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ABSTRACT

Several modern feature detection algorithms uses§an scale spaces in order to locate
scale-invariant and rotationally invariant featpments in an image, including the Scale-Invariant
Feature Transform (SIFT) algorithm. These SIFTUeszd are used to enable a wide range of
applications, including object recognition, motibacking, and image stitching. One problem
with SIFT is the fact that the number of featuretedted in an image can become very large,
especially if the input image is big or has a lbtletail. This slows down feature matching and
reduces the performance of these applications.

In this thesis, we will study different ways to impe feature matching by increasing the
guality and reducing the number of SIFT features. 8h¢ated an algorithm to identify robust
SIFT features by evaluating how invariant indivitligature points are to changes in scale. This
allows us to exclude poor SIFT feature points ftbie matching process and obtain better
matching results in reduced time. We also develdpehniques consider scale ratios and
changes in object orientation when performing femtnatching. This allows us to exclude

false-positive feature matches and obtain bettageralignment results.
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1. INTRODUCTION

In computer vision and image processing, feafletection is a process of finding unique
interesting points in an image. In our researchusga technique called SIFT (Scale Invariant
Feature transform) that was created by David Lawdetect and extract features in an image
that are invariant to transformations such as scatation and illumination. SIFT has been used
in a wide range of applications object recognitimtion tracking, image matching and image
stitching.

SIFT has three stages, feature detection, feaktraction and key point reduction. In
feature detection important feature points in aagmare located. These feature points are
found at different levels of Gaussian blurring ofimage so we can say they have different
scales. In feature extraction, we find 128 featlescriptors that describe a feature. The input of
feature extraction algorithm is the neighborhootheffeature, and the output of this algorithm
is a reduced representation of the input calleeéaisire vector. Feature vector is like the
fingerprint of the feature that describes edgenvaion information. The third phase of SIFT is
reduction of features which is also the final stdgehis stage, some of the feature points that
lie on the edges or have low contrast are removed.

Even though features calculated are reduced,gtiégan be large in number especially
when the image size is big. When the featuresagsige lin number that can be from few
hundreds to thousands, they become cumbersomea fg@ication that uses them for further
processing. One such case would be feature matdh@ature matching is commonly used in
image matching, motion tracking or object recogmitiin image matching when two images are
being matched first, features for both the imagescalculated then a matching algorithm is

applied to both the set of features from two imagtesse every feature has to be processed but



only some of the features actually get matchechbyatgorithm unless both the images are
identical. In order to speed up the matching, wedrte remove some features that do not
participate in the feature matching.

The goal of our research is to find and removefbatires from the overall set of SIFT
features for a given image. Bad features are giyeiat robust or scale invariant thus they do
not participate in any kind of matching more oftéfhen bad features are removed the number
of SIFT features significantly decrease but it doesaffect the actual matching much.

There are two stages to our algorithm, first isgheprocessing and next is post
processing. In the preprocessing we process the im@age to remove unnecessary SIFT
features and keep the good SIFT features. We ddthiracking SIFT feature points through a
sequence of interpolated images, and countinguh&er of times a point occurs in this
sequence. Points that occur very few times arscale invariant, while points that are found
in most of the interpolated images are very scalanant.

In the post processing we do the actual matchimgden two preprocessed images. Here
we also show how feature matching can be improyecbbsidering scale ratio and orientation
windows of the matched features. Even though pgssing takes a while to finish, post
processing time is greatly reduced. If we use #mespreprocessed input image in matching
with a number of different images, then matchingdoees fast. This is very useful in the case
of object matching in a video where one input imasgmatched to many images or all the
frames of the video.

The rest of this document is organized as follo@bapter 2 describes SIFT in more
detail and related work in feature detection. Chapter 3 we describe the design and

implementation of our approach. Chapter 4 outlmastesting environment and Chapter 5



describes our results using representative inpages. Finally, Chapters 6 and 7 contain our

conclusions and future work.



2. BACKGROUND AND RELATED WORK

In this chapter we explain how feature detectiggoathm works. Background concepts
and definitions related to our research are expthimith examples. In 2.1 and 2.2 we will give
an overview of feature detection and extractian2.B and 2.4 we will discuss scale space
theory and spatial filtering. In 2.5 we will dissustational invariance. Finally, in 2.6 and 2.7

we discuss in detail how SIFT and feature matcinogk.

2.1 Feature Detection

In computer vision and image processing, featletection is used to find a part of an
image which is unique or interesting. These fegbaiats can be used to identify objects in an
image or to solve a computational task relatechtoreage. The computational task might be to
recognize an object in the image or match one in@g@other.

Features are extracted generally by neighborlopedations applied on an image.
Features can be of different structures like poidgyes, regions etc. Some feature types can be
easy to calculate but generally may not be goodigiméor future use. Different kinds of
features work well for different types of scenarms features that are mostly used are feature
points. Feature points are good because they wellkinvmost of the computer vision
techniques. Feature detection can be computatyoestiensive and even using those features
for any other purpose can be computationally costly

Edges are curves or lines or set of points thatvghe intensity transitions in an image.
Edges are easy to calculate but are difficultacknf the image content is changed slightly. For

features like edges we use detection techniqueshvare based on gradients, Laplacian zero

crossing etc. Image derivatives are generally tiséacate edges in an image. Gradient is a first



derivative of an image and is used in edge deteclibe gradient of an image gives us the
direction and magnitude of maximum intensity chaagevery pixel of an image. First

derivative of an image is calculated as
Vf(x,y) = (0f/0x,0f/0y) = (fu fy)

Gradient direction is given by = tan‘l(fy/fx) and gradient magnitude is given by

|Vf| = ,/fxz +fy2

Gradients are estimated by calculating partiah@tines at each pixel. Partial derivatives are
calculated using convolution masks dx and dy.

fe(,y) = f(x,y) * dx(x,y)

fay) =fx,y) «dy(x,y)
Different kinds of masks like two point estimatelderts cross, and Sobel can be used for

convolution. The 3x3 Sobel masks for dx and dygiven by:

-1 0 1 -1 -2 -1
dx=|-2 0 2| dy=|0 0 0
-1 0 1 1 2 1

Laplacian zero crossing is another edge detectiethoa. In this case, we find the zero

crossings of the Laplacian. The Laplacian is defiag

2 2

sz(x:y) = W + 6_yZ= fax + fyy

Laplacian is estimated by calculating partial datiives at each pixel. Partial derivatives are

calculated by convolving masks dxx and dyy sincelaeian is second order derivative.

1 1 1
One of the common masks used for calculating Lagteis [1 -8 1].
1 1 1



Figure 1 - Top-left: original image, top-right: gradient magnitude from Sobel operator,
bottom-left: y-gradient from Sobel operator, bottomright: x-gradient from Sobel operator
[11]

Figure 2 - Top-left: original image, top-right: image convolved with Laplacian operator,
bottom-left: zero crossings of Laplacian image, bédm-right: zero crossings with threshold
applied [5]



2.2 Feature Extraction

Once the feature point has been detected, thkifnage patch around that feature is
extracted. The local neighborhood of the featurghtnconsist of a lot of information so this
information is processed using an efficient aldgont The output of this algorithm is generally a
reduced representation of the local neighborhodtiefeature detected. The output is typically
called as feature descriptors or feature vectat,this should be easy to use in the future.
Feature detection and extraction might need aflohage processing since the number of

features in an image and amount of local neighbmitlean be very large.

2.3 Scale Space

Objects in the real world have a certain size drags but the size varies, depending on
the distance from which we are viewing them. Sesalace theory tries to replicate this concept
with images. To find features that are scale irardgrnive use scale space theory on images. If a
feature detection algorithm is applied to an imapdifferent scales or sizes it should be able to
produce features that are the same and this mha&ss teatures scale invariant. Suppose an
object is viewed from a close distance, detailthat object are clear and fine but as we go
farther away from the object the detail becomesrbtl This concept can be applied to images
using a smoothing or a blurring function. The meféctive and commonly used smoothing
function is Gaussian filter since it is almost $anto natural eyes function. If an image is
scaled up we have greater detail and if it is scdtevn we have less detail. This phenomenon
can be produced by blurring that image in an irsirgporder. Here the scale varies as the
smoothing filter size varies. So scale invariaatdees are found at different scales or Gaussian

filter sizes.



An image is taken and blurred increasingly to poeda set of images. Each image is
blurred with a different filter size. So the scafean image is equal to the degree of blur used
for that case. Now that a set of blurred imagexerated we use them to find features that are
scale invariant. When processing any image foufeatwe generate scale space of that image
and find scale invariant features so the scalb@friput image being used does not make a

difference.

Figure 3 - The same scene smoothed to varying deggg representing progressively
smaller scales of the image [3]

2.4 Spatial Filtering

Spatial filters use fixed sized neighborhood im iaput image to calculate output
intensity. Gaussian filter uses Gaussian functmrdéfine the neighborhood weights. These
weights are convolved with the neighborhood pixaues to get the blurred intensity values for

that neighborhood.



Gaussian smoothing removes noise and unwantedsdetan image. The blur level of
Gaussian filter is determined mostly by the valfisigma. The amount of blurring increases
along with the value of sigma. The weight at eagkelps given by

x%+y?

G(x,y) = e 207

[3%]

I

09

Qaaaq

s

(=Rl
1

0.7 .

06 =

Figure 4 - The effects of varying sigma on a Gaussi curve

2.5 Rotational Invariance

The goal of most feature detection algorithms ishitain features which are rotationally
invariant. In other words, the features we getinmnaage should be unchanged if we rotate the
image and calculate features again. There are asiw pproaches to do this:

First, pick features we know are rotationally inaat based on their mathematical

properties. For example, gradient magnitude ofaage|Vf| = /fxz + fy2 remains the same



even after the image is rotated. Even the Laplaciam image
VZf(x,y) = :—xzz + % = fxx + fy is rotationally invariant. In both the cases, eedto
align the gradient magnitude or the Laplacian efdhginal image and the rotated image, for
them to match.

Second, calculate some preferred direction fohdeature and calculate every other
direction in a feature based on this preferredctima. For example, In SIFT features calculated
are given an orientation of the prominent gradadrection and all the remaining feature

descriptors are calculated based on this promgreatient direction. This solves the alignment

issue and the SIFT features become rotationallgriaat.

2.6 SIFT

SIFT is one of the most common algorithms useckteat and extract features. It was
published by David Lowe in 1999. SIFT feature vestare invariant to image transformations
like translation, scaling, rotation and are alsdighly invariant to affine distortion and
illumination change.

In SIFT an image is taken and smoothed severaktimereate a scale space. Then the
original image is interpolated or scaled to hafatiginal size then smoothed again
progressively. This is repeated until the imagediced to the smallest size. The smoothing
function used here is Gaussian blur operator. Nevhave different sets of images called
octaves. Each octave is a set of images with saadlsat are blurred increasingly. These
blurred images or octaves are used to produce anséh of images called difference of

Gaussian images (DoG). The DoG images are a m@fsdiference between consecutive

10



Gaussian images in the scale space or octavese Thisrence of Gaussian images provide a
good approximation to the Laplacian of an imagd.[10

The Laplacian of an image is calculated by blurtimgimage to remove the noise and
then taking the second order derivative of thatgend'he Laplacian of an image is rotationally
invariant. The Laplacian at (x, y) in an imagehis same as Laplacian at the rotated coordinate
say (X', y') in the rotated image. Since calculgtlraplacian of images is computationally time
consuming, which is why the DOG approximation islely used.

We use the DoG images to find maxima and minimeiLaplacian. This produces a
large number of feature points. Some of these fegtaints lie on the edge or have low contrast
so removing them would be a good idea. If intensitg key point in actual image is less than a

certain threshold we consider it as a low contkagtpoint and discard it.

Feature points that lie on the edges are remowsd.gradients at the key point are
calculated and these gradients are perpendicukzadbo other. We keep the feature points or
corners where both the gradients are big. Theifegdoints that are created are scale invariant.

Features that are detected have different scal@sassian blur factor.

11



Figure 5 - Example of few feature points obtained #h VLFeat SIFT [7]

The goal of feature extraction is to process thegiento obtain geometric or intensity
features from the neighborhood of each featuretpdihis collection of values is called a
feature vector or feature descriptor. The feat@@ar makes use of local orientation information
so it is rotationally invariant. The idea is toleat gradient directions and magnitudes around
each key point. Then figure out the most promirmgi@ntation in that neighborhood. This
orientation is saved with the key point. The renmgrcalculations make use of this prominent
gradient direction to ensure that the feature veastootationally invariant. Gradient directions in
the neighborhood are used to create 128 featusziptss. Finally a SIFT feature has a location
(x, y) and a Gaussian scale factor (or the bluelleat which it was found. Hence a SIFT feature
can be defined as vectet [x,y,s,0,f1, f2, f3... f128] where s is scal@ is the orientation

angle and f1, f2...f128 are feature descriptors.

12
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Figure 6 - Composition of Gaussian Scale Space [2]

2.7 Feature Matching

Features matching can be used to support a a&idgerof applications. For example,
matching the features from a known object to fesgtum an image can be used for object
recognition. A similar approach can be used tanatigerlapping image to stitch together a
panorama. In this section we discuss the issussatthing features to each other. Given a
feature f1 in input image 11 we have to calcul&ie best match say feature 2 in input image 12.
In brute force method of matching, every featurélirs paired with every feature in 12 and
distance between the feature vectors of each paalculated in order to find all possible

matches. The distance function compares each &atui with f2 in 12 and finds a feature 2,

13



where distance between f1 and 2 is the leastmescases f1 might not even have a good
match f2. To eliminate these matches we set attbléd$or the minimum distance. In most of
the applications, distance is calculated as thedsquared differences of the 128 descriptors
between the feature vectors.

When this feature comparison is only done fronol12t(or from 12 to 11) we may have
incorrect matches. These false positives occurusecave are trying to find best match literally
for every feature in 11 or 12. To solve this, wengzerform feature matching both ways, that is
f2 is the best for f1 and f1 is the best for f2 #mel distance between vectors of f1, f2 is thetleas
among all the matches in both the cases of matdhang 11 to 12 and 12 to 11. This greatly
reduces false positives but we may also removeadl siiimber of true positives.

In order to remove the false positives in the matghesult and to make it more
meaningful, we use an algorithm called RANSAC (@ndsample consensus). Input to this
algorithm is a data set that is assumed to havathematical model whose parameters are
unknown. This input data is also assumed to haneesaoliers that are true positives. The inliers
present in the input satisfy a particular matheocahtnodel. The goal of the algorithm is to find
the inliers and discard the outliers if any. Weuass that there are a certain minimum amount
of inliers in the given input dataset.

For example, if we consider mean square line {ttilere a set of points are given and
we need to find a line equation that fits in bestdill the points. Here we use all the points in
the data set both inliers and outliers. If we us®\NBAC we can improve the line fitting by
calculating the line equation using the inliers amhoving the outliers from the data set. This is

illustrated in Figure 7.
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Figure 7 -left: A dataset with many inliers and outliers to which a line has to be fitted
right: Fitted line with RANSAC using all the inliers(blue), outliers(red) have no influence
on the result [11]

First, some points in the data set are chosen ralydand assumed to be inliers and tl
a line equation is calculated based on these sli@te remaining points in the data set
checked for inliers if anpoint is found to be an inlier then it is addedhe hypothetical inlie
set and the line equation is recalculated basetismnlier set. This goes on until all the poi
are divided into inliers and outliers. If the numbéinliers is less tharhe previous result, tt
whole process is repeated by assuming new inlldrs.algorithn has fixed numbe of
iterations for assuming different inlier set. Thgoaithm chooses the best line equatior
finding the case with the most inliers.

In the case of images, when feature points in imagedtchfeaturepoints in 12 we cal
calculate the rotation, translation, scaling neags® align these two images. T
transformation is called a homography. In this RA&ISAC carbeused to solve fcthe 3x3
homography matrix, by finding the transformatiorihwthe largest number of feature match p

(inliers).
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3. APPROACH

In this section we present different techniqueisorove feature matching. In section
3.1 we discuss how to create a scale ratio windoimprove feature matching. In section 3.2,
we discuss how to create an orientation angleréifiee window. In section 3.3, we discuss how
to create a count for each feature, based on haw traes it is found in the interpolated copies.
In sections 3.4 and 3.5 we evaluate the use oftsdanSIFT and SURF feature matching. In

section 3.6 we discuss how to reduce descriptaratipas during matching using a scale test.

3.1 Scale Ratio

Even after using a good feature matching algarjtthe result may contain some false
positives. In order to choose the correct matchesneate a window for the correct scale ratio.
Each SIFT feature has a scale assigned to it wheasi detected. This scale value corresponds
to the level of blurring applied to the input imagken the feature point was detected. Hence
large objects in the image will have large scalleey were detected after a lot of blurring) and
small objects will have small scales.

When features in one image are matched to featoi@sother image each feature might
have a different scale but there ratio of scalesilshbe constant. The scale ratio is also close to
the ratio of sizes of the images being matched .féfature f1 with a scale s1 matches a feature
f2 with a scale of s2 then s1/s2 or s2/s1 is comsta

In reality, the scale ratios are not exactly comshkat are somewhat close to each other,
within a certain range. If we can get a rough estéf this range we can then remove certain
outliers as bad matches. All the scale ratios eftfatching features generally fall into a small

range of values. This range increases slightly whenmage being matched is skewed.
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In order to automatically separate inliers frontliers, we have devised an algorithm to
window matches based on scale ratios. After usiadtute force matching algorithm, we
calculate the scale ratios for each feature matcan we calculated mean, median and standard
deviation for all the scale ratios. We use thisinfation to define a scale ratio window as
[mean-(factor)*stddev, mean+(factor)*stddev] or fitan-(factor)*stddev,
median+(factor)*stddev]. The value of the factocides the size of the window. When the
window is small we tend to lose some good matchmsgawith the bad ones but this might save
us some time while estimating homography.

We illustrate this algorithm below. In Figure 9, slgow a plot of the scale ratio for 61 points
that were found using brute force feature matchNaice how there is a band of points in the

range [1.5...2]. In Figure 10, we show the 41 poih#t fall in our scale window.
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Figure 8 - Scale ratios of the matches found usirrute Force Matching Algorithm
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Figure 9 - Filtered scale ratios after using a scalratio window

In Figure 10, we show the lines from imagel to igfathat correspond to all 61 feature

matches in Figure 8. In Figure 11, we show theslib@responding to matches after scale

windowing. Notice that most of the false positivatohes are removed.

Figure 10 - Brute Force matching result [11] [15]
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Figure 11 - Brute Force matching result filtered wih a scale ratio window [11] [15]

3.2 Orientations

Every SIFT feature is given an orientation. Thiertation is prominent gradient
direction of each feature. When an image is rothied certain angle, the orientation of the
feature is increased by this angle. Features matgeeerally have different orientations. The
difference of angles between them is constant aresgis the angle of rotation. After using a
matching algorithm to find feature matches, we es@ the difference in the orientations to
remove the wrong matches and find the correct ones.

Our approach is similar to scale ratio windowinga&ed in the previous section. First
we, calculate all the differences between the tat@ans for each feature match. The differences
are between 0-360 degrees. We calculate an argjtegham based on the orientation
differences. This angle histogram is used to cateuh cumulative histogram. From this
cumulative histogram we can find the best poss#ohge for the angle of rotation or the best
orientation difference. We do this by sliding a nmgvwindow of fixed size along the
cumulative histogram and choosing the window tloat&ins the most feature matches.
Specifically we search for an angle with highesirdaising the formula below:

count(angle) = Histolangle + size/2] — Histo[angle — size /2]
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Then we remove all the feature matches with anifflerdnces that fall outside this window.
This technique is very effective since the differenare scattered from 0-360. It is easy
to find a range for orientation difference thaisfags most of the correct feature matches.
Fewer false positives remain after windowing. Im experiments, we found that feature
matches are filtered more effectively based onntaitgon difference than scale ratios. Since
scale ratios are very close to each other andtatien differences are more spread out.
Orientation difference window also works well whbe images being matched are skewed.
This process is illustrated in Figures 12 and X8\wshg orientation angle differences
before and after windowing with the algorithm désed above. Figures 14 and 15 show the

corresponding lines for feature matches plottechpnt images.
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Figure 12 - Orientation angle differences of the mahes found using Brute Force Matching
Algorithm
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Figure 13 - Filtered orientation angle differencesfter using orientation angle difference
window

Figure 14 - Brute Force matching result [11] [15]
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Figure 15 - Brute Force matching result filtered wih an orientation angle window [11] [15]

3.3 Creating Counts

The features found in an image by using SIFTregre are intended to be invariant to
translations, rotations and scaling transformatemms robust to moderate perspective
transformations and illumination variations in thmtge. The number of features found, depend
on the image detail and the size of the image. Gadigevhen image size increases the number
of SIFT features tend to increase. For a typic8l0kQ000 image the number of features found
might be in hundreds or thousands. When we wanséahese features for further processing
like feature matching or object recognition, it datime consuming. So to decrease the
processing time in future it is better to reducetiamber of SIFT features by keeping the good
features and removing the bad ones.

Our approach is to identify the features that asdly scale invariant. To do this we use
bilinear interpolation to resize the input image &m see which SIFT feature points remain.
First we create N interpolated copies from the givgut image. The scale factors used for this
interpolation are from 0.5 to 1.5. We do not usedbale factor 1.0 since that would give us the
input image as the output. The height and widtthefinterpolated image is equal to height and

width of the input image multiplied by the scaletta.
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Next, we calculate SIFT features of these intetedl@opies and the input image. Each
SIFT feature in an image has three pieces of indtion. First, the (X, y) location of that
feature, second, the Gaussian blur factor of #atiife, and finally the vector of 128 feature
descriptors.

To see if the SIFT feature is robust to an ind&pon we count how many times that
feature was found in the interpolated copies. Thimt tells us if the SIFT feature is robust or
not. If the count is equal to N, then the featgreary robust to scale changes. If the count is
only 0, 1 or 2, then the feature is not very roltasicale changes. There are two ways to do
feature matching between input image and the iotatgd images. We can match (x, y)

positions, scale and orientation or we can matatufe vectors first.

3.3.1 Matching Feature Attributes

For a given feature in the input image find wisahe (X, y) position of that feature in the
interpolated image. Say the feature was to be fairel, y’) in the interpolated image, if there
is a feature at that location then it is fine otlhiee search for a closest feature in a certairusadi
from (X', y'). If we find any feature or featuregar to (x’, y’) calculate the scale ratio by
dividing the scales of both the features. Then klifeihis scale ratio is very close to the known
scale factor that was used to create the integublatage. If the scale ratio is approximately
equal to the scale factor then we might have ailplessatch. Since the interpolation does not
change the orientation of a feature, calculataltfierence between orientations of the features
being matched. If the difference is very small \vaa say that both the features might be equal.
Finally compare its descriptor with the correspoigdieature descriptors in the input image.

Calculate feature difference between each pairsoygumean squared error (MSE) between the
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128 descriptors values. If the difference is I&éssta certain threshold we have good feature

match and we increment the count for this feattiheraise it is a bad feature match.

3.3.2 Matching Feature Vectors

The other way to do the feature matching is to mé&ature vectors first. For every
feature in the input image we try to find out tresbfeature match in the interpolated copy by
looping over all the features in the input imagd #re interpolated copy. This way we find the
closest feature pair or the best match for eadluifean the input image based on MSE
difference between 128 descriptors. The pair vatst MSE difference would be picked for
each feature in the input image. The (X, y) posgiare verified by calculating the Euclidean
distance between (x, y) at which the feature withleast MSE was found and the location say
(X', y) where the feature was expected to be foumthe interpolated image. If the distance is
less than a certain threshold it is a good matchvanincrement the count, otherwise it is a bad
match. A similar approach can be used to checkdhke ratios and the orientation differences
of each feature match.

We combine the information that we got from matgrtime input image and the
interpolated copies. We see how many times eadhréean the input image got matched or was
found in the interpolated copies. Here we considy the good matches and based on this a
count is set for each feature in the input imagecesthere were N interpolated copies the count
is going to be in between 0...N. This count shows halbust the SIFT feature is to an
interpolation. If the count for a feature is higjien the chances for that feature to be more scale
invariant increase. This kind of behavior helpd$ing robust features which later can be used in
image matching. The hundreds or thousands of feaiara big image can be drastically

reduced by using this technique, which saves os @f time during image matching.
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Figure 16 shows number of features per countirivim value of count is 0 and the
maximum value of count is 10 since we have 10 pakated copies. Count value is 0 when the
feature is not found in any of the interpolatediespWe can say that features with counts from
0-5 are not as robust as features with counts &it0re 17 shows features plotted for a
particular range of counts. If we see the imagé ¥aatures plotted from 6-10, we can say that
robust features are less dense and tend to betbrathe center of blobs.

Interpolation is used to change X and Y dimensmiren image. The interpolation
technique used here is bilinear interpolation.r@iéir interpolation technique can be used to
interpolate images up and down to any size. It tiseslistance weighted average of adjacent
pixels to obtain the output pixel value.

Say if featurel of inputl image got matched withtdiee2 of input2 image and the feature
vectors for featurel and feature2 are f1= (al,a24a85,a6,a7,.....) and 2=
(b1,b2,b3,b4,b5,b6,b7,.....)

Then MSE=Y{=%(a; — b;)?

MSE calculated would always be positive and wohlovs how close these feature
vectors are. If MSE value is large (MSE>Threshaeld)can say that it was a bad match since
the vectors are having a big difference. If MSEr®ll (MSE<=Threshold) then it is potentially

a correct match. We can adjust the threshold ttralothe number of good, bad matches.
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Figure 16 - Number of features per count for the DrPepper logo

Figure 17 - Top-left: SIFT features with counts 0-0, top-right: SIFT features with counts
0-5, bottom-left: SIFT features with counts 6-10, bttom-right: SIFT features with counts
9-10 [11]
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3.4 Evaluate Counts for SIFT Feature Matching

In this section, we evaluate the effectivenesssoig counts while matching SIFT
features. When two images Inputl and Input2 anegoeiatched before the actual matching we
need to preprocess both the inputs to find the tsoian all features in both the images. The
preprocessing might take a few seconds since vetecBIFT features for all the interpolated
copies of both the images and match them with tlggnal input images. Once the counts are
calculated, they are stored in a file so they aaneised.

When Inputl and Input2 are being matched, we osdyfaatures with certain counts for
matching to see how effective each count is. Featheing matched are also selected based on
the orientation difference between them. We onlystder features with orientation difference
less than a certain threshold T. Since in realgysa&e small amount of rotations we can limit
the number of features being matched by their aoigtetation. When T is equal to 360 our
method is as same as brute force method for macWihen T is 10 we only match features
that got rotated by 10 degrees. When the valueisfidw number of feature vectors we try to
match are reduced and this saves us time and maeking faster than the brute force
method. The resultant feature matches are furthereild using descriptor difference,
orientation window and scale window respectively.

Good SIFT features are selected based on the sgiossto each feature. The count for
each feature varies from 0 to N (the number ofrpdkated copies). If we choose a feature that
is of higher count it might be a good feature. Asincrease count the number of features
typically decreases. The features with counts @e5ganerally bad ones since most of them

never get matched. They could be about 30% to S50%ewverall feature set. The features
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with counts 6-10 are generally good feature pairise they are more scale invariant. Those
features are of the 50%-70% of the overall feasate

Sometimes it is difficult to say which features gowd and which ones are bad even
though we have a count for each feature. In theg,0ae can cross check them by trying
different images and different count limits to selieatures and visually inspect them to select a
range that works well. To visually inspect the tese add up both the images that are being
matched and draw the lines between the featurégdhhanatched from Inputl to Input2. We
can produce different results based on differenEM8reshold and different count range to see
which combination or range is better. The range stiggtly vary with different inputs. The

results of our SIFT feature matches experimentsleseribed in more detail in chapter 5.

3.5 Evaluate Counts for SURF Feature Matching

SURF (Speeded up Robust Features) is almost saBiEasSURF uses determinant of
Hessian matrix to locate key points in Gaussiatessgace. SURF features have a scale,
orientation and descriptors. The feature matcheeniques used for SIFT work with SURF as
well. SURF is faster than SIFT and generally presguewer key points when compared to
SIFT.

When features in an image inputl are being matthéshtures in an image input2, there
can be two scenarios. We might be looking fortal features in inputl to match some or all of
the features in input2. This might be the casegwolmatching where inputl is a logo and we are
looking for inputl in input2. Next scenario would Wwhere we are expecting few features in
inputl to match some or all features in input2.ekample for this, could image stitching where
part of inputl is same as part of input2. Whenamunt approach was tried on both of the

scenarios described above. The use of counts neade snly in the logo matching where inputl
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is a subset of input2. In this case, when featwrés higher counts are chosen for matching they
perform well. If features with lower counts are san they did not perform well.

The use of SURF counts was not as effective forrttagje stitching scenario. This may
be because there were fewer SURF points to begm amd reducing this number makes it
difficult to match images for stitching.

In conclusion, using counts with SURF is much fiaitan using counts with SIFT
(because SURF is so much faster than SIFT) butehefit of using counts is not as significant

as we found for SIFT.

3.6 Scale Test

In the previous section we described how applgirsgale window after matching
reduces the number of bad matches. In this seatierdescribe how this scale test can be
combined with the matching process to reduce theuatof work further. While matching
Inputl to Input2, say Inputl has f1 features arpit2 has f2 features. We have to calculate all
possible feature descriptor differences which isaétp f1*f2. The descriptor difference
calculations are generally the deciding factortf@ speed of any matching algorithm. To
reduce the difference calculations, we apply aestedt to all the feature pairs before we
calculate the feature differences.

When we compare the scales or blur factor of thihalfeatures pairs that have feature
difference less than a certain threshold from Ihgatinput2, we found that the scale
comparisons clearly show whether the scale ratibetorrect matches is greater than 1 or less
than 1. To make use of this observation, we looputjh the features in Inputl and Input2 with
feature difference <Threshold and count how mamgsi scalel of Inputl was less than scale2

of Input2, and scalel of Inputl was greater thate®cof Input2. If the range of scale ratios of
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the correct matches is not split evenly, then aunts above clearly indicate whether scale ratio
of true matches is >1 or <1.

Based on the above concept we created a scaléntesir algorithm first we calculate
few feature differences to decide if the scaleoregtigreater or less than 1. In our experiments,
we found that we got better scale ratio estimatednsidering only points in Inputl with scale
values 3-6.

Generally when SIFT features are calculated foriarage the features with scales 0, 1, 2
are more and features with scales 3, 4, 5, 6 ase leven though features are distributed
unequally among the scales, the probability of imatg for features with scales 0, 1, 2 is almost
equal to the probability of features with scaled4,3%, 6. This is taken to advantage in our scale
test.

After we have tried few combinations for featuretences in the first part of our
algorithm we now can say if the scale ratios oftthe matches are greater or lesser than one.
When we cannot decide whether scale ratios areggrealess than 1 and if the scale ratio
range is split over 1 the algorithm defaults totérferce method. Brute force is also used when
the total matches are less than 10 since we canusdta small number of matches to estimate
the scale ratio.

After we know whether the scale ratios of the tmegches are >1 or <1, we then apply
this scale test to rest of the feature combinatimesl to calculate the feature differences.
Feature differences are greatly reduced aftercdake gest.

Even though we decided whether the scale raticsiefmatches are >1 or <1 still there

is a chance of slight error since true matches Inaarg scale ratios of format 1+error or 1-error
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and error is very less. In our research we assuheedrror to be 0.25 in order to decrease the
loss of true matches.

After we have used the scale test we have $weddscriptor calculations get reduced
roughly by 35%-50%. This speeds up the matchinb wivery few matches lost in some cases.
The figures below show the results of matching idigon before and after using the scale test.
From Figure 1920 we see that descriptor differences calculatédd®n inputs with feature
match counts 0-10 and 0-10 are reduced from al@a@®@ to 650000 roughly. From Figures
21, 22 we say that the total matches are presenvedst of the cases except in 4 of the
matches. The percentage of correct matches is abaoee for both the cases. In this particular
example the scale test switches to brute force odeoh fails to decide the trend of scale ratios
when features with counts 0-5 are used from baghrthuts. These features with smaller counts
are non-robust features so they generate fewdmaihes and this is the reason why the scale
test fails. We did not include the scale test infmal experiment of finding robust SIFT

features because we did not want to risk losingdemwect matches.

Figure 18 - Inputl (left) and Input2 (right) used for the scale test experiments in Figure 19,
20, 21, 22 [16]
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Figure 19 shows the total number of descriptor camspn operations using invariant
counts, angle window and scale window for diffenemges of counts for the input imagel and
input image2 shown in Figure 18.

Figure 20 shows the reduction in the total nundfetescriptor comparisons when we
integrate the scale test into the comparison |blgpice the reduction from 900000 maximum in

Figure 19 to only 650000 maximum in Figure 20, ihie significant.
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Figure 19 - Number of descriptor differences calcated while matching Inputl and Input2.
Matching is done using features with different couts from each input. Scale test was not
applied in this case
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Figure 20 - Number of descriptor differences calcated while matching Inputl and Input2.
Matching is done using features with different couts from each input. Scale test was
applied in this case

Figures 21 and 22 show the total number of matcfeatures using methods as same as
Figures 19 and 20. Notice that these figures an@st identical, so very few true matches were

lost using the scale test approach.
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Figure 21 - Total number of matches calculated whe matching Inputl and Input2.
Matching is done using features with different couts from each input. Scale test was not
applied in this case
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Figure 22 - Total number of matches calculated whel matching Inputl and Input2.
Matching is done using features with different couts from each input. Scale test was
applied in this case
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4. TESTING

In this section, we present our testing methodssettion 4.1, we discuss our testing
environment. In section 4.2, we present how weswmeathe performance of feature matching

with different invariant counts.

4.1 Testing Environment

SIFT was created and patented by David Lowe. Tasr@ther open source versions of
SIFT in libraries like OpenCV and VLFeat. Thesempeurce versions can be used for non-
commercial purposes. We saw that VLFeat SIFT i$ edk@umented and is easy to understand
so we used it in our research. The majority of gemts calculated using VLFeat SIFT

correspond almost exactly with Lowes SIFT [7].

Figure 23 - VLFeat feature points (blue) and Lowe BT feature points (red) [7]
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Figure 24 - Percentage of features obtained from\Feat and Lowe’s SIFT that match up
to 0.01 and 0.05 pixels [7]
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Figure 25 - Percentage of descriptors obtained fro VLFeat and Lowe’s SIFT whose
feature distance is 5%, 10% and 20% of the averagaescriptor distance [7]

Figures 23 and 24 show that the VLFeat featumetpare nearly identical to Lowe’s
SIFT points. Figure 25 above shows the percenthdeszriptors computed by the two
implementations whose feature distance is less3B&n10% and 20% of the average descriptor
distance. This gives us confidence that VLFeahia@urate implementation.

We did not use the inbuilt matching algorithm ie ¥LFeat library instead we used the

brute force method. VLFeat SIFT was only used &atx the SIFT features. The library takes in
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an image in PGM format and gives an ASCII file tbamtains feature location, scale and 128
descriptors. This ASCI! file was used for plottifegtures and matching in our research.

For SURF feature matching we used open source cempigion library (OpenCV). In
all our experiments we used OpenCYV to calculatéhttmography matrix that describes the

alignment of input images [9]

4.2 Performance Measurement

The results were generated by matching two inpages using different subsets of SIFT
feature points. In our system, the minimum coutied 0 and the maximum count value is 10,
so we considered feature points in fine count range, 0-10, 6-10, 8-10, 9-10. We generated
25 results by matching features in the input imagedne of these ranges to features in input
image?2 in another range. All the results were gaeérusing an angle of rotation threshold
equal to 100.

Graphs were generated to show the total matpleesentage of correct matches, and
matching time. The MSE threshold used for the feadlifference was 40,000. The percentage

of correct matches is measured by calculating tmedgraphy that used RANSAC. Time is
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measured in the terms of number of descriptor @hffees calculated during the feature
matching.

The 3D-graphs plotted had count ranges 0-5, 0-1(M, B-10, 9-10 on X and Y axes for
input2, inputl respectively. The Z axes shows thlees of percentage of correct matches or
total matches or number of descriptors differeruadsulated for each combination of count
ranges on X and Y axes.

The idea was to see how well each count range npeefi and how many features can be
kept or removed based on their counts without &ffgche matching. We generated an image
for each case to see how the alignment of the hogndctangle changes for different
combination of count range.

Once the matching was done for each case, usingpthect matches we found the

projected scale and orientation windows. These @wdare very accurate in most of the cases.
If our program was being used to process a videsetlprojected scale and angle of rotation

windows can be taken into consideration before ggsinig the next frame.
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5. RESULTS

In this section, we present results of the expanisieutlined in the previous section. We
tested feature matching with a variety of test isggising a variety of scale invariant counts.
We measured performance based on three metritad:ntonber of matches, percentage of
correct matches, and number of descriptor opermtione during the matching.

We performed our analysis with 30-35 pairs of insaged found a high degree of
uniformity between the test results from each imaae. Below is a detailed account of our
findings with four image pairs: a Dr. Pepper lotieg U of A union living room, the U of A

union fountain and a stop sign.
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5.1 Dr. Pepper

Figures 27, 28 and 29 show the results of SE&ture matching of Dr. Pepper logos
with different sets of SIFT features. In Figure ®& show matches using all SIFT points. In
Figure 28 we show matches with only the good pgiatd finally in Figure 29 we show

matching with insufficient number of SIFT points.

2FL oz s mb)
Figure 27 - Dr. Pepper logo matched from Inputl (I&) to Input2 (right) using features with

counts 0-10 (Inputl) and 0-10 (Input2). Matches dnan in green (correct) and yellow
(wrong) [12] [13]

'2FL oz 55 mb)

Figure 28 - Dr. Pepper logo matched from Inputl (I&) to Input2 (right) using features with
counts 6-10 (Inputl) and 0-10 (Input2). Matches dnan in green (correct) and yellow
(wrong) [12] [13]
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2FL oz (35 mb)

Figure 29 - Dr. Pepper logo matched from Inputl (I&) to Input2 (right) using features with
counts 9-10 (Inputl) and 8-10 (Input2). Matches dnan in green (correct) and yellow
(wrong) [12] [13]

Figure 30 shows that Inputl has more features eatimts 5-10 when compared to
features with counts 0-4. In general, we can sayifitl was used for matching it would give
good results since most of the features are soadgiant. Figure 31 shows that Input2 has
features evenly distributed among the counts. Tasre@bout 500 features which have a count of
zero and 500 is the highest value in the histogféigure 31). In general we can say that Input2
would give many errors during any sort of matctsimgce there are fewer robust features with

counts 6-10 when compared to the features with tsciub.
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Figure 31 - Number of features per count for Input2
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Figures 32, 33 and 34 show the results of all 2&hmag experiments. In Figure 32 we
have total number of matches. In Figure 33 we lpgreentage of correct matches, and Figure

34 we have the descriptor differences.

B Inputl:0-5

B input1:0-10
W Inputi:6-10
B Inputl:8-10

# Total Matches

® Input1:9-10

Input2.0-5 Input2:0-10 nput2:6-10 Input2.8-10 Input2 . 9-10

Figure 32 - Total matches between Inputl and Input2Matching is done using features
with different counts from each input
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Figure 33 - Percentage of correct matches betweengutl and Input2. Matching is done
using features with different counts from each inptl
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Figure 34 - Number of descriptor differences calcated during the feature matching
between Inputl and Input2. Matching is done usingdatures with different counts from

each input
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Ouir first result shows matching with count rangesG10(Inputl) and 0-10(Input2)
(Figure 27). The Total number of matches is equdkt and the percentage of correct matches is
approximately 70. The percentage of correct matehkess as we expected since non-robust
features with low counts are more in Input2. Thecdiptor differences calculated are 3445038.
The differences calculated are certainly very higie comparison between all the feature
vectors is required and cannot be avoided.

The best combination of count ranges for matchinitpis example is 6-10 and 0-10
(Figure 28). The descriptors differences calculateithis case are 1878986 and that is almost
50% of reduction when compared to the previous,calere we used features of count ranges
0-10 and 0-10. This certainly shows that use ofisblieatures with higher counts for matching
saves us some time. Here the percentage of conaches is 82. Even though we were able to
remove most of the wrong matches we also remoweaéerect ones but the overall efficiency
of our matching algorithm was improved.

The worst combination of counts in this exampl®-0 and 8-10 (Figure 28). The total
matches in this case are 4, which is bad since @& not enough matches for us to create a
homography and verify whether few or all of thera eorrect. Generally as we consider higher
count values, the number of feature points decregsdly, so using very high count ranges

might not work in some cases.
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5.2 Union Living Room

Figures 35, 36 and 37 show the results of SIFTufeamatching of union living room
with different sets of SIFT features. In Figure 86 show matches using all SIFT points. In
Figure 36 we show matches with only the good pgiatd finally in Figure 37 we show

matching with non-robust SIFT points from input oea.

-

Figure 35 - Inputl (left) to Input2 (right) are matched using features with counts 0-10
(Inputl) and 0-10 (Input2). Matches drawn in greencorrect) and yellow (wrong) [16]

i

Figure 36 - Inputl (left) and Input2 (right) matched using features with counts 6-10
(Inputl) and 6-10 (Input2). Matches drawn in greencorrect) and yellow (wrong) [16]
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Figure 37 - Inputl (left) to Input2 (right) matched using features with counts 0-5 (Inputl)
and 0-10 (Input2). Matches drawn in green (correctand yellow (wrong) [16]

Figures 38 and 39 we show the number of featuresqent for Inputl and Input2. We
can say that majority of features in both the ispre within count range of 6-10. Generally

when more features have high counts the numberroé@t matches and total matches tend to be

larger if there is any significant match betwegpuits.
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Figure 38 - Number of features per count for Inputl
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Figure 39 - Number of features per count for Input2

Figures 40, 41 and 42 show the results of all 2&hwiag experiments. In Figure 40 we

have total number of matches. In Figure 41 we lp@reentage of correct matches, and Figure

42 we have the descriptor differences.
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Figure 40 - Total matches between Inputl and Input2Matching is done using features

with different counts from each input
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Figure 41 - Percentage of correct matches betweengutl and Input2. Matching is done
using features with different counts from each inpti
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Figure 42 - Number of descriptor differences calcated during the feature matching
between Inputl and Input2. Matching is done usingdatures with different counts from
each input

The result in which all the features where useddwoht ranges from 0-10 and 0-10

(Figure 35). The percentage of correct matchekisndase was about 90% and the total matches

were 87. The percentage of correct matches ishigtyeven when we used all the features for

matching.

The best combination of count ranges for matchinitiis example is 6-10 and 6-10

(Figure 36) since it has 43 correct matches angdhneentage of correct matches was 98%. The

descriptor differences calculated in the best eas®11715. This is about 75% lower when

compared with the differences calculated in the lmoation 0-10 and 0-10.

The worst case here was 0-5 and 0-10. In thisttes®tal matches are equal to 28,

which is very low compared to the previous casé® fercentage of correct matches is 78% but

this is also lower than the previous cases. Thaarty shows that features with counts 0-5 are not

robust.
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In this example since there are few errors agl humber of total matches, the matching

algorithm performs well even in the higher coumga
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5.3 Union Fountain

Figures 43, 44 and 45 show the results of SIFTufeamatching of union fountain with
different sets of SIFT features. In Figure 43 wevglmatches using all SIFT points. In Figure 44
we show matches with only the good points, andllfina Figure 45 we show matching with

non-robust SIFT points from input imagel and inpuage?2.

Figure 43 - Inputl (left) and Input2 (right) matched using features with counts 0-10
(Inputl) and 0-10 (Input2). Matches drawn in greencorrect) and yellow (wrong) [16]

Figure 44 - Inputl (left) and Input2 (right) matched using features with counts 9-10
(Inputl) and 0-10 (Input2). Matches drawn in greencorrect) and yellow (wrong) [16]
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Figure 45 - Inputl (left) and Input2 (right) matched using features with counts 0-5 (Inputl)
and 0-5 (Input2). Matches drawn in green (correctand yellow (wrong) [16]

In Figures 46, 47 we show the number of featureéls eounts between 0 and 10. As in
the previous experiment, the number of featuretpainith counts 5-7 is higher than the other

count values. This indicates that the SIFT feataresscale invariant and will be good for

matching.
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Figure 46 - Number of features per count for Inputl
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Figure 47 - Number of features per count for Input2

Figures 48, 49 and 50 show the results of all 2&hiag experiments. In Figure 48 we
have total number of matches. In Figure 49 we Ipgreentage of correct matches, and Figure

50 we have the descriptor differences.
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Figure 48 - Total matches between Inputl and Input2Matching is done using features

with different counts from each input
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Figure 49 - Percentage of correct matches betweengutl and Input2. Matching is done

using features with different counts from each inpti
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Figure 50 - Number of descriptor differences calcated during the feature matching
between Inputl and Input2. Matching is done usingdatures with different counts from
each input

The result where all the features where used fontatching, total matches are 123,
percentage of correct matches is 96% and, totaki¢sr differences calculated are 931715
(Figure 43). The percentage of correct matchesinyg kigh and very few wrong matches were
found.

The best combination of count ranges in this gans 9-10 and 0-10 (Figure 44). The
number of total matches is equal to 50, which s khan half of the total matches found in the
previous case. This is because we have used digiryount range 9-10 for Inputl. Percentage
of correct matches in this case is 98%. Even thaugllused fewer features for our matching, the
percentage of correct matches is still very highs®iptor differences calculated in this case are
101763, which is almost 89 % less than the desuorihfferences calculated in the previous case

where count ranges used are 0-10, 0-10. This gis@shuge time savings in feature matching.
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The worst combination of count ranges in thisnepke is 0-5, 0-5 (Figure 45). Total
matches in this case are 21, percentage of conaicthes is 66% and the descriptor differences
calculated are 298485. The percentage of correthas is the lowest among all the count range
combinations. This proves that features with loe@ints are not robust.

The success rate of features with counts 0-5 ssitemost of the examples we tried. The
matching would be much faster without these featarel removing these features will not hurt

the efficiency of the matching algorithm.
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5.4 Stop Sign

In this section, we show some preliminary resuftsi©ing invariant counts with SURF
features. In general there are fewer SURF feaforesn image than SIFT features, and they are
roughly uniform distribution of count values. Figar51, 52 and 53 show the results of SURF
feature matching of stop sign with different sefsS&RF features. In Figure 43 we show
matches using all SURF points. In Figure 44 we shuoatches with only the good points, and

finally in Figure 45 we show matching with non-reb$SURF points from input imagel.

SR

Figure 51 - Stop sign matched from Inputl (top-leftto Input2 (bottom) using features with
counts 0-10 (Inputl) and count 0-10 (Input2). Matchs drawn in green (correct) and yellow
(wrong) [11] [14]
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Figure 52 - Stop sign matched from Inputl (top-leftto Input2 (bottom) using features with
counts 8-10 (Inputl) and count 0-10(Input2). Matche drawn in green (correct) and yellow
(wrong) [11] [14]

Figure 53 - Stop sign matched from Inputl (top-leftto Input2 (bottom) using features with
counts 0-5 (Inputl) and count 0-10 (Input2). Matche drawn in green (correct) and yellow
(wrong) [11] [14]
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In this example, invariant count was used to imprBWRF feature matching. Generally
SUREF features are less when compared to SIFT g=satur any image. This probably causes our
algorithm that uses count for matching to fail stmes when Inputl is not a subset of Input2.
When Inputl is a subset of Input2 our algorithm kgowell.

From Figure 54 we can say that the features witint06-10 are less when compared to
features with counts 0-5. In this example we omBppocessed the Inputl and Input2 was not
preprocessed. So the range of counts used foranp@10 since we used all the features.
Whenever features with counts 0-5 are more, wesgprct some errors in the matching since
more non- robust features are used for matching.

In Figures 54 and 55, we show the count distributay SURF features. Notice that these
are, quite different from our previous SIFT distitions. In particular, these are more uniform
and tend to have more feature points in the O-Bicanges. This means SURF features are less

robust to scale invariance than SIFT features.
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Figure 54 - Number of features per count for Inputl(stop sign)
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Figure 55 - Number of features per count for Input2

Figures 56, 57 and 58 show the results of 5 magiclkperiments. In Figure 56 we have
total number of matches. In Figure 57 we have pgacge of correct matches, and Figure 58 we

have the descriptor differences.
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Figure 58 -Number of descriptor differences calculated during the feature matching
between Inputl and Input2. Matching is done usingdatures with different counts from
Inputl

When count range is D€ for the Inputl and Inputthe total matches are 33, percent
of correct matches is 85% atite descriptor differences calculated are 8. (Figure 51. In this
case there were 5 errors.

The best count range for matching in this examgle §10 for Inputl and -10 for
Input2 (Figure 52)The total matches in this case are 10 and @levh arecorrect. The
percentage of correct matches is 100%. The descdfferences calculated are 11019. In-
case we do not have any errors in the matchingtaads after we have used very few featt

for matching. This certainly shows that preprocng the stop sign can give us the good res
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The descriptor differences here are 11019, whi@Y% less than the previous case where count
range is 0-10 for both images.

The worst count range for matching in this exanyds 0-5 for Inputl and 0-10 for
Input2 (Figure 53). In this case the total matclres19, percentage of correct matches is 58%
and the descriptor differences calculated are 58R8hoving the features with counts 0-5 will
remove the errors in the matching and reduces nmat¢ime.

We can also see how the alignment of the boundixgchanges. The count range 0-5
does not give us good alignment. The use of roleastires improves or preserves the correct

alignment.
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6. CONCLUSIONS

Several modern feature detection algorithms uses§an scale spaces in order to locate
scale-invariant and rotationally invariant featpments in an image, including the Scale-Invariant
Feature Transform (SIFT) algorithm. These SIFTUeszd are used to enable a wide range of
applications, including object recognition, motibacking, and image stitching. One problem
with SIFT is the fact that the number of featuregedted in an image can become very large,
especially if the input image is big or has a lbtletail. This slows down feature matching and
reduces the performance of these applications.

In this thesis, we have demonstrated several diftavays to improve feature matching
by increasing the quality and reducing the numib&I1BT features. Our primary result was an
algorithm to identify robust SIFT features by ewaling how invariant individual feature points
are to changes in scale. This allows us to exghade SIFT feature points from the matching
process and obtain better matching results in editiome. We have also demonstrated that this
approach can be applied to SURF features to gresdlyce the number of feature points and
improve matching results. We also developed tephas consider scale ratios and changes in
object orientation when performing feature matchifdis allows us to exclude false-positive
feature matches and obtain better image alignnesoits.

In general image matching can be measured by tlweviag factors: number of features
being used in matching, speed and accuracy of atechimg algorithm. In our research we are
able to improve image matching by improving all theee factors. Number of features used for
matching is reduced by identifying robust featufidss greatly reduces the post processing time.

Robust features certainly improve the matchindfitgsen though the preprocessing of the
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inputs may take a few seconds, in the end it prewvé® worth it. The good thing about our
algorithm is it works well with both the featurestelction algorithms SIFT and SURF.

By using robust SIFT or SURF features, the desarigifference calculations are at least
reduced to half and this speeds up the matchingn Bvough we use fewer features for the
image matching both the alignment and the corretthes are preserved. In fact, in most of the

cases the percentage of correct matches increasesise non-robust features are removed.
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7. FUTURE WORK

Even though we have been able to reduce the nuohl®FT or SURF feature points,
the number of descriptor difference calculationstils considerable and needs to be reduced.
One approach we could consider is how SIFT and SftéRftres behave when an image is
rotated. These features are intended to be ratati@riant, but as with scale invariance, some
points may be more rotationally invariant than ashdf we can exclude the points with poor
rotational invariance, then we could reduce the memof SIFT and SURF points even more
prior to feature matching. Perhaps a countingmehike the one we devised for scale
invariance could be used for this purpose. Anotipgion would be to consider a family of
affine transformations (translation, rotation, s¢a@nd skew) and use this to identify the most
robust SIFT or SURF feature points.

In our research we have shown how the use of saatewindow and orientation
window improve the matching results. When thesedawvs are calculated using the correct
matches from the homography result, the windowsearg accurate. Suppose the windows were
given even before the actual matching started dsergptor differences calculated are greatly
reduced to few hundreds. The idea here is to remthtching algorithm twice, first time to
calculate the projected scale ratio and orientatimdows using a subset of the feature vectors,
and then second time to do the real matching wighfull set of feature vectors using these

windows. The only problem here is to find a smatlaf robust features for the first matching.
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