina coated 

blade, a blade coated with chromia and alumina, and a reference sample.  Only major peaks are 

readily visible.  The largest peaks at 2θ values of 44.4° and 64.5° degrees are seen in all samples 

and correspond to the stainless steel blade.  In the sample coated only with alumina, a large peak 

is seen at 38.7 degrees; this is indicative of non-pure alpha-phase alumina.  In the sample with a 

chromia pre-coat, a characteristic peak of alpha-phase chromia is seen at 36.2 degrees.  Because 

the peak for alpha-phase alumina is so close to that of alpha chromia, it can be hidden.  Previous 

TEM work confirms that, near the chromia pre-coat, the alumina is of a mixed phase, though the 

alpha-phase is dominant [19]. 

 Figures 2(a) and 2(b) show SEM micrographs of the surface of both an uncoated and 

coated blade, respectively.  The presence of the film has a significant impact of the surface 

texture.  Surface roughness values of the uncoated and coated blades were attained using atomic 

force microscopy, shown in Figures 3(a) and 3(b), respectively.  Uncoated stainless steel had a 
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root mean square average roughness of 4.2 nm.  Blades coated with an α-Cr2O3 / α-Al2O3 film 

had a greatly increased roughness of 58.2 nm.  Post-deposition polishing of the alumina films 

may be required to decrease the coating’s roughness, and thus its coefficient of friction, and 

prevent the accumulation of debris on an instrument’s surface.  For the purposes of medical 

implementation, it is undesirable for the chromium oxide used as a template layer to come into 

contact with the body.  Ideally, we will develop a repeatable process to deposit alpha alumina 

films without the chromia template layer.  However, even with the underlying chromia layer, 

EDS surface studies showed only the presence of aluminum and oxygen.  The alumina layer is 

thought to be sufficiently thick and coherent to prevent exposure of the chromia layer, even 

given moderate wear, though further study in required. 

 Figures 4(a) and 4(b) show the FTIR reflection for uncoated and coated blades.  The 

amide I and amide II vibration bands between 1700 and 1500 cm-1 are representative of the 

amide backbone of peptides and proteins.  The area under the amide II band centered around 

1550 cm-1 can be used to quantify the adsorped protein.  A linear correlation between the 

adsorped protein and the area under the amide II band has been demonstrated by Pitt and Cooper 

[24].  The amide I band centered around 1650 cm-1 can be used for extracting structural 

information of the adsorped protein. The spectra in Figure 4(a) were obtained in order to confirm 

that there is no overlap between the infrared adsorption bands of the alumina-coated and 

uncoated substrates and those expected from the adsorped protein (BSA) in the 1500 to 1700 cm-

1 range.  

The FTIR spectra of the coated and uncoated substrates obtained after protein (BSA) 

adsorption, shown in Figure 4(b), clearly indicate the presence of amide I and amide II bands.  

The amide I adsorption band in the FTIR spectra of Figure 4(b) is a composite band consisting of 
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at least two primary components centered around 1630 and 1670 cm-1 for all the three samples, 

suggesting the presence of both α-helix and β-sheet conformations of BSA upon adsorption. 

Comparing the three samples in Figure 4(b), it is found that the area under the amide II 

band centered at about 1550 cm-1 for the uncoated sample is significantly larger (approximately 

double) than the alumina coated samples (both with and without chromia pre-coat), suggesting 

that the alumina coated samples adsorped significantly less protein than the uncoated sample.  

Multiple FTIR spectra were collected for this study; the results presented are representative of 

the film’s performance.  This behavior is in line with that observed for bulk alumina samples.  

The authors believe that this desirable result, from a bioburden removal perspective, is the first 

of its kind on magnetron sputtered alumina. 

   

IV. Conclusions 

 Approximately 750 nm thick alumina films were deposited on stainless steel surgical 

substrates using unbalanced magnetron sputtering.  XRD results indicate a film of mixed phase, 

though prior TEM work shows the films are mostly alpha phase. 

 FTIR spectroscopy was used to determine the adsorption of a model BSA protein.  

Despite increased surface roughness, results indicate a roughly 50% reduced bioburden in those 

blades coated with an aluminum oxide film. 

 Future work will further investigate methods of depositing a solely alpha-phase film on 

surgical instruments, controlling surface roughness, and comparing the wear of coated substrates 

to conventional surgical implements. 
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Table 2 - Deposition parameters for chromium oxide and aluminum oxide coatings. 

 
Parameter Chromium Oxide Aluminum Oxide 

Ar/O2 Ratio 1:1 1:1 

Substrate Biasing (V) -35 -35  

Magnetron Power (W) 6000 6000 

Deposition Time 15 minutes 6 hours 

Base Pressure (Torr) 1.5x10-6 1.5x10-6
 

Deposition Pressure (mTorr) 2.0 2.0 
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List of Figures 

 

Figure 1: X-ray diffraction results for films with and without a chromia template layer with 

an uncoated control blade for comparison. 

   

Figure 2: SEM micrographs of an uncoated (a) and alumina coated (b) stainless steel 

surgical blade. 

 

Figure 3: Three dimensional AFM images of an uncoated (a) and alumina coated (b) 

surgical blade. 

 

Figure 4: FTIR reflectance spectra of the uncoated and alumina-coated stainless steel blade 

substrates: (a) before protein adsorption, and (b) after protein (BSA) adsorption.
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CONCLUSIONS 

 

 Alpha-phase aluminum oxide thin films were created using an Isoflux ICM-10 dual target 

inverted cylindrical magnetron sputtering system using mid-frequency AC power supplies.  

Alpha alumina films were deposited at a magnetron power of 6 kW, 50% oxygen partial pressure 

by volume, and -35 V DC bias.  Film thickness, substrate material, and position and orientation 

within the deposition chamber were varied. 

 The substrate temperatures during deposition were determined experimentally and 

numerically to be ~480°C at 6kW.  TEM studies indicate that the lab’s film tend be 

predominately alpha-phase with discernable gamma-phase components.  Corrosion resistance 

tests indicated that the coated titanium had improved performance and stability compared to the 

uncoated titanium.  However, the coefficient of friction increased with the applied film.  There 

was a 50% reduction in protein adsorption for samples with the alumina coating compared to 

those with no coating. 

 The experimental results, in combination with the economics and logistics of the 

equipment used in the study, are promising for commercialization.  The work presented 

represents only the first steps toward that goal.  If progress in this direction continues, the 

methods described would have an appreciable impact in industry. 
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