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Abstract.
—

The methods of symmetry group analysis are applied to the action functional oflinearized gravity to derive necessarj

conditions for the existence of variational symmetries. Two classes of variational symmetries oflinearized gravity are discussed, anc
the local conservation laws associated with these variational symmetries are presented by applying Noether's theorem.
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Introduction

Local conservation laws play a pivotal role in several
branches of physics (Barrett and Grimes 1995, Goldberg
1958). The conserved quantities derived from conservation
laws permit the characterization of a given physical system in
terms of a relatively small number ofphysical quantities. For
example, quantities such as energy, linear momentum, angular
momentum, and charge, are often encountered ina wide range of
classical and quantum systems because ofthe conservation laws
associated with these quantities. In the quantum field theoretic
description of the fundamental interactions, the existence of
conservation laws is often the guiding principle that dictates the
correct choice of the field theory that describes the fundamental
interactions (Kaku 1993). Ingeneral relativity, ithas often been
argued that the existence of local conservation laws would lead
to the construction of observables of the gravitational field,
which could play a significant role in any quantum theory of
gravity (Torre 1993). Conservation laws also play an important
role ina variety of mathematical issues such as integrability,
existence and uniqueness, and stability (Olver 1993).

In1918, the German mathematician Emmy Noether proved
twoimportant theorems concerning the existence ofconservation
laws for physical systems that admit a Lagrangian formulation
(Noether 1918). Her first theorem proved that ifthe Lagrangian
admits a variational symmetry (a symmetry transformation that
leaves the action functional invariant), then the system admits
a local conservation law. The second theorem states that ifa
variational symmetry depends on arbitrary functions, then the
differential equations governing the system must satisfy an
identity.

Inthis paper,Idiscuss the variationalsymmetries and local
conservation laws admitted by the linearized, vacuum Einstein
equations of general relativity. Ibegin with a brief review of
the Lagrangian formulation of linearized gravity and then
proceed to apply methods ofsymmetry group analysis to derive
necessary conditions for the existence of variational symmetries
of linearized gravity. By applying Noether's theorems, the
conservation laws associated with the variational symmetries
are derived. Iconclude with a discussion of two classes of
variational symmetries admitted by linearized gravity —

the

Poincare group of symmetries and the gauge symmetry of
linearized gravity.

Methods

Linearized gravity—In Einstein's general theory of
relativity, spacetime is assumed tobe a 4-dimensional manifold
M endowed with a Lorentzian metric gab. The spacetime
metric g^ satisfies the Einstein equations (in units where
c =8jiG=1),

y"-"f rrt
(1)

where Gab is the Einstein tensor and Tab is the energy-
momentum tensor of the matter distributions (Wald 1984). In
the absence ofany matter distributions (for example, outside a
star or planet), Tab

=0 and the metric gab solves the vacuum
Einstein equations ofgeneral relativity,

Gab =0. (2)

Furthermore, ifwe restrict attention to regions of spacetime
where the gravitational fieldis weak (forexample, very far away
from a star or planet), we can always choose local coordinates
on spacetime such that the metric gab takes the form

Sab tlab + l̂ab> (3)

where hab can be viewed as a symmetric (0,2) -type tensor
field propagating on a flat spacetime endowed with the
Minkowski metric Y)ab. The tensor hab is assumed to be a
small perturbation of the background Minkowski metric. This
assumption allows us to restrict attention to terms linear inhab

,
which in turn implies

gab =nab -hab, (4)

where gacgcb
= d a

b and hab =r]acr]bdhcd .
The linearized, vacuum Einstein equations are obtained by

substituting equations (3) and (4)inequation (2) and expanding
Gab to linear order in hab . This yields

coA =-(wc» +W» -a ma^-ded'k^ -riji^h"+r,0^c*)=o> (5)

where a a
¦=— and h \=r)cdh

cd =hc
c (Carroll2004).
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The linearized, vacuum Einstein equations do admit a
Lagrangian formulation; they can be derived from a variational
principle. The action functional S[ha ] of the variational
problem is

S[h ab ]=fQL(h,dh)d4x, (6)

where the Lagrangian density,

£(*,ah)
-
jhaf X*,A)-O,a*X^a%)+^"O^K^V)

- (7)

is defined on a compact region Q of the spacetime manifold
M witha smooth boundary dQ (Carroll 2004). Let

hf=hab +edh ab (8)

represent a one-parameter family of symmetric tensor fields on
Q.The tensor field 8ha satisfies the boundary condition

«*1,0=0. (9)

In order to derive the linearized equations, we assumed the
tensor field Aq — ha extremizes the action functional S[h a ].
That is,

de
(10)

Equations (6) and (10) imply

dS=fdLd 4x=f—I a Ld4x = 0. (11)

By virtue ofequations and ,equation can be writtenas

fQ
Gab dh ab d4x +jQdard\ =o, (12)

where Gab is the linearized Einstein tensor given inequation
(5), the vector field

J
°

¦ +(dbh
ab )6h-2(d cha

l,)dhci +{dahbc )6hk -(dah)6h] (13)

and the trace of the variation 6hab is dh=TJ abdh ab (Wald
1984). The divergence theorem implies

CdJ a d4x=f n°Ja d3x,
Ja a Jea a (14)

where na is the unit outward normal to the three-dimensional
boundary dQ . Equations (9)and (13) imply

WJ- dl*=0'

which forces the second integral in equation (12) to vanish,
leaving

JQ
Gab dh ab d4x = O (15)

to hold for all symmetric tensor fields 8ha satisfying the
boundary condition. The fundamental lemma inthe calculus of
variation (Courant and Hilbert 1989) implies that equation (15)
holds in Q only ifthe linearized Einstein tensor Gab vanishes
in Q, proving the result that a necessary condition for the
tensor field ha

to extremize the action functional S[h a ] is
that it satisfy the linearized, vacuum Einstein equations.

Variational symmetries and conservation laws
—

The
linearized, vacuum Einstein equations are a system of ten

differential equations G^
= 0, involving 4 independent

variables, or spacetime coordinates xa, and ten dependent
variables hab representing the components of a symmetric
(0,2) -type tensor field. Let M represent the space of
independent variables (or coordinates) xa and U represent the
space of dependent variables with coordinates hab .Consider
a one-parameter family of infinitesimal transformations on the
product space MxU givenby

xa = xa +e% a (x,h) + O(e 2 ) and (16)

Kb
=hab

+ eyab (x,h) + O(e 2 ), (i7)

where e«l, and the functions £a(x,h) and Yab(x,h)
are the components of a smooth vector field and a smooth,
symmetric, (0,2) -type tensor field, respectively, on MxU.
The infinitesimal transformations (16) and (17) transform the
action functional given inequation (6) to

S[h ab ]=JQL(h,dh)d 4x, (18)

where
i(A,aA)=i(a

c A-)(a^)-i(acA*X^A%)+^rf(d^Xa,V)
i 09)

~ d
and da ¦

d
~

a represents partial derivatives with respect to the
transformed coordinates xa.Expanding equations (18) and (19)
in a Taylor series about £ = 0 and reorganizing the resulting
expression gives

S[h ab ]=S[hab ]+efjdL+dc(g cL)±l4x+O(e 2),(20)

where

*-
ee

<- xa,*)-W.e*X3,*'.)-(3,**xa<ec.)

+»7
a'(dee</)o

l/v)-'j'<'(3cex^/i)]' '
and the characteristic Qab is defined as

Qab=Y*-Me*chab (22)
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withQa =T]acY] cQcd and Q=Tf a Qab . Inderiving equation
(20) we have also used the fact that, to first order in £ , the
volume element d X transforms as

d4x =(l+ e d£ )d\x+0{s2 ).

The infinitesimal transformations (16) and (17) represent
a variational symmetry of the action functional ifthey leave
the action functional invariant up to an overall surface term for
all symmetric tensor fields hab on M (Olver 1993). In other
words,

S[h ah ]= S[hah ]+eC naAad3x+ O(e 2 ), (23)
JdQ

where Aa are the components ofa vector fieldon M and na
is a one-form fieldnormal to the boundary dQ .The divergence
theorem applied to the surface term in Equation (23) implies
that ifthe fields £a and yab represent variational symmetries
oflinearized gravity then they must satisfy the condition

6L+ dc (g cL)=dcA
c. (24)

Inequation ifthe vector field A° = 0 ,the variational symmetry
is called a strict variational symmetry; otherwise the symmetry

is referred to as a divergence symmetry (Olver 1993).
Alocal conservation law ofthe linearized, vacuum Einstein

equations is a vector field Pa built from the coordinates X ,
the tensor field hab ,and derivatives of the tensor field hab to

any arbitrary but finite order that satisfies the condition

d aP
a = 0

on solutions of the field equations (5) of linearized gravity. In

order to elicit the relationship between variational symmetries
and local conservation laws established inNoether's theorems,

we rewrite equation (24) by integrating the term SL by parts.

This yields, after some algebra,

SL =QabGab+ daS\ (25)

where Gab is the linearized Einstein tensor defined inequation
(5)and

S°
-

1
*+(dhh"h)Q-(dlh"h)Ql

*
-(dh

h"r)Qcb +(d°h
bc

)Qbc -(a°h)Q] (26)

Substituting equation in equation and reorganizing the terms
gives

daP
a =-Q ab Gab

, (27)

where

Pa =Aa -S a -%aL. (28)

It is clear that on solutions of equation (5), ifQab represents th
characteristic ofa variational symmetry, then Pa

represents

conserved vector fieldof linearized gravity.
We now explore twodistinct types ofvariational symmetric j

that are significant inlinearized gravity -the Poincare symmetric ;

and gauge symmetries. Assume the vector field Z;" depend;
onlyon the coordinates on the manifold M (i.e., t~ a = % a (x) ).
Consequently, the infinitesimal transformations (16) represents
a one-parameter family of coordinate transformations on M.
Since hab is a tensor fieldon M,itmust transform according
to the tensor transformation law,namely,

hab
=~da xc'd bx

dhcd =hab -e(d arhcb
+d£ chac

yO(e 2). (29)

Equations (17) and (29) imply

r*
= -G.r*,*+a.r*J

and the characteristic Qab takes the form

Qab=-h hab, (30)

where Lthab is the Lie derivative of the tensor field hab with
respect to the vector field £a (Wald 1984). Furthermore, let
us assume that the infinitesimal coordinate transformations
generated by the vector field £° leave the Minkowski metric
Y]ab invariant. Inother words, £ a is a Killingvector fieldof the
Minkowski metric and hence satisfies the Killingequation

V^
=a^ + (31)

Substituting equations (30) and (31) in equation (21) and
simplifying the resulting equation using the properties of the
Lie derivative gives

dL=-rdcL+Fab
cdadhr, (32)

where

F ah
c

= -$> a
c hbJ ddh +6 d

c hab ddh-h hd dch°J -hhd ddha
c

-h'dd^ +h d
c ddhah +2nad hb'ddhce }

Substituting equation (32) back into equation (24) yields

-rdcL
+ Fab c(h,dh)d ad£ c + dc&L)=dcA

c.
Since % a is a Killingvector field,it follows that a JT =0 and
5Alc=0 (Crampin and Pirani 1994). Setting Aa = 0 proves
that all coordinate transformations on the spacetime manifold
M that leaves the Minkowski metric invariant are strict
variational symmetries of the action functional of linearized
gravity. These coordinate transformations are the ten-parameter
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group of Poincare symmetries.
To determine the conserved vector fieldassociated with the

Poincare symmetries, we substitute equation (30) in equation

(28) and set Aa = 0 to obtain

+|«'f(»
-̂

X«rf*)-(M*Xa<*'.)+|»i
-

(*.*^X8rfV)-|l»''(MX«**)l

The other variational symmetry is the infinitesimal
gauge transformation obtained by setting §a =0 and

Yab
=da-^b + m equati°ns (16) and (17), where Xa

is an arbitrary vector field on the manifold M. Substituting
the characteristic Qab

= daXb
+ dbXa in equation (21) and

recursively applying the integration by parts formula to the
resulting equation gives

6L = daA
a -2d aGab Xb, (33)

where

Aa =Sa +2G a
bXb, (34)

and Sa is the vector field defined in equation (26) with

Qab ~
aXb

+ dbXa. The linearized, vacuum Einstein
equations satisfy the contracted Bianchi identity

daG
a

b =O, (35)

which reduces equation (33) to a form that clearly indicates that
the gauge transformation is not a strict variational symmetry
of the linearized theory, but instead a divergence symmetry.
Equations (28) and (34) imply that the conserved vector fieldis

Pa =2G a
bXb.

However, note that the conserved vector field Pa =0 on
solutions ofequation (5)and hence defines a trivialconservation
law. This is because the gauge symmetry depends on an
arbitrary vector field Xa and hence falls under the purview
of Noether's second theorem, which states that the linearized
Einstein equations must satisfy a constraint equation. This
constraint equation is the contracted Bianchi identity given in
equation (35).

admit a ten-parameter family of local conservation laws, while
the gauge symmetry is a divergence symmetry admitting a
trivialconservation law. Lookingahead, itwould be interesting
to investigate the various conservation laws associated with the
Poincare symmetries and explore their geometric and physical
significance. Another interesting research direction is the
classification of all local conservation laws of the linearized,
vacuum Einstein equations. This is achieved by investigating
solutions of equation ,where the characteristic Qab depends
on derivatives of the the tensor field hab to any arbitrary but
finite order.
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Conclusions

Iderived necessary conditions that must be satisfied by
a variational symmetry of the linearized, vacuum Einstein
equations and investigated two classes of variational
symmetries: the ten-parameter group of Poincare symmetries
and the gauge symmetry. Ishowed that the Poincare symmetries
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