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ABSTRACT 

Several modern feature detection algorithms use Gaussian scale spaces in order to locate 

scale-invariant and rotationally invariant feature points in an image, including the Scale-Invariant 

Feature Transform (SIFT) algorithm. These SIFT features are used to enable a wide range of 

applications, including object recognition, motion tracking, and image stitching.  One problem 

with SIFT is the fact that the number of features detected in an image can become very large, 

especially if the input image is big or has a lot of detail.  This slows down feature matching and 

reduces the performance of these applications.   

In this thesis, we will study different ways to improve feature matching by increasing the 

quality and reducing the number of SIFT features. We created an algorithm to identify robust 

SIFT features by evaluating how invariant individual feature points are to changes in scale.  This 

allows us to exclude poor SIFT feature points from the matching process and obtain better 

matching results in reduced time.  We also developed techniques consider scale ratios and 

changes in object orientation when performing feature matching.  This allows us to exclude 

false-positive feature matches and obtain better image alignment results.   
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1.  INTRODUCTION 

  In computer vision and image processing, feature detection is a process of finding unique 

interesting points in an image. In our research we use a technique called SIFT (Scale Invariant 

Feature transform) that was created by David Lowe to detect and extract features in an image 

that are invariant to transformations such as scale, rotation and illumination. SIFT has been used 

in a wide range of applications object recognition, motion tracking, image matching and image 

stitching.   

SIFT has three stages, feature detection, feature extraction and key point reduction. In 

feature detection important feature points in an image are located. These feature points are 

found at different levels of Gaussian blurring of an image so we can say they have different 

scales. In feature extraction, we find 128 feature descriptors that describe a feature. The input of 

feature extraction algorithm is the neighborhood of the feature, and the output of this algorithm 

is a reduced representation of the input called as feature vector. Feature vector is like the 

fingerprint of the feature that describes edge orientation information. The third phase of SIFT is 

reduction of features which is also the final stage. In this stage, some of the feature points that 

lie on the edges or have low contrast are removed. 

  Even though features calculated are reduced, they still can be large in number especially 

when the image size is big. When the features are large in number that can be from few 

hundreds to thousands, they become cumbersome for an application that uses them for further 

processing.  One such case would be feature matching. Feature matching is commonly used in 

image matching, motion tracking or object recognition. In image matching when two images are 

being matched first, features for both the images are calculated then a matching algorithm is 

applied to both the set of features from two images. Here every feature has to be processed but 
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only some of the features actually get matched by the algorithm unless both the images are 

identical. In order to speed up the matching, we need to remove some features that do not 

participate in the feature matching.  

The goal of our research is to find and remove bad features from the overall set of SIFT 

features for a given image. Bad features are generally not robust or scale invariant thus they do 

not participate in any kind of matching more often. When bad features are removed the number 

of SIFT features significantly decrease but it does not affect the actual matching much.  

There are two stages to our algorithm, first is the preprocessing and next is post 

processing. In the preprocessing we process the input image to remove unnecessary SIFT 

features and keep the good SIFT features. We do this by tracking SIFT feature points through a 

sequence of interpolated images, and counting the number of times a point occurs in this 

sequence.  Points that occur very few times are not scale invariant, while points that are found 

in most of the interpolated images are very scale invariant. 

In the post processing we do the actual matching between two preprocessed images. Here 

we also show how feature matching can be improved by considering scale ratio and orientation 

windows of the matched features.  Even though preprocessing takes a while to finish, post 

processing time is greatly reduced. If we use the same preprocessed input image in matching 

with a number of different images, then matching becomes fast. This is very useful in the case 

of object matching in a video where one input image is matched to many images or all the 

frames of the video. 

The rest of this document is organized as follows.  Chapter 2 describes SIFT in more 

detail and related work in feature detection.   In Chapter 3 we describe the design and 

implementation of our approach.  Chapter 4 outlines our testing environment and Chapter 5 
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describes our results using representative input images.  Finally, Chapters 6 and 7 contain our 

conclusions and future work.     
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2. BACKGROUND AND RELATED WORK  

In this chapter we explain how feature detection algorithm works. Background concepts 

and definitions related to our research are explained with examples.  In 2.1 and 2.2 we will give 

an overview of feature detection and extraction.  In 2.3 and 2.4 we will discuss scale space 

theory and spatial filtering. In 2.5 we will discuss rotational invariance.  Finally, in 2.6 and 2.7 

we discuss in detail how SIFT and feature matching work.    

2.1 Feature Detection 

  In computer vision and image processing, feature detection is used to find a part of an 

image which is unique or interesting. These feature points can be used to identify objects in an 

image or to solve a computational task related to an image. The computational task might be to 

recognize an object in the image or match one image to another.  

  Features are extracted generally by neighborhood operations applied on an image.  

Features can be of different structures like points, edges, regions etc. Some feature types can be 

easy to calculate but generally may not be good enough for future use. Different kinds of 

features work well for different types of scenarios but features that are mostly used are feature 

points. Feature points are good because they work well in most of the computer vision 

techniques. Feature detection can be computationally expensive and even using those features 

for any other purpose can be computationally costly.  

Edges are curves or lines or set of points that show the intensity transitions in an image. 

Edges are easy to calculate but are difficult to track if the image content is changed slightly. For 

features like edges we use detection techniques which are based on gradients, Laplacian zero 

crossing etc.  Image derivatives are generally used to locate edges in an image. Gradient is a first 
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derivative of an image and is used in edge detection. The gradient of an image gives us the 

direction and magnitude of maximum intensity change at every pixel of an image. First 

derivative of an image is calculated as  

                                       ����, �� � �	� 	�, 	�/	�⁄ � �  � �
, �� � 

Gradient direction is given by � � tan����� �
⁄ � and gradient magnitude is given by  

                                    |��| � ��
� � ���   

Gradients are estimated by calculating partial derivatives at each pixel. Partial derivatives are 

calculated using convolution masks dx and dy. 

                                  �
��, �� � ���, �� � ����, �� 

                                 ����, �� � ���, �� � ����, �� 

Different kinds of masks like two point estimate, Roberts cross, and Sobel can be used for 

convolution. The 3x3 Sobel masks for dx and dy are given by: 

�� � ��1 0 1�2 0 2�1 0 1"     �� � ��1 �2 �10 0 01 2 1 " 
Laplacian zero crossing is another edge detection method. In this case, we find the zero 

crossings of the Laplacian. The Laplacian is defined as 

�����, �� �  	�
	��  �  	�

	�� �  �

 �  ��� 

Laplacian is estimated by calculating partial derivatives at each pixel. Partial derivatives are 

calculated by convolving masks dxx and dyy since Laplacian is second order derivative. 

One of the common masks used for calculating Laplacian is  �1 1 11 �8 11 1 1". 
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Figure 1 - Top-left: original image, top-right: gradient magnitude from Sobel operator, 
bottom-left: y-gradient from Sobel operator, bottom-right: x-gradient from Sobel operator 

[11]  

 

 

Figure 2 - Top-left: original image, top-right: image convolved with Laplacian operator, 
bottom-left: zero crossings of Laplacian image, bottom-right: zero crossings with threshold 

applied [5] 
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2.2 Feature Extraction  

 Once the feature point has been detected, the local image patch around that feature is 

extracted. The local neighborhood of the feature might consist of a lot of information so this 

information is processed using an efficient algorithm. The output of this algorithm is generally a 

reduced representation of the local neighborhood of the feature detected. The output is typically 

called as feature descriptors or feature vector, and this should be easy to use in the future. 

Feature detection and extraction might need a lot of image processing since the number of 

features in an image and amount of local neighborhood can be very large.  

2.3 Scale Space  

Objects in the real world have a certain size and shape but the size varies, depending on 

the distance from which we are viewing them. Scale space theory tries to replicate this concept 

with images. To find features that are scale invariant we use scale space theory on images. If a 

feature detection algorithm is applied to an image at different scales or sizes it should be able to 

produce features that are the same and this makes those features scale invariant. Suppose an 

object is viewed from a close distance, details of that object are clear and fine but as we go 

farther away from the object the detail becomes blurred. This concept can be applied to images 

using a smoothing or a blurring function. The most effective and commonly used smoothing 

function is Gaussian filter since it is almost similar to natural eyes function. If an image is 

scaled up we have greater detail and if it is scaled down we have less detail. This phenomenon 

can be produced by blurring that image in an increasing order. Here the scale varies as the 

smoothing filter size varies. So scale invariant features are found at different scales or Gaussian 

filter sizes. 
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An image is taken and blurred increasingly to produce a set of images. Each image is 

blurred with a different filter size. So the scale of an image is equal to the degree of blur used 

for that case. Now that a set of blurred images are created we use them to find features that are 

scale invariant. When processing any image for features we generate scale space of that image 

and find scale invariant features so the scale of the input image being used does not make a 

difference.     

 
Figure 3 - The same scene smoothed to varying degrees, representing progressively 

smaller scales of the image [3] 

 

2.4 Spatial Filtering 

  Spatial filters use fixed sized neighborhood in an input image to calculate output 

intensity. Gaussian filter uses Gaussian function to define the neighborhood weights. These 

weights are convolved with the neighborhood pixel values to get the blurred intensity values for 

that neighborhood. 
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Gaussian smoothing removes noise and unwanted details in an image. The blur level of 

Gaussian filter is determined mostly by the value of sigma. The amount of blurring increases 

along with the value of sigma. The weight at each pixel is given by  

G��, �� �  %�
&'�&
�(&  

 

Figure 4 - The effects of varying sigma on a Gaussian curve 

 

2.5 Rotational Invariance  

The goal of most feature detection algorithms is to obtain features which are rotationally 

invariant. In other words, the features we get in an image should be unchanged if we rotate the 

image and calculate features again. There are two basic approaches to do this: 

First, pick features we know are rotationally invariant based on their mathematical 

properties. For example, gradient magnitude of an image |��| � ��
� � ���  remains the same 
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even after the image is rotated. Even the Laplacian of an image  
�����, �� �  )&

)
&  �  )&
)�& �  �

 � ��� is rotationally invariant. In both the cases, we need to 

align the gradient magnitude or the Laplacian of the original image and the rotated image, for 

them to match. 

  Second, calculate some preferred direction for each feature and calculate every other 

direction in a feature based on this preferred direction. For example, In SIFT features calculated 

are given an orientation of the prominent gradient direction and all the remaining feature 

descriptors are calculated based on this prominent gradient direction. This solves the alignment 

issue and the SIFT features become rotationally invariant.  

2.6 SIFT  

SIFT is one of the most common algorithms used to detect and extract features. It was 

published by David Lowe in 1999. SIFT feature vectors are invariant to image transformations 

like translation, scaling, rotation and are also partially invariant to affine distortion and 

illumination change. 

In SIFT an image is taken and smoothed several times to create a scale space. Then the 

original image is interpolated or scaled to half its original size then smoothed again 

progressively. This is repeated until the image is reduced to the smallest size. The smoothing 

function used here is Gaussian blur operator. Now we have different sets of images called 

octaves. Each octave is a set of images with same size that are blurred increasingly. These 

blurred images or octaves are used to produce another set of images called difference of 

Gaussian images (DoG). The DoG images are a result of difference between consecutive 
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Gaussian images in the scale space or octaves. These Difference of Gaussian images provide a 

good approximation to the Laplacian of an image [10].    

The Laplacian of an image is calculated by blurring the image to remove the noise and 

then taking the second order derivative of that image. The Laplacian of an image is rotationally 

invariant. The Laplacian at (x, y) in an image is the same as Laplacian at the rotated coordinate 

say (x’, y’) in the rotated image. Since calculating Laplacian of images is computationally time 

consuming, which is why the DOG approximation is widely used.       

We use the DoG images to find maxima and minima of the Laplacian. This produces a 

large number of feature points. Some of these feature points lie on the edge or have low contrast 

so removing them would be a good idea. If intensity of a key point in actual image is less than a 

certain threshold we consider it as a low contrast key point and discard it. 

Feature points that lie on the edges are removed. Two gradients at the key point are 

calculated and these gradients are perpendicular to each other. We keep the feature points or 

corners where both the gradients are big.  The feature points that are created are scale invariant. 

Features that are detected have different scales or Gaussian blur factor.     
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Figure 5 - Example of few feature points obtained with VLFeat SIFT [7] 

The goal of feature extraction is to process the image to obtain geometric or intensity 

features from the neighborhood of each feature point.  This collection of values is called a 

feature vector or feature descriptor. The feature vector makes use of local orientation information 

so it is rotationally invariant. The idea is to collect gradient directions and magnitudes around 

each key point. Then figure out the most prominent orientation in that neighborhood.  This 

orientation is saved with the key point. The remaining calculations make use of this prominent 

gradient direction to ensure that the feature vector is rotationally invariant. Gradient directions in 

the neighborhood are used to create 128 feature descriptors. Finally a SIFT feature has a location 

(x, y) and a Gaussian scale factor (or the blur level) at which it was found. Hence a SIFT feature 

can be defined as vector  � *�, �, +, ,, �1, �2, �3. . . �128/ where s is scale, , is the orientation 

angle and f1, f2…f128 are feature descriptors.   



13 

 
Figure 6 - Composition of Gaussian Scale Space [2] 

 

2.7 Feature Matching  

  Features matching can be used to support a wide range of applications.  For example, 

matching the features from a known object to features in an image can be used for object 

recognition. A similar approach can be used to align overlapping image to stitch together a 

panorama. In this section we discuss the issues of matching features to each other. Given a 

feature f1 in input image I1 we have to calculate the best match say feature f2 in input image I2. 

In brute force method of matching, every feature in I1 is paired with every feature in I2 and 

distance between the feature vectors of each pair is calculated in order to find all possible 

matches. The distance function compares each feature in I1 with f2 in I2 and finds a feature f2, 
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where distance between f1 and f2 is the least. In some cases f1 might not even have a good 

match f2. To eliminate these matches we set a threshold for the minimum distance. In most of 

the applications, distance is calculated as the sum of squared differences of the 128 descriptors 

between the feature vectors. 

When this feature comparison is only done from I1 to I2 (or from I2 to I1) we may have 

incorrect matches. These false positives occur because we are trying to find best match literally 

for every feature in I1 or I2. To solve this, we can perform feature matching both ways, that is 

f2 is the best for f1 and f1 is the best for f2 and the distance between vectors of f1, f2 is the least 

among all the matches in both the cases of matching from I1 to I2 and I2 to I1. This greatly 

reduces false positives but we may also remove a small number of true positives.  

In order to remove the false positives in the matching result and to make it more 

meaningful, we use an algorithm called RANSAC (random sample consensus). Input to this 

algorithm is a data set that is assumed to have a mathematical model whose parameters are 

unknown. This input data is also assumed to have some inliers that are true positives. The inliers 

present in the input satisfy a particular mathematical model. The goal of the algorithm is to find 

the inliers and discard the outliers if any. We assume that there are a certain minimum amount 

of inliers in the given input dataset.  

For example, if we consider mean square line fitting where a set of points are given and 

we need to find a line equation that fits in best for all the points. Here we use all the points in 

the data set both inliers and outliers. If we use RANSAC we can improve the line fitting by 

calculating the line equation using the inliers and removing the outliers from the data set. This is 

illustrated in Figure 7. 



Figure 7 - left: A dataset with many inliers and outliers to which a line has to be fitted, 
right: Fitted line with RANSAC using all the inliers(blue), outlier

 

First, some points in the data set are chosen randomly and assumed to be inliers and then 

a line equation is calculated based on these inliers. The remaining points in the data set are 

checked for inliers if any point is found to be an inlier then it is added to the hypothetical inlier 

set and the line equation is recalculated based on this inlier set. This goes on until all the points 

are divided into inliers and outliers. If the number of inliers is less than t

whole process is repeated by assuming new inliers. The algorithm

iterations for assuming different inlier set. The algorithm chooses the best line equation by 

finding the case with the most inliers.          

In the case of images, when feature points in image I1 match 

calculate the rotation, translation, scaling necessary to align these two images. This 

transformation is called a homography. In this case RANSAC can 

homography matrix, by finding the transformation with the largest number of feature match pairs 

(inliers).  
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left: A dataset with many inliers and outliers to which a line has to be fitted, 
Fitted line with RANSAC using all the inliers(blue), outliers(red) have no influence 

on the result [11] 

First, some points in the data set are chosen randomly and assumed to be inliers and then 

a line equation is calculated based on these inliers. The remaining points in the data set are 

point is found to be an inlier then it is added to the hypothetical inlier 

set and the line equation is recalculated based on this inlier set. This goes on until all the points 

are divided into inliers and outliers. If the number of inliers is less than the previous result, the 

whole process is repeated by assuming new inliers. The algorithm has fixed number

iterations for assuming different inlier set. The algorithm chooses the best line equation by 

finding the case with the most inliers.           

the case of images, when feature points in image I1 match feature points in I2 we can 

calculate the rotation, translation, scaling necessary to align these two images. This 

transformation is called a homography. In this case RANSAC can be used to solve for

homography matrix, by finding the transformation with the largest number of feature match pairs 

 

left: A dataset with many inliers and outliers to which a line has to be fitted, 
s(red) have no influence 

First, some points in the data set are chosen randomly and assumed to be inliers and then 

a line equation is calculated based on these inliers. The remaining points in the data set are 

point is found to be an inlier then it is added to the hypothetical inlier 

set and the line equation is recalculated based on this inlier set. This goes on until all the points 

he previous result, the 

has fixed number of 

iterations for assuming different inlier set. The algorithm chooses the best line equation by 

points in I2 we can 

calculate the rotation, translation, scaling necessary to align these two images. This 

used to solve for the 3x3 

homography matrix, by finding the transformation with the largest number of feature match pairs 
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3.  APPROACH 

 In this section we present different techniques to improve feature matching.  In section 

3.1 we discuss how to create a scale ratio window to improve feature matching.  In section 3.2, 

we discuss how to create an orientation angle difference window. In section 3.3, we discuss how 

to create a count for each feature, based on how many times it is found in the interpolated copies. 

In sections 3.4 and 3.5 we evaluate the use of counts for SIFT and SURF feature matching. In 

section 3.6 we discuss how to reduce descriptor operations during matching using a scale test. 

3.1 Scale Ratio  

  Even after using a good feature matching algorithm, the result may contain some false 

positives. In order to choose the correct matches we create a window for the correct scale ratio. 

Each SIFT feature has a scale assigned to it when it was detected. This scale value corresponds 

to the level of blurring applied to the input image when the feature point was detected. Hence 

large objects in the image will have large scales (they were detected after a lot of blurring) and 

small objects will have small scales. 

When features in one image are matched to features in another image each feature might 

have a different scale but there ratio of scales should be constant. The scale ratio is also close to 

the ratio of sizes of the images being matched. If a feature f1 with a scale s1 matches a feature 

f2 with a scale of s2 then s1/s2 or s2/s1 is constant.  

In reality, the scale ratios are not exactly constant but are somewhat close to each other, 

within a certain range. If we can get a rough estimate of this range we can then remove certain 

outliers as bad matches. All the scale ratios of the matching features generally fall into a small 

range of values. This range increases slightly when the image being matched is skewed. 
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  In order to automatically separate inliers from outliers, we have devised an algorithm to 

window matches based on scale ratios. After using the brute force matching algorithm, we 

calculate the scale ratios for each feature match. Then we calculated mean, median and standard 

deviation for all the scale ratios. We use this information to define a scale ratio window as 

[mean-(factor)*stddev, mean+(factor)*stddev] or [median-(factor)*stddev, 

median+(factor)*stddev]. The value of the factor decides the size of the window. When the 

window is small we tend to lose some good matches along with the bad ones but this might save 

us some time while estimating homography. 

We illustrate this algorithm below. In Figure 9, we show a plot of the scale ratio for 61 points 

that were found using brute force feature matching. Notice how there is a band of points in the 

range [1.5…2]. In Figure 10, we show the 41 points that fall in our scale window.  

 

 
Figure 8 - Scale ratios of the matches found using Brute Force Matching Algorithm 
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Figure 9 - Filtered scale ratios after using a scale ratio window 

 
In Figure 10, we show the lines from image1 to image2 that correspond to all 61 feature 

matches in Figure 8. In Figure 11, we show the lines corresponding to matches after scale 

windowing. Notice that most of the false positive matches are removed. 

 
Figure 10 - Brute Force matching result [11] [15] 
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Figure 11 - Brute Force matching result filtered with a scale ratio window [11] [15] 

3.2 Orientations  

  Every SIFT feature is given an orientation. The orientation is prominent gradient 

direction of each feature. When an image is rotated by a certain angle, the orientation of the 

feature is increased by this angle. Features matched generally have different orientations. The 

difference of angles between them is constant and gives us the angle of rotation. After using a 

matching algorithm to find feature matches, we can use the difference in the orientations to 

remove the wrong matches and find the correct ones. 

Our approach is similar to scale ratio windowing described in the previous section. First 

we, calculate all the differences between the orientations for each feature match. The differences 

are between 0-360 degrees. We calculate an angle histogram based on the orientation 

differences. This angle histogram is used to calculate a cumulative histogram. From this 

cumulative histogram we can find the best possible range for the angle of rotation or the best 

orientation difference. We do this by sliding a moving window of fixed size along the 

cumulative histogram and choosing the window that contains the most feature matches. 

Specifically we search for an angle with highest count using the formula below: 

 01234�5367%� � 89+41*5367% � +9:%/2/ � 89+41*5367% � +9:%/2/  
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Then we remove all the feature matches with angle differences that fall outside this window. 

This technique is very effective since the differences are scattered from 0-360. It is easy 

to find a range for orientation difference that satisfies most of the correct feature matches. 

Fewer false positives remain after windowing. In our experiments, we found that feature 

matches are filtered more effectively based on orientation difference than scale ratios. Since 

scale ratios are very close to each other and orientation differences are more spread out. 

Orientation difference window also works well when the images being matched are skewed. 

This process is illustrated in Figures 12 and 13 showing orientation angle differences 

before and after windowing with the algorithm described above. Figures 14 and 15 show the 

corresponding lines for feature matches plotted on input images. 

 

 
Figure 12 - Orientation angle differences of the matches found using Brute Force Matching 

Algorithm 
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Figure 13 - Filtered orientation angle differences after using orientation angle difference 
window 

 

 

Figure 14 - Brute Force matching result [11] [15] 

 
 



22 

 
Figure 15 - Brute Force matching result filtered with an orientation angle window [11] [15] 

  

3.3 Creating Counts  

  The features found in an image by using SIFT technique are intended to be invariant to 

translations, rotations and scaling transformations and robust to moderate perspective 

transformations and illumination variations in that image. The number of features found, depend 

on the image detail and the size of the image. Generally when image size increases the number 

of SIFT features tend to increase. For a typical 1000x1000 image the number of features found 

might be in hundreds or thousands. When we want to use these features for further processing 

like feature matching or object recognition, it can be time consuming. So to decrease the 

processing time in future it is better to reduce the number of SIFT features by keeping the good 

features and removing the bad ones.    

Our approach is to identify the features that are really scale invariant. To do this we use 

bilinear interpolation to resize the input image and to see which SIFT feature points remain. 

First we create N interpolated copies from the given input image. The scale factors used for this 

interpolation are from 0.5 to 1.5. We do not use the scale factor 1.0 since that would give us the 

input image as the output.  The height and width of the interpolated image is equal to height and 

width of the input image multiplied by the scale factor.    
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Next, we calculate SIFT features of these interpolated copies and the input image. Each 

SIFT feature in an image has three pieces of information. First, the (x, y) location of that 

feature, second, the Gaussian blur factor of that feature, and finally the vector of 128 feature 

descriptors. 

  To see if the SIFT feature is robust to an interpolation we count how many times that 

feature was found in the interpolated copies. This count tells us if the SIFT feature is robust or 

not. If the count is equal to N, then the feature is very robust to scale changes. If the count is 

only 0, 1 or 2, then the feature is not very robust to scale changes. There are two ways to do 

feature matching between input image and the interpolated images. We can match (x, y) 

positions, scale and orientation or we can match feature vectors first.  

3.3.1 Matching Feature Attributes 

  For a given feature in the input image find what is the (x, y) position of that feature in the 

interpolated image. Say the feature was to be found at (x’, y’) in the interpolated image, if there 

is a feature at that location then it is fine otherwise search for a closest feature in a certain radius 

from (x’, y’).  If we find any feature or features near to (x’, y’) calculate the scale ratio by 

dividing the scales of both the features. Then check if this scale ratio is very close to the known 

scale factor that was used to create the interpolated image. If the scale ratio is approximately 

equal to the scale factor then we might have a possible match. Since the interpolation does not 

change the orientation of a feature, calculate the difference between orientations of the features 

being matched. If the difference is very small we can say that both the features might be equal. 

Finally compare its descriptor with the corresponding feature descriptors in the input image. 

Calculate feature difference between each pair by using mean squared error (MSE) between the 
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128 descriptors values. If the difference is less than a certain threshold we have good feature 

match and we increment the count for this feature otherwise it is a bad feature match. 

3.3.2 Matching Feature Vectors  

The other way to do the feature matching is to match feature vectors first. For every 

feature in the input image we try to find out the best feature match in the interpolated copy by 

looping over all the features in the input image and the interpolated copy. This way we find the 

closest feature pair or the best match for each feature in the input image based on MSE 

difference between 128 descriptors. The pair with least MSE difference would be picked for 

each feature in the input image. The (x, y) positions are verified by calculating the Euclidean 

distance between (x, y) at which the feature with the least MSE was found and the location say 

(x’, y’) where the feature was expected to be found in the interpolated image. If the distance is 

less than a certain threshold it is a good match and we increment the count, otherwise it is a bad 

match. A similar approach can be used to check the scale ratios and the orientation differences 

of each feature match. 

We combine the information that we got from matching the input image and the 

interpolated copies. We see how many times each feature in the input image got matched or was 

found in the interpolated copies. Here we consider only the good matches and based on this a 

count is set for each feature in the input image. Since there were N interpolated copies the count 

is going to be in between 0…N. This count shows how robust the SIFT feature is to an 

interpolation. If the count for a feature is high then the chances for that feature to be more scale 

invariant increase. This kind of behavior helps us find robust features which later can be used in 

image matching. The hundreds or thousands of features in a big image can be drastically 

reduced by using this technique, which saves us a lot of time during image matching. 
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  Figure 16 shows number of features per count. Minimum value of count is 0 and the 

maximum value of count is 10 since we have 10 interpolated copies. Count value is 0 when the 

feature is not found in any of the interpolated copies. We can say that features with counts from 

0-5 are not as robust as features with counts 6-10. Figure 17 shows features plotted for a 

particular range of counts. If we see the image with features plotted from 6-10, we can say that 

robust features are less dense and tend to be located in the center of blobs.  

Interpolation is used to change X and Y dimensions of an image. The interpolation 

technique used here is bilinear interpolation. Bilinear interpolation technique can be used to 

interpolate images up and down to any size. It uses the distance weighted average of adjacent 

pixels to obtain the output pixel value.   

Say if feature1 of input1 image got matched with feature2 of input2 image and the feature 

vectors for feature1 and feature2 are f1= (a1,a2,a3,a4,a5,a6,a7,…..) and f2= 

(b1,b2,b3,b4,b5,b6,b7,…..) 

Then MSE= ∑ �5< � =<��<>?<>@  

MSE calculated would always be positive and would show how close these feature 

vectors are. If MSE value is large (MSE>Threshold) we can say that it was a bad match since 

the vectors are having a big difference. If MSE is small (MSE<=Threshold) then it is potentially 

a correct match. We can adjust the threshold to control the number of good, bad matches. 
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Figure 16 - Number of features per count for the Dr. Pepper logo 

 
 

 
 

 

 

Figure 17 - Top-left: SIFT features with counts 0-10, top-right: SIFT features with counts 
0-5, bottom-left: SIFT features with counts 6-10, bottom-right: SIFT features with counts 

9-10 [11] 
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3.4 Evaluate Counts for SIFT Feature Matching  

  In this section, we evaluate the effectiveness of using counts while matching SIFT 

features. When two images Input1 and Input2 are being matched before the actual matching we 

need to preprocess both the inputs to find the counts for all features in both the images. The 

preprocessing might take a few seconds since we create SIFT features for all the interpolated 

copies of both the images and match them with the original input images. Once the counts are 

calculated, they are stored in a file so they can be reused.  

When Input1 and Input2 are being matched, we only use features with certain counts for 

matching to see how effective each count is. Features being matched are also selected based on 

the orientation difference between them. We only consider features with orientation difference 

less than a certain threshold T. Since in reality we see small amount of rotations we can limit 

the number of features being matched by their angle of rotation. When T is equal to 360 our 

method is as same as brute force method for matching. When T is 10 we only match features 

that got rotated by 10 degrees. When the value of T is low number of feature vectors we try to 

match are reduced and this saves us time and makes matching faster than the brute force 

method. The resultant feature matches are further filtered using descriptor difference, 

orientation window and scale window respectively.                 

Good SIFT features are selected based on the scores given to each feature. The count for 

each feature varies from 0 to N (the number of interpolated copies). If we choose a feature that 

is of higher count it might be a good feature. As we increase count the number of features 

typically decreases. The features with counts 0-5 are generally bad ones since most of them 

never get matched. They could be about 30% to 50% of the overall feature set. The features 
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with counts 6-10 are generally good feature points since they are more scale invariant. Those 

features are of the 50%-70% of the overall feature set. 

Sometimes it is difficult to say which features are good and which ones are bad even 

though we have a count for each feature. In that case, we can cross check them by trying 

different images and different count limits to select features and visually inspect them to select a 

range that works well. To visually inspect the result we add up both the images that are being 

matched and draw the lines between the features that got matched from Input1 to Input2. We 

can produce different results based on different MSE Threshold and different count range to see 

which combination or range is better. The range may slightly vary with different inputs. The 

results of our SIFT feature matches experiments are described in more detail in chapter 5.                   

3.5 Evaluate Counts for SURF Feature Matching 

SURF (Speeded up Robust Features) is almost same as SIFT. SURF uses determinant of 

Hessian matrix to locate key points in Gaussian scale space. SURF features have a scale, 

orientation and descriptors. The feature matching techniques used for SIFT work with SURF as 

well. SURF is faster than SIFT and generally produces fewer key points when compared to 

SIFT.  

When features in an image input1 are being matched to features in an image input2, there 

can be two scenarios. We might be looking for all the features in input1 to match some or all of 

the features in input2. This might be the case in logo matching where input1 is a logo and we are 

looking for input1 in input2. Next scenario would be where we are expecting few features in 

input1 to match some or all features in input2. An example for this, could image stitching where 

part of input1 is same as part of input2. When our count approach was tried on both of the 

scenarios described above. The use of counts made sense only in the logo matching where input1 
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is a subset of input2. In this case, when features with higher counts are chosen for matching they 

perform well. If features with lower counts are chosen they did not perform well.  

The use of SURF counts was not as effective for the image stitching scenario. This may 

be because there were fewer SURF points to begin with, and reducing this number makes it 

difficult to match images for stitching. 

In conclusion, using counts with SURF is much faster than using counts with SIFT 

(because SURF is so much faster than SIFT) but the benefit of using counts is not as significant 

as we found for SIFT. 

3.6 Scale Test 

  In the previous section we described how applying a scale window after matching 

reduces the number of bad matches. In this section, we describe how this scale test can be 

combined with the matching process to reduce the amount of work further. While matching 

Input1 to Input2, say Input1 has f1 features and Input2 has f2 features. We have to calculate all 

possible feature descriptor differences which is equal to f1*f2. The descriptor difference 

calculations are generally the deciding factor for the speed of any matching algorithm. To 

reduce the difference calculations, we apply a scale test to all the feature pairs before we 

calculate the feature differences.        

When we compare the scales or blur factor of the all the features pairs that have feature 

difference less than a certain threshold from Input1 to Input2, we found that the scale 

comparisons clearly show whether the scale ratio of the correct matches is greater than 1 or less 

than 1. To make use of this observation, we loop through the features in Input1 and Input2 with 

feature difference <Threshold and count how many times scale1 of Input1 was less than scale2 

of Input2, and scale1 of Input1 was greater than scale2 of Input2. If the range of scale ratios of 
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the correct matches is not split evenly, then our counts above clearly indicate whether scale ratio 

of true matches is >1 or <1.  

Based on the above concept we created a scale test. In our algorithm first we calculate 

few feature differences to decide if the scale ratio is greater or less than 1. In our experiments, 

we found that we got better scale ratio estimate by considering only points in Input1 with scale 

values 3-6.   

Generally when SIFT features are calculated for any image the features with scales 0, 1, 2 

are more and features with scales 3, 4, 5, 6 are less. Even though features are distributed 

unequally among the scales, the probability of matching for features with scales 0, 1, 2 is almost 

equal to the probability of features with scales 3, 4, 5, 6. This is taken to advantage in our scale 

test.  

After we have tried few combinations for feature differences in the first part of our 

algorithm we now can say if the scale ratios of the true matches are greater or lesser than one. 

When we cannot decide whether scale ratios are greater or less than 1 and if the scale ratio 

range is split over 1 the algorithm defaults to brute force method. Brute force is also used when 

the total matches are less than 10 since we cannot trust a small number of matches to estimate 

the scale ratio. 

After we know whether the scale ratios of the true matches are >1 or <1, we then apply 

this scale test to rest of the feature combinations used to calculate the feature differences. 

Feature differences are greatly reduced after the scale test.  

Even though we decided whether the scale ratios of true matches are >1 or <1 still there 

is a chance of slight error since true matches may have scale ratios of format 1+error  or 1-error 
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and error is very less. In our research we assumed the error to be 0.25 in order to decrease the 

loss of true matches.             

   After we have used the scale test we have seen the descriptor calculations get reduced 

roughly by 35%-50%. This speeds up the matching with a very few matches lost in some cases. 

The figures below show the results of matching algorithm before and after using the scale test. 

From Figure 19, 20 we see that descriptor differences calculated between inputs with feature 

match counts 0-10 and 0-10 are reduced from about 900000 to 650000 roughly. From Figures 

21, 22 we say that the total matches are preserved in most of the cases except in 4 of the 

matches. The percentage of correct matches is almost same for both the cases. In this particular 

example the scale test switches to brute force method or fails to decide the trend of scale ratios 

when features with counts 0-5 are used from both the inputs. These features with smaller counts 

are non-robust features so they generate fewer total matches and this is the reason why the scale 

test fails. We did not include the scale test in our final experiment of finding robust SIFT 

features because we did not want to risk losing few correct matches.          

 
Figure 18 - Input1 (left) and Input2 (right) used for the scale test experiments in Figure 19, 

20, 21, 22 [16] 
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Figure 19 shows the total number of descriptor comparison operations using invariant 

counts, angle window and scale window for different ranges of counts for the input image1 and 

input image2 shown in Figure 18. 

  Figure 20 shows the reduction in the total number of descriptor comparisons when we 

integrate the scale test into the comparison loop. Notice the reduction from 900000 maximum in 

Figure 19 to only 650000 maximum in Figure 20, which is significant.     

 

 
Figure 19 - Number of descriptor differences calculated while matching Input1 and Input2. 

Matching is done using features with different counts from each input. Scale test was not 
applied in this case 
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Figure 20 - Number of descriptor differences calculated while matching Input1 and Input2. 

Matching is done using features with different counts from each input. Scale test was 
applied in this case 

 

Figures 21 and 22 show the total number of matching features using methods as same as 

Figures 19 and 20. Notice that these figures are almost identical, so very few true matches were 

lost using the scale test approach. 
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Figure 21 - Total number of matches calculated while matching Input1 and Input2. 

Matching is done using features with different counts from each input. Scale test was not 
applied in this case 

 

 
Figure 22 - Total number of matches calculated while matching Input1 and Input2. 

Matching is done using features with different counts from each input. Scale test was 
applied in this case 
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4. TESTING 

In this section, we present our testing methods.  In section 4.1, we discuss our testing 

environment.  In section 4.2, we present how we measure the performance of   feature matching 

with different invariant counts.    

4.1 Testing Environment  

SIFT was created and patented by David Lowe. There are other open source versions of 

SIFT in libraries like OpenCV and VLFeat. These open source versions can be used for non-

commercial purposes. We saw that VLFeat SIFT is well documented and is easy to understand 

so we used it in our research. The majority of key points calculated using VLFeat SIFT 

correspond almost exactly with Lowes SIFT [7]. 

  

Figure 23 - VLFeat feature points (blue) and Lowe SIFT feature points (red) [7] 
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 Figure 24 - Percentage of features obtained from VLFeat and Lowe’s SIFT that match up 

to 0.01 and 0.05 pixels [7] 

      

               
 Figure 25 - Percentage of descriptors obtained from VLFeat and Lowe’s SIFT whose 

feature distance is 5%, 10% and 20% of the average descriptor distance [7] 

 

  Figures 23 and 24 show that the VLFeat feature points are nearly identical to Lowe’s 

SIFT points. Figure 25 above shows the percentage of descriptors computed by the two 

implementations whose feature distance is less than 5%, 10% and 20% of the average descriptor 

distance. This gives us confidence that VLFeat is an accurate implementation. 

We did not use the inbuilt matching algorithm in the VLFeat library instead we used the 

brute force method. VLFeat SIFT was only used to create the SIFT features. The library takes in 
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an image in PGM format and gives an ASCII file that contains feature location, scale and 128 

descriptors. This ASCII file was used for plotting features and matching in our research.   

For SURF feature matching we used open source computer vision library (OpenCV). In 

all our experiments we used OpenCV to calculate the homography matrix that describes the 

alignment of input images [9].   

 
Figure 26 - Example of SURF feature points [4] 

 

4.2 Performance Measurement  

The results were generated by matching two input images using different subsets of SIFT 

feature points. In our system, the minimum count value is 0 and the maximum count value is 10, 

so we considered feature points in fine count ranges: 0-5, 0-10, 6-10, 8-10, 9-10. We generated 

25 results by matching features in the input image1 in one of these ranges to features in input 

image2 in another range. All the results were generated using an angle of rotation threshold 

equal to 100. 

  Graphs were generated to show the total matches, percentage of correct matches, and 

matching time. The MSE threshold used for the feature difference was 40,000. The percentage 

of correct matches is measured by calculating the homography that used RANSAC. Time is 
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measured in the terms of number of descriptor differences calculated during the feature 

matching. 

The 3D-graphs plotted had count ranges 0-5, 0-10, 6-10, 8-10, 9-10 on X and Y axes for 

input2, input1 respectively. The Z axes shows the value of percentage of correct matches or 

total matches or number of descriptors differences calculated for each combination of count 

ranges on X and Y axes. 

The idea was to see how well each count range performed and how many features can be 

kept or removed based on their counts without effecting the matching. We generated an image 

for each case to see how the alignment of the bounding rectangle changes for different 

combination of count range. 

Once the matching was done for each case, using the correct matches we found the 

projected scale and orientation windows. These windows are very accurate in most of the cases. 

If our program was being used to process a video these projected scale and angle of rotation 

windows can be taken into consideration before processing the next frame.  
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5.  RESULTS 

In this section, we present results of the experiments outlined in the previous section.  We 

tested feature matching with a variety of test images, using a variety of scale invariant counts.  

We measured performance based on three metrics:  total number of matches, percentage of 

correct matches, and number of descriptor operations done during the matching.   

We performed our analysis with 30-35 pairs of images and found a high degree of 

uniformity between the test results from each image pair.  Below is a detailed account of our 

findings with four image pairs: a Dr. Pepper logo, the U of A union living room, the U of A 

union fountain and a stop sign. 
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5.1 Dr. Pepper  

   Figures 27, 28 and 29 show the results of SIFT feature matching of Dr. Pepper logos 

with different sets of SIFT features. In Figure 27 we show matches using all SIFT points. In 

Figure 28 we show matches with only the good points, and finally in Figure 29 we show 

matching with insufficient number of SIFT points.  

 

Figure 27 - Dr. Pepper logo matched from Input1 (left) to Input2 (right) using features with 
counts 0-10 (Input1) and 0-10 (Input2). Matches drawn in green (correct) and yellow 

(wrong) [12] [13] 

 
 

 

Figure 28 - Dr. Pepper logo matched from Input1 (left) to Input2 (right) using features with 
counts 6-10 (Input1) and 0-10 (Input2). Matches drawn in green (correct) and yellow 

(wrong) [12] [13] 
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Figure 29 - Dr. Pepper logo matched from Input1 (left) to Input2 (right) using features with 
counts 9-10 (Input1) and 8-10 (Input2). Matches drawn in green (correct) and yellow 

(wrong) [12] [13] 

 

Figure 30 shows that Input1 has more features with counts 5-10 when compared to 

features with counts 0-4. In general, we can say if Input1 was used for matching it would give 

good results since most of the features are scale invariant.  Figure 31 shows that Input2 has 

features evenly distributed among the counts. There are about 500 features which have a count of 

zero and 500 is the highest value in the histogram (Figure 31).  In general we can say that Input2 

would give many errors during any sort of matching since there are fewer robust features with 

counts 6-10 when compared to the features with counts 0-5. 



42 

 
Figure 30 - Number of features per count for Input1 

 

 
Figure 31 - Number of features per count for Input2 
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Figures 32, 33 and 34 show the results of all 25 matching experiments. In Figure 32 we 

have total number of matches. In Figure 33 we have percentage of correct matches, and Figure 

34 we have the descriptor differences.  

 

 
Figure 32 - Total matches between Input1 and Input2. Matching is done using features 

with different counts from each input 
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Figure 33 - Percentage of correct matches between Input1 and Input2.  Matching is done 

using features with different counts from each input 

 

 
Figure 34 - Number of descriptor differences calculated during the feature matching 

between Input1 and Input2. Matching is done using features with different counts from 
each input 
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Our first result shows matching with count ranges are 0-10(Input1) and 0-10(Input2) 

(Figure 27). The Total number of matches is equal to 44 and the percentage of correct matches is 

approximately 70. The percentage of correct matches is less as we expected since non-robust 

features with low counts are more in Input2. The descriptor differences calculated are 3445038. 

The differences calculated are certainly very high. The comparison between all the feature 

vectors is required and cannot be avoided. 

The best combination of count ranges for matching in this example is 6-10 and 0-10 

(Figure 28). The descriptors differences calculated in this case are 1878986 and that is almost 

50% of reduction when compared to the previous case, where we used features of count ranges 

0-10 and 0-10. This certainly shows that use of robust features with higher counts for matching 

saves us some time. Here the percentage of correct matches is 82. Even though we were able to 

remove most of the wrong matches we also removed few correct ones but the overall efficiency 

of our matching algorithm was improved. 

The worst combination of counts in this example is 9-10 and 8-10 (Figure 28). The total 

matches in this case are 4, which is bad since there are not enough matches for us to create a 

homography and verify whether few or all of them are correct. Generally as we consider higher 

count values, the number of feature points decrease rapidly, so using very high count ranges 

might not work in some cases. 
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5.2 Union Living Room 

Figures 35, 36 and 37 show the results of SIFT feature matching of union living room 

with different sets of SIFT features. In Figure 35 we show matches using all SIFT points. In 

Figure 36 we show matches with only the good points, and finally in Figure 37 we show 

matching with non-robust SIFT points from input image1.  

 

 
Figure 35 - Input1 (left) to Input2 (right) are matched using features with counts 0-10 
(Input1) and 0-10 (Input2). Matches drawn in green (correct) and yellow (wrong) [16] 

 

 
Figure 36 - Input1 (left) and Input2 (right) matched using features with counts 6-10 

(Input1) and 6-10 (Input2). Matches drawn in green (correct) and yellow (wrong) [16] 
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Figure 37 - Input1 (left) to Input2 (right) matched using features with counts 0-5 (Input1) 

and 0-10 (Input2). Matches drawn in green (correct) and yellow (wrong) [16] 

 

Figures 38 and 39 we show the number of features per count for Input1 and Input2.  We 

can say that majority of features in both the inputs are within count range of 6-10. Generally 

when more features have high counts the number of correct matches and total matches tend to be 

larger if there is any significant match between inputs. 

 

 
Figure 38 - Number of features per count for Input1 
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Figure 39 - Number of features per count for Input2 

 

Figures 40, 41 and 42 show the results of all 25 matching experiments. In Figure 40 we 

have total number of matches. In Figure 41 we have percentage of correct matches, and Figure 

42 we have the descriptor differences.  
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Figure 40 - Total matches between Input1 and Input2. Matching is done using features 

with different counts from each input 

 

 
Figure 41 - Percentage of correct matches between Input1 and Input2.  Matching is done 

using features with different counts from each input 
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Figure 42 - Number of descriptor differences calculated during the feature matching 

between Input1 and Input2. Matching is done using features with different counts from 
each input 

 

The result in which all the features where used had count ranges from 0-10 and 0-10 

(Figure 35). The percentage of correct matches in this case was about 90% and the total matches 

were 87. The percentage of correct matches is very high even when we used all the features for 

matching.  

The best combination of count ranges for matching in this example is 6-10 and 6-10 

(Figure 36) since it has 43 correct matches and the percentage of correct matches was 98%. The 

descriptor differences calculated in the best case are 211715. This is about 75% lower when 

compared with the differences calculated in the combination 0-10 and 0-10. 

The worst case here was 0-5 and 0-10. In this case the total matches are equal to 28, 

which is very low compared to the previous cases. The percentage of correct matches is 78% but 

this is also lower than the previous cases. This clearly shows that features with counts 0-5 are not 

robust.  



51 

  In this example since there are few errors and high number of total matches, the matching 

algorithm performs well even in the higher count range. 
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5.3 Union Fountain 

Figures 43, 44 and 45 show the results of SIFT feature matching of union fountain with 

different sets of SIFT features. In Figure 43 we show matches using all SIFT points. In Figure 44 

we show matches with only the good points, and finally in Figure 45 we show matching with 

non-robust SIFT points from input image1 and input image2.  

 

 
Figure 43 - Input1 (left) and Input2 (right) matched using features with counts 0-10 

(Input1) and 0-10 (Input2). Matches drawn in green (correct) and yellow (wrong) [16] 

 

 
Figure 44 - Input1 (left) and Input2 (right) matched using features with counts 9-10 

(Input1) and 0-10 (Input2). Matches drawn in green (correct) and yellow (wrong) [16] 
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Figure 45 - Input1 (left) and Input2 (right) matched using features with counts 0-5 (Input1) 

and 0-5 (Input2). Matches drawn in green (correct) and yellow (wrong) [16] 

 
In Figures 46, 47 we show the number of features with counts between 0 and 10. As in 

the previous experiment, the number of feature points with counts 5-7 is higher than the other 

count values. This indicates that the SIFT features are scale invariant and will be good for 

matching. 

 

 
Figure 46 - Number of features per count for Input1 
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Figure 47 - Number of features per count for Input2 

 

Figures 48, 49 and 50 show the results of all 25 matching experiments. In Figure 48 we 

have total number of matches. In Figure 49 we have percentage of correct matches, and Figure 

50 we have the descriptor differences.  
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Figure 48 - Total matches between Input1 and Input2. Matching is done using features 

with different counts from each input 

 

 

 
Figure 49 - Percentage of correct matches between Input1 and Input2.  Matching is done 

using features with different counts from each input 
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Figure 50 - Number of descriptor differences calculated during the feature matching 

between Input1 and Input2. Matching is done using features with different counts from 
each input 

 

The result where all the features where used for the matching, total matches are 123, 

percentage of correct matches is 96% and, total descriptor differences calculated are 931715 

(Figure 43). The percentage of correct matches is very high and very few wrong matches were 

found. 

  The best combination of count ranges in this example is 9-10 and 0-10 (Figure 44). The 

number of total matches is equal to 50, which is less than half of the total matches found in the 

previous case. This is because we have used a very high count range 9-10 for Input1. Percentage 

of correct matches in this case is 98%. Even though we used fewer features for our matching, the 

percentage of correct matches is still very high. Descriptor differences calculated in this case are 

101763, which is almost 89 % less than the descriptor differences calculated in the previous case 

where count ranges used are 0-10, 0-10. This gives us a huge time savings in feature matching. 
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  The worst combination of count ranges in this example is 0-5, 0-5 (Figure 45). Total 

matches in this case are 21, percentage of correct matches is 66% and the descriptor differences 

calculated are 298485. The percentage of correct matches is the lowest among all the count range 

combinations. This proves that features with lower counts are not robust.  

The success rate of features with counts 0-5 is less in most of the examples we tried. The 

matching would be much faster without these features and removing these features will not hurt 

the efficiency of the matching algorithm.   
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5.4 Stop Sign 

In this section, we show some preliminary results of using invariant counts with SURF 

features. In general there are fewer SURF features for an image than SIFT features, and they are 

roughly uniform distribution of count values. Figures 51, 52 and 53 show the results of SURF 

feature matching of stop sign with different sets of SURF features. In Figure 43 we show 

matches using all SURF points. In Figure 44 we show matches with only the good points, and 

finally in Figure 45 we show matching with non-robust SURF points from input image1. 

 
Figure 51 - Stop sign matched from Input1 (top-left) to Input2 (bottom) using features with 
counts 0-10 (Input1) and count 0-10 (Input2). Matches drawn in green (correct) and yellow 

(wrong) [11] [14]        
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Figure 52 - Stop sign matched from Input1 (top-left) to Input2 (bottom) using features with 
counts 8-10 (Input1) and count 0-10(Input2). Matches drawn in green (correct) and yellow 

(wrong) [11] [14] 

 
Figure 53 - Stop sign matched from Input1 (top-left) to Input2 (bottom) using features with 
counts 0-5 (Input1) and count 0-10 (Input2). Matches drawn in green (correct) and yellow 

(wrong) [11] [14] 
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In this example, invariant count was used to improve SURF feature matching. Generally 

SURF features are less when compared to SIFT features on any image. This probably causes our 

algorithm that uses count for matching to fail sometimes when Input1 is not a subset of Input2.  

When Input1 is a subset of Input2 our algorithm works well.  

From Figure 54 we can say that the features with counts 6-10 are less when compared to 

features with counts 0-5. In this example we only preprocessed the Input1 and Input2 was not 

preprocessed. So the range of counts used for Input2 is 0-10 since we used all the features. 

Whenever features with counts 0-5 are more, we can expect some errors in the matching since 

more non- robust features are used for matching. 

In Figures 54 and 55, we show the count distribution for SURF features. Notice that these 

are, quite different from our previous SIFT distributions. In particular, these are more uniform 

and tend to have more feature points in the 0-5 count ranges. This means SURF features are less 

robust to scale invariance than SIFT features. 

 

 
Figure 54 - Number of features per count for Input1 (stop sign) 



61 

 

 

Figure 55 - Number of features per count for Input2 

 

Figures 56, 57 and 58 show the results of 5 matching experiments. In Figure 56 we have 

total number of matches. In Figure 57 we have percentage of correct matches, and Figure 58 we 

have the descriptor differences. 

  



Figure 56 - Total matches between Input1 and Input2. Matching is done using features 
with different counts from Input1

Figure 57 - Percentage of correct matches between Input1 and Input2.  Matching is done 
using features w
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Total matches between Input1 and Input2. Matching is done using features 
with different counts from Input1  

Percentage of correct matches between Input1 and Input2.  Matching is done 
using features with different counts from Input1 

  
Total matches between Input1 and Input2. Matching is done using features 

  
Percentage of correct matches between Input1 and Input2.  Matching is done 



 

Figure 58 - Number of descriptor differen
between Input1 and Input2. Matching is done using features with different counts from 

 

When count range is 0-10

of correct matches is 85% and the descriptor differences calculated are 81315

case there were 5 errors. 

The best count range for matching in this example was 8

Input2 (Figure 52). The total matches in this case are 10 and all of them are 

percentage of correct matches is 100%. The descriptor differences calculated are 11019. In this 

case we do not have any errors in the matching and this is after we have used very few features 

for matching. This certainly shows that preprocessi
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Number of descriptor differences calculated during the feature matching 
between Input1 and Input2. Matching is done using features with different counts from 

Input1 

10 for the Input1 and Input2 the total matches are 33, percentage 

the descriptor differences calculated are 81315 (Figure 51)

The best count range for matching in this example was 8-10 for Input1 and 0

. The total matches in this case are 10 and all of them are correct. The 

percentage of correct matches is 100%. The descriptor differences calculated are 11019. In this 

case we do not have any errors in the matching and this is after we have used very few features 

for matching. This certainly shows that preprocessing the stop sign can give us the good results. 

  
ces calculated during the feature matching 

between Input1 and Input2. Matching is done using features with different counts from 

the total matches are 33, percentage 

(Figure 51). In this 

10 for Input1 and 0-10 for 

correct. The 

percentage of correct matches is 100%. The descriptor differences calculated are 11019. In this 

case we do not have any errors in the matching and this is after we have used very few features 

ng the stop sign can give us the good results. 
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The descriptor differences here are 11019, which is 87% less than the previous case where count 

range is 0-10 for both images. 

The worst count range for matching in this example was 0-5 for Input1 and 0-10 for 

Input2 (Figure 53). In this case the total matches are 19, percentage of correct matches is 58% 

and the descriptor differences calculated are 58237. Removing the features with counts 0-5 will 

remove the errors in the matching and reduces matching time.  

We can also see how the alignment of the bounding box changes. The count range 0-5 

does not give us good alignment. The use of robust features improves or preserves the correct 

alignment. 
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6.  CONCLUSIONS 

Several modern feature detection algorithms use Gaussian scale spaces in order to locate 

scale-invariant and rotationally invariant feature points in an image, including the Scale-Invariant 

Feature Transform (SIFT) algorithm. These SIFT features are used to enable a wide range of 

applications, including object recognition, motion tracking, and image stitching.  One problem 

with SIFT is the fact that the number of features detected in an image can become very large, 

especially if the input image is big or has a lot of detail.  This slows down feature matching and 

reduces the performance of these applications.   

In this thesis, we have demonstrated several different ways to improve feature matching 

by increasing the quality and reducing the number of SIFT features. Our primary result was an 

algorithm to identify robust SIFT features by evaluating how invariant individual feature points 

are to changes in scale.  This allows us to exclude poor SIFT feature points from the matching 

process and obtain better matching results in reduced time.  We have also demonstrated that this 

approach can be applied to SURF features to greatly reduce the number of feature points and 

improve matching results.  We also developed techniques consider scale ratios and changes in 

object orientation when performing feature matching.  This allows us to exclude false-positive 

feature matches and obtain better image alignment results.   

In general image matching can be measured by the following factors:  number of features 

being used in matching, speed and accuracy of our matching algorithm. In our research we are 

able to improve image matching by improving all the three factors. Number of features used for 

matching is reduced by identifying robust features. This greatly reduces the post processing time. 

Robust features certainly improve the matching itself. Even though the preprocessing of the 
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inputs may take a few seconds, in the end it proves to be worth it.  The good thing about our 

algorithm is it works well with both the features detection algorithms SIFT and SURF.  

By using robust SIFT or SURF features, the descriptor difference calculations are at least 

reduced to half and this speeds up the matching. Even though we use fewer features for the 

image matching both the alignment and the correct matches are preserved. In fact, in most of the 

cases the percentage of correct matches increases since the non-robust features are removed. 
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7.  FUTURE WORK 

Even though we have been able to reduce the number of SIFT or SURF feature points, 

the number of descriptor difference calculations is still considerable and needs to be reduced.  

One approach we could consider is how SIFT and SURF features behave when an image is 

rotated.  These features are intended to be rotation invariant, but as with scale invariance, some 

points may be more rotationally invariant than others.  If we can exclude the points with poor 

rotational invariance, then we could reduce the number of SIFT and SURF points even more 

prior to feature matching.  Perhaps a counting scheme like the one we devised for scale 

invariance could be used for this purpose.  Another option would be to consider a family of 

affine transformations (translation, rotation, scale, and skew) and use this to identify the most 

robust SIFT or SURF feature points.    

In our research we have shown how the use of scale ratio window and orientation 

window improve the matching results. When these windows are calculated using the correct 

matches from the homography result, the windows are very accurate. Suppose the windows were 

given even before the actual matching started the descriptor differences calculated are greatly 

reduced to few hundreds. The idea here is to run the matching algorithm twice, first time to 

calculate the projected scale ratio and orientation windows using a subset of the feature vectors, 

and then second time to do the real matching with the full set of feature vectors using these 

windows. The only problem here is to find a small set of robust features for the first matching.  
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