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Abstract

Polypyrrole (PPy) - multi wall carbon nanotube
(MWCNT) nanocomposites were synthesized by using
in situ electrochemical polymerization with different
COOH-functionalized MWCNTs. The PPY-MWCNT
composites were used as counter electrode in the
fabrication of dye sensitized solar cells (DSCs).
Compared to the DSC device with PPy counter
electrode, the devices with PPY/MWCNT composite
electrode offer much higher total photovoltaic
conversion efficiency due to the reduced series
resistance. These PPY/MWCNT nanocomposite
materials proved to be a good alternate to the
expensive Pt as counter electrode in DSC.

Introduction

Dye-sensitized solar cells (DSCs) have been
attracting attention because of their simple fabrication
with low cost materials, high level conversion
efficiency (Oregan and Gratzel 1991, Nazeeruddin et
al. 1993, Frank et al. 2004, Jayaweera et al. 2008). A
typical DSC device consists of three important parts:
dye -sensitized nanocrystalline titanium dioxide (TiO2)
or zinc oxide (ZnO), a counter electrode (CE) usually
made of platinum film on fluorine-doped tin oxide
(FTO) coated glass, and a redox electrolyte
(Papageorgiou et al. 1997 and Papageorgiou 2004).
The problems with platinum are its expensive cost,
inconvenient transportation and limited quantity on the
earth (Kay & Grätzel 1996, Murakami et al. 2006,
Spath et al. 2003, Okada et al. 2004, Kroon et al. 2007,
and Ma et al. 2004). Alternative cheap catalysts and
good performance counter electrodes for the DSCs are
inexpensive materials, such as carbon black (Murakami
et al. 2006), graphene (Roy-Mayhew et al. 2010),
carbon nanotubes (Lee et al. 2009), and conductive
polymers, like polypyrrole (Wu et al. 2008),
polyaniline (PANI) (Sun et al.2010) and poly(3,4-
ethylenedioxythiophene) (Kim et al. 2008, Saito et al.
2002, Liu et al. 2010). All of these catalysts are

deposited by different techniques such as
electrochemical, and spin coating on FTO glass.
Polypyrrole counter electrodes can be easily deposited
by electrochemical methods with controled
conductivity from insulator to metallic depending on
concentration of doped salts (Wu et al. 2010). The
properties of the PANI film are influenced by the
reaction time, initial monomer concentrations,
oxidation states, and types of doping acids on the
performance of the DSCs (Kim and Wamser 2006).

Thanks to the unique electrical, mechanical, optical
properties of carbon nanotube (CNT), many
researchers incorporated CNT into PPY nanocomposite
in order to improve the mechanical, electrical, optical
performance (Peng et al. 2011). PPy/CNT
nanocomposites have superior electrical, capacitance,
magnetic properties and thermal stability (Zdenko et al.
2010, Wang et al. 2007). Here, we report the
electrochemical polymerization of polypyrrole with
different percentage weight of MWCNTs that are
functionalized by the carboxylic group COOH. The
flexible polypyrrole /carbon composite was employed
as counter electrode in DSCs, and the photovoltaic
performance of the DSC devices was evaluated.

Methods

Pyrrole monomer, (99.8 %, from Aldrich),
MWCNTs functionalized by COOH (99.9 %, from
Cheap Tube) were used as purchased without further
treatment. Pyrrole monomer was first dissolved in
sulfuric acid (0.1 M) and different percentage weight
of COOH functionalized MWCNTs was added into the
solution. The electrochemical polymerization was
carried out by using galvanostatic step method at a
constant voltage of 2 V (Chen et al. 2011). The
working electrode was a commercial FTO-glass with a
surface area of 1.5 cm2. A platinum wire electrode was
used as a counter electrode. The amount of the
electrodeposited polypyrrole was estimated by
weighing the working electrode before and after the
electrode deposition. The schematic diagram of the
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Table 1: Photovoltaic Parameters Obtained from Figure 6
Counter Electrodes Jsc

(mA/cm2)
Voc

(Volt)
FF Series Resistance (Ω) Efficiency (%)

Pt 6.9 0.41 0.33 28.0 1.04
Pristine PPy 3.7 0.34 0.36 55.9 0.46
PPY/MWCNT
(2 wt%)

6.4 0.38 0.40 33.7 0.78

PPY/MWCNT
(5 wt%)

6.1 0.38 0.37 31.8 0.86

PPY/MWCNT
(10 wt%)

6.0 0.42 0.35 30.0 0.88

increase of MWCNT concentration improves
efficiency for DSCs because of the decreased internal
resistivity. In our devices, the large surface area and
high mobility of nanotubes could be beneficial to
exciton dissociation and charge carrier transport, thus
improving the overall power conversion efficiency.
Thus, the PPY/MWCNT nanocomposite can be as
counter electrode for DSC.

Conclusions

We prepared PPY-MWCNT nanocomposite with
different MWCNT percentage by using in situ
electrochemical polymerization. The electrochemical
polymerization technique proved to be an effective
method to fabricate a conductive polymer composite
with COOH functionalized MWCNTs. For the DSC
devices with PPY-MWCNT as counter electrode, the
total photovoltaic conversion efficiency increases with
the MWNT concentration due to the reduced series
resistance. We found that these nanocomposite
materials can be used for counter electrode as a catalyst
in DSC to replace the expensive Pt electrode.
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