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Abstract

Considering the electrons as the main element in breakdown wave propagation and using a one-dimensional, steady-state,
three-fluid, hydrodynamical model, previous investigations have resulted in the completion of a set of equations for conserva-
tion of mass, momentum, and energy. We will use the terms proforce and antiforce waves, depending on whether the applied |
electric field force on electrons is with or against the direction of wave propagation. In the case of antiforce waves, the electron !
gas temperature and therefore the electron fluid pressure is assumed to be large enough to sustain the wave propagation down
the discharge tube.

For strong discontinuity and based on the conditions existent at the leading edge of the wave, previous investigations have
concluded a minimum wave velocity condition for breakdown waves. However, allowing for a temperature derivative
discontinuity at the shock front, we have been able to derive a new set of conditions at the shock front and therefore a lower
range of electron drift velocity. This conforms with the experimentally observed wave speeds. The solution to the set of elec-
tron fluid-dynamical equations involves a previously discovered method of integration of the equations through the sheath
(dynamical transition) region. For a wide range of wave speeds, the appropriate set of electron fluid-dynamical equations has

been integrated through the sheath region.

Introduction

Shelton and Fowler (1968) argued that a fluid phenom-
enon involving no mass motion must be due to electron-
fluid action. Therefore, they thought that the name
“Electron Fluid-Dynamical Wave” represented a better
description of the basic nature of the event. Owing to the
smallness of the velocity changes of the heavy particles as
the wave passes over them, a set of conservation equations
applying only to the electron fluid could be derived. Using
the principle of frame invariance, Shelton and Fowler (1968)
found analytical forms for both the elastic and inelastic col-
lision terms in the equations of conservation of momentum
and energy. From the conservation of energy equation, they
derived the conditions existent at the leading edge of the
wave. Based on these conditions and for strong
discontinuity, they found a minimum wave velocity
condition ( %iu\r’g > ed;), where ¢;, V(j, m, and e are ioniza-
tion potential, wave velocity, and electron mass and charge
respectively. To achieve a solution to the electron fluid
dynamical equations, Shelton and Fowler had to resort to
approximation methods.

For successful integration of the set of equations through
the dynamical region, Fowler et al. (1984) had to modify
Shelton's three component fluid equations for conservation
of mass flux, momentum, and energy. With Poisson’s equa-
tion included and for proforce waves, their set of equations

which have proved to be successful are

E=EnalH-n (1)
d_(;‘l;r_]= Bn, (2)

2“; mnv(v —=V) + nkT_ } =—enk — Kmn(v - V), (3)

, 5nk’T, dT,
{ mnv(v = V)? 4 okT,(5v - 2V) + 2edny — LmR_e (]f } =

Ba

(4)

- :l(i;“r)nkl'('l'e - {ﬁ)l\'mn{v - V)%

Where the variables are electric field E, electron tem-
perature T, electron concentration n, electron velocity v,
and position in the wave profile x. Also, B and K are the ion-
ization frequency and elastic collision frequency, respective-
ly.

In the case of proforce waves, to reduce equations (1)
through (4) to nondimensional form, Shelton and Fowler
(1968) introduced a set of dimensionless variables. We have
slightly modified the dimensionless variables and they are

o2 1
e _'nL P . _mv?
w:%!.u=lsg.ﬂ= .nzm,v=\'d|,n--_r.§v, Te = -4, E = yky, :-:EF{.

In the above equations, v, W, 6, {, &, 1, and £ are the
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dimensionless electron concentration, electron velocity,
electron temperature, ionization rate, elastic collision fre-
quency, electric field, and position inside the wave, respec-
tively. The symbols n and T, represent electron number
density and temperature inside the sheath, and B, ¢, V, M,
E are ionization frequency, ionization potential, wave
velocity, neutral particle mass, and electric field at the wave
front. In terms of dimensionless variables the electron fluid
dynamical equations become

B=kw-n. (5)
A — . (6)
A6 1) + avh) == - 1), (7)
& (= 1) 4+ (50 - 2) + o + o' - S0 40 ) = - w300 4 (v~ 1)), (8)

Solution of the Equations

For strong discontinuity, Shelton and Fowler (1968)
derived the following conditions for electron velocity and
temperature at the leading edge of the wave.

50 + 6o . (9)
—F—
(10)

¢ =
o = Wl "Wl]‘

Based on these conditions, he concluded a minimum
wave velocity condition (v, zﬁ]- However, allowing for a
temperature derivative discontinuity at the shock front,
introducing the initial condition on electron temperature
from equation (10), and substituting the values of the other
variables at the leading edge of the wave (§; =0, = 1) into
the energy equation with the heat conduction term included
results in

(11)

By W,
iy = 1 o 1= ¥y )0, =2) + iy + alyd = 1) == (1 = )0} = 0,

This equation reduces to

~4y% 4 By~ | +s“'ﬂ*+u--1;—l [ (12)
Solving this quadratic equation for y, one can find the ini-
tial condition on electron velocity to be

H(1 +'-':iav»ln —RJ:’ + 1o

From Poisson’s equation and for waves moving into an
unionized medium, one can conclude ¢(N;V - nv) = 0. This
is called the zero current condition, and it requires that V
and v be of the same sign. Therefore, v = ¥ has to be posi-
tive. From equation (13) one can conclude

(13)

W=

' ’
i+ r_':l' = \l|;;.. i{';l!]* + e >0 “4)

or 25

b<a<(i-5y (15)
With positive values of 81, o can have values larger than
one, and we have been able to find solutions for o as large
as 2. This conforms with experimentally observed wave
speeds (Uman, 1993).

To integrate the equation set through the sheath region,
one has to place the singularity inherent in the equation set
in the denominator of the momentum integral. If we solve

the momentum equation (7) for & it will become:

Ay mil) =l ) = o'y 4 = gl
" vi—al (18)

A zero denominator in the momentum integral rep-
resents an infinite value for the derivative of electron veloc-
ity with respect to the position inside the sheath. This
condition requires the existence of a shock inside the sheath
region, which is not allowed. The numerator in the momen-
tum integral, therefore, has to become zero at the same time
that the denominator becomes zero. In the process of inte-
gration of the equations through the sheath region, compar-
ing the numerator and denominator values will allow one to
choose the required initial parameters by trial and error. A
successful solution has to allow passage through the singu-
larity and satisfy the physically acceptable conditions at the
trailing edge of the sheath. The expected conditions at the
end of the sheath are a) the electrons have to come to rest
relative to neutral particles (y — 1), and b) the net electric
field has to reduce to a negligible value (n — 0). The
method of integration of the set of electron fluid dynamical
equations is identical to the one adopted previously
(Hemmati et al., 1998).

For a wide range of wave speeds and for proforce waves
moving into a nonionized medium, we have integrated the
set of electron fluid-dynamical equations through the sheath
region. The solutions meet the expected conditions at the
trailing edge of the wave (y —* 1, n —* 0). Successful inte-
gration of the set of equations through the sheath region
required the use of the following values for x, yy, and v;.

o =0.01, x = 1,239718, yy = 0.327, vy = 0.023

o = 0.1, x = LO7I818, y| = 0.20125, v| = 0.235

o = 0.25, k = 0.959363, y; = 0.26016, v = 0.666

o = 0.5, x = L.OB576, yy = 0.25375, vy = 1.05

o= 1, kK = 10426635, y| = 0.2071, vy = 2.1

Figure 1 is a plot of the electric field, 1, as a function of
electron velocity, v, inside the sheath for five values of . o
= (.01 represents a fast wave speed (V =3 x 107 m/s) and o
= 1 represents a slow wave speed (V = 3 x 105 m/s). The
graph shows that for all five values of « the solutions to the
electron fluid dynamical equations conform to the expected
physical conditions at the trailing edge of the wave.
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Fig. 1. Electric field, 1, as a function of electron velocity, v,
for five values of o. a = 0.01, 0.1, 0.25, 0.5, and 1. o. repre-
sents wave speed.

1.200

| === 0.01
=01

1.000 § ——a=025
=g =05
——g=10 |

0.800

0.800

=

0400

0.200 -

0.000

0 0.5 1 15 2 25 3 35

g

Fig. 2. Electric field, n, as a function of position inside the
sheath, &, for five values of o. o = 0.01, 0.1, 0.25, 0.5, and 1.

o represents wave speed.

Figure 2 shows graphs of electric field, 11, as a function
of position inside the sheath, & for five values of wave
speed. As the value of the wave speed decreases (o increas-
es), the integration of the equations becomes more difficult
and time consuming. o = 4 seems to be the cut-off point, rep-
resenting a minimum wave speed. For o> 4, the integration
of the set of equations through the sheath region becomes
impossible. The present limit on the values of wave speed
conforms with the experimentally measured values (Uman,
1993). For & = 0.01, the nondimensional sheath thickness is
& = 1.4. To connect to the physical world, this represents a
sheath thickness of x = 0.0007 m.

Conclusions

For proforce waves, the electron fluid dynamical equa-
tions have successfully been integrated for five different val-
ues of wave speeds. Allowing for a temperature derivative
discontinuity at the shock front results in a lower limit on
breakdown wave speeds. Our newly derived limit on wave
velocity conforms with the experimentally observed wave
speeds.
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