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1
NANOPARTICLE COMPOSITIONS AND
METHODS FOR MAKING AND USING THE
SAME

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a national stage filing under 35 U.S.C.
371 of International Application No. PCT/US2007/060506,
filed on Jan. 12, 2007, which claims priority benefit to U.S
Provisional Application No. 60/758,307, filed on Jan. 12,
2006, which is hereby fully incorporated by reference.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with U.S. government support
under grant no. NSF/DMI 0115532 awarded in part by the
National Science Foundation. The government has certain
rights in the invention.

BACKGROUND

Over the years, considerable effort has been expended to
develop nanostructures that can be used as lubricants, coat-
ings, or delivery mechanisms. New ways to improve nano-
particle compositions, their method of manufacture, and their
use are sought.

SUMMARY

In one aspect, a composition is described, comprising solid
Iubricant nanoparticles and an organic medium.

In another aspect, nanoparticles comprising a layered
material are disclosed.

In a further aspect, a method of producing a nanoparticle
comprising milling layered materials is provided.

In yet another aspect, a method of making a lubricant is
disclosed, in which the method comprises milling layered
materials to form nanoparticles and incorporating the nano-
particles into a base to form a lubricant.

Other aspects will become apparent by consideration of the
detailed description and accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1is adiagram illustrating a method of producing solid
lubricant nanoparticles.

FIG. 2 is a diagram illustrating one method of preparing
nanoparticle based lubricants.

FIG. 3 shows transmission electron microscopy (TEM)
micrographs of molybdenum disulphide particles. FIG. 3(A)
shows molybdenum disulphide as it is available, typically
from about a few microns to submicron size. F1G. 3(B) shows
molybdenum disulphide that has been ball milled in air for 48
hours. FIG. 3(C) is a high resolution electron microscopy
image that shows molybdenum disulphide that has been ball
milled in air for 48 hours. FIG. 3(D) is a high-resolution
transmission electron microscopy (HRTEM) image that
shows molybdenum disulphide that has been ball milled in air
for 48 hours followed by ball milling in oil for 48 hours.

FIG. 4 is a graph showing XRD spectra of molybdenum
disulphide particles. FIG. 4(A) is the XRD spectra for molyb-
denum disulphide that has been ball milled in air for 48 hours
followed by ball milling in oil for 48 hours. FIG. 4(B) is the
XRD spectra for molybdenum disulphide that has been ball
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2

milled in air for 48 hours. FIG. 4(C) is the XRD spectra for
molybdenum disulphide that has not been ball milled.

FIG. 5 is a graph showing XPS spectra of molybdenum
disulphide particles. The carbon peak for molybdenum dis-
ulphide that has not been ball milled is shown, as well as the
carbon peak for molybdenum disulphide that has been ball
milled in air for 48 hours, followed by ball milling in oil for 48
hours. FIG. 6 shows graphs and bar charts depicting tribo-
logical test data for different additives in paraffin oil. FIG.
6(A) shows the average wear scar diameter for a base oil
(paraftin oil), parattin oil with micron sized MoS,, paraffin oil
with MoS, that was milled in air for 48 hours, and paraffin oil
with MoS, that was milled in air for 48 hours followed by
milling in canola oil for 48 hours. FIG. 6(B) shows the load
wear index for paraffin oil without a nanoparticle additive,
paraffin oil with micron sized MoS,, paraffin oil with MoS,
that was milled in air for 48 hours, and paraffin oil with MoS,
that was milled in air for 48 hours followed by milling in
canola oil for 48 hours. FI1G. 6(C) shows the COF for paraffin
oil without a nanoparticle additive, paraffin oil with micron
sized MoS, (c-MoS,), paraftin oil with MoS, that was milled
in air for 48 hours (d-MoS,), and paraffin oil with MoS, that
was milled in air for 48 hours followed by milling in canola oil
for 48 hours (n-MoS,,). FIG. 6(D) shows the extreme pressure
data for paraftin oil with micron sized MoS, (c-MoS,), par-
affin oil with MoS, that was milled in air for 48 hours
(d-MoS,), and paraftin oil with MoS, that was milled in air for
48 hours followed by milling in canola oil for 48 hours
(n-MoS,). In each test the solid lubricant nanoparticle addi-
tive was present in the amount of 1% by weight.

FIG. 7 is a TEM image showing the architecture of molyb-
denum disulphide nanoparticles (15-70 nm average size).
FIG. 7(A) shows the close caged dense oval shaped architec-
ture of molybdenum disulphide nanoparticles that have been
ball milled in air for 48 hours. FIG. 7(B) shows the open
ended oval shaped architecture of molybdenum disulphide
nanoparticles that have been ball milled in air for 48 hours
followed by ball milling in canola oil for 48 hours.

FIG. 8 is a graph depicting a comparison of wear scar
diameters for different additives in paraffin oil. One additive
is crystalline molybdenum disulphide (c-MOS,). Another is
molybdenum disulphide nanoparticles that were ball milled
in air (n-MOS,). Another additive is molybdenum disulphide
nanoparticles that were ball milled in air followed by ball
milling in canola oil and to which a phospholipid emulsifier
was added (n-MoS,+Emulsifier).

FIG. 9 shows photographs and graphs produced using
energy dispersive x-ray analysis (EDS) depicting the chemi-
cal analysis of wear scar diameters in four-ball tribological
testing for nanoparticle based lubricants. FIG. 9(A) shows
paraffin oil without any nanoparticle composition additive.
FIG. 9(B) shows paraffin oil with molybdenum disulphide
nanoparticles that have been ball milled in air for 48 hours
followed by ball milling in oil for 48 hours and treated with a
phospholipid emulsifier.

DETAILED DESCRIPTION

Before any embodiments are explained in detail, it is to be
understood that the invention is not limited in its application
to the details of construction and the arrangement of compo-
nents set forth in the following description or illustrated in the
following drawings. The invention is capable of other
embodiments and of being practiced or of being carried out in
various ways. Also, itis to be understood that the phraseology
and terminology used herein is for the purpose of description
and should not be regarded as limiting.
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Any numerical range recited herein includes all values
from the lower value to the upper value. For example, if a
concentration range is stated as 1% to 50%, it is intended that
values such as 2% to 40%, 10% to 30%, or 1% to 3%, etc., are
expressly enumerated in this specification. These are only
examples of what is specifically intended, and all possible
combinations of numerical values between and including the
lowest value and the highest value enumerated are to be
considered to be expressly stated in this application.

Herein described are compositions and methods for mak-
ing compositions comprising solid lubricant nanoparticles
and an organic medium. Also described are nanoparticles
comprising layered materials. The nanoparticles may be solid
lubricant nanoparticles. The nanoparticles may be made from
starting materials or solid lubricant starting materials.
Examples of solid lubricants may include, but are not limited
to, layered materials, suitably chalcogenides, more suitably,
molybdenum disulphide, tungsten disulphide, or a combina-
tion thereof. Another suitable layered material is graphite or
intercalated graphite. Other solid lubricants that may be used
alone or in combination with the layered materials are poly-
tetrafluoroethylene (Teflon®), boron nitride (suitably hex-
agonal boron nitride), soft metals (such as silver, lead, nickel,
copper), cerium fluoride, zinc oxide, silver sulfate, cadmium
iodide, lead iodide, barium fluoride, tin sulfide, zinc phos-
phate, zinc sulfide, mica, boron nitrate, borax, fluorinated
carbon, zinc phosphide, boron, or a combination thereof.
Fluorinated carbons may be, without limitation, carbon-
based materials such as graphite which has been fluorinated
to improve its aesthetic characteristics. Such materials may
include, for example, a material such as CF.sub.x wherein x
ranges from about 0.05 to about 1.2. Such a material is pro-
duced by Allied Chemical under the trade name Accufluor.

The methods may include milling a solid lubricant feed. In
one embodiment, the solid lubricant feed may be capable of
being milled to particles comprising an average dimension of
about 500 nanometers (submicron size) to about 10 nanom-
eters. Suitably, the particles may have an average particle
dimension of less than or equal to about 500 nanometers,
suitably less than or equal to about 100 nanometers, suitably
less than or equal to about 80 nanometers, and more suitably
less than or equal to about 50 nanometers. Alternatively, the
ball milling may result in milled solid lubricant particles
comprising a mixture, the mixture comprising particles hav-
ing an average particle dimension of less than or equal to
about 500 nanometers, plus larger particles. Milling may
include, among other things, ball milling and chemo
mechanical milling. Examples of ball milling may include
dry ball milling, wet ball milling, and combinations thereof.
Ball milling may refer to an impaction process that may
include two interacting objects where one object may be a
ball, a rod, 4 pointed pins (jack shape), or other shapes.
Chemo mechanical milling may refer to an impaction process
that may form a complex between an organic medium and a
nanoparticle. As a result of chemo mechanical milling, the
organic medium may coat, encapsulate, or intercalate the
nanoparticles.

In another embodiment, the solid lubricant feed may be dry
milled and then wet milled. An emulsifier may be mixed with
abase and added to the wet milled particles. Dry milling may
refer to particles that have been milled in the presence of a
vacuum, a gas, or a combination thereof. Wet milling may
refer to particles that have been milled in the presence of a
liquid.

The solid lubricant nanoparticle composition may further
comprise an organic medium. Examples of organic mediums
include, but are not limited to, oil mediums, grease mediums,
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alcohol mediums, or combinations thereof. Specific
examples of organic mediums include, but are not limited to,
composite oil, canola oil, vegetable oils, soybean oil, corn oil,
ethyl and methyl esters of rapeseed oil, distilled monoglyc-
erides, monoglycerides, diglycerides, acetic acid esters of
monoglycerides, organic acid esters of monoglycerides, sor-
bitan, sorbitan esters of fatty acids, propylene glycol esters of
fatty acids, polyglycerol esters of fatty acids, n-hexadecane,
hydrocarbon oils, phospholipids, or a combination thereof.
Many of these organic media may be environmentally accept-
able.

The composition may contain emulsifiers, surfactants, or
dispersants. Examples of emulsifiers may include, but are not
limited to, emulsifiers having a hydrophilic-lipophilic bal-
ance (HLB) from about 2 to about 7; alternatively, a HL.B
from about 3 to about 5; or alternatively, a HLB of about 4.
Other examples of emulsifiers may include, but are not lim-
ited to, lecithins, soy lecithins, phospholipids, detergents,
distilled monoglycerides, monoglycerides, diglycerides, ace-
tic acid esters of monoglycerides, organic acid esters of
monoglycerides, sorbitan esters of fatty acids, propylene gly-
col esters of fatty acids, polyglycerol esters of fatty acids,
compounds containing phosphorous, compounds containing
sulfur, compounds containing nitrogen, or a combination
thereof.

A method of making a lubricant is described. The compo-
sition may be used as an additive dispersed in a base.
Examples of bases may include, but are not limited to, oils,
greases, plastics, gels, sprays, or a combination thereof. Spe-
cific examples of bases may include, but are not limited to,
hydrocarbon oils, vegetable oils, corn oil, peanut oil, canola
oil, soybean oil, mineral oil, paraffin oils, synthetic oils,
petroleum gels, petroleum greases, hydrocarbon gels, hydro-
carbon greases, lithium based greases, fluoroether based
greases, ethylenebistearamide, waxes, silicones, or a combi-
nation thereof.

Described herein is a method of lubricating or coating an
object that is part of an end application with a composition
comprising at least one of solid lubricant nanoparticles and an
organic medium. Further described is a method of lubricating
an object by employing the composition comprising solid
lubricant nanoparticles and an organic medium as a delivery
mechanism.

Disclosed herein are compositions and methods of prepar-
ing nanoparticle based lubricants that, among various advan-
tages, display enhanced dispersion stability and resistance to
agglomeration. FIG. 1 illustrates a method of preparing nano-
particle based lubricants or compositions. A solid lubricant
feed is introduced via line 210 to a ball milling processor 215.
Ball milling is carried out in the processor 215 and the solid
lubricant feed is milled to comprise particles having an aver-
age particle dimension of less than or equal to about 500
nanometers, suitably less than or equal to about 100 nanom-
eters, suitably less than or equal to about 80 nanometers, and
more suitably less than or equal to about 50 nanometers.
Alternatively, the ball milling may result in milled solid lubri-
cant particles comprising a mixture, the mixture comprising
particles having an average particle dimension of less than or
equal to about 500 nanometers, plus larger particles. The ball
milling may be high energy ball milling, medium energy ball
milling, or combinations thereof. Additionally, in various
embodiments the ball milling may be carried out in a vacuum,
in the presence of a gas, in the presence of a liquid, in the
presence of a second solid, or combinations thereof. The
nanoparticle composition may be removed from the proces-
sor via line 220. The nanoparticle composition may be a
nanoparticle based lubricant.
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In alternative embodiments, the ball milling may comprise
a first ball milling and at least one more subsequent ball
millings, or ball milling and/or other processing as appropri-
ate. Suitably, the ball milling may comprise dry milling fol-
lowed by wet milling. FIG. 2 illustrates a further method 100
of preparing nanoparticle based lubricants where dry milling
is followed by wet milling. Feed 110 introduces a solid lubri-
cant feed into a ball milling processor 115 where dry ball
milling, such as in a vacuum or in air, reduces the solid
lubricant feed to particles having an average dimension of the
size described above. Line 120 carries the dry milled particles
to a wet milling processor 125. Via line 160 the dry milled
particles are combined with a composite oil or an organic
medium prior to entering the wet milling processor 125.
Alternatively, the organic medium and dry milled particles
may be combined in the wet milling processor 125. In further
alternative embodiments (not shown), the dry milling and wet
milling may be carried out in a single processor where the
organic medium is supplied to the single processor for wet
milling after initially carrying out dry milling. In other alter-
native embodiments, the balls in the ball milling apparatus
may be coated with the organic medium to incorporate the
organic medium in the solid lubricant nanoparticles.

After wet milling, line 130 carries the wet milled particles
to a container 135, which may be a sonication device. Alter-
natively, line 130 may carry a mixture comprising solid lubri-
cant nanoparticles, organic medium, and a complex compris-
ing the solid lubricant nanoparticles combined with an
organic medium.

In another embodiment, prior to introduction of the wet
milled particles into the container 135, a base may be fed to
the container 135 via line 150. Alternatively, the base may be
supplied to the wet milling processor 125 and the mixing,
which may include sonicating, may be carried out in the wet
milling processor 125. In such embodiments the solid lubri-
cant nanoparticle composition may be employed as an addi-
tive and dispersed in the base. A base may be paired with a
solid lubricant nanoparticle composition according to the
ability of the base and the solid lubricant nanoparticle com-
position to blend appropriately. In such cases the solid lubri-
cant nanoparticle composition may enhance performance of
the base.

In a further embodiment, an emulsifier may be mixed with
the base. Emulsifiers may further enhance dispersion of the
solid lubricant nanoparticle composition in the base. The
emulsifier may be selected to enhance the dispersion stability
of a nanoparticle composition in a base. An emulsifier may
also be supplied to the container 135 via line 140. In many
embodiments, the emulsifier and base are combined in the
container 135 prior to introduction of the wet milled particles.
Prior mixing of the emulsifier with the base may enhance
dispersion upon addition of complexes of solid lubricant
nanoparticles and organic medium and/or solid lubricant
nanoparticles by homogeneously dispersing/dissolving the
complexes/nanoparticles. In some embodiments, the mixing
of'the emulsifier and base may comprise sonicating. Alterna-
tively, the emulsifier may be supplied to the wet milling
processor 125 and the mixing, which may include sonicating,
may be carried out in the wet milling processor 125. The
lubricant removed from the container 135 via line 120 may be
ablend comprising the wet milled particles, organic medium,
and base. The blend may further comprise an emulsifier. In
other alternative embodiments, additives may be added to the
nanoparticle based lubricant during interaction with a mating
surface.

In a further embodiment, antioxidants or anticorrosion
agents may be milled with the solid lubricant nanoparticles.
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Examples of antioxidants include, but are not limited to,
hindered phenols, alkylated phenols, alkyl amines, aryl
amines, 2,6-di-tert-butyl-4-methylphenol, 4,4'-di-tert-octyl-
diphenylamine, tert-Butyl hydroquinone, tris(2,4-di-tert-bu-
tylphenyl)phosphate, phosphites, thioesters, or a combina-
tion thereof. Examples of anticorrosion agents include, but
are not limited to, alkaline-earth metal bisalkylphenolsulpho-
nates, dithiophosphates, alkenylsuccinic acid half-amides, or
acombination thereof. In another embodiment, biocidals may
be milled with the solid lubricant nanoparticles. Examples of
biocidals may include, but are not limited to, alkyl or
kydroxylamine benzotriazole, an amine salt of a partial alkyl
ester of an alkyl, alkenyl succinic acid, or a combination
thereof.

In yet another embodiment, further processing of wet
milled particles may comprise removal of oils that are not a
part of a complex with the solid lubricant particles. Such
methods may be suitable for applications that benefit from
use of dry particles of solid lubricant, such as coating appli-
cations. Oil and/or other liquids can be removed from wet
milled particles to produce substantially dry solid lubricant
particles and complexes. Such wet milling followed by drying
may produce a solid lubricant with reduced tendency to
agglomerate. In specific embodiments, an agent, such as
acetone, can be added that dissolves oils that are not a part of
a complex, followed by a drying process such as supercritical
drying, to produce a substantially dry solid lubricant com-
prising particles treated by milling in an organic medium.

Ball milling conditions may vary and, in particular, condi-
tions such as temperature, milling time, and size and materi-
als of the balls and vials may be manipulated. In various
embodiments, ball milling may be carried out from about 12
hours to about 50 hours, suitably from about 36 hours to about
50 hours, suitably from about 40 hours to about 50 hours, and
more suitably at about 48 hours. Suitably, ball milling is
conducted at room temperature. The benefits of increasing
milling time may comprise at least one of increasing the time
for the organic medium and solid lubricant nanoparticles to
interact; and producing finer sizes, better yield of nanopar-
ticles, more uniform shapes, and more passive surfaces. An
example of ball milling equipment suitable for carrying out
the described milling includes the SPEX CertiPrep model
8000D, along with hardened stainless steel vials and hard-
ened stainless steel grinding balls, but any type of ball milling
apparatus may be used. In one embodiment, a stress of 600-
650 MPa, a load of 14.9 N, and a strain of 1073-107* per sec
may be used.

The proportions of the components in a nanoparticle based
lubricant may contribute to performance of the lubricant,
such as the lubricants dispersion stability and ability to resist
agglomeration. In wet milling, suitable ratios of solid lubri-
cant nanoparticles to organic medium may be about 1 part
particles to about 4 parts organic medium by weight, suitably,
about 1 part particles to about 3 parts organic medium by
weight, suitably, about 3 parts particles to about 8 parts
organic medium by weight, suitably, about 2 parts particles to
about 4 parts organic medium by weight, suitably, about 1
part particles to about 2 parts organic medium by weight, and
suitably, about 1 part particles to about 1.5 parts organic
medium by weight.

Suitable ratios of organic medium to emulsifier in a lubri-
cant including the solid lubricant nanoparticles may be about
1 part organic medium to less than or equal to about 1 part
emulsifier, suitably, about 1 part organic medium to about 0.5
parts emulsifier by weight, or suitably, from about 0.4 to
about 1 part emulsifier for about 1 part organic medium by
weight.
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The amount of solid lubricant nanoparticle composition
(by weight) sonicated or dispersed in the base may be from
about 0.25% to about 5%, suitably 0.5% to about 3%, suitably
0.5% to about 2%, and more suitably 0.75% to about 2%.

The amount of emulsifier (by weight) sonicated or dis-
solved in the base, depending on the end application, shelf-
life, and the like, may be from about 0.5% to about 10%,
suitably from about 4% to about 8%, suitably from about 5%
to about 6%, and suitably, from about 0.75% to about 2.25%.

The solid lubricant nanoparticle composition may be used,
without limitation, as lubricants, coatings, delivery mecha-
nisms, or a combination thereof. The solid lubricant nanopar-
ticle composition may be used, without limitation, as an addi-
tive dispersed in a base oil. The composition may also be
used, without limitation, to lubricate a boundary lubrication
regime. A boundary lubrication regime may be a lubrication
regime where the average oil film thickness may be less than
the composite surface roughness and the surface asperities
may come into contact with each other under relative motion.
During the relative motion of two surfaces with lubricants in
various applications, three different lubrication stages may
occur, and the boundary lubrication regime may be the most
severe condition in terms of temperature, pressure and speed.
Mating parts may be exposed to severe contact conditions of
high load, low velocity, extreme pressure (for example, 1-2
GPa), and high local temperature (for example, 150-300
degrees C.). The boundary lubrication regime may also exist
under lower pressures and low sliding velocities or high tem-
peratures. In the boundary lubrication regime, the mating
surfaces may be in direct physical contact. The composition
may further be used, without limitation, as a lubricant or
coating in machinery applications, manufacturing applica-
tions, mining applications, aerospace applications, automo-
tive applications, pharmaceutical applications, medical appli-
cations, dental applications, cosmetic applications, food
product applications, nutritional applications, health related
applications, bio-fuel applications or a combination thereof.
Specific examples of uses in end applications include, with-
out limitation, machine tools, bearings, gears, camshatfts,
pumps, transmissions, piston rings, engines, power genera-
tors, pin-joints, aerospace systems, mining equipment, manu-
facturing equipment, or a combination thereof. Further spe-
cific examples of uses may be, without limitation, as an
additive in lubricants, greases, gels, compounded plastic
parts, pastes, powders, emulsions, dispersions, or combina-
tions thereof. The composition may also be used as a lubricant
that employs the solid lubricant nanoparticle composition as
a delivery mechanism in pharmaceutical applications, medi-
cal applications, dental applications, cosmetic applications,
food product applications, nutritional applications, health
related applications, bio-fuel applications, or a combination
thereof. The various compositions and methods may also be
used, without limitation, in hybrid inorganic-organic materi-
als. Examples of applications using inorganic-organic mate-
rials, include, but are not limited to, optics, electronics, ionics,
mechanics, energy, environment, biology, medicine, smart
membranes, separation devices, functional smart coatings,
photovoltaic and fuel cells, photocatalysts, new catalysts,
sensors, smart microelectronics, micro-optical and photonic
components and systems for nanophotonics, innovative cos-
metics, intelligent therapeutic vectors that combined target-
ing, imaging, therapy, and controlled release of active mol-
ecules, and nanoceramic-polymer composites for the
automobile or packaging industries.

In some embodiments, the ball milling process may create
a close caged dense oval shaped architecture (similar to a
football shape or fullerene type architecture). This may occur
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when molybdenum disulphide is milled in a gas or vacuum.
FIG. 7(A) shows the close caged dense oval shaped architec-
ture of molybdenum disulphide nanoparticles that have been
ball milled in air for 48 hours.

In other embodiments, the ball milling process may create
an open ended oval shaped architecture (similar to a coconut
shape) of molybdenum disulphide nanoparticles which are
intercalated and encapsulated with an organic medium and
phospholipids. This may occur when molybdenum disul-
phide is milled in a gas or vacuum followed by milling in an
organic medium. FIG. 7(B) shows the open ended oval
shaped architecture of molybdenum disulphide nanoparticles
that have been ball milled in air for 48 hours followed by ball
milling in canola oil for 48 hours.

As shown in the examples, the tribological performance of
the nanoparticle based lubricant may be improved. The tribo-
logical performance may be measured by evaluating different
properties. An anti-wear property may be a lubricating fluid
property that has been measured using the industry standard
Four-Ball Wear (ASTM D4172) Test. The Four-Ball Wear
Test may evaluate the protection provided by an oil under
conditions of pressure and sliding motion. Placed in a bath of
the test lubricant, three fixed steel balls may be put into
contact with a fourth ball of the same grade in rotating contact
at preset test conditions. Lubricant wear protection properties
may be measured by comparing the average wear scars on the
three fixed balls. The smaller the average wear scar, the better
the protection. Extreme pressure properties may be lubricat-
ing fluid properties that have been measured using the indus-
try standard Four-Ball Wear (ASTM D2783) Test. This test
method may cover the determination of the load-carrying
properties of lubricating fluids. The following two determi-
nations may be made: 1) load-wear index (formerly Mean-
Hertz load) and 2) weld load (kg). The load-wear index may
be the load-carrying property of a lubricant. It may be an
index of the ability of a lubricant to minimize wear at applied
loads. The weld load may be the lowest applied load in kilo-
grams at which the rotating ball welds to the three stationary
balls, indicating the extreme pressure level that the lubricants
can withstand. The higher the weld point scores and load wear
index values, the better the anti-wear and extreme pressure
properties of a lubricant. The coefficient of friction (COF)
may be a lubricating fluid property that has been measured
using the industry standard Four-Ball Wear (ASTM D4172)
Test. COF may be a dimensionless scalar value which
describes the ratio of the force of friction between two bodies
and the force pressing them together. The coefficient of fric-
tion may depend on the materials used. For example, ice on
metal has a low COF, while rubber on pavement has a high
COF. A common way to reduce friction may be by using a
lubricant, such as oil or water, which is placed between two
surfaces, often dramatically lessening the COF.

The composition may have a wear scar diameter of about
0.4 mm to about 0.5 mm. The composition may have a COF
of'about 0.06 to about 0.08. The composition may have aweld
load of about 150 kg to about 350 kg. The composition may
have a load wear index of about 20 to about 40. The values of
these tribological properties may change depending on the
amount of solid lubricant nanoparticle composition sonicated
or dissolved in the base.

Various features and aspects of the invention are set forth in
the following examples, which are intended to be illustrative
and not limiting.

EXAMPLES
Example 1

Ball milling was performed in a SPEX 8000D machine
using hardened stainless steel vials and balls. MoS, (Alfa
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Aesar, 98% pure, 700 nm average particle size) and canola oil
(Crisco) were used as the starting materials in a ratio of 1 part
MoS, (10 grams) to 2 parts canola oil (20 grams). The ball to
powder ratio was 2 to 1. In other words, the ball weight in the
container was 2% by weight and the weight of the MoS,
sample was 1% by weight. MoS, was ball milled for 48 hours
in air followed by milling in canola oil for 48 hrs at room
temperature. The nanoparticles were about 50 nm after ball
milling. Table 1 summarizes milling conditions and resultant
particle morphologies. It was observed that there was a strong
effect of milling media on the shape of the ball milled nano-
particles. Dry milling showed buckling and folding of the
planes when the particle size was reduced from micron size to
nanometer size. However, the dry milling condition used here
produced micro clusters embedding several nanoparticles.
On the other hand, wet milling showed no buckling but saw
de-agglomeration.

TABLE 1

Milling conditions and parametric effect on particle size and shape

Shape of the particles Shape of the clusters

Dry
Milling
12 hours  Plate-like with sharp edges Sharp and irregular
24 hours  Plate-like with round edges More or less rounded
48 hours  Spherical Globular clusters
Wet
Milling
12 hours  Thin plates with sharp edges ~ Thing plates with sharp edges
24 hours  Thin plates with sharp edges ~ Thin plates with sharp edges
48 hours  Thin plates with sharp edges  Thin plates with sharp edges
TABLE 2
Effect of milling media on resultant size (starting size
sub-micron), shape, and agglomeration of particles
Dry milled and
Properties Dry Alcohol Oil oil milled
Clusters size (nm) 100 300 200 100
Particle size (nm) 30 80 80 30
Agglomeration High Very less  Very less Very less
Shape of the Spherical  Platelet Platelet Spherical
particles

FIG. 3 shows TEM micrographs of the as-available (700
nm), air milled and hybrid milled (48 hrs in air medium
followed by 48 hours in oil medium) MoS, nanoparticles.
FIG. 3(A) represents micron-sized particle chunks of the
as-available MoS, sample off the shelf. These micrographs,
particularly FIG. 3(B), represent agglomerates of lubricant
nanoparticles when milled in the air medium. FIG. 3(B)
clearly demonstrates size reduction in air milled MoS,.
Higher magnification (circular regions) revealed formation of
the disc shaped nanoparticles after milling in the air medium.
From FIG. 3(C) and 3(D) it may be concluded that the particle
size was reduced to less than 30 nm after milling in air and
hybrid conditions. Regardless of the occasionally observed
clusters, the average size of the clusters is less than or equal to
200 nm.

Hybrid milled samples were dispersed in paraffin oil (from
Walmart) and remained suspended without settling. How-
ever, the dispersion was not uniform after a few weeks. To
stabilize the dispersion and extend the anti-wear properties,
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phospholipids were added. Around 2% by weight of soy
lecithin phospholipids (from American Lecithin) was added
in the base oil.

FIGS. 4 and 5 show the XRD and XPS spectra of MoS,
before and after ball milling, respectively. XRD spectra
revealed no phase change as well as no observable amor-
phization in the MoS, after milling. This observation is con-
sistent with the continuous platelets observed throughout the
nanoparticle matrix in TEM analysis for milled material.
Broadening of peaks (FWHM) was observed in XRD spectra
ofMoS,, ball milled in air and hybrid media, respectively. The
peak broadening may be attributed to the reduction in particle
size. The estimated grain size is 6 nm. This follows the theme
of'ball milling where clusters consist of grains and sub-grains
of'the order of 10 nm. XPS analysis was carried out to study
the surface chemistry of the as-available and hybrid milled
MoS8, nanoparticles. As shown in FIG. 3, a carbon (C) peak
observed at 285 eV in the as-available MoS, sample shifted to
286.7 eV. Bonding energies of 286 eV and 287.8 eV corre-
spond to C—O and C—0 bond formation, respectively. The
observed binding energy level may demonstrate that a thin
layer containing mixed C—O & C—O0 chains enfolds the
MoS, particles.

Preliminary, tribological tests on the synthesized nanopar-
ticles were performed on a four-ball machine by following
ASTM 4172. The balls used were made of AISI 52100 stain-
less steel and were highly polished. Four Ball Wear Scar
measurements using ASTM D4172 were made under the
following test conditions:

Test Temperature, ° C. 75 (x1.7)
Test Duration, min 60 (x1)

Spindle Speed, rpm 1,200 (=60)
Load, kg 40 (x0.2)

Wear scar diameter (WSD, mm) of each stationary ball was
quantified in both vertical and horizontal directions. The aver-
age value of WSD from 3 independent tests was reported
within £0.03 mm accuracy.

Four Ball Extreme Pressure measurements using ASTM
D2783 were made under the following test conditions:

Test Temperature, ° C.
Test Duration, min
Spindle Speed, rpm

23
60 (£1)
1,770 (£60)

Load, kg Varies, 10-sec/stage
Ball Material AIST-E52100
Hardness 64-66

Grade 25EP

Three different particles (in w/w ratio) were evaluated for
their anti-wear properties as additives in paraffin oil. FIG.
6(A) shows the average wear scar measurements for paraffin
oil without a nanoparticle additive, paraffin oil with micron
sized MoS,, paraffin oil with MoS, that was milled in air for
48 hours, and paraffin oil with MoS, that was milled in air for
48 hours followed by milling in canola oil for 48 hours. FIG.
6(B) shows the load wear index for paraffin oil without a
nanoparticle additive, paraffin oil with micron sized MoS,,
paraffin oil with MoS, that was milled in air for 48 hours, and
paraffin oil with MoS, that was milled in air for 48 hours
followed by milling in canola oil for 48 hours. FIG. 6(C)
shows the COF for paraffin oil without a nanoparticle addi-
tive, paraffin oil with micron sized MoS,, paraffin oil with
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MoS, that was milled in air for 48 hours, and paraffin oil with
MoS8, that was milled in air for 48 hours followed by milling
in canola oil for 48 hours. FIG. 6(D) shows the extreme
pressure data for paraftin oil with micron sized MoS,, paratfin
oil with MoS, that was milled in air for 48 hours, and paraffin
oil with MoS, that was milled in air for 48 hours followed by
milling in canola oil for 48 hours. In each test the nanoparticle
additive was present in the amount of 1% by weight.

5

12

is also ball milled in different types of organic media. For
example, one organic medium that is used is canola oil methyl
ester. The processing of this will be similar to the above
mentioned example.

Different types of ball milling processes can be used. For

instance, in the first step, cryo ball milling in air followed by
high temperature ball milling in an organic medium is used.

Test data from nanoparticle composition additive in base oil

Four Ball Extreme pressure

Solid Lubricant Four Ball Tests at 40 kg Load

(ASTM D-2783)

All dispersions diluted to x % (ASTM D4172)

by wt. in reference base oil WSD (mm) COF (kg)

Weld Load

Load Wear

Index

Paraffin oil

Nanoparticles of MoS,
without organic medium
(0.5%)

Nanoparticles of MoS,
without organic medium
(1.0%)

Nanoparticles of MoS,
without organic medium
(1.5%)

Conventional available micro
particles (0.5%)
Conventional available micro
particles (1.0%)
Conventional available micro
particles (1.5%)

NanoGlide: Nanoparticles of
MoS, with organic medium
(0.5%)

NanoGlide: Nanoparticles of
MoS, with organic medium
(1.0%)

NanoGlide: Nanoparticles of
MoS, with organic medium
(1.5%)

1.033
1.012

0.155
0.102

126
100

0.960 0.114 126

0.915 0.098 126

1.009 0.126 160

0.948 0.091 126

0.922 0.106 126

0451 0.077 160

0.461 0.069 200

0.466 0.075 315

12.1
16.1

22.0

22.0

19.1

24.8

25.9

34.3

The transfer film in the wear scar, studied using energy
dispersive x-ray analysis (EDS), identified the signatures of
phosphates in addition to molybdenum and sulphur. FIG. 9(a)
depicts the base case of paraffin oil without a nanoparticle
additive. FIG. 9(b) depicts paraffin oil with the molybdenum
disulphide nanoparticles and the emulsifier. It shows the early
evidences of molybdenum (Mo)-sulphur (S)-phosphorous
(P) in the wear track. Iron (Fe) is seen in FIGS. 9(a) and 9(5),
as it is the material of the balls (52100 steel) in the four-ball
test. The molybdenum and sulphur peaks coincide and are not
distinguishable because they have the same binding energy.
Elemental mapping also showed similar results.

Prophetic Examples

Examples 2-23 are made using a similar method as
Example 1, unless specified otherwise.

Example 2

MoS, (Alfa Aesar, 98% pure, 700 nm average particle size)
and canola oil from ADM are used as the starting materials.
The MoS, powder is ball milled for various time conditions,
variable ball/powder ratios, and under various ambient con-
ditions, starting with air, canola oil and the subsequent com-
bination of milling in air followed by milling in canola oil. It
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After the ball milling, the active EP-EA (extreme pres-
sure—environmentally acceptable) particles are treated with

phospholipids that have been mixed with a base oil such as
paratfin oil.

Example 3

Molybdenum disulphide is ball milled with boron using a
ratio of 1 part molybdenum disulphide to 1 part boron. This
mixture is then ball milled with vegetable oil (canola oil)
using a ratio of 1 part solid lubricant nanoparticles to 1.5 parts
canola oil. An emulsifier is added using a ratio of 1 part solid
lubricant nanoparticle composition (MoS,-boron-canola oil)
to 2 parts emulsifier. This is added to the base oil (paraffin oil).

Example 4

Molybdenum disulphide is ball milled with copper using a
ratio of 1 part molybdenum disulphide to 1 part metal. This
mixture is then ball milled with vegetable oil (canola oil)
using a ratio of 1 part solid lubricant nanoparticles to 1.5 parts
canola oil. An emulsifier is added using a ratio of 1 part solid
lubricant nanoparticle composition (MoS,-copper-canola
oil) to 2 parts emulsifier. This is added to the base oil (paraffin
oil).

Example 5

A molybdenum disulphide/graphite (obtained from Alfa
Aesar) mixture in the ratio of 1:1 is ball milled. This mixture
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is then ball milled with vegetable oil (canola oil) using a ratio
of 1 part solid lubricant nanoparticles to 1.5 parts canola oil.
An emulsifier is added using a ratio of 1 part solid lubricant
nanoparticle composition (MOS2-graphite-canola oil) to 2
parts emulsifier. This is added to the base oil paraftin oil).

Example 6

A molybdenum disulphide/boron nitride (Alfa Aesar) mix-
ture in the ratio of 1:1 mixture is ball milled. This mixture is
then ball milled with vegetable oil (canola oil) using a ratio of
1 part solid lubricant nanoparticles to 1.5 parts canola oil. An
emulsifier is added using a ratio of 1 part solid lubricant
nanoparticle composition (MoS,-boron nitride-canola oil) to
2 parts emulsifier. This is added to the base oil (paraffin oil).

Example 7

A molybdenum disulphide/graphite/boron nitride mixture
in theratio 1:1:1 is ball milled. This mixture is then ball milled
with vegetable oil (canola oil) using a ratio of 1 part solid
lubricant nanoparticles to 1.5 parts canola oil. An emulsifier is
added using a ratio of 1 part solid lubricant nanoparticle
composition (MoS,-graphite-boron nitride-canola oil) to 2
parts emulsifier. This is added to the base oil (paraffin oil).

Example 8

A molybdenum disulphide/graphite mixture in the ratio of
1:1:1 is ball milled. This mixture is then ball milled with
vegetable oil (canola oil) using a ratio of 1 part solid lubricant
nanoparticles to 1.5 parts canola oil. An emulsifier is added
using a ratio of 1 part solid lubricant nanoparticle composi-
tion (MoS,-graphite-boron-canola oil) to 2 parts emulsifier.
This is added to the base oil (paraffin oil).

Example 9

A molybdenum disulphide/graphite mixture in the ratio of
1:1 is ball milled with copper using a ratio of 1 part molyb-
denum disulphide/graphite to 1 part metal. This mixture is
then ball milled with vegetable oil (canola oil) using a ratio of
1 part solid lubricant nanoparticles to 1.5 parts canola oil. An
emulsifier is added using a ratio of 1 part solid lubricant
nanoparticle composition (MoS,-graphite-copper-canola oil)
to 2 parts emulsifier. This is added to the base oil (paraffin oil).

Example 10

A molybdenum disulphide/boron nitride mixture in the
ratio of 1:1 is ball milled with boron using a ratio of 1 part
molybdenum disulphide/boron nitride to 1 part metal. This
mixture is then ball milled with vegetable oil (canola oil)
using aratio of 1 part solid lubricant nanoparticles to 1.5 parts
canola oil. An emulsifier is added using a ratio of 1 part solid
lubricant nanoparticle composition (MoS,-boron nitride-bo-
ron-canola oil) to 2 parts emulsifier. This is added to the base
oil (paraffin oil).

Example 11

A molybdenum disulphide/boron nitride mixture in the
ratio of 1:1 mixture is ball milled with copper using a ratio of
1 part molybdenum disulphide/boron nitride to 1 part metal.
This mixture is then ball milled with vegetable oil (canola oil)
using aratio of 1 part solid lubricant nanoparticles to 1.5 parts
canola oil. An emulsifier is added using a ratio of 1 part solid
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lubricant nanoparticle composition (MoS,-boron nitride-
copper-canola oil) to 2 parts emulsifier. This is added to the
base oil (paraffin oil).

Example 12

A molybdenum disulphide/boron nitride/graphite mixture
in the ratio of 1:1:1 is ball milled with boron using a ratio of
1 part molybdenum disulphide/boron nitride/graphite to 1
part metal. This mixture is then ball milled with vegetable oil
(canola oil) using aratio of 1 part solid lubricant nanoparticles
to 1.5 parts canola oil. An emulsifier is added using a ratio of
1 part solid lubricant nanoparticle composition (MoS,-boron
nitride-graphite-boron-Canola oil) to 2 parts emulsifier. This
is added to the base oil (paraffin oil).

Example 13

A molybdenum disulphide/boron nitride/graphite in the
ratio of 1:1:1 is ball milled with copper using a ratio of 1 part
molybdenum disulphide/boron nitride/graphite to 1 part
metal. This mixture is then ball milled with vegetable oil
(canola oil) using aratio of 1 part solid lubricant nanoparticles
to 1.5 parts canola oil. An emulsifier is added using a ratio of
1 part solid lubricant nanoparticle composition (MoS,-boron
nitride-graphite-copper-canola oil) to 2 parts emulsifier. This
is added to the base oil (paraffin oil).

Example 14

Molybdenum disulphide is ball milled with polytetrafluo-
roethylene (Teflon®) in a ration of 1 part molybdenum dis-
ulphide to 1 part Teflon®. This mixture is then added to the
base oil (paraffin oil) with a phospholipid emulsifier (soy
lecithin).

Example 15

Molybdenum disulphide is ball milled with polytetrafluo-
roethylene (Teflon®) in a ration of 1 part molybdenum dis-
ulphide to 1 part Teflon®. This mixture is then added to the
base oil (paraffin oil) with a phospholipid emulsifier (soy
lecithin).

Example 16

Molybdenum disulphide is ball milled with metal additives
like copper, silver, lead etc. in a ratio of 1 part molybdenum
disulphide to 1 part metal additive. This mixture is further ball
milled in vegetable oil based esters (canola oil methyl esters)
in a ratio of 1 part solid lubricant nanoparticles to 1.5 parts
esters. An emulsifier is added using a ratio of 1 part solid
lubricant nanoparticle composition (MOS,-esters) to 2 parts
phospholipid emulsifier. This is added to the base oil (parattin
oil).

Example 17

Molybdenum disulphide is ball milled with metal additives
like copper, silver, lead etc. in a ratio of 1 part molybdenum
disulphide to 1 part metal additive. This mixture is further ball
milled in vegetable oil based esters (canola oil methyl esters)
in a ratio of 1 part solid lubricant nanoparticles to 1.5 parts
esters. This is added to the base oil (paraffin oil).

Example 18

Molybdenum disulphide is ball milled. The solid lubricant
nanoparticles are further ball milled in vegetable oil based
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esters (canola oil methyl esters) in a ratio of 1 part solid
lubricant nanoparticles to 1.5 parts esters. An emulsifier is
added using a ratio of 1 part solid lubricant nanoparticle
composition (MoS,-esters) to 2 parts phospholipid emulsi-
fier. This is added to the base oil (paraffin oil).

Example 19

Molybdenum disulphide is ball milled. The solid lubricant
nanoparticles are further ball milled in vegetable oil based
esters (canola oil methyl esters) in a ratio of 1 part solid
lubricant nanoparticles to 1.5 parts esters. This is added to the
base oil (paraffin oil).

Example 20

Molybdenum disulphide is ball milled with metal additives
like copper, silver, lead etc. in a ratio of 1 part molybdenum
disulphide to 1 part metal additive. This mixture is further ball
milled in fatty acids (oleic acid) in a ratio of 1 part solid
lubricant nanoparticles to 1.5 parts fatty acids. An emulsifier
is added using a ratio of 1 part solid lubricant nanoparticle
composition (MoS,-oleic acid) to 2 parts phospholipid emul-
sifier. This is added to the base oil (paraffin oil).

Example 21

Molybdenum disulphide is ball milled with metal additives
like copper, silver, lead etc. in a ratio of 1 part molybdenum
disulphide to 1 part metal additive. This mixture is further ball
milled in fatty acids (oleic acid) in a ratio of 1 part solid
lubricant nanoparticles to 1.5 parts fatty acids. This is added
to the base oil (paraffin oil).

Example 22

Molybdenum disulphide is ball milled. The solid lubricant
nanoparticles are further ball milled in fatty acids (oleic acid)
in a ratio of 1 part solid lubricant nanoparticles to 1.5 parts
fatty acids. An emulsifier is added using a ratio of 1 part solid
lubricant nanoparticle composition (MoS,-oleic acid) to 2
parts phospholipid emulsifier. This is added to the base oil
(paraftin oil).

Example 23

Molybdenum disulphide is ball milled. The solid lubricant
nanoparticles are further ball milled in fatty acids (oleic acid)
in a ratio of 1 part solid lubricant nanoparticles to 1.5 parts
fatty acids. This is added to the base oil (paraffin oil).

What is claimed is:

1. A method of making a solid lubricant nanoparticle com-
position comprising:

(a) dry milling a solid lubricant until the dry milled solid
lubricant comprises nanoparticles having an average
particle dimension of less than or equal to about 500 nm;

(b) then wet milling the nanoparticles in an organic
medium until at least a portion of the nanoparticles have
an open-ended architecture and the organic medium is
intercalated in the nanoparticles.

2. The method of claim 1, wherein the solid lubricant
comprises at least one layered material selected from the
group consisting of chalcogenides, molybdenum disulphide,
tungsten disulphide, graphite, boron nitride, and combina-
tions thereof.

3. The method of claim 1, wherein organic medium com-
prises at least one material selected from the group consisting
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of oil mediums, grease mediums, alcohol mediums, compos-
ite oil, canola oil, vegetable oils, soybean oil, corn oil, ethyl
and methyl esters of rapeseed oil, distilled monoglycerides,
monoglycerides, diglycerides, acetic acid esters of
monoglycerides, organic acid esters of monoglycerides, sor-
bitan, sorbitan esters of fatty acids, propylene glycol esters of
fatty acids, polyglycerol esters of fatty acids, hydrocarbon
oils, n-hexadecane, phospholipids, and combinations thereof.

4. The method of claim 2, further comprising adding at
least one additional solid lubricant at step (a), step (b), or steps
(a) and (b), the additional solid lubricant comprising at least
one material selected from the group consisting of polytet-
rafluoroethylene, boron nitride, hexagonal boron nitride, soft
metals, silver, lead, nickel, copper, cerium fluoride, zinc
oxide, silver sulfate, cadmium iodide, lead iodide, barium
fluoride, tin sulfide, zinc phosphate, zinc sulfide, mica, boron
nitrate, borax, fluorinated carbon, zinc phosphide, boron, and
combinations thereof.

5. The method of claim 1, wherein an anti-oxidant or an
anti-corrosion material is added at step (a), or at step (b), or at
both steps (a) and (b).

6. The method of claim 1, further comprising mixing the
dry milled nanoparticle composition with a base prior to wet
milling.

7. The method of claim 6, wherein the base comprises at
least one material selected from the group consisting of oil,
grease, plastic, gel, wax, silicone, hydrocarbon oil, vegetable
oil, corn oil, peanut oil, canola oil, soybean oil, mineral oil,
paraffin oil, synthetic oil, petroleum gel, petroleum grease,
hydrocarbon gel, hydrocarbon grease, lithium based grease,
fluoroether based grease, ethylenebistearamide, and combi-
nations thereof.

8. The method of claim 1, wherein a biocidal is added at
step (a), or at step (b), or at both steps (a) and (b).

9. A solid lubricant nanoparticle composition comprising:

a plurality of nanoparticles having an open-ended architec-

ture; and

an organic medium intercalated in the nanoparticles; and

wherein at least a portion of the nanoparticles have an

average particle dimension of less than or equal to about
500 nm.

10. The composition of claim 9, wherein the nanoparticles
are encapsulated or coated with the organic medium.

11. The composition of claim 9, further comprising a base,
wherein the composition comprises from about 0.25% to
about 5% nanoparticles by weight dispersed in the base.

12. The composition of claim 11, wherein the composition
comprises from about 0.5% to about 2% nanoparticles by
weight.

13. The composition of claim 9, further comprising an
emulsifier.

14. The composition of claim 13, comprising from about
0.5% to about 10% emulsifier by weight.

15. The composition of claim 14, comprising from about
0.75% to about 2.25% emulsifier by weight.

16. The composition of claim 13, wherein the emulsifier
comprises at least one material selected from the group con-
sisting of lecithins, phospholipids, soy lecithins, detergents,
distilled monoglycerides, monoglycerides, diglycerides, ace-
tic acid esters of monoglycerides, organic acid esters of
monoglycerides, sorbitan esters of fatty acids, propylene gly-
col esters of fatty acids, polyglycerol esters of fatty acids,
compounds containing phosphorous, compounds containing
sulfur, compounds containing nitrogen, and combinations
thereof

17. The composition of claim 9, further comprising an
antioxidant.
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18. The composition of claim 17, wherein the antioxidant
comprises at least one material selected from the group con-
sisting of hindered phenols, alkylated phenols, alkyl amines,
aryl amines, 2,6-di-tert-butyl-4-methylphenol, 4,4'-di-tert-
octyldiphenylamine, tert -butyl hydroquinone, tris(2,4-di-
tert-butylphenyl)phosphate, phosphites, thioesters, and com-
binations thereof.

19. The composition of claim 9, further comprising an
anticorrosion agent.

20. The composition of claim 19, wherein the anticorrosion
agent comprises at least one material selected from the group
consisting of alkaline earth metal bisalkylphenolsulphonates,
dithiophosphates, alkenylsuccinic acid half-amides, and
combinations thereof.

21. The composition of claim 9, wherein the nanoparticles
comprise at least one layered material selected from the group
consisting of chalcogenides, molybdenum disulphide, tung-
sten disulphide, graphite, boron nitride, and combinations
thereof.

22. The composition of claim 9, wherein the organic
medium comprises at least one material selected from the
group consisting of oil mediums, grease mediums, alcohol
mediums, composite oil, canola oil, vegetable oils, soybean
oil, corn oil, ethyl and methyl esters of rapeseed oil, distilled
monoglycerides, monoglycerides, diglycerides, acetic acid
esters of monoglycerides, organic acid esters of monoglycer-
ides, sorbitan, sorbitan esters of fatty acids, propylene glycol
esters of fatty acids, polyglycerol esters of fatty acids, hydro-
carbon oils, n-hexadecane, phospholipids, and combinations
thereof.

23. The composition of claim 9, further comprising at least
one material selected from the group consisting of polytet-
rafluoroethylene, boron nitride, hexagonal boron nitride, soft
metals, silver, lead, nickel, copper, cerium fluoride, zinc
oxide, silver sulfate, cadmium iodide, lead iodide, barium
fluoride, tin sulfide, zinc phosphate, zinc sulfide, mica, boron
nitrate, borax, fluorinated carbon, zinc phosphide, boron, and
combinations thereof.
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24. The composition of claim 9, further comprising a base
comprising at least one material selected from the group
consisting of oil, grease, plastic, gel, wax, silicone, hydrocar-
bon oil, vegetable oil, corn oil, peanut oil, canola oil, soybean
oil, mineral oil, paraffin oil, synthetic oil, petroleum gel,
petroleum grease, hydrocarbon gel, hydrocarbon grease,
lithium based grease, fluoroether based grease, ethylenebi-
stearamide, and combinations thereof, wherein the nanopar-
ticles are dispersed in the base.

25. The nanoparticle composition of claim 9, further com-
prising at least one biocidal.

26. The nanoparticle composition of claim 25, wherein the
biocidal comprises at least one material selected from the
group consisting of alkyl or hydroxylamine benzothiazole, an
amine salt of a partial alkyl ester of an alkyl, alkenyl succinic
acid, and combinations thereof.

27. The nanoparticle composition of claim 9, wherein the
organic medium comprises a phospholipid.

28. A method comprising:

lubricating an object with a nanoparticle composition, the

nanoparticle composition comprising:

a plurality of nanoparticles having an open-ended archi-
tecture; and

an organic medium intercalated in the nanoparticles;

wherein at least a portion of the nanoparticles have an
average particle dimension of less than or equal to
about 500 nm.

29. A method comprising:

delivering an agent with a nanoparticle composition, the

nanoparticle composition comprising:

a plurality of nanoparticles having an open-ended archi-
tecture; and

an organic medium intercalated in the nanoparticles; and

the agent;

wherein at least a portion of the nanoparticles have an
average particle dimension of less than or equal to
about 500 nm.
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