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ABSTRACT 

 

Using visualization and clustering goals as guidelines, this thesis explores a 

graphic implementation of a data clustering technique that repositions vertices by 

applying physical laws of charges and springs to the components of the graph.  The 

resulting visualizations are evidence of the success of the approach as well as of the data 

sets that lend themselves to a clustering routine.  Due to the visual product of the 

implementation, the algorithm is most useful as an aid in understanding the grouping 

pattern of a data set.  Either for a rapid analysis or to assist in presentation, the visual 

result of the clustering approach is a useful tool for discovering trends in a data set. 
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1.  INTRODUCTION 

Clustering data is a field of data mining where meaningful information can be 

extracted from a data set by identifying and exploiting common traits between the data 

elements.  The benefits of successful classification of components within data sets are 

best illustrated by the multiple applications for data clustering visible throughout nature 

and society.  Ecological studies, for example, require ordination of climate, food, or 

migration data in order to identify life structures such as biospheres or ecosystems.  

Researchers in ecology utilize computing tools to solve such problems, yet selecting an 

algorithm that fits the characteristics of ecological data is a challenge [3].  Other examples 

of fields that use classifying routines as a fundamental tool to organize data are medicine 

in assembling reports such as electrocardiograms, market research to identify potential 

consumer segments from surveys or test panels, or internet search result providers that 

enhance their results through intelligent grouping.  There is not only a need for clustering 

techniques, but also an overwhelming quantity of data to be processed by these 

techniques. 

The majority of applications of information clustering, including all of the above 

examples, very often benefit when represented visually in an effective way.  The goal of 

visualization is to emphasize not the data but the underlying phenomenon.  It is estimated 

that fifty percent of the human brain’s neurons are associated with processing the large 

bandwidth of information received through vision [8].  Thus, not only must visualization 

provide an accurate representation of a data set, but this representation will be interpreted 

at a very high speed.  Acknowledging the capacity and rapidity of human interpretation 

means that the visualization must at all times have the desired effect in order to fulfill the 
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primary goal of visualization.  In a sense, the development of a visualization technique is 

related to that of advertisements.  In the case of a single static frame, for example, the 

initial impact of the visual display is most significant.  Although this seems contradictory 

since there are graphs that require close scrutiny of the legend, axes labels, and units of 

measurement that are used by professionals across multiple fields, this family of graphs 

does not qualify as visualization.  The difference lies in that the value of visualization is 

in extracting the meaning of information, and is not the same as a graphical 

representation that serves as an alternative to a table or a similar data structure for 

expressing results.  Using this terminology, an example of graphical representation of 

data is a set of temperature measurements plotted as points relative to an axis that marks 

the distance from a heat source.  A possible visualization of this same data would be a 

heat distribution pattern that utilizes color coding for the different temperatures and the 

test area itself provides the shape of the image.  Visualization uses graphical primitives, 

such as coordinate planes, and exploits visual techniques and display technology to 

provide insight into the information presented. 

The research of this thesis explores the ability to enhance visualization of data 

sets that exhibit partitioned subsets.  The display is a two dimensional graph of points that 

represent each data element and edges that connect two points that have a relationship.  

The data sets used throughout this thesis to demonstrate the visualization results are a 

couple of social networking sources and the 2007 NCAA College Football matches.  The 

sets of data have different types of relationships that connect their elements, and it must 

be noted that the presence of a relationship between two elements is provided to the 

clustering routine as it is not the goal of the algorithm to try to extract relationships from 
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a given set of data.  Thus, for the above mentioned data sets, the presence of a 

relationship between two points (i.e., an edge between two nodes) was determined by a 

subjective definition specific to the data set.  This is a strength of the visualization 

technique because it is flexible to different applications and different attributes of the data 

can be emphasized depending on the definition of a relationship. 

1.1  Problem 

The visualization technique detailed in this thesis is meant to enhance the 

appearance of grouping trends in a data set.  Visualization is as valuable as the insight it 

provides the viewer into a characteristic of the data that is not readily perceived.  This 

thesis attempts to improve on a data set that is viewed as a two dimensional graph.  Such 

a graph can be termed a network that contains elements, called vertices, connected by 

edges.  Current clustering techniques attempt to group the vertices of a network into a set 

of subnetworks such that once a vertex belongs to one cluster it cannot belong to another.  

However, data sets resulting from scientific measurements or social analysis have 

anomalies, elements that follow no trend.  For example, a set of vertices where each 

represents a middle school student and an edge connects two students if they are friends 

can be broken up into cliques by a clustering routine.  There might be vertices that have 

one or zero connections, termed outliers, and there also exists a possibility of vertices that 

are connected to two or more cliques, also called hubs.  By forcing all vertices to belong 

to one subgraph, the outliers are assumed to have as many associations to a clique as all 

its other members, and the multiple connections that a hub has to another subgraph are 

ignored.  In the specific example of the middle school network, the ability to track how a 

rumor was distributed between the students, or maybe even something as important as the 
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contamination track of a virus, would be lost on the clustered network.  This example 

illustrates the impact of not being able to visualize all properties of partitioned data sets 

via existing clustering routines. 

In a more specific setting, the implementation of this thesis is part of a research 

project at Acxiom Corporation.  The lack of a strong visualization technique limits the 

effect of a presentation, and this was the case of the Network Properties application that 

the grouping routine detailed in this document is a part of.  Some of the implications of 

the application’s functionality, explained in further detail in Section 3.2, are not as 

apparent when the subgraphs of the displayed network are mixed together.  The goal of 

this routine is thus to reposition vertices so that the clusters, outliers, and hubs in the 

network are more evident. 

1.2  Thesis Statement 

Provided a data set with defined relationships between its elements, visualization 

of the data is enhanced with the use of a routine that positions the data nodes on a two 

dimensional coordinate plane emulating the physical behavior of electric point charges 

connected by springs. 

1.3  Approach 

Abstracting a data set into a graph of vertices and edges, as is the case of the 

environment that this clustering visualization must exist within, is a good means to 

guarantee a routine that can be applied to different types of data.  The repositioning of the 

vertices of the network must thus be based on its graphical elements rather than specific 

properties of the data set.  This method uses the vertex and edge information of the 
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network on modified physics equations ordinarily used to model the behavior of electric 

charges and springs.  Each vertex is represented as an electric charge in the algorithm, 

and the presence of an edge between two vertices is fashioned to act as a spring between 

the two electric charges.  This technique for relocating graphical points to achieve a 

visualization of the source data set does not distinguish between two types of charges.  

Instead, all elements of the data set are represented by the same type of electric charge 

and will always repel, as explained in Section 2.1.1.  Considering the graphical 

representation of the data, it does not make sense to have two different types of points as 

this distinction cannot be expressed in the graph itself.  Another key aspect of the 

approach is that only one spring can exist between two charges, meaning one edge 

between two vertices.  In terms of the data set, this means that either a relationship exists 

or does not exist between two elements.  A network thus becomes a set of moving points 

connected by springs, and eventually all the forces will reach a state where an equal and 

opposing force balances the system, designated as the point of equilibrium. 

1.4  Potential Impact 

The approach taken by this research to the problem of visualizing data sets that 

have partitions can be applied to the analysis of trends in society that have not been easily 

spotted before.  The ability to rapidly identify a hub, for example, that is offsetting data 

patterns cannot be achieved by a simple comparison of the degrees of vertices or the 

clustering technologies reviewed in Section 1.1.  The hub can be of much importance to 

society in the case of analyzing the spread of a disease, or linking groups suspected of 

delinquent activity.  The flexibility of defining the edges as any relationship without 

changing the functionality of the routine is also significant.  The challenge of modifying 
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an algorithm to suit a specific science’s use is lessened by this technique.  In the scope of 

Acxiom Corporation’s products, this tool could assist the communications with a client.  

It could even aid in selling the services that Acxiom offers by allowing the potential 

customer to better visualize the existing problem with naming and addressing gaps in 

society.   

1.5  Organization of this Thesis 

Chapter 2 of this thesis reviews the physical concepts and equations that are 

utilized by this clustering technique, the details of the graphic components of Java that 

affected the implementation, and literature of related work in the area of clustering.  The 

details of the approach to this visualization, including an overview of the application that 

serves as the environment and a walk-through of the algorithm, are described in Chapter 

3.  The following chapter describes the data structures used in Java as well as how the 

physics equations were applied to the graphical elements of a network.  Chapter 5 

presents an analysis of the resulting visualization on different data sets, and Chapter 6 

concludes this thesis with the contributions of this work and insight into possible 

extensions to the implementation. 
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2.  BACKGROUND 

2.1  Key Concepts 

The routine that enhances the visual effect of graphed data elements is derived 

from the physical properties of electric charges and springs.  This behavior is quantified 

by Coulomb’s Law and Hooke’s Law, and reviewing the basics of each is fundamental to 

understanding the reason for this visualization method’s success.  

Implementing the visual part of the routine in Java required the use of a JLabel 

object customized for the specific task of displaying vertices and edges.  Tailoring an 

object in Java is achieved by adding necessary data structures and methods that are 

specific to the application’s needs.  The extensions made to the standard JLabel object in 

this implementation are not important to the topic of this thesis.  The functionality of the 

repaint() method of a JLabel, however, does affect the visualization result and the details 

are explained in Section 2.1.2. 

2.1.1  Coloumb’s Law 

An atom is comprised of electrically charged particles called protons and 

electrons along with a set of particles called neutrons that have no charge at all.  

Conventionally the protons are said to have a positive charge and the electrons have a 

negative charge, yet the concept of positive and negative is arbitrary and not utilized in 

this thesis.  The property of electrically charged sub-atomic particles that is essential, 

however, is that particles with the same charges repel each other and particles with 

opposite charges attract each other [7].  A force that either pushes or pulls is generated 

between any two charges and if the charges are free to move then they will accelerate 
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apart or together.  The magnitude of the force determines the amount of the movement, 

and Coulomb’s law states that the force between two electric point charges is 

proportional to the magnitude of the charges and inversely proportional to the square of 

the distance between the charges.  The equation to calculate the size of this force is: 

FA-B  = k c × (q A × q B)   
     r 2 
 
FA-B   => force between charges A and B 
k c  => Coulomb’s constant, with the value 9×10 9 

N*m2/C 2 
qA, q B => magnitudes of electric charge A and B 

respectively, in Coulomb units 
r   => distance between point charge A and point 

charge B 
 

For a two dimensional application the force must be separated into a vertical and a 

horizontal component to graph the movement on a Cartesian coordinate system.  The 

Euclidean distance between two points is given by a formula derived from the 

Pythagorean Theorem.   The relationship between the distance of points A and B on a xy 

plane is expressed in the following equation: 

d = √ [(x A – x B) 2 + (y A – y B) 2] 
 
d   => distance between two points on a xy plane 
xA, x B  => x coordinates of A and B respectively 
yA, y B  => y coordinates of A and B respectively 
 

Finally, in order to extract the horizontal and vertical components of the force between 

two electric point charges it is necessary to use trigonometric ratios of angles [7]: 

Fx = F A-B  × cos Θ   F y = F A-B  × sin Θ 
 
Θ   => angle formed by the vector of force F and 

its horizontal or vertical component 
 
cos Θ = (x A – x B)    sin Θ = (y A – y B)  
  d        d 
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Combining Coulomb’s Law applied to a Cartesian coordinate system and the 

Pythagorean Theorem allows an extraction of the horizontal and vertical components of 

the force between two electric point charges: 

d = √[(x A – x B) 2 + (y A – y B) 2] 
 
Fx = k c × (q A × q B)  × (x A – x B)  
  d 2   d          
Fy = k c × (q A × q B)  × (y A – y B)  
  d 2   d 
 

This equation only provides the magnitude of the force without direction, and in this 

thesis the task of determining the direction is simplified by the fact that the 

implementation’s abstraction of the data elements as electric charges assumes all points 

have the same charge.  Since like charges repel, then the resulting forces between the 

points are always directed away from each other.   

2.1.2  Hooke’s Law 

A spring will return to its original shape after being stretched because it is an 

elastic object.  This property is due to a force, called a restoring force[9], that pulls the 

spring back to its initial state whenever it is stretched.  Hooke’s Law quantifies the 

relationship between the restoring force and the distance the spring has been stretched: 

F = -k s × d 
 
F   => restoring force 
k s   => spring constant 
d   => displacement by stretching 
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The displacement from point A to point B expressed in horizontal and vertical 

components for a Cartesian coordinate system can be derived from trigonometric 

properties:   

∆x = x A – x B   ∆y = y A - y B 
     d      d 
 
xA, x B  => x coordinates of A and B respectively 
yA, y B  => y coordinates of A and B respectively 
d   => Euclidean distance between A and B 
 

The resulting equations for the horizontal and vertical components of the restoring force 

are: 

Fx = -k s × d × (x A – x B)   F y = -k s × d × (y A – y B)  
    d         d 
 
Fx = -k s × (x A – x B)   F y = -k s × (y A – y B) 

2.1.3  Threads of Execution 

The JLabel class in Java inherits paint() and repaint() methods from the 

JComponent interface which is a part of the Swing framework that assists with designing 

graphical user interfaces (GUI).  The JLabel is an element that serves as the part of a GUI 

that displays text, an image, or both [12].  The execution of an application with a GUI 

typically starts with an intialization, followed by some processing, then the GUI is 

updated, and these last two steps are repeated as many times as necessary until the 

program is terminated.  In the case of a Java application using a JLabel as the display 

area, the repaint() method is invoked in order to update the text and/or image on the 

display area.  When repaint() is called, the JLabel’s paint() method is executed after all 

the pending events have been completed[12]. 
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A sample usage of a JLabel is a simple display that draws a stick to keep tally of 

every Z it finds in a document as the program reads the text.  There is no input from the 

user to the application, and the processing step between each repaint() is the actual 

reading of the document.   The pseudocode below is a possible implementation of the 

example: 

while( !EOF ){ 
 char = next character 
 if ( char == ‘Z’ ) { 
  tally++ 
  repaint() 
 } 
} 

 
In the pseudocode, the variable tally is the total number of Zs found in the document and 

is accessed by the paint() method of the display component to determine the number of 

sticks to draw.  Assuming a document large enough that the program requires several 

seconds to scan each character, the expected execution of the program would start with a 

blank display area that with time would accumulate more sticks.  The assumption of the 

document size is to establish a scenario where the computation takes enough time that the 

visual aspect of it can be appreciated by humans.  The actual execution, however, would 

display a blank screen for almost the entire time of the program’s execution and right 

before terminating would display all the sticks.  This final screen might even be displayed 

such a brief amount of time that a human viewing the execution would not recognize that 

it, in fact, did appear.   

The unexpected execution is due to a characteristic of the execution method of 

Swing components.  As the explanation of the repaint() method’s functionality states, 

“The component will be repainted after all of the currently pending events have been 

dispatched”[12].  When executing the pseudocode example, the Java Runtime 
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Environment optimizes the repainting of the display by grouping all the calls of repaint() 

together.  The file I/O and other processing that needs to be done will thus execute faster, 

but the desired functionality is not achieved.  Java suggests a convention for utilizing 

Swing components known as the Swing Single Threading Rule which states “To avoid 

the possibility of deadlock, you must take extreme care that Swing components and 

models are created, modified, and queried only from the event-dispatching thread”[4].  

Since Swing components are not build to be thread safe, this warning is necessary before 

a programmer attempts to utilize threads other than the event-dispatching thread in an 

application with Swing components.  However, there are a few methods that are exempt 

from this rule, and repaint() is included in the list of methods excluded from the Swing 

Single Threading Rule [4]. 

Java includes a Thread class that can be instanciated in an application when an 

asynchronous task will be performed.  An instance of the Thread class is a Thread object 

and the execution tasks that the Thread object will perform are detailed in its run() 

method: 

public void run() { 
        System.out.println("Hello from a thread!");  
} 
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The pseudocode for the Z-counting example above can be modified to utilize a new 

thread to execute the repaint() while the event-dispatching thread handles the file I/O: 

while( !EOF ){ 
 char = next character 
 if ( char == ‘Z’ ) { 
  tally++ 
  //Create a new thread for repainting 
  Thread repainter = new Thread() { 
   public void run() { 
    repaint() 
   } 
} 
//Run repainter thread 
repainter.start() 
 } 
} 

 

This new pseudocode utilizes Java’s built in tools for the specific task of threading a 

Swing component, and this concept becomes central to the implementation of the 

visualization routine. 

2.2 Literature Review 

 The use of physics equations to move the vertices of a graph as a clustering 

technique is generally known as a force-based or spring algorithm [16].  A force-based 

algorithm is any algorithm that assigns forces to the elements of a graph using Coulomb’s 

Law and Hooke’s Law.  Andreas Noack reviews different force-based models in his 

paper “Energy Models for Graph Clustering” [10] and differentiates between the purpose 

of a model and that of an algorithm.  Xiaowei Xu, Nurcan Yuruk, and Thomas Schweiger 

propose an algorithm for clustering that innovates through its definition of the problem in 

“SCAN: A Structural Clustering Algorithm for Networks”[15].  This paper introduces the 

contribution of neighborhoods to graph partitioning, a topic that was also of interest in 
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2003 as shown by Bernd Wiswedel, David E. Patterson, and Michael R. Berthold in 

“Interactive Exploration of Fuzzy Clusters Using Neighborgrams”[14], which pertained to 

their research of a one-dimensional visualization of a clustering technique.  Kang Zhang 

further explores the graphic guidelines for information visualization in “From Abstract 

Painting to Information Visualization”.  These papers contributed to the goals and 

definitions of this thesis as they track the interest and progress in graph partitioning and 

visualization. 

 “Energy Models for Graph Clustering” evaluates energy models based on how 

well a graph layout reflects the clusters within that graph.  Most energy models were 

designed for visualization rather than partitioning a graph, thus their primary purpose was 

to provide a layout with short and uniform edge lengths where the nodes are evenly 

distributed.  The author presents two definitions that make up an energy-based graph 

layout method: an energy model is in charge of describing the layout to be created, while 

an energy minimization algorithm stipulates the actual computations to reach the desired 

layout.  The author presents two energy models: “node-repulsion LinLog”, where the 

nodes experience forces between each other like electric charges in Coulomb’s Law, and 

“edge-repulsion LinLog”, a less common model where the edges are pushed and pulled 

away from each other.  Both models aim for internal validity, where the nodes that are 

more densely connected are grouped and the ones with fewer connections are separated, 

as opposed to external validity in which grouping depends on an external definition of a 

cluster.  Both “node-repulsion LinLog” and “edge-repulsion LinLog” use edge weights as 

an important part of the model, a significant difference to the approach taken by this 

thesis that clusters graphs with undirected edges of the same weight.  However, the 
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results for the two models explored in “Energy Models for Graph Clustering” are 

interesting and have a strong relation to the goals of this thesis.  The first energy model, 

the “node-repulsion LinLog,” builds graphs where the clusters are strongly separated 

from each other by a large distance, and the edge lengths within a cluster are much 

smaller.  This is an accomplishment of internal validity, yet the second model does not 

create layouts with such strong distinctions between clusters.  The “edge-repulsion 

LinLog” model provides a symmetric layout with overall short edge lengths, and hence it 

does not relate as strongly to this thesis despite the innovative idea of reversing the force 

elements in a graph. 

 SCAN, the algorithm detailed in “SCAN: A Structural Clustering Algorithm for 

Networks,” is able to detect the clusters, hubs, and outliers of a graph.  Contrary to 

typical clustering techniques that seek to define the membership of every vertex in the 

graph, SCAN differentiates between the roles that different vertices play in a network.  

This sets SCAN’s goals along the same track as the objectives of this thesis, and it is also 

evidence that recent development to identify more than only the subgraphs of a network 

has taken place.  Not only is the end result of SCAN unique, but the approach is also 

different from those of traditional algorithms.  Whereas the most common clustering 

procedure is to seek a large number of edges within elements that belong to a cluster and 

a smaller number of edges between clusters, SCAN focuses on the neighborhood of each 

cluster as the criteria for grouping.  SCAN groups vertices according to how they share 

neighbors, creating partitions that are termed structure-connected clusters.  Each vertex is 

visited once for the algorithm to determine the structure-connected clusters, and then it 

visits the vertices that have been isolated from any cluster to identify these as hubs or 
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outliers.  This focus on the value of a neighborhood dates back to the research of an 

article titled “Interactive Exploration of Fuzzy Clusters Using Neighborgrams.”  This 

article attempts to solve the clustering of a graph problem without the previous 

knowledge of how many subgraphs exist, which was the common approach to graph 

partitioning when the article was written in 2003.  It proposes a routine that first analyzes 

the neighborhood of each vertex and next selects one vertex from that neighborhood as 

the optimal cluster representative.  Thus, a “neighborgram” is generated for each pattern 

in the data set and then a nearest-distance to the cluster representative approach finishes 

grouping the vertices that are not clearly members of one cluster.  The article relates to 

this thesis because it identifies that the clustering of a graph is actually separating a data 

set by a trend, or pattern, that is not explicitly detailed in the graph itself.  This is the goal 

of visualization, to express a hidden phenomenon of the data, and the one-dimensional 

graphic representation provided in “Interactive Exploration of Fuzzy Clusters Using 

Neighborgrams” is a beginning to exploring information visualization. 

 An article that specifically explores the importance of visualizing data is “From 

Abstract Painting to Information Visualization,” which compares techniques of abstract 

painting with information visualization.  It introduces the concept of aesthetic computing, 

a name for applying artistic goals to computation.  The author believes that grouping data 

is “one of the most important processes in visual data mining and information 

visualization” [16], and for this purpose outlines five factors that determine grouping in a 

visual context.  The first is proximity, as elements appear grouped together if they are 

near each other.  Similarity is grouping items together that are similar by some measure.  

The third factor, closure, groups elements together if they tend to complete some entity.  
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Continuity refers to the perception that items lying on a line belong to the same group.  

Finally, simplicity is the term used by the author to describe grouping points together into 

simple figures, such as circles, triangles, or squares.  These “Laws of Organization” [16] 

are important in the field of abstract art and can be extended to visual data mining such 

that symmetry and minimal crossing in a graph allow a useful representation to also be 

visually appealing.  These definitions assisted in understanding how each part of the 

resulting graph contributes to the viewer’s understanding of the data.  The articles all 

played a part in understanding the objective of this thesis and keeping it in line with the 

current development in data mining. 
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3.  ARCHITECTURE 

3.1  High Level Design 

The visualization is accessible as part of a Java application that includes other 

tools for manipulating the data being displayed.  The Java application is a preexisting 

environment for the visualization because this research is a contribution to a larger 

project.  Therefore, the other components of the application will be discussed briefly but 

are not the focus of this thesis.  A screenshot of the Java application is available in Figure 

1, and the functionality of each section of the GUI is presented in Section 3.2. 

 

Figure 1: Screenshot of Network Properties Application 
 

The single design consideration that was a result of the approach itself rather than 

the setting of the implementation was the need for a limit in the number of times the 

vertices would be repositioned.  In the optimization routine, each data element is 

represented as an electric charge in two dimensional space and the relationships between 

the data elements are the springs connecting the electric charges.  The behavior of electric 
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charges in space as defined by physical forces is detailed in Section 2.1.1.  When viewed 

from the graphical representation of the data sets in the application’s GUI, the vertices 

are electric charges of the same type and the edges are the springs for the optimization 

routine.  By this abstraction, the vertices will repel each other and only the presence of a 

spring between two point charges will keep them close together.  Eventually the set of 

charges and springs will reach a point of equilibrium where all forces are opposed by 

forces of equivalent magnitude.  A more accurate definition of the equilibrium is actually 

a state where all forces are opposed by forces of almost equivalent magnitude.  The 

optimal finish point for the routine is arrived at when the equilibrium state is met, yet the 

possibility for a case of vertices repeatedly moving back and forth an insignificant 

amount exists and must be accounted for.   

Additional design restrictions for the visualization were due to the predefined 

application.  The setting is a two dimensional layout of vertices connected by points, and 

both vertices and points are drawn on the GUI with classes that are part of Java’s Swing 

components.  The algorithm can be initiated by selecting “Optimize” via the “Options” 

drop down menu located directly underneath the application’s titlebar at the top of the 

window, as displayed in Figure 2.  Section 2.1.3 details both the functionality of a Swing 

component’s painting method and the difficulty of combining Swing component painting 

with any other type of processing.  Due to this unexpected behavior of Swing 

components, the threading solution that is introduced in Section 2.1.3 had an effect on the 

visualization implementation. 
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Figure 2: Options Menu of the Network Properties Application 

3.2  Components of the GUI 

The GUI is made up of a menu bar, a sidebar, and a large display area that shows 

the message “(No Network Loaded)” when the program is started.  This area is the 

section where the graphical representation of a loaded network will be displayed.  The 

“File” menu available on the menu bar holds the “Open” and “Save” options that can be 

selected to either load or store a file.  When either is chosen, a file navigator window 

opens which allows the user to explore available files and select either a GraphML or a 

DAT file, as seen in Figure 3. 

 

Figure 3: File Navigator of the Network Properties Application 
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The second menu available on the menu bar is named “Options” and it allows the 

user to select one of three alternatives labeled “Cosine”, “Min”, and “Jaccard”.  The 

default is “Cosine” and the use of radio buttons designates which of the three options is 

active, as seen in Figure 2.  The “Options” menu also includes two more selections 

named “Reposition Vertices” and “Optimize Vertices.”  Both options have the same goal 

of visually grouping any subgroups present in the displayed network but are implemented 

differently.  “Reposition Vertices” has a longer execution time than “Optimize Vertices” 

and does not keep the graphical representation of the network updated throughout its 

processing time.  “Optimize Vertices” executes the visualization routine detailed in this 

thesis. 

The sidebar of the GUI holds two components, “Modularity” and “Zoom”, the 

second underneath the first.  The “Modularity” element is used to display a small graph 

of modularity versus similiarity, a sample of which is shown in Figure 4.  For this 

application, similarity is a measure of how strongly two vertices are related as defined by 

a specific relationship given to each edge in the network.  The modularity is a 

quantification of how modular the network is when all edges that have a similarity less 

than a given value are ignored.  Thus, the slider bar placed underneath the small graph in 

the “Modularity” component of the GUI allows the user to set a specific similarity and 

the graph of the network is redrawn to exclude edges that have a similiarity less than the 

one specified by the slider.   The “Zoom” tools are two buttons, “In” and “Out”, that 

allow the user to alter the magnification on the network display. 
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Figure 4: Modularity Component in Network Properties Application 

3.3  Optimize Vertices 

Selecting Option�Optimize Vertices on the running application executes some 

necessary steps in addition to the actual calculation of forces on each vertex and 

relocating the vertices based on the computations.  Before calculating the forces it is 

necessary to verify that no two vertices have the same location.  If two vertices were to be 

located in exactly the same position, then calculating the Euclidean distance, explained in 

Section 2.1.1, between the two vertices would result in a zero.  The force exerted on a 

vertex by another vertex is inversely proportional to the square of the distance between 

the two vertices, and if the distance was exactly zero then a divide by zero would occur.  

An attempt to divide by zero in a computer program results in undefined behavior, 

therefore it is essential to assure that this will not occur by relocating the vertices prior to 

calculating the forces on each vertex. 

After the vertices have been relocated, the concept of an end point to the 

repositioning must be defined.  As mentioned in Section 3.1, all forces will theoretically 

reach equilibrium such that each becomes negligible due to other equally opposing forces 

in the network.  Since the forces result in the moving of a vertex, keeping track of the 
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largest move made in the most recent set of relocations allows a limit to be set.  Thus, a 

previous move must have been at least the size of the limit in order to iterate through the 

calculations one more time.  Finally, before each new repainting of the graphical display, 

the entire graph needs to be shifted to locate as much of it as possible in the viewable 

display area.  This can be done by anchoring the vertex with the smallest x and y 

coordinates to the top left corner of the display and adjusting the coordinates of all other 

vertices relative to the anchor.  The graph can then be updated and the process of 

calculating forces, moving the vertices, adjusting them for the display, and repainting is 

repeated until the largest move is not big enough to start a new iteration. 
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4.  IMPLEMENTATION 

4.1  Data Structures 

The data structures that hold the vertices and edges of the network that represent 

the elements and relationships of a data set are a part of the application that was 

predetermined but served the routine well.  The vertices and edges are collected into two 

TreeMap structures: 

Private TreeMap<String, Vertex> vertexMap; 

Private TreeMap<Pair, Edge> edgeMap; 

A TreeMap is a Java class where an element is identified by a specific key and all 

elements are sorted by their corresponding key.  The TreeMap class guarantees O(log(n)) 

time for each addition, retrieval, or removal from the map[12].  The Vertex class is a 

custom class for this implementation that, amongst other things, stores a string identifier 

for the vertex, a set of vertex identifiers that make up the neighborhood of the vertex, and 

x and y locations.  The Edge class is also an original class that, amongst other things, 

stores the string identifiers of the two vertices connected by the edge.  The Pair class used 

as the key to any edge in the edgeMap is a third class that is not part of the standard Java 

collection of objects and it holds two strings, which in this implementation serve as 

unique identifiers for an edge. 

 Since the Vertex class holds the current location in terms of x and y of every 

member of the vertexMap, it is simple to iterate through the vertexMap and perform 

calculations using the current position as operands.   The movement of a vertex will be 

defined by all the forces exerted on it.  Therefore, for the force of each vertex in a 

network, its force relative to every other vertex must be calculated and summed to obtain 
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a total force.  This can be done by iterating through the vertices only once and calculating 

all the forces rather than iterating through all the vertices to calculate the force on each 

vertex.  A single iteration through all the vertices also takes advantage of the fact that the 

force vertexA experiences from vertexB is equal and opposite to the force vertexA exerts 

on vertexB.  Using the notation for force, if FA-B is the force exerted on vertexA by 

vertexB, then FB-A is the inverse of FA-B.  This reduces the number of calculations by half, 

yet it is necessary to create a data structure to store all the calculated forces.  A two 

dimensional array allows a single value to be addressed by two keys, and so an array of 

size numberVERTICES by numberVERTICES can store FA-B at position array[a][b] and at the 

same time array[b][a] will hold (-1)× FA-B.  The algorithm thus uses a two dimensional 

array for horizontal forces and a two dimensional array for vertical forces.  Once all the 

forces are calculated, a vertex’s horizontal movement can be determined by adding one 

row of the horizontal force array: 

 xA = Σ(array[A][i]), where {i: 0 <= i < numberVERTICES} 

With the data structures in place, the final consideration for the implementation of this 

visualization routine is the use of the processing techniques to generate an improved 

graphical representation of the network. 

4.2  Computing Forces in the Network 

  Applying the physical forces of Coulomb’s law and Hooke’s Law to the network 

is a matter of utilizing the data structures and implementing the equations.  The physical 

properties of electric charges and springs are utilized in the network of vertices and edges 

by pushing all vertices apart as if they were charges of the same type and only the 

presence of an edge between two vertices will keep them close together.  Hence, the 
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system is made up of two opposing forces: the repelling force between vertices and the 

restorative force exerted by the presence of an edge.  Coulomb’s law quantifies the force 

between two point charges, as detailed in Section 2.1.1, and when applied to a two 

dimensional coordinate system the resulting equations are: 

d = √[(x A – x B) 2 + (y A – y B) 2] 
 
Fx = k c × (q A × q B)  × (x A – x B)  
  d 2   d          
Fy = k c × (q A × q B)  × (y A – y B)  
  d 2   d 
 
d   => Euclidean distance between points A and B  

k c   => Coulomb’s constant 
xA, x B  => x coordinates of A and B respectively 
yA, y B  => y coordinates of A and B respectively 

 

This implementation of Coulomb’s law assumes that all vertices will repel, and so qA and 

qB can be set to constant ones since the direction of the forces will be determined by the 

position of the vertices[6], resulting in: 

Fx = k c × (x A – x B)  F y = k c × (y A – y B)  
  d 3       d 3 

 

These are the equations for the horizontal and vertical components of the repelling force, 

and to obtain the opposing restoring force Hooke’s law can be applied.  It provides the 

relationship between the restoring force’s horizontal and vertical components and the 

displacement of the spring being stretched, as detailed in section 2.1.2: 

Fx = -k s × (x A – x B)   F y = -k s × (y A – y B) 
 
k s   => spring constant 
d   => displacement of a spring by stretching 
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In the implementation, each vertex experiences a repelling force from all other vertices 

and a restoring force from all edges that it is an end of.  Therefore, the total force can be 

expressed in its horizontal and vertical components as: 

FX A-i  = Σi ≠A( Q x A,i  + S x A,i  × δ(A,i)  ) 
  
 Where Q x A,i  = k c × (x A – x B)  

    d 3  , 
 
  S x A,i  = -k s × (x A – x B) , and 
  
  δ(A,i)  = 0 if no edge, 1 if edge 

 
FY A-i  = Σi ≠A( Q Y A,i  + S Y A,i  × δ(A,i)  ) 
  
 Where Q Y A,i  = k c × (y A – y B)  

    d 3  , 
 
  S y A,i  = -k s × (y A – y B) , and 
  

  δ(A,i)  = 0 if no edge, 1 if edge 
 

Coulomb’s constant is rounded to the value of one hundred thousand because this is not 

an actual representation of electric charges, but rather a routine inspired by the 

relationship of force on a vertex and the distance from that vertex to all others.  Thus, the 

force exerted on vertexA by vertexB can be calculated entirely from the x and y 

coordinates of the vertices. 

Once it is clear how the calculations will occur, piecing the entire design together 

is a matter of starting at the outermost layer of computation.  The first step is to relocate 

all the vertices to different random positions, as described in Section 3.3.  Next, the 

calculations will be performed so a new thread is created for the repainting of the display, 

which is detailed in Section 2.1.3.  A loop is started that first relocates the vertices and 

then shifts the graph into the viewable area of the display.  The display is repainted using 
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the new thread, and the size of the largest move is tested against a set limit before 

commencing the iteration once again.  The pseudo code below summarizes the algorithm: 

Optimize( G=<V,E> ) { 
 //Randomize vertices 
 for each vertex v εV { 
  v.setXcoordinate = Math.random(); 
  v.setYcoordinate = Math.random(); 
 } 
 
 //Create new thread 
 Thread repainter = new Thread() { 
  //Detail functionality in run method 
  public void run() { 
   networkDisplay.repaint(); 
  } 
 } 
 
 //Optimize 
 do { 
  //Force calculations 
  for each vertex v1 εV { 
   for each vertex v2 εV { 
    calculate repelling force; 
    if( v1 and v2 are neighbors ) { 
     subtract restoring force; 
    } 
    store force in 2D array; 
   } 
  } 
 
  //Vertex relocation 
  for each vertex v εV { 
   sum total force on v from 2D array; 
   v.setXcoordinate = ratio * totalXforce; 
   v.setYcoordinate = ratio * totalYforce; 
   max = size of largest move; 
  } 
 
  //Shift to viewable area 
  find lowest x and y; 
 
  //Repaint 
  repainter.start(); 
 } while( max > limit );  
} 
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5.  ANALYSIS 

5.1  Small Example 

For the purpose of demonstrating the repositioning of vertices performed by the 

algorithm, a small example graph with five vertices is depicted in Figure 5.  The optimal 

balance of three points connected by equally weighted edges, in this case forces, is an 

equilateral triangle; as Figure 6 shows, the three vertices A, B, and C form a balanced 

equilateral triangle after the optimization is performed.  The two nodes, D and E, that 

could be called the outliers of the graph because they only connect to one of the other 

nodes, are clearly spaced away from the other nodes.  This will become even more 

evident on a larger data set. 

 

Figure 5: Example Graph with Five Vertices 

 

Figure 6: Graph with Five Vertices after 
Optimization 
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5.2  Data Set Analysis 

Once the repositioning aspect of the routine is understood, it is necessary to apply 

the algorithm to real data.  The first data set is built from the relationships of online 

bloggers, people that keep an online journal on either a specific or a variety of topics.  

There are websites that offer to host blogs and although sometimes these are organized by 

topics, the source for this data set was hosted by an all-purpose blog site[1].  Each vertex 

in the graph represents a blogger, and two bloggers are connected with an edge if at least 

one has mentioned the other in the past month of blog entries.  The vertices are colored 

depending on the website that hosts their blogs, and the expected result of running the 

grouping routine is that the vertices will be clustered by color.  In practice, the resulting 

graph shown in Figure 7 does not provide the strong sense of which vertices are clustered 

together that had been anticipated.  This seems like a disappointing result, yet analyzing 

the nature of the data exposes the source of the unexpected result.  An assumption was 

made by expecting two bloggers to reference each other if their entries are hosted by the 

same website.  This assumption represents a relationship that is not true in the data set, 

and so the results in Figure 7 are not a complete failure of the algorithm but rather a 

misunderstanding of the data.  There are no trends to be found in the data set, as Figure 7 

shows, and running the data through the tool allowed the viewer to comprehend a fact 

about the data that was not initially evident. 
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Figure 7: Graph of Online Bloggers after Clustering Routine 
 

An alternative data set to show the application of the visualization tool to social 

networks is shown in Figure 8.  The graph is built from the friendships of a person named 

Tina [2], where the people are depicted as vertices and an edge connects two friends.  The 

relationships in this graph are defined, not assumed as in the case of the data set built 

from bloggers, and the resulting graph after the optimization executes is clearly 

partitioned, as seen in Figure 9.  In addition to the partitions, however, it is possible to 

quickly recognize the vertices that are not members of any cluster.  In Figure 9 there is an 

obvious outlier in the node marked as Ana, and a hub labeled Julie that has an equal 

number of connections to both of the large subgraphs.  This network is a prime example 

of the ability of this optimization approach to enhance a trend that would otherwise be 

unseen, as is clear in Figure 8.  In fact, the trend displayed is not an easy one to identify 

by analyzing the data set element by element; the graph built on Tina’s friends only has 

fourteen vertices, yet a graph built from a social networking source such as Facebook can 

easily have as many as sixty-nine million vertices [5]. 
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Figure 8: Graph of Tina's Friends 

 

Figure 9: Clustered Graph of Tina's Friends 
 

The final data set presented to demonstrate the ability of the visualization to 

spatially separate subgraphs was generated from the NCAA Football Bowl Subdivision, 

which used to be Division 1-A, 2006 schedule of matches.  Each team is represented by a 

vertex in the graph, and two vertices are connected if there is a scheduled match between 

them.  There are 180 teams, including teams belonging to lower divisions that were 

scheduled against a Division 1-A team, and 787 matches in the data set.  The vertices are 

colored by conference, and the teams belonging to a conference outside of Division 1-A 

are colored a light grey.  When graphed, the data is jumbled and even though the nodes 

are colored it is difficult to pick out a single conference as shown in Figure 10. 
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Figure 10: 2006 NCAA Division 1-A Football Schedule 
 

The large size of this data set makes the threading part of the implementation 

evident, and as the computations take place the display is repeatedly repainted with the 

most recent graph.  The viewer actually sees an animation of the computation, and can 

visually track the paths of vertices as they are repositioned.  Figure 11 is a screenshot of a 

moment in the animation, and it can be appreciated that the animation contributes to the 

visualization by providing the audience a growing appreciation of the subgraphs as they 

become more and more obvious. 

 

Figure 11: A Moment in the Animation of the 2006 NCAA Graph 



 34 

 

The final outcome of the graph is shown in Figure 12, and the most striking 

vertices are the outliers and the hubs as they can be quickly visually spotted as anomalies 

or points of interest in the data. 

 

Figure 12: The Clustered Version of the 2006 NCAA Graph 
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6.  CONCLUSIONS 

6.1  Summary 

Graph partitioning, or clustering, is useful in many fields of science and 

engineering to better understand patterns in the data that are not as clear by analyzing the 

elements individually.  Data sets can also be considerable in size, as in the overwhelming 

task of identifying coexpressed genes in a set of 13,600 fruit fly genes [13].  Even the use 

of computing power does not assist if the clustering algorithms available cannot be 

applied to a specific type of data, as is demonstrated by ecological studies that attempt to 

evaluate the relevance of different computational grouping techniques to their science’s 

data [3].  This thesis details the design and implementation of an approach to graph 

partitioning that can provide visual insight into an attribute of data samples that other 

clustering algorithms overlook.  Data sets are not only made up of subsets, but also of 

elements that follow none of the trends or elements that exhibit characteristics of more 

than one cluster.  Using sample data sets, one constructed from authors of online blogs, 

another from a small social group, and the third built from the NCAA College Football 

2006 Schedule, the routine’s ability to visually enhance the subgraphs when these exist 

was demonstrated.  The implementation of the routine provides visual feedback to its user 

through the length of its computation time that is at all times highlighting the groups, 

outliers, and hubs in the graph.  In this sense, the execution of this research successfully 

addresses the purpose of visualization, to provide insight into a phenomenon of the data 

that is not obvious, while at the same time ensuring that at all times the visual content 

contributes to the appreciation of an underlying trend.  Research, implementation, and 

demonstrations have all contributed to meeting the goals of this thesis. 
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6.2  Contributions 

The work in this thesis contributes to a research project on improving grouping 

techniques at Acxiom Corporation.  The preexisting application that served as the setting 

for the clustering visualization benefited from the enhanced presentation of the data sets.  

The tool on the sidebar of the application that allowed the viewer to turn edges off that 

did not meet the selected similarity level (Section 3.2) is largely dependent of the display 

of the graph, and organizing the vertices into clusters provides a better visual 

understanding of the capability of the tool.  The field of data clustering could also be 

positively affected by the research of this thesis as the approach to recognizing the groups 

and special vertices can be extended from this visual use to a routine that runs behind the 

scenes.  Although this implementation is not ground breaking in its use of graphical 

display, the goals of visualization that were met make it a model for designing a product 

around the existing conditions, the target audience, and the scalabiltity of the problem. 

6.3  Future Work 

This thesis provides the basic structure for a visualization of a clustering routine, 

yet the implementation can be improved in some areas.  One way to strengthen the visual 

effect of the grouping would be to color the vertices by clusters.  This would allow the 

success of the clustering technique to also be seen through the resulting color sets, and 

the outliers and hubs would stand out if they were painted a different color.  The 

implementation also needs to consider an exception for the vertices or clusters that are 

completely separated from the rest of the graph.  The current routine will move 

disconnected parts of the graph to a remote position because there is no restoring force to 
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counteract the repelling force between the vertices.  However, it is not necessary to 

position these elements as distant as possible from the rest of the graph for the viewer to 

be able to see that they are disconnected.  Additionally, the implementation sets limits in 

the initial repositioning of vertices and in identifying the equilibrium point, and both of 

these limits might affect the performance of the routine depending on the size of the data 

set.  The vertices must be repositioned before any forces are calculated in order to avoid 

the possibility of two vertices being exactly in the same position.  The current 

implementation sets horizontal and vertical boundaries to the area where the vertices will 

be positioned, yet if a data set is significantly large it could be benefitial to expand these 

boundaries so that the first iterations of force calculations do not result in extremely large 

repelling forces due to vertices located too close together.  In the case of the equilibrium 

point, a larger data set has more forces that need to reach a balance, and reaching a point 

where the size of the largest move is smaller than the set limit might require more 

iterations than are truly necessary.  Finally, the work that would be of most benefit to this 

application is to analyze different data sets across a larger variety of applications on the 

technology. 
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