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Field Interpretation of Latitude and Longitude in Arkansas:
APortable Coordinate Projection

WilliamR. Teague
Engineering Section

University of Arkansas Cooperative Extension Service
Little Rock, AR 72203

Abstract

Two- and three-dimensional coordinate systems are fundamental to most quantitative mapping applications. The Geodetic,
Universal Transverse Mercator (UTM),and State Plane systems have traditional roles in various science, surveying, and gov-
ernment agency engineering applications. The coordinates of three-dimensional Geodetic system are latitude, longitude, and
height above ellipsoid (HAE).Because of its ability to cope with the intrinsically three dimensional character of the earth's sur-
face, the Geodetic system is capable ofsupporting precise relative positioning and very high accuracy computations of distance
between any two positions on or near the earth's surface. The two-dimensional UTMand State Plane systems are extremely
useful for the local horizontal positioning and scaling required for paper maps of county-size land areas. In the two plane
systems, horizontal distance computation is a very straightforward application of the distance formula (analytic geometry)
based on the Pythagorean theorem. Although precision line- and geodesic- distance formulas based on geodetic coordinates
are more complex, useful horizontal distance estimates are easily derived from the latitudes and longitudes of two positions.
This paper examines this premise for Arkansas. The approach to estimating horizontal distances utilizes an application of the
distance formula inconjunction with an assumed constant distance/unit latitude of 30.8 m (arc sec)" 1.A linear regression equa-
tion is used to represent distance/unit longitude as a function of latitude in Arkansas. The approximation math is extremely
simple, and the process as a whole is equivalent to a portable coordinate projection.

Introduction

Longitude Xand latitude 0 are two of the three coordi-
nates of a geodetic coordinate system. The third is height
above ellipsoid, h or HAE. Due in part to their non-linear
relationships, to more familiar plane distance and direction
variables, interpretations of X and (|> can require the aid of a
geodetically referenced map, a three-dimensional model
(globe), or specialized computer software. In spite of their
native three-dimensional positioning roles, X and ()) can be
used for horizontal positioning operations without explicit
reference to HAE. For example X and ty tics appear along
the neat lines of certain Arkansas Highway and
Transportation Department (AHTD) maps and of United
States Geological Survey (USGS) topographic maps of vari-
ous scales. When they are used in a paper map context,

some authors (for example, Verbyla, 1995) refer to latitude
and longitude as geographic coordinates.

Plane coordinates, such as the Easting (E) and Northing
(N), of the Universal Transverse Mercator (UTM) Zone 15
or of the Arkansas North Zone (AN) or Arkansas South
Zone (AS) State Plane coordinate systems, are much easier
to manage in basic field positioning operations than are X
and ()). First, the plane coordinates directly express horizon-
tal distances east (E) or north (N) of the particular plane sys-
tem's origin. Secondly, the horizontal distance separating
two positions can be obtained with a calculator that supports
arithmetic and square root operations. However, users are

compelled to accept a given system's N-axis alignment, and
the alignment does not agree, necessarily, either with the
local geodetic north, with magnetic north, or with a direc-
tion that might provide a particular advantage in a given
project, such as a straight road or field boundary. Finally,
relating E and N of one of the plane systems to X and 0
requires the use of intervening projection tables or special-
ized computer software, such as National Geodetic Survey's
(NGS) NADCONprogram or the Army Corps of Engineers
CORPSCON program.

With today's widespread availability and use of global
positioning systems (GPS) and geographic information
systems (GIS), geodetic coordinates are more easily observ-
able by a broad range of scientists, government agency per-
sonnel, and the general public (Featherstone and Langley,
1997; Hum, 1989; Teague et al, 1999). Precise projection
formulas commonly built into GPS receiver firmware can
provide rapid conversion between the geodetic and either
AN,AS, or UTMZone 15 coordinates in the field. In spite
of this it is likely that situations willarise in which a custom

plane coordinate system that can be referenced to the geo-
detic system would provide an advantage in certain field
operations. One example is where differential GPS (DGPS)
equipment is available for one-time geodetic referencing of
two or three semi-permanent markers at a particular site, but
where itis desired to carry out future positioning operations
with traditional distance and direction measurement
devices. The X and (|) values could be calculated for positions
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initially labeled according to their measured distances east

and north of a geodetically referenced origin and without
the necessity of an intervening map or specialized software.
Also, a computationally lean procedure for estimating the
horizontal distance, d(A, B), between A= ((|)j, Xj) and B =

(02' would facilitate rapid comparison of the relative
locations of two positions withknown X and 0 values.

The approach taken here is to use an empirical d (A,B)
formula that is appropriate for Arkansas's X and 0 ranges.
The proposed d (A,B) computation depends directly on the
differences, AX =Xj- X2 and A0=0i

-§2- Itrequires the use
of three empirical constants and the plane Euclidean dis-
tance formula (Thomas, 1968). Horizontal distance in the E
direction depends on AX through a fitted linear equation
expressing the distance per unit difference in longitude,
sjj(|)), as a function of latitude. Horizontal distance in the N
direction depends on A(|> by an averaged constant value of
the distance per unit latitude, Sa.

One objective of this manuscript is to present the above
mentioned mathematically simple expressions for s^ (<f>), s*,

and d (A, B). A second objective is to estimate an upper
bound for relative error when d (A* B) is used to approxi-
mate the ellipsoidal distance, d*, between A and B, with
HAE =0. Athird objective is to show that the empirical for-
mulas lead to a coordinate projection. Finally, examples are
given to illustrate application of the empirical formulas.

Theory

Development of an accurate paper map of a portion of
the earth's surface depends on the use of a map datum that
is associated with a particular reference ellipsoid model. The
datum provides the information necessary to reference
three-dimensional position coordinates of the selected ellip-
soid to the physical earth. A map- or coordinate- projection
is then used to calculate two-dimensional coordinates that
best represent desired geometric properties of the region of
interest (Snyder, 1987; Featherstone and Langley, 1997;
Bomford, 1962). Many currently available maps in the
United States are based on the NAD- 27 horizontal datum,
which in turn is referenced to the Clarke 1866 ellipsoid. The
more recent GRS - 80 ellipsoid is the reference for maps
utilizing the NAD -

83 horizontal datum (Stem, 1990;
Dewhurst, 1990). A GPS receiver's position computation is
carried out with three-dimensional coordinates of the WGS-

84 geodetic system. WGS - 84 utilizes an ellipsoid model
essentially identical to GRS - 80 (Snyder, 1987; Langley,
1998).

Various definitions are given for a map- or coordinate-
projection (Snyder, 1987; Bomford, 1962); however, the
effective definition of a particular projection (Bomford,
1962) is a pair of mathematical formulas for mapping the
ellipsoid model surface into the plane:

(1)N=fj ((|>, X) and E = f2 (()), X).

The projection's convergence, y, is the angle between a pro-
jected meridian and the Ngrid line of the plane coordinate
system, and the tangent of the convergence is given by the
equation

(2)tany =-{dE/B^)/ (3 N /3 <|>).

The scale of the projection along a meridian is (Snyder,
1987)

h = [(a e /a (j))2 +(d n /a (t>)2]1/2 / p, (3)

while along a parallel, the scale is

k = [(3 E /d <|)) 2 +(3 N /d ?i)2]1/2 / [v cos <)>]. (4)

In the two latter equations the variables p and v are the prin-
ciple radii of curvature of the reference ellipsoid (Bomford,
1962)

p=a (1 -e2) / (1 - e'2 sin2 ty)3/
'
2 and (5)

v =a/(l -e2 sin2 <|>) 1/2, (6)

where a and e are the ellipsoid's equatorial radius and
eccentricity, respectively. For the GRS-80 ellipsoid, e2 =

0.0066943800, and a =6,378,137 m (Snyder, 1987). Ifh =k,
the projection is orthomorphic (or conformal) - i.e. the scale
at a given point is independent of direction. The radius of a
parallel is v cos <)), so arc length along a parallel, and corre-
sponding to a one arc-second difference in longitude, is

sx
*
=jt v cos <|> / 648000. (7)

Also, for small latitude differences, A0, arc length, s^*, along
a meridian is closely approximate by pA(|) (Bomford, 1962).
Therefore arc length corresponding to a one arc-second dif-
ference in latitude along a meridian may be expressed:

s<p* =k p / 648000. (8)

The empirical projection considered here is based on
the followingpair of equations:

(9)E = [afro) + b<|)] (X - Xo)

(10)n= c- (0 -<y

Equations (9) and (10) define a coordinate projection by
virtue of (1) above. The origin (0,0) of the E -Ngrid has geo-
detic coordinates X() and (|)(),both constants in (9) and (10).
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The distance in the plane between two projected positions
A'(Eb NO and B'(E2,N2) is

d = (AE2 + AN2)i/2, (12)

where AE=E2
- Ej = (a + b (j)2) (A,2

- Xq) - (a + b (J)j) (X{
- Xo)

and AN=N2
- Nj=c- ((|)2

- §{)= c- A<)).
A useful approximation to the Easting difference, AE, is

AE*= (a + HO fo " *i),where <|>a =0.5-(<|>2
-h)(13)

The difference between AE and AE* is b A(|) -(A,a
- Xq),

where Xa
= 0.5-(X<2 + X{).Subsequently, equation (12) with

substitution of AE* for AE willbe used to approximate the
ellipsoidal distance, d*,between (<|)|, X{) and (<))2,A,

2)

Methods

Eight values of d* were calculated using a computer
program "invers3d.exe". The program was obtained from
National Geodetic Survey's (NGS) web site. The eight cal-
culated d* values correspond to the ellipsoidal distance
between two positions having the same X but with a differ-
ence in (j) of A(|> =01

- (f)2
=0.0166667 deg (1 min). Alleight

d* calculations utilized X = - 93.0°; the eight (J)j values used
were 33.0, 33.5, 34.0, 34.5, 35.0, 35.5, 36.0, and 36.5 deg.
Each of the resulting d* values was divided by 60 to obtain
corresponding s*^, and these six s*a values were averaged to

obtain s*a =30.81m sec 1. Similarly, in order to obtain the
empirical linear expression for s^, eight new (0, d*) pairs
were generated with the "invers3d.exe" program. The eight
0 values were the 01 values used to generate s(|). However, in
this case the d* values were computed using AX=1.0°, with
Xi= -93.5°. Each of the resulting d* values was divided by
3600 to obtain a corresponding s\. A linear equation was
fitted (Fig. 1) to the resulting set of ((j), s\) pairs. The fitted
equation is

sx{$) =a'-b'()) = 25.966-0.3066((|>-33) R2 =0.9998 (14) e d
-e c>

+ e A.

Consistent with units of s^, the values of a' and b' in (14)
yield s^ in units of m sec 1. The coefficient c in (10) is now
set to c =3600 s^

= 110916 m deg 1.The coefficients a and b
of (9) are determined from a' and b' so that the value of E in
(9) depends on sX evaluated at 0.5-((J)-+-cJ)q):

b =1800 -b' =-551.7 m cleg 2;

a^o) =3600-(a'+0.5 b'<t> 0)
-

(129890-551.7<|> 0) m deg 1.
Expressions for h and k were derived by substituting

partial derivatives of the E and Nexpressions of equations
(9) and (10) into equations (3) and (4), respectively. Derived

Fig. 1. Graph of calculated sX (0) values (diamond symbols)
and of the fitted linear equaiton.

expressions for hand tan y were found to depend on X- Xq,
whereas k depends onboth <j) and <J)(). The equation defining
the tangent of the convergence is tan y = - b- (X - Xq) / c.
Values of s^ ((j>), p, v,h, a((f>o), a + b(|)(), k, tan y, y, and the dif-
ference h -k, were calculated for several values of 0, §q, X,
and Xq, with0 in the range 33° to 37°. The calculations were
based on equations (14),(5),(6), and the derived expressions
for h, k, and tan y. The value of y was determined as tan 1

(tan y).
Anupper bound was estimated for the relative error in

d as an estimator of d*, the ellipsoidal distance between two
positions. Let £^

=| s (0) - s*^ | /s*^ where s*^ is the ellip-
soidal distance per second oflongitude difference that is esti-
mated by sjj(|>), according to equation (14). The relative
error in calculated d that is due solely to e^ can be estimat-
ed. Similarly, the relative error in d, that is due to relative
error e* in s^, can be estimated, and the jointcontribution of
e,K and e^ is approximately

(15)

where e^ = | d
— d*|/d*.Inderiving (15) itwas assumed that

the calculation of d utilizes (12) with the earlier mentioned
substitution (13) of AE* for AE. Equation (15) only suffices
for errors due to the empirical representations of s^ (<])) and
s ((,. Itdoes not include the effects of the failure of the plane
distance formula to precisely represent geodesic or normal
section lengths (Bomford, 1962) over large distances. Two
independent estimates were made for the maximum values
of both Efo and e^ over the range 33 < 0 < 36.5. Values of e*

and e^ were calculated for each of the eight §y values used
to fit the empirical expressions for s x (0) and s a. The max-
imum of the eight values of e* thus calculated, together with
the maximum of the eight values of e^ (Table 1) thus calcu-
lated, were substituted into equation (15), with the result that
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Table 1. s x (<|>), s^, e Xt and e^ values used to calculate edmax.
Latitude sx ((J>) Difference s^ s+ Difference e+

deg Calculated Equation m sec*1 Calculated Constant m sec' 1

33.0 25.959 25.966 0.0069 2.65E-04 30.807 30.810 0.0032 1.03E-04
33.5 25.812 25.813 0.0010 4.00E-05 30.809 30.810 0.0007 2.16E-05
34.0 25.662 25.660 0.0028 1.11E-04 30.812 30.810 0.0018 5.95E-05
34.5 25.511 25.506 0.0048 1.86E-04 30.814 30.810 0.0043 1.41E-04
35.0 25.358 25.353 0.0047 1.86E-04 30.817 30.810 0.0068 2.22E-04
35.5 25.203 25.200 0.0027 1.09E-04 30.820 30.810 0.0095 3.08E-04
36.0 25.045 25.047 0.0011 4.56E-05 30.822 30.810 0.0120 3.89E-04
36.5 24.886 24.893 0.0069 2.79E-04 30.825 30.810 0.0145 4.70E-04

Estimated Maximum Value | 0.0069 2.79E-04
"

0.0145 ~~4.70E-04

edmax
- 7-5 X 10~4 .An independent estimate of maximum

E^ used s\, s*^, and s^) values that were based on equa-
tions (7), (8), and (14), respectively, and on the constant s^.
In this case e^ and e^ values were calculated at 0.1° intervals
over the range 33 < ()) < 33.6. The calculated maximum
value for edmax again was 7.5 X10"4,provided 33 < <)) <33.5.
With ty = 33.6 included, the maximum relative error
increased to 8.2 X 10"4.

Equations (12) and (13) were used to estimate distances,
d, between positions having relatively large separations.
Positions selected for this test were those having whole
degree values for both X and (j) over the ranges 33 < (|) <37,
and -95 <A.< -90, or 30 positions inall. This led to 435 dis-
tinct d values, with 29 non-zero distances from any one posi-
tion to other positions. Corresponding exact ellipsoidal dis-
tances (d*) were calculated using the imbedded computa-
tional procedure, "ReturnGeodesicDistance", of the GIS
program, ArcView 3.2. A few of the d* values generated
with the ArcView procedure were compared to values com-
Duted with the earlier mentioned NGS program,
'revers3d.exe", and agreement was excellent. Absolute
error and relative error, e^

=| d - d*| / d* were calculated for
each of the 435 d and d* pairs. Also, maximum values of the
absolute error and relative error (Fig. 2.) were determined
or each of the 30 base positions.

In a second test, side length and corner angle properties
of reverse projected rectangles were calculated using ellip-
soidal distance and azimuth procedures imbedded in
ArcView 3.2. The purpose of the test was to observe the side
ength and corner angle distortions of small rectangular
jrids that are reverse-projected to the reference ellipsoid

surface. The test utilized six reverse-projections of 16 plane
rectangles, each having a different L X W, or different rota-

ion in the plane with respect to its lower left corner. The
four L XW combinations were 1X 0.2, 1 X0.7, 10 X 2, and

10 X 7 km. The four rotation angles were 0, 15, 50, and 75°.
Plane coordinates assigned to the lower left corner of each
rectangle were (Eo,No)

-
(0, 0), which serves as a grid ori-

gin. Coordinates (Ej, Ni),i= 1, 2, 3, for the remaining cor-
ners were assigned according to rectangle dimensions and
rotation angle (example in Table 2). Reverse projection of a
rectangle was accomplished by assigning geodetic coordi-
nates ((()(), A.o) to the grid origin, (Eo,N())

-
(0,0). Equations

(9) and (10) then were solved for (fy, A.j) in terms of §q, Xq,
Ej, Ni, to complete the reverse projection of the remaining
three corners. The reverse projection of the rectangles was
carried out with Xo

= -90° or -93° and with% =33°, 35°, or
37°. Side lengths of the reverse-projected rectangles were
calculated by applying the ArcView 3.2
".ReturnGeodesicDistance" procedure to adjacent corner

positions. These calculated dimensions were subtracted

Fig. 2. Maximum relative error for the distance calculation
versus latitude of base position. Diamond - X#= -90 and -95.
Square - Xq= -91 and -94. Triangle - X% = -92 and -93.
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Table 2. Plane coordinates and parameters for calculating geodetic coordinates of the 1X 0.2 km rectangle with 75
deg rotation withcalculated corner angle and side length discrepancies

Side or
Corner Eo No A<|> <j>j <J>a s*. AX X\ A

-
90 L

-
Lo

# m deg msec-1 deg m
0 0.00 0.00 0.00000 37 0.00000 0.0000 -93 0.034 0.48
1 258.50 966.10 0.00871 37.0087 37.00436 24.738 0.0029 -92.9971 0.034 0.11
2 65.60 1017.80 0.00918 37.0092 37.00459 24.738 0.0007 -92.9993 0.032 0.48
3 -193.00 51.70 0.00047 37.0005 37.00023 24.740 -0.0022 -93.0022 0.032 0.09

from corresponding original side lengths to determine a
side-length discrepancy, | Li5

- Ljq |, i= 0, 1, 2, 3. Corner
angles for the reverse-projected rectangles were determined
by first calculating the forward and reverse azimuths, at each
corner position. Then the difference A}

= | az ii+1
-

az^.j |
was calculated. Finally, each corner angle discrepancy was
determined as | A{

- 90|, i= 0, 1, 2, 3. Absolute and relative
errors also were calculated for area and perimeter. The cor-
ner geodetic coordinates of the reverse-projected rectangles
with base longitude, 93°, were re-projected into the UTM
Zone 15 coordinate system. Following re-projection, the
UTMcoordinates of the base corner were subtracted from
corresponding coordinates of all four reprojected corners to

yield (Ej, Nj) values similar to those of the original plane rec-
tangles. Displacement distances were calculated for all cor-
ners of the re-projected rectangles.

Discussion

Although it is beyond the scope of this manuscript to
completely characterize the empirical projection, a few val-
ues of h,k, and y were examined. Both the convergence y
and the scale factor h were relatively insensitive to varia-
tions in A. for the tests that were run, as well as to variations
in <(). The scale factor, k, on the other hand was found to be
extremely sensitive to variations in ()) from the base latitude,
())() (Table 3). For ()) = (j)(), the calculated convergence ranged
from 0 to 0.29° as X - Xo ranged from 0 to 1.0°. As <)) = <$>0
increased from 33° to 37°, h decreased from 1.0001 to
0.9994, for X - Xo

= 0.01, 0.1, or 1.0. The scale factor, k,
exhibited a minimum value of approximately 0.9998 for (()=
35°, and maximum values of 1.0003 for (j) = §q =33° and

Table 3. Principle radii ofcurvature and example projection parameters

3L-Xq = 0.2 | ?<>= 35 | a(<j>o) =
11Q581

<t> *xW) p(<t>) v h a+bf k h -
k

deg m sec' 1 m m rad-1 m deg-1 rad-1 rad-1
34.6 25.475 6354357 6384479 1.00010 91492 0.9975 2.62E-03
34.7 25.445 6354869 6384651 1.00002 91437 0.9981 1.96E-03
34.8 25.414 6355385 6384823 0.99994 91381 0.9986 1.30E-03
34.9 25.383 6355904 6384997 0.99986 91326 0.9992 6.37E-04
35 25.353 6356427 6385172 0.99978 91271 0.9998 -3.29E-05

35.1 25.322 6356953 6385348 0.99970 91216 1.0004 -7.08E-04
35.2 25.291 6357482 6385526 0.99961 91161 1.0010 -1.39E-03
35.3 25.261 6358015 6385704 0.99953 91105 1.0016 -2.07E-03
35.4 I25.230 63585511 6385883 |0.99945 | 91050 | 1.0022 |-2.76E-03

tan y= 0.001 y (deg) = 0.000995
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1.0006 for <|> = <|>o = 37°. By comparison, the UTMZone 15

system's scale factor (k =h) has its minimum value, 0.9996,
along the central meridian X= -93°. The highest values of k
for UTMZone 15 occurs along the boundary meridians X=

-90° and X= -96°, where k is approximately 1.0006 at (() =

33° and 1.0005 at <|> =37°. The UTMsystem's convergence
is 0° along the central meridian and approximately 0.5°
along the -92° meridian for § between 33° and 37°.
Returning to the empirical projection with ty0

=35°, k was
found to increase from 0.998 to 1.002, as § increases from
34.6° to 35.4° (Table 3), thus exhibiting nearly an order of
magnitude greater variation over this limited range of <\> than
does the UTMZone 15 scale factor over the entire state of
Arkansas. The change in k between 0 = 34.9° and 35.0°,
equivalent to approximately 11kmnorth -south distance, is
only 0.0006.

The distance absolute errors for the 6X5 array of base
positions were found to be equal on a pair-wise basis for the
-92 and -93, the -91 and -94, and the -90 and -95 degree
meridian pairs. Absolute errors ranged from slightly greater
than 50 meters to approximately 315 meters. The greatest
absolute error, 312.8m, was associated with the separation
distance between (X\, §{)

— (-90, 37) and (X2, = ("95, 37).
The second highest absolute error, 235.5 m, was associated
with distance between (-90, 36) and (-95, 37), and between
(-90, 37) and (-95, 36). Thus the two highest absolute errors
occurred with position pairs having at least one member-
outside the fitting range for sA.((|>) and s 0, and also having a
large east-west separation. In spite of this the relative error
in calculated distance did not exceed the estimated upper
bound, e^max ~ 7.5 X 10~4. Where both position latitudes
were < 36°, the relative errors were lower (Fig. 2). Similarly,
in the rectangle test, maximum calculated | Li5

- Li() |/ Li()

was below E^max
,for ty{)

=33 (6.9 X10~4) and for <|)0
=35 (6.8

X10"4),but for (j>0
=37, maximum calculated |L;,-Ljq |/ Ljq

was 1.1 X 10"3 (Fig. 3), or 11 m in 10 km.Likewise, the max-
imum corner angle discrepancy was significantly larger for
§0 =37 (Fig. 4) than for §q =33 or §q=35. Generally the cor-
ner angle discrepancy was lower for the 1X 0.2 km and 1 X
0.7 km rectangles (0.002° to 0.010°) than for the 10 X 2 km
and 10 X 7 km rectangles (0.007° to 0.031°).

Other rectangle properties followed a pattern different
from the one pointed out for the side length and corner
angle errors. Maximum relative error incalculated area was
8.0 X 10"4 for <|>B

= 33°, 8.0 X 1(M for <|> B
=35°, and 5.9 X

lO4 for 0B
= 37°. Maximum relative error in calculated

perimeter was 3.4 X 10 4 for <()B
-

33°, 4.3 X 1(H for (J) B
=

35°, and 3.9 X 10 4 for <|>B
=37°. Finally, corners of rectan-

gles re-projected into the UTMsystem along the -93° merid-
ian had maximum corner position displacements from the
original corner positions as follows: 11.2, 7.3, and 15.8m for
the large rectangles with base latitude, 33, 35, and 37,
respectively; 0.8, 0.3, and 1.0m for the small rectangles in

rectangle sides, L0,LI,L2, and L3 over all side length com-
binations and rotations of the rectangles. Left column -

(|)B
=

33. Center column - (|)B
=35. Right column - (|)B

=37.

for the four rec-discrepancyFig. 4. Maximum corner angle
over all side length combi-tangle corners, aO, al, a2, and a3

nations and rotations of the rectangles. Left column - (j)B
=

33. Center column -
(|)B

=35. Right column -
(|)B

=37.

the same base latitude order. In all cases the maximum dis-
placement was associated with the upper right corner of the
rectangle with 0° rotation.

Summary

Asimple formula for calculating ellipsoidal distance, d,
and a portable but empirical projection based on equations
(9) and (10) were presented and tested. Both are intended for
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field or other applications that tolerate relatively low preci-
sion. They are not intended for land survey or engineering
applications that have high precision requirements. That d
estimates ellipsoidal distance places itin the category of "the
reverse problem" outlined by Bomford (1962). He gives
examples of recognized formulas that are correct to 1in 107

or better. Two independent estimates of relative error over
the latitude range 33 < (j) < 36.5 both lead to the conclusion
that e d

< 7.5 X 10~4. Comparison of d with d* for positions
having § and X,separations < 1° revealed that relative errors
remained below this estimated maximum, even for distance
calculations that involved two positions on opposite
extremes ofArkansas.

The portable projection only requires the use of three
constants, a, b, and c, in addition to base geodetic coordi-
nates (00, Xq), inorder to develop a small plane coordinate
grid that is referenced to the geodetic system. The grid size
would be limited by the precision requirements of a given
project. The empirical projection's scale factor, k, is
extremely sensitive to 0 different from §q. An example
(Table 3) suffices to demonstrate the sensitivity. However,
differences ink were small for a more limited range of (J), not
exceeding a 0.1° departure from §q. The corner angles in
reverse-projected 1 X 0.7 km rectangles differed from 90°
by no more than 0.01°. Along the -93° meridian the corner
positions of these small reverse-projected rectangles repro-
jected into the UTMsystem withmaximum displacement of
lm from the original plane rectangle corners.
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