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INTRODUCTION 
 
1.1 Problem 

Imagined speech (unspoken speech, silent speech, or covert speech) is the process by 

which one thinks about a word, or “hears” the word in one’s head, in the absence of any 

vocalization or physical movement indicating the word. There exists evidence that it is possible 

for imagined speech information to be captured and interpreted by a machine learning classifier 

[1]. In order to collect data pertaining to imagined speech, a Brain-to-Computer Interface (BCI) 

must be implemented to provide silent communication abilities directly between the two entities. 

One of the most popular methods for interfacing directly between a human brain and a computer 

is through electroencephalographic signals [1]. 

Electroencephalography (EEG) devices provide a non-invasive mechanism for measuring 

electrical signals transmitted near the surface of the brain. These devices can be used to facilitate 

unspoken speech recognition via the implementation of a brain-to-computer interface (BCI) to 

communicate a user’s thoughts directly, effortlessly, rapidly, and privately to a machine. Such a 

system might facilitate a host of applications including prostheses control, immersive command 

of remote robots, integration with wearable computing, or telepathic note-taking [11]. 

Researchers have created models capable of achieving 70 - 90% predictive accuracy in 

recognizing patterns in EEG data [13, 14, 15]; however, the accuracy of current methods for 

unspoken speech recognition is not yet sufficient to enable fluid communication between humans 

and machines. The ability to achieve a higher predictive accuracy is hindered by a variety of 

obstacles standing in the way of implementing a BCI with an EEG device. This project seeks to 

analyze a unique method for addressing the following problems with imagined speech 
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recognition via EEG devices: low signal-to-noise ratio, uncertainty as to the content in EEG 

signals, and scarce availability of training data. 

1.2 Objective 

 The objective of this project is to improve a classifying algorithm's capacity to facilitate 

unspoken, or imagined, speech recognition by collecting and analyzing a large dataset of 

simultaneous EEG and video data streams. 

1.3 Approach 

 This project examines the validity of the hypothesis that obtaining a large volume of data 

with corresponding high-dimensional EEG and video features will allow a classifier to more 

effectively extract information from EEG signals. To do so, it is necessary to minimize the 

effects of inherent limitations for current methods in imagined speech recognition. The 

limitations addressed in this project are noise, uncertainty in EEG signals, and insufficient 

quantities of training data. Rather than investigate new approaches in terms of classifying and 

data processing algorithms, this project explores the effects of analyzing concurrent sources of 

information such as video components and noise-inducing EEG samples. It is proposed that 

adding such complexity to a classifying algorithm’s input will enhance its ability to extract 

features from EEG signals as well as information regarding the subject’s environment. 

To address the low signal-to-noise ratio, the data collection process includes the 

measurement of subject’s EEG signal responses to certain known stimuli that generate 

particularly noisy signals. Information extracted from the data collection process includes a 

control group with measurements that represent noise-inducing actions such as a user’s physical 

movement, eye blinking, or facial expression [1, 16]. Other researchers have successfully trained 

learning algorithms to recognize common sources of noise like eye movements and blinks in 
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order to remove noisy components from the EEG signal [17, 18]. However, this project differs in 

that the classifier will be presented with the complete digital camera feed, suggesting the ability 

to detect additional sources of noise. Because the classifying algorithm will learn from the video 

stream, it may be able to detect other features that have not yet formally been classified as causes 

of noise, like breathing motions or muscles used to contribute to facial expressions. To further 

separate the signal from the noise, data is recorded to measure each individual subject’s neutral 

state of thought, where they were instructed to clear their minds of any particular thought. 

Understanding a subject’s EEG data and base facial position in a neutral state is expected to 

enhance the classifier’s ability to understand and separate the noise from the signals relevant to 

imagined speech recognition. 
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2. BACKGROUND 

2.1 Key Concepts 

 This section describes the input components utilized in this project, EEG and video data 

streams. Secondly, it describes the pattern recognition techniques used for consistent data 

classification. 

2.1.1 Electroencephalography Devices 

Electroencephalography (EEG) devices measure and amplify spontaneous electrical 

activity of the brain. The human brain is composed of billions of neurons which emit electrical 

charges that eventually reach the surface of the scalp. Because the electrical potential generated 

by individual neurons is too subtle to be detected separately, the measurements from EEG 

devices reflect the summation of the synchronous activity generated by millions of neurons that 

have a similar spatial orientation [19]. 

Although EEG recordings are frequently used in medical and research environments, it 

remains largely unknown which cortical processes are represented in EEG signals and which are 

not [5]. One major reason for this lack of association between EEG output and cortical processes 

is the inherently low signal-to-noise ratio of EEG signals. EEG data is notoriously obfuscated by 

erroneous electrical signals with non-cerebral origins. These problematic electrical signals, also 

known as artifacts, are generally quite large relative to the size of amplitude of the cortical 

signals. The most common sources of these artifacts often stem from electromyographic (muscle 

activation) signals, or electrocardiographic (cardiac) signals. The limitations of EEG signals 

addressed in this project are listed below in order of magnitude of effect.  Progress in 

understanding the contents of EEG signals depends on finding ways to address these known 

complicating factors. 
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Noise: The most prominent factor inhibiting the classification of EEG data for the task of 

imagined speech recognition is an inherently poor signal-to-noise ratio (SNR). Even minute 

electromyographic (or muscle) movements, such as eye blinking, facial expressions, and neck 

motions induce comparatively dominant signals that overwhelm and obscure the signals 

produced from the brain. Additionally the brain also produces many signals that are irrelevant to 

imagined speech recognition [20]. 

Uncertainty: Classifying high-dimensional EEG data is a difficult task, because it is not 

known how imagined speech manifests itself within EEG data [1]. Where classification with 

static systems is a very mature field, classification with systems involving state and change over 

time in multiple dimensional space is a problem that requires more specialized expertise. Some 

efforts to classify EEG have included spectral decompositions of the signal in the features used 

to train the classifier [18, 26]. This gives the classifier an ability to discriminate periodic 

temporal patterns within a window of time; however, since the brain is a dynamic system with 

non-periodic signals, it is necessary to model it as a dynamic system [27, 28]. 

Limited Training Data: As a result of the extremely low signal-to-noise ratio in EEG 

signals, effective machine learning algorithms need large data sets to isolate the valuable 

components from the noise. Such large data sets are cumbersome to produce due to the need for 

specialized hardware equipment and deliberate human attention to collect valid labeled training 

samples. Additionally, when EEG data is collected, it is not guaranteed to be consistent or 

complete. As a result of the inconsistent nature of human focus and attention span, it is also 

difficult to assure that data samples are accurately labeled. Because the nature of human attention 

span is unpredictable and volatile, it cannot be guaranteed that a subject is actually thinking 

clearly about the specified word or idea, nor can we accurately measure the human subject’s 
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level of focus or level of distraction during the data collection process. Until a better approach 

for gathering data is realized, imagined speech recognition with EEG devices is limited to be a 

“small data” problem because of the practical difficulty in assembling sufficiently large data 

samples. 

2.1.2 Pattern Recognition Techniques 

In order to extract valid feature information from high dimensional EEG signals, it is 

necessary to use sophisticated machine learning and pattern recognition algorithms. Machine 

learning techniques can already be used to recognize a small set of thought-based commands 

within EEG signals [1, 6]. Within the research community, supervised learning techniques are a 

fairly mature field, and yet the best-performing supervised learning algorithms are only able to 

extract high-level commands from EEG signals with limited vocabulary size, usually between 2 

to 5 words [1, 15, 21]. 

One supervised learning algorithm that has attracted wide usage for EEG feature 

extraction purposes is an Artificial Neural Network (ANN) [22, 23]. ANNs are loosely inspired 

by the human brain. Due to their structural parallels with biological neural networks, ANNs are a 

common choice of model for learning to recognize patterns in EEG signals. When implemented 

correctly, ANNs have proven to be well suited for this task; however, proper implementation of 

ANNs requires specialized training techniques [24]. Among different flavors of ANNs, deep 

ANNs and convolutional ANNs have proven to be most effective at classifying EEG data, but in 

addition to complex training techniques, these types of ANNs are notorious for being extremely 

computationally expensive [23, 24]. 

The primary focus of this research is not to propose a more effective classifier algorithm 

specifically designed to process EEG data, but rather to demonstrate that presenting a well-
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known classifier with compatible sources of information, such as video components and noise-

inducing EEG samples, will enhance the algorithm’s ability to extract valid features from EEG 

signals. Therefore, despite the potential benefits of using an ANN, I opted to use a much simpler 

pattern recognition algorithm: random forest (RF). A RF combines multiple random decision 

trees to form a bagging ensemble. While random forests are computationally inexpensive and 

easy to implement, the algorithm is known to be vulnerable to overfit when training on noisy 

data sets [10]; however, in this project the high dimensionality of the input dataset should help 

mitigate the risk of RF overfitting to the noise in EEG signals. Contemporary research suggests 

that the RF algorithm outperforms a variety of other prominent machine learning algorithms in 

terms of ability to accurately analyze EEG data [9]. In addition to its competitive predictive 

accuracy in EEG signal classification, the RF algorithm also boasts a high computing 

performance and is exponentially faster and easier to train over more complex models such as 

ANNs [9, 10]. 

2.2 Related Works 

 Almost a decade ago, Suppes et al. conducted preliminary research into the potential for 

unspoken speech recognition using both EEG and MEG (magnetoencephalography) data. The 

findings from these experiments confirmed the potential for whole-word recognition. However, 

the results were highly dependent on subject and experimental conditions. With predictive 

accuracy rates ranging from 97% to barely above chance, the authors recognized the need for 

substantial improvement in terms of generalizing imagined speech classification techniques [25]. 

As discussed in the previous section, many researchers have achieved relative success in 

extracting EEG features using specialized Artificial Neural Networks (ANNs). Researchers in 

Canada were able to train a deep-belief network to classify phonological categories combining 
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acoustic, facial and EEG data and obtain predictive accuracies of over 90% [20]. Unlike other 

models, the experiments detailed in this paper used leave-one-out cross-validation which 

indicates that the results are both subject-independent and generalizable. This suggests that 

generalized artifacts related to speech production are in fact present in EEG data and that these 

artifacts can be extracted when a learning algorithm is presented with accurate knowledge of 

state. 

Recently a rudimentary BCI enabled a paraplegic man to execute the opening kick at the 

2014 World Cup using a robotic suit [7]. However, this system relied heavily on other 

technologies for important components, like maintaining balance, where the EEG signal was 

simply used to obtain basic high-level commands from the user. This system required extensive 

prior training of the user as well as the device and significant mental concentration on behalf of 

the user [8]. This event shows how the development of BCIs are still in the state of infancy and 

thus require more research in order to exhibit characteristics of a more complete BCI. Highly 

desirable BCI characteristics include predictive accuracy in the range of 95% or better, 

recognized vocabularies of 10 or more words, and less cumbersome training processes for both 

the user and the machine. Clearly there are many aspects of BCIs and imagined speech 

recognition that must be further researched in order to become feasible. 
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3. DESIGN AND EXPERIMENTS 

3.1 Hypothesis 

We hypothesize that supplementing EEG data with simultaneous video data will allow 

for a classifying algorithm to more effectively facilitate imagined speech recognition. 

3.2 High Level Experiment Design 

 For the experiments conducted, a uniquely comprehensive dataset was collected to test 

the hypothesis that the addition of video data will enhance a machine’s ability to classify EEG 

signals. Volunteer subjects wore a commercial EEG headset in front of a digital web camera. 

During the test, the subjects were asked to imagine a specific word or feeling (label). The 

subjects responded to a set of uniform verbal cues describing the set of labels as well as the 

desired individual label to imagine. The data was then processed in order to minimize the effects 

of irrelevant signal activity, or noise. Additionally the data was processed to minimize its volume 

while still maintaining the core “information” in the data. The condensed dataset was created by 

dropping irrelevant information from the EEG device and applying principal component analysis 

(PCA) to the video stream data. Once the data was processed and assembled into the correct 

format, cross-validation using a random forest algorithm was performed on the control group of 

EEG signals alone and on the hypothesis group consisting of both EEG and video data. The 

predictive accuracy measurements obtained from the cross-validation experiments were used as 

metrics to evaluate the success of the hypothesis. 

3.3 Data Set Collection 

 Simultaneous EEG readings and digital video streams were recorded for 20 different 

volunteer subjects. For each subject, the data represents a uniform set of words (or labels) 

representing imagined speech, including a control group to classify causes of EEG signal spikes 
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such as eye blinking. The EEG data was recorded with a commercial 14-channel Emotiv EPOC 

Model 1.0 headset, which operated at a rate of 128 samples per second. The digital video stream 

was recorded with a standard 1.3 Megapixel web camera with a framerate of 30fps. 

In order to maximize consistency, the data collection process was standardized based on 

the following outline for each individual subject. For every part described in the tables below, 

the number of samples per word indicated how many 1-second samples were taken for each 

word, e.g. 5 samples per word means 5 seconds of simultaneous EEG and video recordings. The 

verbal queue was the general explanation used to provide consistency in the instructions for test 

subjects during the data collection phase. After initiating the appropriate verbal queue, the 

proctor allowed the subject a few seconds to stabilize focus on the correct label. Once it was 

observed that the subject was sufficiently focused, the proctor collected the appropriate number 

of 1-second data samples from synchronized EEG and video streams. The proctor 

simultaneously recorded data from both the EEG headset and the video camera every time a 

character on the keyboard is pressed. A variety of different characters were assigned to each 

label representing an imagined word or phrase. There were four distinct label groupings during 

the test: Control, Feelings, Random, and Directions. Each is described in detail by the tables 

below. 

Figure 1: Table description of Control label data acquisition. 
Group 1: Control 

Word # of Samples Verbal Queue 

[N] neutral 5 “Try to empty your mind, and try not to focus on anything.” 

[M] movement 10 “Make small facial and body movements.” 

[K] blink 5 “Blink as you normally would.” 

[X] end test 1 “Congrats! The test is finished.” 
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Figure 2: Table description of Feelings label data acquisition. 

Group 2: Feelings 

Samples per word: 2 

Verbal queue: “Imagine how it feels to…” 

[1] stub your 
toe 

[3] make a mistake [5] ace an exam [7] be 
disappointed 

[9] smile 

[2] fall down [4] grab a cactus [6] laugh w/ friends [8] get sick [0] be relieved 

 

Figure 3: Table description of Random label data acquisition. 
Group 3: Random Words 

Samples per word: 2 

Verbal queue: “Focus very intently on each individual word…” 

[c] cat [b] blender [h] hesitation [i] beginning 

[d] destructive [s] sphere [m] money [v] carnival 

[a] awesome [g] glamour [n] nose [z] bacon 

[f] fish [r] royalty [k] dark [p] serpent 

[e] explosion [w] west [l] flaw [y] committee 

 

Figure 4: Table description of Directions label data acquisition. 
Group 4: Directions 

Samples per word: 10 

Verbal queue: “Focus on the feeling of yourself moving in one particular direction...” 

[F] forward [R] right 

[B] backward [U] upward 

[L] left [D] downward 
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Due to dependence on humans both as test subjects and proctors in this experiment, the 

information contained in this dataset is not guaranteed to be completely uniform. It is possible 

that during the data collection process, a subject responded to some external stimuli and lost 

focus during the test, thus skewing the association between the data and the label. Perhaps 

certain subjects were more focused and engaged than others. Additionally, there was one 

instance where the proctor accidentally collected one too few data samples. 

Though there are a few inconsistencies present due to human involvement, the dataset 

offers a unique representation of simultaneous EEG and digital video data. Currently it is 

believed that this is the only comprehensive EEG and video dataset of its kind. Therefore to 

further science, this dataset will be published online at mldata.org and made available for other 

researchers and data enthusiasts. The researchers will release the collected dataset to allow the 

research community to better understand the important features and patterns contained within 

complex and high-dimensional EEG data. 

3.4 Data Processing 

 Appropriate processing was necessary to standardize the dataset and eliminate 

inconsistencies that may have skewed results. The raw data was also stripped down to allow for 

more efficient processing without compromising the integrity or the content of the data. Data 

processing was also necessary to prevent the classifier from accessing information that would 

allow it to “cheat,” or pick up on arbitrary patterns (like timestamps or sample counters) in the 

data that were not related to imagined speech recognition. 

3.4.1 Preprocessed Data Format 

 In its raw preprocessed form, each second (or sample) of data is stored in an .arff file 

containing 23 attributes relating to the EEG device (14 sensors and 9 software specific metrics). 
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The remaining attributes in each row represent the image captured by the video camera at the 

time of recording. Each file contains 128 rows, where one row stores the data for each EEG 

device sample iteration. Recall that the EEG device operates at 128 samples per second, whereas 

the video camera is only able to capture 30 frames per second. The preprocessed data therefore 

contains video data redundancy. 

Figure 5: Individual 1-second data sample format (57623 attributes x 128 features) 
Column Index 0 - 22 23 - 57622 

Data Type Continuous Continuous 

Data Value EEG signals plus SDK variables 160 x 120 pixels x 3 RGB channels) 
 

3.4.2 Processed Data Format 

The data was processed in order to isolate the individual EEG signals from the complete 

EEG data, excluding irrelevant information such as timestamps, gyroscope readings, and sample 

counters. In order to compress the scale of the video data, PCA was applied to the video data to 

compress the information for easier computation without sacrificing too much content meaning. 

 Principal Component Analysis (PCA) is a powerful statistical procedure for both 

dimensionality reduction and linear decorrelation [2, 4]. Given a sample of non-Gaussian data, 

Plumbley argued that PCA minimizes the upper bound on the information lost due to 

dimensionality reduction [3]. Because of its capacity to minimize dimensionality, redundancy, 

and information loss, PCA was applied to reduce the video components to 30 dimensions. 

The method produced two master datasets, a control set with only EEG information and a 

hypothesis set containing both EEG and video data. Each row in the master datasets reflects a 

full second of chronological data with 128 individual samples. 

The processed master datasets are reflected by the following tables: 
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Figure 6: EEG only master data set format (1794 attributes x variable # rows). In this figure, t 
represents the number of samples relative to the sample rate per second. 

Column Index 0 1 2 - 15 ... 1780 - 1793 

Data Type Discrete {1..20} Nominal Continuous ... Continuous 

Data Value Subject ID Label EEG signals 
(t = 1/128) 

... EEG signals 
(t = 128/128) 

  

Figure 7: EEG and video master data set format (5634 attributes x variable # rows).  In this 
figure, t represents the number of samples relative to the sample rate per second. 
Column 
Index 

0 1 2 - 15 16 - 45 ... 5590 - 5603 5604 - 5633 

Data 
Type 

Discrete 
{1..20} 

Nominal Continuous Continuous ... Continuous Continuous 

Data 
Value 

Subject 
ID 

Label EEG signals 
(t = 1/128) 

Video PCA 
(t =1/128) 

... EEG signals 
(t = 128/128) 

Video PCA 
(t = 128/128) 

 

3.5 Algorithms 

The Waffles machine learning toolkit was used to implement these experiments. Waffles 

is an open source collection of machine learning algorithms and tools in C++ [29]. To test the 

significance of adding video components to the EEG signals, a Waffles implementation of the 

random forest algorithm was used. Recall the benefits of the RF algorithm: its proven ability to 

extract features from EEG signals, its capacity for high-dimensional data, and its efficient 

computational costs. To measure the results of these experiments, cross-validation was used to 

generate mean-squared error (MSE). Cross-validation not only provides useful metrics for 

measuring accuracy but also assesses how well the classifying model can generalize to an 

independent data set [30]. Other algorithms used during these experiments include PCA and 

significance analysis to determine if the comparison passes the one-tailed p-test with a p-value of 

0.05 or less. 
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4. RESULTS AND ANALYSIS 

4.1 Methodology 

 The primary metric for evaluating the success of the project experiments is predictive 

accuracy, which is obtained by calculating mean squared error (MSE) during cross validation. 

Cross validation The MSE statistic was calculated according to the following equation: 

 !"# = !
! !! − !!

!!

!!!
, where ! is a vector of ! label predictions, and ! is a vector 

representing the actual labels. Predictive accuracy (PA) is measured by subtracting the MSE 

from 1. 

4.2 Results 

 Across the board, the conducted experiments indicated that the addition of video data in 

conjunction with simultaneous EEG data collection significantly enhanced the predictive 

accuracy of the classifier. The experiments were conducted for 7 different groupings: 4 

groupings for the original Control, Feelings, Random, and Directions groups, and 3 groupings 

for the hypothesis groups (Feelings, Random, and Directions) plus the Control group. A table of 

the overall results from each of the label groupings is shown below. 

Figure 8: Overall predictive accuracy results for key datasets. 
Group PA w/o Video PA w/ Video % Change 
Control 0.672209026 0.804750594 0.197173145 
Feelings 0.265882353 0.388235294 0.460176991 
Feelings+Control 0.421615202 0.531591449 0.26084507 
Random 0.261 0.2125 -0.185823755 
Random+Control 0.395577396 0.428173628 0.082401656 
Directions 0.695029486 0.839595619 0.208 
Directions+Control 0.685920578 0.856028881 0.248 
 

The table in Figure 8 describes the predictive accuracies for EEG data alone and EEG 

data with concurrent video stream data, as well as the percent change between the two 
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aforementioned categories. For all but one of the groups, the addition of video input improved 

predictive accuracy by 8% – 46%. This dataset’s p-value of 0.010630619 demonstrates a 

significant comparison between predictive accuracy with and without video data. 

Figure 9: Predictive Accuracy by Group for key datasets described in Figure 8. 

 

  Figure 9 above shows an alternate visualization of the results in Figure 8. This graph 

makes it clear that every hypothesis category containing the control group (Feelings+Ctrl, 

Random+Ctrl, Directions+Ctrl) performs better than the hypothesis groups alone (Feelings, 

Random, Directions). This shows that the addition of control data representing common sources 

of noise improves the PA of the classifying algorithm. 

Figure 10: Percent change in PA without video vs. PA with video data as described in Figure 8. 
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As Figure 10 demonstrates, the Random group was the outlier in this data set, as the 

addition of video actually hindered the predictive accuracy of the classifier. This result is not 

unexpected, since the Random group had the largest vocabulary size and the smallest number of 

samples per word. When the Random dataset is disregarded, the overall p-value comparing the 

significance of the inclusion or exclusion of video data is 0.0090079216. Even without 

discarding the Random group, the dataset’s p-value of 0.010630619 demonstrates significance. 

Figure 11: Percentage change for each hypothesis category, divided by subject. 

 

 Figure 11 illustrates the percentage change from PA without video to PA with video data 

for each category containing the control group, divided by subject and including the average of 

all the subjects. Please note that the categories explored in this graph represent only the 

hypothesis groups containing the control group. This graph highlights the variance in the percent 

change from subject-to-subject. For example, each percentage change for Subject 2 yields a 

lower PA, indicating that video data does not help the classifier identify patterns in the EEG 
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signals collected for Subject 2. By contrast, Subject 6 yields the highest percentage change of all 

the subjects in every category except one. Therefore, the addition of video data greatly increases 

the classifier’s ability to extract meaning from Subject 6’s EEG signals. For a more detailed 

breakdown of the experiment results by subject, please refer to the Data Appendix. 

4.3 Analysis 

 The experimental results confirm the hypothesis that supplementing EEG data with 

simultaneous video data will allow for a classifying algorithm to more effectively facilitate 

imagined speech recognition. While there are a few outlier cases, there is a significant correlation 

between a classifier’s PA without video and PA with video data. Since video data improves the 

predictive accuracy of the classifying algorithm, the classifier must have learned to correlate 

visual cues to important features or sources of noisiness in the EEG data. 

 The experiments show that the addition of video data improved the classifier’s PA, 

particularly when analyzing the Directions, Directions+Ctrl, Feelings, and Feelings+Ctrl groups, 

as shown by Figure 10. One possible reason for this higher percentage change may be a 

symptom of how human brains process feelings and movements. Other researchers have 

observed that when a user is thinking of ideas that evoke a strong physical response, like 

movements or feelings, the patterns of change in these EEG signals is dramatic enough for 

classifiers to identify with greater accuracy [14, 16]. Conversely, the classifier was not able to 

demonstrate predictive accuracy as well when presented with the Random and Random+Ctrl 

group. This result is not unexpected because the Random group of labels contains the greatest 

number of labels, the least number of samples per label, and is not known to produce strong 

reactions in EEG signals. 
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Referring back to Figure 8, when the classifier tested with the Control group alone, the 

percentage change in PA was not as dramatic as it was for the Feelings+Ctrl or Directions+Ctrl 

groups. This is an unexpected result, since both the Feelings+Ctrl and Directions+Ctrl groups 

had more labels and a lesser number of samples per word. This find suggests that although the 

classifier is using the extra information about the subject’s environment to successfully separate 

the signal from the noise in EEG features, the classifier is not as well suited to delineate between 

different types of noise in EEG signals. Despite the classifier’s ability to recognize noise in EEG 

data, the results from this project may indicate that classifiers are not as effective at delineating 

between sources of noise. Further investigation is required to confirm this speculation. 
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5. CONCLUSIONS 

5.1 Summary 

 The results from this project suggest confirmation of the hypothesis that adding high-

dimensional data relating to a subject’s environment, such as video data, to complement EEG 

readings enhances a classifier’s ability to facilitate imagined speech recognition. Although the 

relative effectiveness of this method is highly dependent on the individual subject, this project 

showed that the addition of video data in conjunction with simultaneous EEG data collection 

enhances the predictive accuracy of the classifier. 

 Possibilities for future research include incorporating additional information about a 

subject’s environment in a dataset. For example, higher resolution video with a higher frames-

per-second rate may be able to provide a classifier with more accurate data about the subject’s 

environment. Another additional data source to experiment with is concurrent audio data. It 

follows that audio data would help to de-noise a dataset and prevent a subject’s EEG response to 

audible stimulus from skewing the classifier’s feature extraction capabilities. It would also be 

useful to test the robustness of this approach by experimenting with dynamic predictions with 

randomly ordered words immediately following the data acquisition process. 

5.2 Potential Impact 

 Advancements in imagined speech recognition have the potential to make an impact in a 

variety of domains, such as wheelchair or prosthesis control for paraplegics or disabled persons, 

or communication with persons suffering from locked-in syndrome, a condition where patients 

are conscious but unable to produce speech or movement [12]. Fluid BCIs enabled by imagined 

speech recognition would improve the notoriously cumbersome interface between humans and 

computing devices, and offer new paths for neurological research [11]. 
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DATA APPENDIX 

Breakdown of Percentage Change by Subject and Grouping 
Subje
ct 

Control % 
Change 

Feelings+Ctrl % 
Change 

Random+Ctrl % 
Change 

Directions+Ctrl % 
Change 

1 0.275362319 0.224719101 0.206521739 0.107142857 
2 -0.09375 -0.387931034 -0.209090909 -0.248730964 
3 0.442622951 0.516129032 0.829268293 1.077419355 
4 0.053763441 0.082089552 0.027027027 0.073170732 
5 0.342857143 0.31092437 0.295238095 -0.052287582 
6 0.551724138 0.708860759 0.753246753 1.381355932 
7 0.265822785 0.137614679 0.124087591 0.111510791 
8 0.275362319 0.201923077 -0.050955414 0.144366197 
9 0.380952381 0.666666667 0.148148148 0.386934673 

10 0.116883117 0.204545455 -0.013513514 0.025641026 
11 0.24691358 -0.03539823 0.02238806 0.324444444 
12 0.482758621 0.480519481 0.024793388 0.213178295 
13 0.222222222 0.269662921 0.071428571 0.169421488 
14 0.166666667 0.058252427 -0.299270073 0 
15 0 0.258426966 -0.068965517 0.153846154 
16 0.306666667 0.051546392 -0.2 -0.051948052 
17 0.131578947 0.523255814 0.040322581 0.031468531 
18 0.24 0.082474227 0.008264463 -0.019736842 
19 0 0.227272727 0.056451613 0.264925373 
20 0.323529412 0.46835443 0.115789474 0.035856574 

AVG 0.236596836 0.252495441 0.094059018 0.206398949 
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Control Group by Subject 
Subject Predictive Accuracy w/o Video Predictive Accuracy w/ Video % Improvement 

1 0.657142857 0.838095238 0.275362319 
2 0.60952381 0.552380952 -0.09375 
3 0.580952381 0.838095238 0.442622951 
4 0.885714286 0.933333333 0.053763441 
5 0.666666667 0.895238095 0.342857143 
6 0.552380952 0.857142857 0.551724138 
7 0.752380952 0.952380952 0.265822785 
8 0.657142857 0.838095238 0.275362319 
9 0.6 0.828571429 0.380952381 

10 0.733333333 0.819047619 0.116883117 
11 0.736363636 0.918181818 0.24691358 
12 0.552380952 0.819047619 0.482758621 
13 0.771428571 0.942857143 0.222222222 
14 0.8 0.933333333 0.166666667 
15 0.79047619 0.79047619 0 
16 0.714285714 0.933333333 0.306666667 
17 0.723809524 0.819047619 0.131578947 
18 0.714285714 0.885714286 0.24 
19 0.690909091 0.690909091 0 
20 0.68 0.9 0.323529412 

  
AVG % IMPROVEMENT 0.236596836 

  
P-VALUE 7.52E-05 
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Subject Predictive Accuracy w/o Video Predictive Accuracy w/ Video % Improvement 
1 0.423809524 0.519047619 0.224719101 
2 0.552380952 0.338095238 -0.387931034 
3 0.43255814 0.655813953 0.516129032 
4 0.638095238 0.69047619 0.082089552 
5 0.566666667 0.742857143 0.31092437 
6 0.376190476 0.642857143 0.708860759 
7 0.519047619 0.59047619 0.137614679 
8 0.495238095 0.595238095 0.201923077 
9 0.357142857 0.595238095 0.666666667 

10 0.419047619 0.504761905 0.204545455 
11 0.525581395 0.506976744 -0.03539823 
12 0.366666667 0.542857143 0.480519481 
13 0.423809524 0.538095238 0.269662921 
14 0.49047619 0.519047619 0.058252427 
15 0.423809524 0.533333333 0.258426966 
16 0.461904762 0.485714286 0.051546392 
17 0.40952381 0.623809524 0.523255814 
18 0.461904762 0.5 0.082474227 
19 0.409302326 0.502325581 0.227272727 
20 0.385365854 0.565853659 0.46835443 

  
AVG % IMPROVEMENT 0.252495441 

  
P-VALUE 0.00027211 
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Random+Ctrl Group by Subject 
Subject Predictive Accuracy w/o Video Predictive Accuracy w/ Video % Improvement 

1 0.296774194 0.358064516 0.206521739 
2 0.360655738 0.285245902 -0.209090909 
3 0.268852459 0.491803279 0.829268293 
4 0.485245902 0.498360656 0.027027027 
5 0.344262295 0.445901639 0.295238095 
6 0.252459016 0.442622951 0.753246753 
7 0.449180328 0.504918033 0.124087591 
8 0.514754098 0.48852459 -0.050955414 
9 0.354098361 0.406557377 0.148148148 

10 0.485245902 0.478688525 -0.013513514 
11 0.446666667 0.456666667 0.02238806 
12 0.396721311 0.406557377 0.024793388 
13 0.413114754 0.442622951 0.071428571 
14 0.449180328 0.314754098 -0.299270073 
15 0.380327869 0.354098361 -0.068965517 
16 0.459016393 0.367213115 -0.2 
17 0.4 0.416129032 0.040322581 
18 0.396721311 0.4 0.008264463 
19 0.4 0.422580645 0.056451613 
20 0.316666667 0.353333333 0.115789474 

  
AVG % IMPROVEMENT 0.094059018 

  
P-VALUE 0.04179601 
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Directions+Ctrl Group by Subject 
Subject Predictive Accuracy w/o Video Predictive Accuracy w/ Video % Improvement 

1 0.8 0.885714286 0.107142857 
2 0.656666667 0.493333333 -0.248730964 
3 0.455882353 0.947058824 1.077419355 
4 0.831884058 0.892753623 0.073170732 
5 0.874285714 0.828571429 -0.052287582 
6 0.337142857 0.802857143 1.381355932 
7 0.794285714 0.882857143 0.111510791 
8 0.811428571 0.928571429 0.144366197 
9 0.568571429 0.788571429 0.386934673 

10 0.891428571 0.914285714 0.025641026 
11 0.652173913 0.863768116 0.324444444 
12 0.747826087 0.907246377 0.213178295 
13 0.691428571 0.808571429 0.169421488 
14 0.862857143 0.862857143 0 
15 0.742857143 0.857142857 0.153846154 
16 0.88 0.834285714 -0.051948052 
17 0.817142857 0.842857143 0.031468531 
18 0.868571429 0.851428571 -0.019736842 
19 0.765714286 0.968571429 0.264925373 
20 0.717142857 0.742857143 0.035856574 

  
AVG % IMPROVEMENT 0.206398949 

  
P-VALUE 0.001372801 
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