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ABSTRACT 

 

 

The impacts of an April 2007 spring freeze event on the productivity of deciduous 

broadleaf forest were analyzed using geographic information system (GIS) tools.  Forest 

productivity was modeled using the Enhanced Vegetation Index (EVI), as recorded by the 

Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensor.  Measures of spatial 

autocorrelation were used to quantify the degree of spatial congruence between a map depicting 

the severity of the freeze event, and maps modeling forest productivity throughout the year.  The 

results show a geographic correlation between the unseasonably low minimum temperatures 

sustained during the freeze and the unusually low forest productivity that followed.  Discussion 

also includes the influence on freeze damage of premature growth onset triggered by an 

unusually warm March 2007, the seemingly paradoxical relationship between spring frost 

damage and climate change, and the potential for practical applications of this study with regard 

to predictive modeling and ecological forecasting. 

 

Keywords: spring, freeze, frost, deciduous, forest, photosynthesis, raster, spatial autocorrelation, 

Moran‘s I, MODIS, EVI, GIS. 
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I. INTRODUCTION 

 

A.  The April 2007 Freeze Event 

This study is concerned with the biophysical impact of a North American weather event 

that occurred over Easter weekend, April 2007.  The weather pattern produced unseasonably 

cold freezing temperatures that were low enough and sufficiently long-lived to dramatically 

reduce vegetative health throughout the central and southern United States.  However, for a 

comprehensive understanding of the factors that contributed to the impacts associated with this 

record-setting cold wave, an accurate account must begin a month prior, during an abnormally 

warm March. 

Due to a dominant ridge of high atmospheric pressure that stretched from the Northern 

Plains to the Southeast, March 2007 was, on average, warmer than a typical March by more than 

9°F (NOAA, 2007).  During the week prior to the freeze in central Missouri, at a time when daily 

minimum temperature (TMIN) is typically in the low 40s, temperatures did not drop below 59°F.  

At the Walker Branch weather station in central Tennessee, TMIN exceeded 59°F eight times 

during the two weeks prior to the freeze, a time when TMIN there is normally 42°F (NOAA, 

2007).  Tennessee‘s daily high temperatures for late March were also well above average, 

ranging between 70-80°F (Windham, 2008).  In fact, March 2007 would ultimately prove to be 

the single warmest March on record at Tennessee‘s Walker Branch weather station, as well as 

the nearby Oak Ridge station (Gu, 2008).  

The prolonged March warmth caused vegetation to break its winter dormancy and begin 

its spring ―green-up‖ phase earlier than normal.  This led to the premature emergence of 

agricultural crops, the premature blooming of seasonal plants and flowers, and of particular 



2 

 

interest to this study, the premature flushing of tree leaves among deciduous hardwood forests 

throughout the region. 

 

 

Figure 1-1 Temperature anomaly map depicting the unusually warm March 2007 

temperatures (in red) that contributed to premature spring growth onset across the 

U.S. interior. (NOAA, 2010) 

 

Weather patterns changed dramatically on April 4, 2007.  Directly following the period 

of record-setting, growth-triggering warmth, a slow-moving mass of arctic air moved south from 

Canada into the interior of the continental United States.  The strong upper level jet stream 

responsible for this cold front remained in place for days, including throughout the Easter 

weekend.  The pattern eventually subsided on April 10, when the upper level jet decayed and the 

appearance of a low pressure system over the central plains caused air flow to shift from a 

northerly direction to the west/southwest, effectively ending the freeze. 
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During the time that had elapsed, the cold surface air that blanketed the region had 

produced several days‘ worth of record-setting low temperatures throughout many central plains, 

midwest, and southeastern states.  Temperatures well below freezing were recorded at weather 

stations across the region, including reports of TMIN into the twenties and teens for some places.  

Throughout 17 states, as many as 1,237 TMIN records were broken, and 321 were tied (NOAA, 

2007).  During the period of April 6-9, average daily low temperatures in the South were 24, 20, 

16, and 18°F, respectively (University of Tennessee, 2010).  In Crossville, Tennessee, 

temperatures continuously remained at or below freezing for a cumulative total of 70 hours 

(Windham, 2008).  In Fayetteville, Arkansas, record low TMIN of 21 and 17°F were set on April 

7
th

 and 8
th

, respectively – the latter of which was 27 degrees below the daily normal TMIN of 

44°F, and to this day remains Fayetteville‘s all-time record low for the month of April (NOAA, 

2007). 

 



4 

 

 

Figure 1-2 Maps showing daily minimum temperature (TMIN) observed during the six-day 

freeze event, April 5-10, 2007. 
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Figure 1-3 Maps showing daily minimum temperature (TMIN) anomaly observed during the 

six-day freeze event, April 5-10, 2007.  Anomaly is based on the observed TMIN 

value‘s departure from the normal TMIN for that day. 

 

 

Although the unusually long duration and record-setting intensity of the April 2007 cold 

wave made the weather event quite distinctive when considering its climatic context, it did not 

arrive unusually late in the year, as spring frosts have been known to occur well into May, nor 

was the geographic extent of its record-setting low temperatures especially unusual, as spring 

frosts regularly occur throughout the midwest and southeast (Gu, 2008). 

Despite this, the freeze was certainly severe enough to cause widespread biophysical 

effects on the environment, both short-term and long.  Depending on several geographic factors 

such as latitude, elevation, and degree of exposure to sunlight, the new March growth was 
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stunted, damaged, and in some cases killed off completely by the temperatures sustained during 

the freeze (Windham, 2008; Mulholland, 2009).  The newly formed leaves that had recently 

sprouted from the bare limbs of thousands of acres of forest became covered in ice and frost 

before eventually wilting and dying.  

While this widespread damage to vegetation was a direct result of the cold temperatures 

experienced, the unseasonably warm weather that preceded the freeze by weeks must also be 

considered an instrumental, albeit indirect contributor to the damage.  This paradoxical 

relationship of increased likelihood of freeze damage as a function of increasingly warm early 

spring temperatures is discussed further in section II-C. 

 

 

B.  Physiological Effects of Frost on Vegetation 

To understand the relationship between freeze damage and its effect on the 

photosynthetic capacity of plant life, it is necessary to possess a clear understanding of the 

physiological changes that occur, as well as the short-term and long-term consequences of such 

changes. 

The most conspicuous impact is foliar mortality.  At the cellular level, frost accumulation 

causes the formation of ice crystals within and between leaf cells, rupturing cell membranes.  

Once thawing occurs, rehydration within the cells is restricted and the leaf wilts and dies, 

shriveling and turning brown in the process (Fig. 1-4).  Newly formed leaves, buds, and other 

rapidly differentiating tree tissues have been shown to be the most susceptible to this type of 

mortality (Inouye, 2000; Oksanen, 2005). 
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Figure 1-4 Photographs of spring frost damage to various species of deciduous broadleaf 

trees.  Clockwise from top left: Poplar (photo courtesy Utah State University), 

Walnut (Ontario Ministry of Agriculture), Yellow poplar (University of 

Tennessee), Red oak (Iowa State University). 

 

Another consequence of a freeze is damage to the apical meristem, the growing tip of a 

tree that generates leaf buds.  The death of an apical meristem can cause the removal of apical 

dominance, which has consequent effects on tree architecture.  For example, with enough frost 

damage, tree branches might begin to grow laterally instead of from the terminal buds where the 

dominant meristem is located.  Lateral growth inhibits the potential height of the tree, thereby 

limiting the overall size of the tree canopy and its associated leaf area index, decreasing optimal 

photosynthetic performance (Paige, 1992). 

Among leaves not killed by the frost, injury can be detrimental to canopy health and 

productivity.  Injury can occur in several ways.  In non-fatal cases, ice crystals can cause 
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physical damage to cellular organelles, the most severely impacted of which are the chloroplasts 

responsible for photosynthesis (Kratsch and Wise 2000).  When buds and roots sustain frost 

damage, often times the damaged portion becomes a site for infection (Haworth and Spiers 1992; 

Lederer and Seemuller 1992), and once infected, one pathogen often facilitates infection by 

another (Paul, 1993). 

Frosts will freeze the water within stems and branches, producing air bubbles in the ice, a 

phenomenon known as cavitation.  Once the ice thaws, the bubbles are released and block the 

continuity of water uptake within the xylem, or transport tissue (Sperry, 1992).  Deciduous trees 

have been shown to be particularly susceptible to freeze impacts, since their large conduit 

volumes make them prone to cavitation and the resultant interruption of the xylem stream. This 

is especially common following the initiation of new tissue development, which was the case for 

deciduous forests in March 2007 (Gorsuch, 2002). 

Ring-porous deciduous tree species such as oak and hickory have large earlywood vessels 

located within the youngest growth ring on the outside of the tree, and are produced early in the 

spring, prior to bud flushing and new leaf development.  Because the majority of the tree‘s water 

conductance takes place within these nearly-external vessels, the slightest injury to the newest 

growth ring may immobilize water conductance and force it to use older, less-efficient latewood 

vessels from the previous years.  This contributes to delayed refoliation and can decrease 

productivity during not only the growth season immediately following the freeze, but the 

subsequent year‘s growth season as well (University of Tennessee, 2007). 

Tree stress is the major long-term impact that characterizes a severely frost-damaged 

forest.  When newly-formed leaves die as a result of the freeze, the carbohydrate energy the tree 

had stored up to produce the leaves is essentially wasted.  As a mechanism of prevention in case 
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of such instances, most deciduous trees feature a progressive bud system wherein secondary 

―backup‖ buds are available.  Trees are then forced to allocate whatever additional carbohydrates 

remain toward the task of a second refoliation, this time from the secondary buds.  As a result, 

the second refoliation yields lower Leaf Area Index (LAI) due to a sparser tree crown composed 

of smaller, less dense, and less numerous leaves.  Trees are much less productive during the 

following growing season in this low-energy, ―stressed‖ state (University of Tennessee, 2007). 
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Figure 1-5 Successive photos taken at Oak Ridge, Tennessee on April 5 and April 22, 2007, 

showing the green, fully-flushed pre-freeze canopy, and the brownness of dead 

and wilted leaves two weeks later. (ORNL Review, 2007) 
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C.  Research Objective 

During weeks of first-hand observations of the damage that occurred throughout the 

Ozark Mountain region, including wilted plants, flowers, and tree leaves, several questions came 

to mind.  Would all plant and tree species recover from the damage?  How long would it take the 

damaged vegetation to refoliate?  Would the re-grown vegetation be as productive as it would 

have been had it not sustained freeze damage?  Would areas that sustained several days‘ worth of 

cumulative freeze damage recover at a slower rate than those that experienced only a mild 

overnight frost?   

When thinking critically about geography, one approaches such questions using mental 

maps.  The mental map used to formulate the formal hypothesis of this thesis contained two key 

themes: the freeze itself, and the biophysical response of the forest to the freeze.  Exploratory 

data analysis using geographic information systems (GIS) led to the focus on whether a spatial 

―footprint‖ of reduced forest productivity could be detected within satellite imagery, and, if so, 

whether it could be determined that an area of decreased productivity was in fact the result of the 

April 2007 freeze, as opposed to some other environmental stimulus such as a localized drought 

or an insect infestation. 

So, in anticipation of the use of maps to test for the existence of a causal relationship 

between damaging temperatures and decreased forest productivity, a formal research question 

was developed, stated as follows: Are unusually low minimum temperatures sustained during the 

April 2007 freeze event spatially correlated with unusually low forest productivity observed after 

the freeze? 
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Based on this question, the formal null hypothesis of this thesis was developed.  It is 

stated as follows: Patterns of unusually-low forest productivity following an April 2007 freeze 

event are not spatially congruous with the pattern of unusually-low temperatures sustained 

during the freeze event.  This null hypothesis is designed to test whether or not the spatial 

characteristics of a map modeling the geographic extent and severity of the April freeze are 

found in maps modeling abnormally-low forest productivity throughout the remainder of the 

year. 
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II. LITERATURE REVIEW 

 

A.  Forest Productivity Studies with Remote Sensing Applications 

There have been hundreds of studies of forest productivity dynamics employing a remote 

sensing approach, and although a few of these studies have been concerned primarily with frost 

impacts, most notably Gu (2008), the majority are not. Of this majority, a common area of 

research is phenology, the study of climate‘s influence on the timing of biological phenomena.  

Many phenology studies using remotely-sensed imagery as a data source have focused on the 

budburst event (i.e. ―leaf flushing‖ or ―leaf-out‖) that characterizes the onset of the natural spring 

season. 

Examples of these studies include White (1997), who determined a positive correlation 

between satellite-derived and model-predicted spring onset dates for deciduous forest and other 

temperate mid-latitude land cover types.  Schwartz (1999) performed a similar study, finding that 

when compared to an average of all landcover types, deciduous forest had a more positive 

correlation between the model and NDVI observations of spring onset.  Jenkins (2002) studied 

phenology by calibrating temperature data with NDVI imagery over an 11-year period, revealing 

a relationship between remotely-sensed spring budburst and the accumulation of temperature-

based forcing units that regulate it.  Chen (2005) used MODIS vegetation index products to test 

its detection of reduced productivity among several boreal forests at different stages of wildfire 

recovery, finding them to be ―useful for interpreting and mapping surface vegetation 

representing various temporal states of disturbance across broad areas.‖  Ahl (2006) recorded 

deciduous canopy green-up with in-situ measurements of FPAR and Leaf Area Index, and 

compared them with that of MODIS vegetation indices, finding no significant discrepancies 

between values obtained by the two methods; Houborg (2007) further explored the 
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understanding of benefits obtained by combining satellite-derived vegetation indices and field-

based approaches to determining physiological parameters such as LAI, FPAR, and total 

vegetation water content. 

 

B.  Forest Productivity Studies with Other Applications 

Conversely, frost impacts on deciduous forest productivity have been studied extensively, 

but in most all cases by using an approach other than that involving remotely-sensed satellite 

imagery.  The most common alternate methodology has been the use of computer simulation 

forest growth modeling (Kellomaki, 1995; Kramer, 1996; Kramer, 2000; Raulier and Bernier, 

2000; Hanninen, 2006).  Others have included measurements of stomatal and hydraulic 

conductance in a laboratory environment (Gorsuch, 2002), tree-ring analysis (Dittmar, 2006), 

qualitative observation (Zasada, 1999), and in-situ measurements of PAR and stream water 

chemistry via quantum sensor and nitrate/nitrite sampling (Mulholland, 2009).   

Most recently within this category, Awaya (2009) used field measurements of LAI and 

NPP over a four-year period following a significant April 2001 frost that killed 80% of newly-

formed leaves at a beech forest stand in northern Japan.  The frost was preceded by two weeks of 

warmer-than-average April temperatures, mirroring the meteorological conditions from 2007 of 

interest to this thesis.  After analysis of his data, Awaya found that forest productivity was 

―greatly reduced‖ during the 2001 growing season, with PAR falling more than 50% from the 

averages of the previous two years, and LAI decreasing to 30% of its normal annual values.  

However, the post-freeze ―latent‖ leaves that grew from backup buds were found to have thrived 

in the abundant radiation produced by a thinner forest canopy lacking its normal amount of 

growth-suppressing shadow.  So, while throughout the 2001 growing season there were less 
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leaves present, and less productivity overall, the loss was somewhat compensated for by the 

increased exposure to sunlight that allowed the post-freeze growth of latent leaves to be 1.7 times 

more productive than the primary leaves of other years. 

 

C.  Spring Frosts and Climate Change 

While concluding his article, Awaya (2009) references the relationship between spring 

frosts and climate change, stating that the risk of spring frost damage would decrease given the 

increasing average annual air temperatures associated with global warming.  However, Awaya 

was certainly not the first researcher to breach this topic. Much of the research done to analyze 

the impacts of spring frost on forests has addressed this suggested association with climate 

change, and Awaya‘s findings conflict with decades‘ worth of previously-drawn conclusions. 

In one of the earliest articles to focus on spring frosts in the context of climate change, 

Cannell (1986) observed a warming trend in 20
th

 century Britain and found that if the trend were 

to continue, future warming within temperate climates would induce earlier budburst in trees 

without a corresponding decrease in the frequency of spring frosts.  The earlier budburst, Cannell 

proposed, would leave new growth susceptible to frost and lead to an increase in post-budburst 

frost damage.  

Hanninen‘s research (1991) on boreal-zone hardwood trees supported this theory, finding 

that they would suffer ―substantial‖ frost damage even under ―slight‖ climatic warming.  

Hanninen explained how climate change‘s alteration of the coordination between photoperiod 

and thermal regime can produce adverse effects on tree performance by causing premature onset 

of growth following mild winters.  Kramer (2000) provided evidence to support Hanninen‘s 

conclusions, but differentiated between the effects of spring frost to boreal-zone and temperate-
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zone trees, concluding that their differences in response to climate warming are due to their 

different hardiness factors – that is, that temperate-zone trees are typically in a different state of 

―chilling‖ by the end of the winter than are boreal-zone trees.  In doing so, Kramer suggested 

that the trend toward earlier dates of boreal budburst, and therefore the increase in frost damage 

risk, was less than predicted by Hanninen‘s model. 

Menzel and Fabian (1999) constructed a model for simulating the consequences of 

climate change on the spring phenology of temperate Europe, finding that ―the onset of spring 

events is sensitive to climatic change and will advance by up to six days per 1 °C increase in 

winter air temperature, depending on the species.‖  Referencing Menzel and Fabian‘s results, 

Inouye (2000) concluded that ―the recently documented increase in the length of the growing 

season in Europe is one indication of a change that may result in more frequent spring frost 

damage to plants.‖  

That same year, Linkosalo (2000) analyzed two different models for predicting changes 

in phenology as a result of a warming climate; one based on the accumulation of chilling 

temperatures, and another also accounting for the accumulation of light units.  Linkosalo found 

that ―estimates of frost damage risk with simulated climate change differed radically between the 

two models,‖ concluding that ―our current knowledge of spring phenology is not a sufficient 

basis for reliable forecasts‖ and stressing the need for further understanding of how to properly 

model the cooperation between climatic factors and biophysical mechanisms.  However, 

Linkosalo‘s models agreed that an increased risk of damage to deciduous trees of Europe could 

be expected as climate change induces an earlier onset of spring. 

Seemingly in agreement with Linkosalo is Mulholland (1999).  At Oak Ridge, Tennessee, 

much nearer to the geographical focus of this study than Europe, Mulholland analyzed the last 
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half-century of climate data (1950 to 2007) and observed that the late winter period had become 

increasingly warmer.  In fact, March 2007 was found to be Oak Ridge‘s warmest March on 

record.  Interestingly, however, no year-to-year trend in the annual occurrence of the last hard 

freeze was found, and the April 2007 freeze was not unusually late.  The annual dates of the last 

hard freeze were found to be highly variable, suggesting that late spring freezes of the timing and 

magnitude of April 2007‘s may become more common given future climate warming. 

Perhaps the most comprehensive study of the freeze‘s implications for climate change 

was authored by Gu (2008).  After the Easter 2007 freeze, Gu obtained MODIS NDVI imagery 

of the affected region depicting what he described as a late-April ―green retreat‖ of high-

productivity vegetative development that had reached as far north as northern Missouri.  The 

retreat, wherein the ―vernal front‖ of productivity was pushed back to the lower latitudes of the 

Deep South, stood in stark contrast to conditions at the same time during the previous year, when 

late-April greenness had already spread as far north as the Great Lakes region.  Referencing the 

Missouri Ozark AmeriFlux site‘s recording of reduced forest carbon uptake and altered surface 

energy balance (Gu et al., 2006), in addition to markedly lower readings of regional post-freeze 

PAR, Gu expressed reason to believe that the frost damage incurred may have profound impacts 

on the terrestrial carbon cycle of central and eastern United States. 

By all accounts, the carbon balance had indeed been significantly altered by the freeze.  

Typically, by early May, forests in the region would be near peak photosynthetic productivity, 

carbon fixation (CO2 uptake driven by forest respiration) would be near an annual maximum, and 

a negative carbon flux, indicative of a healthy forest, would be achieved.  However, on May 3, 

2007 the NOAA reported above-average CO2 levels throughout the Mid-South (NOAA, 2007).  

This indicated that by this point in the spring season, vegetation had failed to create a terrestrial 
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carbon sink.  Forests had not yet achieved a collective respiration rate sufficient to produce the 

oxygen necessary to offset the rate of CO2 produced by human and animal life. 

Whether or not such increased atmospheric CO2 is a direct consequence of frost damage, 

studies have proven that over the long-term, it may lead to further frost damage.  Elevated CO2 

levels have been shown to reduce plant tolerance of freezing temperatures (Loveys 2006), and it 

may increase foliar ice nucleation temperatures in deciduous species, leaving them vulnerable to 

merely moderate cold (Beerling 2001).  Furthermore, elevated CO2 was found to promote spring 

frost damage after two weeks of mild early spring temperatures (Lutze, 1998).  Given the IPCC‘s 

prediction of a doubling of atmospheric CO2 by the year 2100, such effects are particularly 

profound with regard to the future health of forests (Watson, 2001). 

In theory, this impact to the terrestrial carbon balance could have long-term ramifications.  

Exacerbation of the climate change process is one such effect.  If left susceptible to frost damage, 

biophysical alterations to tree physiology can limit the annual respiration rate of an entire forest 

stand.  This rate represents carbon fixation, which plays a significant role in the global carbon 

cycle, itself a key driver of global warming.  Therefore, if it can be determined that spring frost 

damage can alter the rate of carbon fixation, even on a merely regional scale, then adjustments to 

the global climate change models that account for such influences must be made accordingly.  
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III. METHODOLOGY 

The methodology designed for this research project may be summarized by the following 

steps:  1) Use surface temperature data to create a freeze map that models the severity of the 

April 5-10, 2007 freeze event by showing where and to what degree potentially damaging 

minimum temperatures were sustained.  2) Use satellite imagery to create maps modeling forest 

productivity throughout 2007, including maps of productivity as observed prior to and following 

the freeze event.   

Once the freeze map and forest productivity maps had been processed, the objective was 

to analyze their patterns for spatial congruence.  To accomplish this, the following steps were 

taken:  3) Create a ―product‖ dataset featuring values derived from the product, or multiplication 

of, freeze map values and forest productivity map values.  4) Calculate Moran‘s I coefficients in 

order to summarize the spatial autocorrelation of rasters from the forest productivity set and 

product set.  Finally, 5) compare Moran‘s I coefficients of rasters in the forest productivity set 

with those of rasters in the product set. 

 

Study Area 

 The April 2007 cold wave affected a large portion of the contiguous United States, so the 

full spatial scale of the phenomenon being studied can be said to encompass the Midwest, 

southern plains, and Southeast, generally speaking.  However, this research focuses on a 

narrower geographic range defined precisely as the boundaries of the MODIS imagery ―tile‖ 

used for modeling forest productivity response (Fig. 3-1; the MODIS data product is described in 

greater detail in section III-B).  This tile includes the entirety of Arkansas, Mississippi, and 

Alabama, plus most of Missouri, Kansas, and Louisiana, and significant portions of Oklahoma, 
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Tennessee, and Georgia.  Although the single tile does not represent the full geographic scale of 

the freeze event, it was selected as the data frame for the following reasons.  For one, the study 

initially intended to focus on the Ozark Plateau region surrounding Fayetteville, Arkansas, where 

freeze impacts were observed firsthand.  The tile ultimately chosen features complete coverage 

of the Ozarks, and was therefore a suitable choice.  Another reason was manageability; the 

imagery contains a fairly large amount of information and therefore large file sizes, so a smaller, 

single-tile data frame would be much easier to manage than would multiple tiles, especially 

when working with a time-series data set involving dozens of processing steps.   

 

 

Figure 3-1 The MODIS sinusoidal grid shows the format that NASA uses for publishing its 

imagery in individual files known as ―tiles.‖  The specific tile used for this study, 

H10 V5, shown circled in red, occupies 30-40° north latitude, and -104.42° to -

80.83° west longitude. 
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Use of anomaly data 

To create the freeze map and forest productivity maps, the raw data was required to be 

processed in various ways.  Some of the processing was necessary in order to address technical 

issues related to formatting and compatibility, but the majority was done to create anomaly 

datasets.  Because of the spatio-temporal nature of this study – the way data is analyzed over 

space and time – anomaly data was needed to understand the observed values in their geographic 

and seasonal contexts.   

Using anomaly to consider the geographic and seasonal contexts of observations helps 

control for the effects of spatio-temporal variability when a geographic study employs time 

series data, as does this particular study.  Phenology, or the seasonal timing of naturally 

occurring phenomenon, e.g. spring budburst, is a good example of how spatio-temporal 

variability affects this study.  Budburst is a spring occurrence in the temperate climates of the 

United States interior, but it features a prominent spatio-temporal aspect; for example, deciduous 

trees of the Gulf Coast region put out new leaves weeks prior to those near the Great Lakes. 

Given the relationship between distance and biophysical diversity, it is worth considering 

the 550,000 square miles of land surface represented by the satellite imagery used in this study, 

and the potential within it for disparity among climates and the vegetation types they support.  

Because of these regional climate differences, spring freezes occur more frequently to the north 

than they do to the south.  Additionally, deciduous forest tree species native to the relatively-

colder climates of the north possess a certain hardiness that more adequately protects them from 

spring freeze damage than do that of forest species occupying the relatively-warmer climates to 

the south.  It follows, then, that during a spring freeze event, a particular duration and quantity of 

freezing temperatures would induce more damage to forests of the south than it would to forests 
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of the north.  In other words, potentially damaging temperatures vary by location, generally as 

function of latitude. 

Therefore, due to the geographic component inherent in the damage potential of 

minimum temperatures, and the damage response of forest productivity, it was determined that 

the maps used for analysis should not feature direct observations, but their anomaly counterparts 

instead.  By using anomaly values, the observations are ―standardized‖ across both space and 

time.  Variables such as tree species hardiness, and the likelihood of frosts occurring at any given 

place and time, are controlled.  Most importantly, temperature map values more accurately 

model potential damage, and forest productivity maps more accurately model any apparent 

reaction to that damage. 

To create the anomaly data, observations were required of surface temperature and forest 

productivity values for April 5-10, 2007 specifically, as well as observations for the dates of 

April 5-10 throughout previous years.  By taking the average of as many observations from 

previous years as possible, daily normal values could be created.  These daily normals could then 

be used as a baseline by which to determine the degree of deviation from them by the 2007 

observed values.  This degree of deviation, or departure from normal, is represented by the 

anomaly data.   

 

A.  Surface Temperature Data (Freeze Map) 

To model the potential damage of the April 5-10, 2007 cold wave and show where and to 

what degree potentially damaging temperatures were sustained, a freeze map in raster format 

needed to be created.  The map was originally conceived of as depicting the total accumulation 

of temperature measurements for the duration of the weather event.  Ideally, the temperature 

measurements would have been recorded at the smallest possible time interval, i.e. hourly, or 
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even by the minute.  Unfortunately, sources for georeferenced raster-format weather data are 

limited, and the finest temporal resolution among available data was at the daily scale.  This data 

was obtained from NASA‘s Ecological Forecasting System (ECOCAST) program, which draws 

from over 1,400 National Weather Service stations to produce raster files of observational and 

historical climate data, including surface air temperatures of the continental U.S. at a spatial 

resolution of 8 kilometers per pixel (Nemani, 2005).  The observation type chosen was daily 

minimum temperature (TMIN), the minimum temperature observed over a 24-hour period.  In 

total, twelve of these raster files were obtained: six daily TMIN rasters corresponding to the six-

day period of April 5-10, 2007, and six daily normal TMIN rasters, featuring values 

representative of a 30-year historical average based on the years 1970-2000. 

Processing the freeze map involved the use of map algebra, a GIS tool for applying 

arithmetic functions to multiple rasters on a per-pixel basis (the tool was also used in processing 

the EVI imagery, as explained in the following section).  Using a function for subtraction, a set 

of six daily TMIN anomaly rasters were created by calculating the difference between each of 

the six daily observed 2007 TMIN rasters and its associated daily normal.  Then, using the map 

algebra tool for addition, the TMIN anomaly rasters were summed to produce a single 

cumulative TMIN anomaly raster (Fig. 3-2) depicting the total six-day accumulation of TMIN 

anomaly during April 5-10, 2007.   
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Figure 3-2 Featuring values derived from an arithmetic sum of the values of the six daily 

TMIN anomaly maps in Figure 1-3, the greatest accumulation of anomalously-low 

TMIN, shown here in dark blue, represents the greatest degree of potential freeze 

damage to deciduous forests. 

 

 

 
Figure 3-3 Cumulative TMIN anomaly from Figure 3-2 is shown here cropped to the spatial 

extent of the MODIS imagery used for analysis.  The color ramp used for value 

visualization in this map assigns dark blue to locations with the greatest 

accumulation of degrees below normal (and therefore the highest potential for 

freeze damage to deciduous forests). 
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B.  EVI Data (Productivity Maps) 

For creating maps to model vegetative productivity, remotely-sensed satellite imagery 

was used.  Unlike traditional color photography, in which images are based on the surface 

reflectance of various wavelengths within the portion of the light spectrum visible to the human 

eye, NASA‘s Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensor 

produces images based on the reflectance of wavelengths that occupy a wider spectrum, 

including non-visible portions.  This wider light spectrum is divided into sections that are 

recorded as spectral bands.  MODIS produces images at 36 spectral bands, ranging from 

wavelengths as small as 620 nanometers to as large as 14,385 nanometers.  MODIS makes daily 

observations and NASA publishes the imagery, fully georeferenced, as 16-day composite images 

(Huete, 2002). 

While imagery can be generated from individual bands, scientists use an algorithm to 

combine multiple bands into a vegetation index, a data product that highlights terrestrial 

vegetation‘s capacity for photosynthetic productivity by way of its chlorophyll content.  The 

Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) are two 

of the most frequently used.  EVI, the index used for this research, is an optimized version of 

NDVI developed by MODIS engineers specifically for the MODIS platform.  Its advantages 

include improved sensitivity in high biomass areas like forests, and reduced atmospheric noise 

through the use of a blue band to correct for the influence of aerosol scattering. 

EVI is useful for modeling Net Primary Productivity (NPP), or the rate of photosynthesis, 

so it can be thought of as an indicator of vegetative health.  EVI value is a function of several 

biophysical variables detected by the MODIS sensor.  These variables include measurements of 

reflectance at the red (645 nm) and near-infrared (858 nm) wavelengths of Photosynthetically 
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Active Radiation (PAR) absorbed by the canopy, as well as measurements of blue (469 nm) 

wavelength reflectance.  These three specific wavelengths in particular are employed because of 

their instrumental roles in photosynthesis; light energy is absorbed by the chlorophyll contained 

within the leaf‘s palisade mesophyll layer at the blue and red wavelengths, and it is reflected and 

scattered by the leaf‘s spongy mesophyll layer at the near-infrared wavelength.  

EVI values occupy a scale ranging between a maximum of 10,000 (absolute optimal 

productivity) to a minimum of -3000 (productivity non-existent, technically counter-productive).  

To calculate these values, the aforementioned red, blue, and near-infrared reflectance values are 

input as variables in the following equation: 

EVI = G 
NIR – RED 

(1 + L) 
NIR + (C1)RED – (C2)BLUE + L 

 

Where the coefficient G is a gain factor set to 2.5, L is a soil adjustment factor of 1.0, and C1 and 

C2 correspond to the use of the blue band in correction of the red band for atmospheric aerosol 

scattering, with values of 6.0 and 7.5, respectively (Huete, 2002).  As a means of data validation 

and quality control, EVI values for a target site are coupled with that site‘s corresponding Leaf 

Area Index (LAI) value, an indicator of biomass defined as the total one-sided green leaf area per 

unit ground-surface area (Jensen, 2005).  

The imagery obtained is recorded by NASA‘s Terra (EOS AM-1) and Aqua (EOS PM-1) 

satellites at a spatial resolution of 250 meters, the surface distance width represented per pixel.  

The two satellites share the same orbit around the Earth, yet they are fixed in diametrically-

opposed positions relative to one another.  Although their images are released every 16 days as 

composites formed from 16 individual daily observations, the dual-satellite arrangement allows 

for a phased production schedule wherein an image from either satellite is produced every eight 
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days.  For example, the 16-day production period for Terra would begin on day 1, which 

corresponds with day 9 of Aqua‘s 16-day period.  A set of thirty EVI images was ultimately 

obtained, spanning March 8 to October 24, in order to represent the phenological growing season 

from budburst to autumn senescence.   

In order to generate daily normals that were as robust as possible – that is, comprised of 

as many years‘ worth of available daily observations available – images corresponding to these 

thirty days were originally obtained from all years of MODIS‘s operation, from 2000 to 2007.  

However, because the Aqua satellite did not begin operating until July 4, 2002, more than two 

years after Terra on February 24, 2000, only the annual datasets in which the phased production 

schedule of the dual-satellite system was available were used for this research, and the Terra-

only datasets recorded prior to the 2003 growing season were omitted.  This way, each daily 

normal in the normals set would be based on the same four years‘ worth of EVI values (2003-

2006), keeping each of the 30 daily normals equally robust throughout the entire dataset. 

For processing the five years‘ worth of raw MODIS EVI raster data obtained (30 days per 

year, 2003-2007), the objective was to create two different types of annual time-series EVI sets: 

a set of daily EVI normals, featuring the arithmetic means of daily values observed between 

2003 and 2006, and a set of daily EVI anomalies, featuring the daily departure from normal of 

the values observed in 2007.  Processing would have been a much simpler task had the raw data 

values been thoroughly accurate.  However, because the accuracy of MODIS data products often 

suffers from atmospheric interference, imagery from certain storm-prone days can return poor-

quality data in the form of questionable pixel values.  Because NASA publishes its imagery with 

the unreliable pixels intact, it is necessary to first remove them before continuing with any 

further processing. 
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Removal of the unreliable pixels, or ―cleaning‖ of the imagery, was accomplished using 

pixel reliability rasters that are included with the multi-band MODIS data product file published 

by NASA.  The imagery raster and the reliability raster are separate, but maintain a spatial 

association; they possess the same dimensions and resolution as one another so that the same 

pixel from either raster represents a single location on the Earth‘s surface.  Essentially, the 

reliability raster is an indicator of the usefulness of EVI raster values, per-pixel.  Reliability pixel 

values are coded as either -1 (meaning ―fill/NoData‖), 0 (―good data‖), 1 (―marginal data‖), 2 

(―bad data - snow or ice cover‖), or 3 (―bad data - cloud cover‖), and these codes are based on 

surface conditions as determined by NASA via their own in situ validation efforts.   

Using the spatial analyst tools available within ESRI ArcGIS software, the first step of 

processing was to convert the pixel values of the 150 reliability rasters (5 annual sets of 30 daily 

images per set).  Reliable pixels coded 0 and 1 (―good‖ and ―marginal‖ data) were both 

converted to a value of 1, where pixels coded with any other value (―fill/NoData,‖ ―snow/ice,‖ or 

―cloudy‖) were converted to a placeholder (non-integer) value of NoData.  Then, using a GIS 

tool (extract by mask), each of the 150 EVI rasters were extracted by a mask of its corresponding 

reliability raster.  This produced an output set of 150 ‗clean‘ EVI images in which pixels 

formerly designated as unreliable were effectively removed by being assigned a value of 

NoData. 

With the reliability rasters and EVI rasters now clean, the EVI normals set could be 

processed.  Using map algebra function for addition, the four years‘ worth of daily reliability 

rasters were summed.  Output result was a set of 30 daily cumulative reliability rasters, each 

consisting of values ranging between 0-4 to indicate the number of years‘ worth of available EVI 

values (2003-2006) contributing to the mean EVI value for each individual pixel on a particular 
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day.  The same method was then used to sum four years‘ worth of EVI rasters and produce a set 

of 30 daily cumulative EVI rasters. 

Finally, to produce the set of normals, each of the 30 cumulative EVI rasters was simply 

divided by its corresponding cumulative reliability raster.  Once the normals had been created, 

the anomaly set could be processed by using a subtraction function to calculate the difference 

between each daily normal and its corresponding 2007 raster. 
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Figure 3-4 Imagery on the left shows normal EVI values for April 23

rd
, whereas the imagery 

on the right shows EVI values as observed on April 23
rd

, 2007, two weeks after the 

freeze event.  The green-scale color ramp uses dark green to depict the higher 

values representative of greater vegetative productivity.   

 

 

 
 

Figure 3-5 The difference in productivity apparent in Figure 3-4 is shown here highlighted as 

the EVI anomaly imagery for April 23
rd

, 2007, two weeks after the freeze event.  

The color ramp used for visualization depicts areas of unusually low vegetative 

productivity as red, areas of unusually high productivity as green, and areas 

featuring no significant change as yellow. 
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C.  Product Data (Freeze Map × Productivity Maps) 

The ―product‖ dataset was created as a way to interpret the freeze map and vegetation 

productivity maps together using descriptive statistics, as explained later.  It is composed quite 

literally of products, meaning that its values are generated by a map algebra function that 

multiplies freeze map values by EVI anomaly values.  Before they could be multiplied together, 

however, the contributing values of the freeze map and EVI anomaly rasters needed to be re-

scaled to a common range.   

Once the freeze map had been cropped to occupy the spatial extent of the EVI imagery 

(Fig. 3-3), it contained values ranging between a cumulative minimum of -110.52°F and a 

cumulative maximum of -34.92°F.  Since the minimum temperature value represented the 

maximum potential damage, and vice versa, these values were reclassified to a new 100-class 

range featuring a maximum of 100 and a minimum of 1, respectively. 

The EVI anomaly rasters were also scaled to this 100-class range, although their 

reclassification technique was different, since all 30 rasters in the set had their own individual 

minimum and maximum values.  To reclassify them, all positive anomaly values were first 

converted to a value of 1.  This automatically classified any positive anomaly values as the 

lowest possible value on the new scale, since the new scale is designed to indicate damage 

response in the form of decreased vegetative productivity, and positive anomaly values cannot 

possibly represent decreased vegetative productivity.  The remaining population now consisted 

of entirely negative anomaly values.  These were reclassified by assigning the lowest negative 

anomaly value from the entire set of 30 rasters (-11130, the ―global‖ minimum, featured in the 

imagery for day 177) as the new maximum of 100, since it represented the maximum damage 

response observed.  Negative anomaly values from all rasters were then reclassified to a 100-
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class range featuring a maximum of 100 and a minimum of 1.  The actual map algebra function 

that multiplied freeze map and productivity map values together is contained within the sampling 

step, as explained in the following section. 

 

D.  Sampling 

The GIS tool that calculates spatial autocorrelation is designed to work on vector format 

data exclusively.  Unlike the raster format, which organizes spatial data in a grid, the vector 

format organizes its files using a coordinate-based system of feature class points.  Essentially, 

points are to the vector format what cells, or pixels, are to the raster format.  Although it would 

have been possible to simply convert the freeze map and EVI imagery from raster to vector 

format, it would not have been practical, since the calculation of spatial autocorrelation for a 

single vector file with 5,000 points requires approximately two hours of computer processing 

time.  When considering that there are 60 rasters for which to calculate Moran‘s I, and the total 

pixel count – and therefore the potential point count – exceeds one million for each, it was 

obvious that the data volume needed to be reduced through sampling.   

Were pixels to be randomly sampled from the millions of pixels comprising the freeze 

map or any given EVI image, the sample would likely represent a variety of different land cover 

types.  This was problematic, since this study focuses on the correlation between freezing 

temperatures and the productivity of a specific land cover type, deciduous broadleaf forest.  

Pixels representative of other land cover types where productivity is not as susceptible to freeze 

damage, e.g., evergreen forest, prairie, cropland, or water bodies, were considered undesirable 

data and needed to be excluded from the sample.  Furthermore, to insure that the exact same 

pixels were being sampled throughout every EVI raster in the set of 30, unreliable pixels that had 
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been previously removed through cleaning in as few as one needed to be restricted from all the 

rasters in the set in order to prevent any of them being sampled.  With these requirements in 

mind, a sampling technique was designed to isolate pixels consistently reliable throughout the 

entire set, isolate the target land cover type, and then randomly select no more than 5,000 pixels 

from the mutual population defined by the first two criteria. 

To isolate the valid pixels, all 30 EVI images from 2007 were summed together using 

map algebra.  Since the output of map algebra functions always feature NoData values where any 

of the input rasters did, the valid pixels in the EVI sum raster represented the only pixels that 

were consistently reliable throughout the entire 2007 set.   

Next, to isolate the deciduous broadleaf forest land cover type, a data product was 

obtained that classifies each and every pixel featured in the EVI imagery as one of several 

discrete land cover types.  NASA‘s MCD12Q1 data product, conveniently derived from the same 

MODIS satellite sensors that produce the EVI imagery, provides such a classification scheme.  

After obtaining the data product and converting it to raster format, the land cover type of interest, 

deciduous broadleaf forest, was isolated from the twelve other land cover types.  It was then 

filtered by a mask of the valid pixel raster, creating an output raster containing valid, deciduous 

broadleaf pixels.   
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Figure 3-6 Maps showing the various layers associated with the sample site selection process, 

with the full extent of the MODIS tile shown in the left-hand column, and a detail 

of Arkansas to the right.  In the top row, a composite of the 2007 EVI imagery set 

reveals where pixels were valid throughout all 30 images, and where pixels 

unreliable in as few as one have been removed.  Overlaid atop this layer, in the 

middle row, is the deciduous broadleaf forest land cover class in green.  The map on 

the bottom row features 5,000 sample site points overlaid atop the previous two 

layers from which they are selected. 

 

 

Then, using a GIS-based tool for random raster generation, a raster was created featuring 

pixel values consisting of random decimals distributed uniformly within a range of 0.0 to 1.0.  
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The values were carried out to six decimal places (i.e. 0.683412), and the tool was provided with 

an EVI image as a template so that the random raster output would possess its same dimensions 

and resolution.  This random numeral raster was then filtered by a mask of the valid, deciduous 

broadleaf pixel raster, producing an output raster of valid, deciduous broadleaf pixels containing 

random values.  The total pixel population of this raster was 4,891,845, so a reduction to 

0.001022% of the original size was necessary to produce the desired sample size of 5,000 pixels.  

This reduction was achieved by reclassifying all values less than 0.001022 to 1, and all values 

greater than 0.001022 to NoData.  The raster now contained 5,000 valid, deciduous broadleaf 

pixels acting as the sample sites (Fig. 3-6). 

To create the sample sets, the 5,000-pixel sample site raster was used as a mask by which 

to select pixels from the freeze map and the EVI anomaly rasters, thereby ―sampling‖ them.  The 

anomaly sample rasters were then converted to vector format (Fig. 3-7).  To create the product 

raster set sample, the sampled EVI anomaly raster pixels were simply multiplied by the freeze 

map and converted to vector (Fig. 3-8).  This method precludes creation of a set of ―full‖ product 

raster files in lieu of a set of samples.  Processing a set of full product rasters would only have 

been necessary as a means for ultimately procuring a sample, so by using this more efficient 

method, redundant steps are circumvented, with no loss of data integrity.  The minimum, 

maximum, and mean values of both the EVI anomaly sample set and the product sample set are 

listed in Table 4-1. 
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Figure 3-7 Points shaded by a grayscale color ramp represent anomalously-low EVI values of 

5,000 sample sites during the four-panel, 32-day time period shown. White 

represents EVI values equal to or greater than the daily normal value for that 

location, whereas black represents the minimum value from the entire 30-day set. 

The darker the point, the lower the EVI value, relative to normal. 
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Figure 3-8 Points shaded by a grayscale color ramp represent product values (EVI anomaly × 

April 5-10, 2007 TMIN anomaly) of 5,000 sample sites during the four-panel, 32-

day time period shown.  Here, the darker the point, the higher the correlation 

between TMIN anomaly values (Figure 3-3) and EVI anomaly values (Figure 3-7). 

 

 

E.  Calculation of spatial autocorrelation (Moran’s I) 

Spatial autocorrelation can be defined as the tendency for points in a dataset to cluster 

throughout geographic space.  The spatial autocorrelation of any given dataset can be 

summarized using a statistic known as Moran‘s I.  The statistic is calculated using an algorithm 
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that considers the specific coordinate location of every individual point in the dataset, the points‘ 

associated attribute values, and the distances between them.  The coefficient returned, I, occupies 

a numerical range of -1 to +1; negative coefficients indicate a tendency for dispersion of like 

values, positive coefficients indicate a tendency for clustering of like values, and a coefficient of 

zero indicates a perfectly random distribution, as if by chance. 

The rationale behind using Moran‘s I for quantifying the spatial congruence between the 

freeze map and maps of anomalously-low EVI is as follows:  

If a grid featuring a particular pattern is multiplied by another grid featuring the exact 

same pattern in the exact same location, then the clustering of that pattern will be exaggerated in 

the output product grid, and as a result, Moran‘s I for the product will be greater than that of the 

input.  However, if the two input grids feature patterns that are equally clustered but occupy 

entirely different locations (or occupy the same location but cluster differently), then multiplying 

them together would produce an output grid that was less clustered and more dispersed than 

either input, and this would be reflected by its relatively-lower Moran‘s I. 

The hypothesis of this study is that the pattern of the freeze map is spatially congruous 

with the pattern of anomalously-low EVI observed after the freeze.  So, if we can determine I for 

the freeze map, I for each of the 30 EVI anomaly rasters, and I for each of the 30 product rasters, 

then logically it should follow that post-freeze product I would be greater than its corresponding 

anomaly I, because its pattern would be exaggerated by the spatial congruence of the input 

patterns.  If freeze I happens to be less than anomaly I, then we would expect product I to be less 

than anomaly I instead.  While we would not necessarily expect to see any relationship exist 

prior to the freeze event, we would, however, expect to see it immediately after the date of the 

freeze event, and persist for some time afterwards.  The length of time and degree to which 
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product I remains greater than anomaly I should indicate the duration and intensity of the 

persisting correlation. 

Moran‘s I gives us information that may not be apparent by merely visualizing the maps.  

For example, while we may be able to compare a map of anomaly values for a particular day 

with the same day‘s map of product values or the freeze map, we cannot visually interpret the 

exact degree of clustering in each.  This is important information to know if we are attempting to 

determine that the clustering is greater in one map than it is in the other.  Otherwise, we are 

merely eyeballing any perceived correlation, and are thereby prone to inaccurate judgments. 

Once the anomaly and product sample sets had been created, Moran‘s I was calculated 

for each using a GIS tool.  The tool featured various settings for certain parameters, including the 

conceptualization of spatial relationships, the distance threshold, and the distance method.  

Conceptualization of spatial relationships refers to how the algorithm, when evaluating an 

individual point in the set, weighs the values of other points around it; with conceptualization set 

to ‗inverse,‘ the impact of one value on another decreases with distance, and with 

conceptualization set to ‗fixed,‘ all points in the set are weighted equally.  Distance threshold is 

the cut-off distance from the point being evaluated, past which other points in the set will not be 

considered, regardless of their weight.  Distance method refers to how distance is calculated, 

whether as a straight line between two points (Euclidean), or as along axes at right angles, like 

city blocks (Manhattan).   

For each of the 60 sample files, the tool returned the I coefficient and its associated Z-

score to indicate the statistical significance of I – that is, whether or not the null hypothesis (that 

there is no clustering) can be rejected.  Tool settings used were inverse conceptualization, a 

distance threshold of 100 kilometers, and Euclidean distance method.  Results from the 
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calculation of Moran‘s I are listed in Table 4-2 and summarized graphically by Figures 4-1 and 

4-2. 
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Figure 3-9 Flow chart diagram summarizing data processing steps. 



42 

 

IV. RESULTS AND DISCUSSION 

 
To interpret the results, we will first consider the values of the EVI anomaly sample set 

over time (Table 4-1), and look for any changes apparent around the time of the freeze event, 

April 5-10.  The right changes at the right time – specifically, an abrupt increase of mean values 

coinciding with the timing of the freeze event – will suggest a temporal correlation with the 

freeze event.  Changes in the values of the product set relative to the timing of the freeze event 

could also be considered, but because its values are merely the values of the anomaly set 

multiplied by a constant (the freeze map), there is no additional insight to be gained through 

analysis of its patterns that would not otherwise be gained through analysis of the anomaly 

sample values themselves. 

A temporal correlation between the two does suggest a causal relationship, but it does not 

address the spatial properties of that relationship.  So, after considering the sample values, we 

will consider the spatial autocorrelation of those values – their tendency to cluster within space – 

by looking at the changes in Moran‘s I over time (Table 4-2).  If indeed the pattern of the freeze 

map and the patterns of low forest productivity are spatially congruous with each other, then we 

would expect to see product I exceed anomaly I immediately following the freeze event.   

By including spatial autocorrelation in the analysis, the addition of a spatial component 

allows us to go beyond making a determination of a merely temporal correlation and determine 

that a spatio-temporal correlation also exists.  This additional dimension of evidence makes a 

determination of spatio-temporal correlation between anomalously-low EVI and anomalously-

low TMIN more conclusive than a mere temporal one. 
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Table 4-1 Minimum, maximum, and mean values of the EVI anomaly sample set and 

product (EVI anomaly × TMIN anomaly) sample set. 

 

Values of EVI anomaly sample set and product sample set  

Calendar 

Day 

Julian 

Day 

EVI anomaly Product 

Min Max Mean Min Max Mean 
Mar 8 65 1 46 4 19 2925 211 
Mar 16 73 1 61 4 19 3362 288 
Mar 22 81 1 54 2 19 2491 131 
Mar 30 89 1 51 2 19 3276 130 
Apr 7 97 1 64 10 19 6272 702 
Apr 15 105 1 98 20 19 9310 1457 
Apr 23 113 1 95 24 25 9310 1766 
May 1 121 1 96 12 25 8352 820 
May 9 129 1 90 13 25 7387 880 
May 17 137 1 99 15 19 7920 1032 
May 25 145 1 93 11 27 7553 741 
Jun 2 153 1 97 12 27 7304 746 
Jun 10 161 1 92 11 19 7553 697 
Jun 18 169 1 98 13 19 8036 795 
Jun 26 177 1 100 11 27 7840 661 
Jul 4 185 1 100 13 25 9207 833 
Jul 12 193 1 95 12 19 6650 748 
Jul 20 201 1 95 12 19 7392 701 
Jul 28 209 1 75 14 19 5964 908 
Aug 5 217 1 84 10 19 6720 618 
Aug 13 225 1 74 9 27 5487 563 
Aug 21 233 1 96 10 19 8281 628 
Aug 29 241 1 92 10 27 5782 647 
Sep 6 249 1 68 9 25 6392 581 
Sep 14 257 1 70 6 25 5740 365 
Sep 22 265 1 78 6 19 4275 347 
Sep 30 273 1 48 7 27 2960 387 
Oct 8 281 1 40 3 25 2856 197 
Oct 16 289 1 48 4 25 4608 240 
Oct 24 297 1 37 3 19 2560 165 
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Table 4-2 Moran‘s I and associated Z-score for the EVI anomaly sample set and product 

(EVI anomaly × TMIN anomaly) sample set, evaluated using inverse distance 

conceptualization at a distance threshold of 100 km.  Higher I indicates a greater 

tendency for clustering. 

 

Spatial Autocorrelation (Moran’s I)  

Calendar 

Day 

Julian 

Day 
I (EVI 

anomaly) 

Z (EVI 

anomaly) 
I (Product) Z (Product) 

Mar 8 65 0.163317 60.92 0.155005 57.80 
Mar 16 73 0.113639 42.41 0.223441 83.28 
Mar 22 81 0.256319 95.71 0.246317 91.93 
Mar 30 89 0.042406 15.90 0.089275 33.41 
Apr 7 97 0.464913 173.12 0.539200 200.75 
Apr 15 105 0.567301 211.20 0.662755 246.70 
Apr 23 113 0.713381 265.55 0.800064 297.76 
May 1 121 0.258470 96.29 0.362998 135.19 
May 9 129 0.310015 115.46 0.404491 150.60 
May 17 137 0.359597 133.91 0.528607 196.80 
May 25 145 0.149268 55.64 0.235599 87.78 
Jun 2 153 0.215558 80.32 0.274794 102.36 
Jun 10 161 0.124629 46.47 0.179369 66.85 
Jun 18 169 0.125788 46.90 0.182676 68.08 
Jun 26 177 0.094764 35.36 0.076438 28.54 
Jul 4 185 0.090394 33.72 0.129049 48.12 
Jul 12 193 0.155134 57.82 0.120409 44.89 
Jul 20 201 0.076012 28.37 0.099487 37.11 
Jul 28 209 0.286642 106.75 0.367527 136.85 
Aug 5 217 0.136908 51.04 0.233627 87.04 
Aug 13 225 0.136326 50.82 0.223011 83.09 
Aug 21 233 0.074016 27.63 0.129500 48.30 
Aug 29 241 0.201721 75.17 0.317435 118.23 
Sep 6 249 0.169965 63.33 0.191797 71.47 
Sep 14 257 0.138543 51.67 0.132033 49.26 
Sep 22 265 0.213489 79.59 0.155096 57.83 
Sep 30 273 0.212714 79.25 0.165025 61.49 
Oct 8 281 0.134373 50.12 0.083107 31.04 
Oct 16 289 0.162635 60.64 0.086839 32.44 
Oct 24 297 0.094947 35.45 0.073085 27.31 
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Figure 4-1 Line graph of data from Table 4-2 depicting variation of spatial autocorrelation 

values (Moran‘s I) of the EVI anomaly and product datasets over time.  The grey 

bar on the horizontal axis represents the April 5-10, 2007 freeze event. 

 

 

 
Figure 4-2 Bar graph highlighting the differences in Moran‘s I between the anomaly and 

product sets listed in Table 4-2.  In this graph, values of I difference (product I - 

anomaly I), are multiplied by a factor of their mean [(product I + anomaly I) ÷ 2]. 
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A.  Analysis of Sample Set Values 

Looking at the mean EVI anomaly values (Table 4-1), we can see that the lowest mean 

value of the entire set was featured in the imagery from March 22 (a 16-day composite of 

observations made from March 22-April 6) and March 30 (likewise, for March 30-April 14).  

The mean value, representing the most commonly-observed value in both of these images, was 2 

on a scale of 1-100.  This indicates a very small degree of anomalously-low EVI values during 

the two weeks that preceded the freeze event.  It is no surprise to find a lack of unusually-low 

EVI values in the imagery corresponding with this two-week period, since we know that record-

setting warmth was occurring regionally at the time.  The March warmth is what triggered the 

greater-than-usual vegetative productivity, and this is reflected in the predominance of 

unusually-high EVI depicted in the anomaly maps for this period. 

  Whereas the lowest mean EVI anomaly values were observed primarily before the 

freeze, the highest global mean values are found in images corresponding with the freeze event 

and the month that followed.  Mean values of 10, 20, and the global high of 24 were observed in 

the imagery on April 7, April 15, and April 23, respectively.  After peaking in the April 23 

imagery, mean values fell to the mid-to-low teen range, where they remained throughout the 

spring and summer before gradually tapering off in August.  The spike in mean values observed 

after the freeze (indicating an abundance of unusually low EVI) means that forest productivity 

suffered its greatest losses during this period.  However, this only tells us that productivity was 

diminished – not where it was diminished.  To analyze the spatial aspect, we look at Moran‘s I 

scores. 
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B.  Analysis of Spatial Autocorrelation 

Taken on their own, measures of spatial autocorrelation of the EVI anomaly sample set 

do not provide any insight into a potential spatial relationship with the freeze map.  Meaningful 

interpretation of the Moran‘s I scores requires using anomaly set I as a baseline by which to 

evaluate product set I.  Once again, this is because we are interested in knowing whether or not 

the clustering of a particular day‘s EVI anomaly map multiplied by the freeze map is greater than 

the clustering of that day‘s EVI anomaly map alone, and I summarizes that clustering.   

Table 4-1 lists the Moran‘s I scores returned for the EVI anomaly set and the product set, 

and Figure 4-1 provides a graphical summary of these scores.  When both scores show clustering 

at a significant level, then the difference between product I and anomaly I can be thought of as 

being directly proportional to the degree of spatial correlation between the freeze (low TMIN 

anomaly) and freeze damage (low EVI anomaly).  The more positive the difference, the more 

similar their patterns are; the more negative the difference, the more dissimilar they are.  The 

values in Figure 4-2 highlight I difference by multiplying it by a factor of the two scores‘ mean 

value.  The resulting index is more useful for analyzing trends in spatial congruence over time 

than merely I difference, because the significance of any particular I difference is greater when 

clustering is significant to begin with.  

Prior to the date of the freeze, I for both datasets is low, although I difference varies 

considerably.  This makes sense, since patterns of pre-freeze EVI anomaly could obviously not 

possess any congruence with patterns of a freeze that had not yet occurred.  Thus, any correlation 

at this point in time could only be the result of random chance, and since clustering does not 

occur at a significant level anyway, the difference is essentially negligible. 
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As soon as the freeze occurs, an abrupt change in I difference dynamics becomes 

apparent, beginning with the April 7 dataset.  Clustering levels from the first three images during 

the period of peak response (April 7-23) are the greatest levels of clustering observed throughout 

the entire set.  For 10 consecutive weeks after the freeze, Product I is greater than anomaly I, 

though the difference becomes less apparent during the last few weeks of this trend.  On June 26, 

a month-long period of persistently low clustering occurs.  This is likely the result of large 

portions of ―marginal‖-quality pixel data appearing in these images due to atmospheric 

contamination brought on by persistent summer thunderstorm activity occurring throughout the 

region at this time.  The EVI anomaly maps for this period show large gaps where unreliable 

pixels had been removed, and this likely affected the quality of pixel data surrounding those 

gaps, which in turn impacted measures of spatial autocorrelation.  

Clustering increases again somewhat during August, but values remain relatively low and 

do not approach the greatest levels observed during the peak response period of April and May.  

During the last five weeks of observations through mid-September and October, anomaly I was 

consistently greater than product I, although by this time any clustering had subsided enough to 

the point where it was essentially insignificant. 

 

 

C.  Rejection of Null Hypothesis 

After analyzing spatial autocorrelation values of the anomaly sample set and product 

sample set, we find that the greatest spatial correlation between anomalously-low TMIN and 

anomalously-low EVI occurs over April and May, 2007.  This spatial correlation between the 

pattern of the freeze and the freeze response seems to corroborate the temporal correlation 

evident from analysis of the sample set values that show a sudden increase in unusually-low EVI 
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as soon as the freeze occurs.  Therefore, we can reject the null hypothesis that patterns of 

unusually-low forest productivity following an April 2007 freeze event are not spatially 

congruous with the pattern of unusually-low temperatures sustained during the freeze event.  In 

rejecting the null hypothesis, we accept the alternative hypothesis that the freeze and subsequent 

low productivity are indeed spatially congruous. 
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V. CONCLUSION AND FUTURE WORK 
 

 

Deciduous forests throughout the U.S. interior were indeed impacted by the spring 2007 

freeze in a meaningful and lasting way.  Of the land represented by the imagery used, the region 

that most prominently exhibited a freeze response was the Ozark mountain region of northern 

Arkansas and southern Missouri.  Areas featuring the least freeze response included the 

Mississippi delta and the plains regions of west Kansas and southern Oklahoma.  Impacts were 

most prominent during the first 10 weeks after the freeze.  The results of this study are consistent 

with those of Gu (2008), who identified the productivity response as occurring at the same time 

(peaking in late April, continuing through May) and at the same place (a retreat of the vernal 

front from northern Missouri to the deep South) as this study. 

This study has been successful in demonstrating a geographically-based method of 

identifying patterns common among two independently-obtained sets of spatial data, despite 

those datasets measuring two distinctly different environmental variables, with two distinctly 

different means of acquisition.  It is clear from review of the EVI anomaly maps and from the 

confirmation of spatial correlation performed by this study, that regional patterns of decreased 

productivity among deciduous forests can and will follow significant spring freeze events, often 

prolonged for months afterwards.   

Future enhancements to the study might include the inclusion of additional tiles of 

imagery, since freeze impacts throughout Tennessee and the Carolinas were reported, but are not 

represented by the MODIS tile used.  Increased temporal resolution of the freeze map via usage 

of hourly TMIN data, as opposed to daily, would potentially promote a more accurate model of 

freeze severity, although data at this scale is difficult to acquire.  Furthermore, the inclusion of 

other environmental factors known to contribute to freeze damage – most notably any 
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unseasonable warmth that may have preceded it, but also wind speed, humidity, and elevation – 

might increase the robustness of the model.  

An example of a potential practical application for this study is environmental 

forecasting.  The incorporation of satellite imagery and terrestrial weather observations into real-

time global environmental forecasts is currently being practiced by NASA‘s Terrestrial 

Observation and Prediction System (TOPS).  The spatio-temporal relationship between 

temperatures and productivity analyzed by this study could be applied to the development of a 

predictive model similar to the satellite-based terrestrial carbon flux model TOPS is currently 

developing (Nemani, 2005).  For instance, one such model could forecast large-scale reductions 

in forest productivity based on the meteorological properties of cold fronts that surpass a certain 

threshold indicative of potential damage, and occur during the phenological stages most 

vulnerable to spring freeze damage.   

In the same way, this model could be beneficial to relatively longer-term forecasts of 

climate.  Other studies have shown that unusually warm early spring seasons contribute as much, 

if not more, to freeze damage following premature onset of growth (Gu, 2008).  Given that 

global average temperatures are known to be rising (Menzel and Fabian, 1999) without a 

corresponding decrease in the frequency of spring freeze events (Cannell, 1986; Mulholland 

1999; Linkosalo, 2000), a logical inference is that decreased rates of forest productivity can be 

expected in the future.  Forests provide a vital terrestrial carbon sink because of their capacity for 

large-scale respiration, so decreased forest productivity has the potential to inhibit rates of carbon 

fixation, and exacerbate global climate change by doing so.  This is one of many positive 

feedback loop mechanisms that drive climate change, and since climate scientists are constantly 
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searching for ways to improve their models, the incorporation of such a feedback mechanism 

into their models would be of value to the scientific community at large. 
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