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Abstract.-Methodologies for determining soil chemical properties have evolved dramatically during the past century. Early
geochemical analyses were conducted exclusively through the use of wet chemistry techniques that were relatively reliable but
painstaking and subject to errors at various stages of analysis. Near infrared reflectance spectroscopy (NIRS) has emerged as a new
approach for rapidly analyzing a variety ofmaterials including soils. In this study soil samples were taken from eight study areas across
the Ozark Highlands of Arkansas, and NIRS calibration models were developed to determine the accuracy of using NIRS to analyze
soils compared with standard soil chemical analysis protocols. Multivariate regression models were highly effective for analyzing
several important elements. C and N models explained 92% and 88% of their variation, respectively, and Ca, Mg, P, and Mn models
explained 72-88% ofthe variability in these elements. Models for C:N and pH explained 82% and 86% oftheir variability, respectively.
Models for micronutrients Cu and Zn did not fit as well with 22% and 40% of their variability explained, respectively. Our findings
suggest that additional NIRS calibration and modeling is promising for rapidly analyzing the chemical composition of soils, and it is
desirable to develop model libraries that are calibrated for the soils of a given region.

Key words:-Near infrared reflectance spectroscopy, NIRS, Ozark Highlands, Arkansas, soil chemical properties.

Introduction

Agricultural and silvicultural production has been
revolutionized by a broad array of technical advances that
continue to elucidate the biochemical and biogeochemical
processes underlying vegetative growth in natural and managed
environmental systems. Prior to the work of Liebig (1843)
and his contemporaries, supplementing soils to increase plant
vigor and gro\\<1h was as much art as science. Subsequent
research identifying plant essential nutrients coupled with the
Haber-Bosch process for synthesizing ammonium from plant
unavailable atmospheric nitrogen continued to improve the
ability of land managers to increase biomass production in a
variety of ecosystems (Smil 200 I). At present scientists and
managers are faced with the challenge of continuing the grovv1h
of biomass production while simultaneously preserving or
improving ecosystem services (Carpenter et al. 2006); however,
traditional soil and plant analytical techniques are too time
consuming and expensive to implement across the large land
expanses necessary for truly optimized ecosystem management.

The emergence of near infrared spectroscopic analytical
techniques coupled with powerful multivariate analysis
procedures is providing the opportunity to rapidly and accurately
provide the same information as traditional laboratory techniques
without the cost and potentially hazardous chemical analyses.
Over the last two decades, near infrared reflectance spectroscopy
(NIRS) has become a well-known and effective analytical
tool in agricultural and ecological research, but applications to
soil analysis are a relatively recent development (Malley et al.
2004). NIRS has been used for the evaluation offorage nutrition
and digestibility (Mcllwee et al. 2001), soil quality (Chang et
at. 2001), and fecal analysis (Landau et al. 2006). The use of

NIRS has increased because it is a quick, accurate, and cost
effective way to non-destructively analyze samples. NIRS
quantifies chemical and physical components by determining the
absorption of near infrared radiation by chemical bonds found
in sample materials (Dryden 2003). The absorption signatures
from spectral scans are used to develop mathematical equations
that quantity chemical and elemental components.

The near infrared(NIR) spectrum consists ofelectromagnetic
radiation of wavelengths just beyond the red band of visible
light, and the wavelengths ofprimary inferential importance lie
between 800 and 2500 nm (Stuth et al. 2003). Although this band
ofradiation is not visible to the human eye and is not particularly
useful for plant primary production, the photons in this energy
range constantly interact with the surfaces of all materials that
they contact. When a photon strikes a chemical bond, that
photon is absorbed, reflected, or transmitted. If the photons are
absorbed by organic molecules, the photons cause the molecular
chemical bonds to vibrate and stretch (Gillon et at. 1999). The
bonds commonly stretched are C-H, N-H, O-H, C-O, and C-C,
although electromagnetic radiation differentially influences all
bonds (Stuth et at. 2003). The magnitude of NIR absorption
by sample materials is a function of many factors, including
intramolecular bonds, molecular orientations, and interactions
with neighboring elements (Workman and Shenk 2004). Each
bond has a specific range of wavelengths that are absorbed or
reflected (Dryden 2003). The affected bonds are abundant in a
variety ofsoil and plant molecules, and new applications ofNlRS
technology are rapidly developing, particularly in biological and
ecological disciplines (Workman and Shenk 2004).

NIR spectrometers utilize sensors that measure wavelengths
of radiation that are being reflected by an object to facilitate
inferences about the radiation absorbed. The important diagnostic
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information for statistical modeling is in the wavelengths
absorbed instead ofthe wavelengths reflected (Locher et ai. 2005)
since this absorption of radiation allows for bond identification
and quantification. To measure absorption spectrometers must
either emit a known quantity of NIR radiation or measure the
radiance of available NIR radiation (Foley et ai. 1998). Given
a known quantity of NIR radiation emitted, sensors then detect
the wavelength and quantity of electromagnetic radiation being
absorbed. Once absorption has been quantified for a given
material, chemical content is determined through the use of
reference samples of known chemical composition (Dryden
2003). NIRS is a powerful analytical methodology, but careful
and consistent sample preparation is required for reliable analysis
of unknown samples for comparison with reference samples
(Alomar et ai. 2003). Moisture content, particle size, drying
temperature, sample temperature, and sample packing density
can affect the accuracy of spectral analyses (Dryden 2003).

NIRS is a desirable analytical methodology for several
reasons, including a short analysis time, the lack of a need for
chemical processing, the relatively small amount of sample
material needed for analysis, and the ability to preserve the

sample after analysis for additional testing ifnecessary (Foley et
ai. 1998). Arguably the ability to complete elemental analyses
without the use of chemicals is the most appealing reason for
adopting NIRS (Dryden 2003). However, the need for only a
small amount of sample to achieve accurate results following
calibration makes NIRS a good option when insufficient sample
material is available to conduct a battery of standard chemical
analytical tests.

The purpose of this paper is to evaluate the accuracy
of quantifYing a variety of soil chemical properties using
spectroscopic data from scans of highly weathered Ozark
Highland soils by comparison to analytical results from
standardized laboratory soil analysis techniques. Specific
objectives are to

I) Quantify the ability of NIRS to accurately predict the
elemental composition of forest soils from the Ozark
Highlands and

2) Quantify the ability of NIRS to accurately predict non
elemental chemical properties of forest soils from the
Ozark Highlands.

Study Sites
• National Forest land •

BM- Boston Mountains
CS- Ozark National Forest (Cass)
SYL- Ozark National Forest (Sylamore)
ws- Ozark National Forest (Witt Springs)

Wildlife Management Area I
GM- Gulf Mountain
GR- Gene Rush
HEA- Harold E. Alexander
Me- Madison County

N

A
o
I

20 40
I I I I I

eo Kilometers
I

Fig. I. Location of study sites on national forest lands and wildlife management areas across the Ozark Highland physiographic region
ofArkansas.
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Materials and Methods

Eight study sites were sampled on public forest lands
across the Ozark Highland physiographic region of Arkansas
(Fig. 1). Four study sites each were selected from both state
lands (Wildlife Management Areas- WMAs) and federal lands
(National Forests), so that potential differences in soil chemistry
due to management practices would be equally represented
in the soil data. Ten soil samples were taken along a transect
that conformed to the summit/ridge landforms of each site.
Depth of sampling was IS cm with a minimum distance of
30 m between sample locations. Sampling was restricted to
summit/ridge landscape positions to minimize effects on the
measured soil properties from differences in landforms across
sites (Burrough 1991; Daniels and Hammer 1992). To capture
potential seasonal variability of soil chemical properties, each
site was sampled during spring, summer, and fall seasons for a
total of three sampling periods per site. Sample locations within
the study sites were varied each season to avoid the potential
influence of prior sampling on the soil chemical properties of
interest. The soils across each of the study areas are mapped as
Ultisols with high coarse fragment contents. (Soil Survey Staff
2007). The optimal number of samples for the development
of calibration equations varies by the type of materials being
scanned, but previous research of soil and mineral substrates
suggest that 114 (Danieli et al. 2004) to 262 samples (Cozzolino
and Moron 2004) provide consistent, robust modeling results.
In this investigation 215 soil samples were both chemically
and spectrophometrically analyzed. Soil samples were taken in
conjunction with plant foliar samples as part of a larger study,
and the limited availability/presence of the target plant during
the fall of 2005 reduced overall number of soil samples from
240.

Prior to NIRS analysis soil samples were dried at 70·C for
24 hrs to minimize the presence of O-H bonds in water, which
can absorb photons over a wide range of wavelengths and hide
absorption by other bonds (Foley et al. 1998; Alomer et al. 2003).
Soils were passed through a 2-mm sieve using a RoTap® sieve
shaker to minimize inconsistent reflectance resulting from path
length variance through which electromagnetic radiation traveled
due to variable particle size (Foley et al. 1998). Two grams of
soil then were loaded into sample cups for spectroscopic analysis
\Vith a NIRS Model 4500 Foss-NIRSystems spectrophotometer
(NIRS Model 4500 Foss-NIRSystems, Silver Spring, MD).
Spectra from 1300-2400 nm were collected during scanning,
and the spectra were saved for use in developing calibration
equations in combination with the standard laboratory test results
of the soil analyses.

NIRS calibration was conducted with lSI software version
3.10 (Infrasoft International, Port Matilda, PA). Spectra were
normalized based on their individual Mahalanobis H distance
from the mean spectra at each wavelength, which facilitated
the identification of spectral outliers for removal. Means of
multiple spectral scans were calculated to derive an accurate

database of the wavelengths and the quantities absorbed as a
way ofdetermining the chemical composition ofthe soil samples
spectrophometrically against which standard soil chemical data
were regressed. Spectral absorption graphs were generated to
identify diagnostic absorption peaks following mathematical
treatments including both first and second order derivatives
(Dryden 2003; Danieli et a1. 2004; Locher et a1. 2005). To
optimize the multivariate calibration models, mean centering
was performed according to the protocols of Duckworth (2004)
to reduce extraneous data and maximize differences between
samples of spectral data.

Soil pH was determined using a 1:2 soil:deionized water
slurry, and elemental analyses were conducted using inductively
coupled plasma (ICP) spectroscopic analysis (Soltanpour et
al. 1996) following a Mehlich III extraction (Mehlich 1984).
Calibration equations were developed by regressing spectral
absorption peaks against the chemical properties measured by
standard laboratory methods using three multivariate regression
procedures, and the procedure that resulted in the best fit
models and cross validation results was selected. Regression
techniques utilized were principal component regression (PCR),
partial least squares (PLS) regression, and modified partial least
squares (MPLS) regression (Gillon 1999; Danieli et al. 2004).
Standard error of cross validation (SECV) and Standard error
of calibration (SEC) coupled with smoothing treatments were
utilized during model selection to optimize model performance
while controlling both underfitting and overfitting of the models
(Westerhaus et al. 2004).

Results and Discussion

Model results were mixed with respect to the ability to
accurately quantify the full spectrum ofsoil chemical properties
for the Ozark soil samples. Quantification of micronutrient
metals copper and zinc through multivariate regression modeling
of NIRS data was the least effective with only 23% and 40%,
respectively, of the variation explained by the models (Table 1).
Calcium and magnesium quantities were predicted very well
with 88% and 76% of their respective variances explained. Our
results for the Ozark soils are similar to those of Chang et al.
(2001) in a study conducted across the western United States
in which models for Fe, K, Ca, and Mg quantities explained
50% to 80% ofthe variance and more than 80% of the variation
in C and N compared with chemical analyses. Moreover,
NIRS model results for the Ozark soils were very effective for
determining quantities of both C and for N with 82% and 88%
of their variability explained, respectively. Another study of
NIRS with soils from across Africa also found similar predictive
ability for determining the quantities ofCa, Mg, and C, as well
as pH (Shepherd and Walsh 2002), indicating that NIRS has the
potential to be a robust analytical tool for soil elemental analyses
when properly calibrated.

A point worth noting is that in the work by Chang et al.
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Table 1. Summary of regression methods utilized for model development, mathematical treatments, coefficients ofdetermination, and
model validation analytics for selected soil chemical properties.

Soil Statistical
Variable Meanl Method2 Derivative R2 SEC3 SECV4

N 0.087 PLS I 0.881 0.01I 0.013

C 1.590 MPLS I 0.915 0.168 0.188

C:N 18.556 PLS I 0.820 10408 1.635

NH/ 6.095 PLS I 0.506 1.868 2.187

pH 5.384 PLS I 0.857 0.132 0.160

P 50480 PLS I 0.715 1.178 1.282

K 69.882 PLS I 0.609 13.706 15.554

Ca 256.122 PLS I 0.877 73.516 900478

Mg 47.892 PLS I 0.763 10.252 12.236

S 8.167 MPLS I 0.596 1.375 1.546

Na 5.094 PLS I 00413 0.615 0.664

Fe 100.350 PLS I 0.567 13.999 15.930

Mn 95.252 PLS I 0.779 26.044 31.098

Zn 2.192 MPLS 2 00402 0.569 0.602

Cu 4.233 MPLS 2 0.227 1.468 1.625

'Units are g kg-I for Nand C; all other units are expressed as mg kg-I. 2Multivariate regression procedures: partial least squares (PLS),
modified partial least squares (MPLS); 3Standard error ofcalibration (SEC); 4Standard error ofcross validation (SECV).

(2001), PCR models produced the most robust models for
predicting a range of soil chemical properties. In our study
of the Ozark soils, we found that PLS and MPLS models
produced superior results compared with PCR models. Since
no biogeochemical process is expected to influence the efficacy
of one modeling methodology relative to another, our findings
suggest that it is appropriate to try all available approaches for
which underlying statistical assumptions are met for the purpose
of deriving the best model for a particular soil property formed
in a particular parent material.

Soil pH is considered a "master variable" for soil chemical
properties due to the influence that pH has both on the availability
of mineral nutrients and on the activity and composition of soil
microbial populations (Rengel 2002). Due to the importance of
pH for the management of soils for productivity and potentially
for ecosystem services, the ability to assess pH across large areas
with good resolution through the analysis of a large number
of samples is desirable, and NIRS analysis has been shown to
effectively and accurately determine soil pH for a variety ofsoils.
PLS models developed for the Ozark forest soils explained 86%
ofthe variance in pH (Fig. 2; Table I) from standard measurement
techniques. These results are better than those of Chang et al.
(200I) and marginally better than the findings of Shepherd and
Walsh (2002). However, Chang et al. (200 I) extracted samples

across four Major Land ResourceAreas (MLRAs), and Shepherd
and Walsh extracted samples from an entire continent. whereas
our investigation encompassed a physiographic region within
one state.

Another soil parameter ofecological importance is the ratio
of C to N (C:N). While other studies involving NIRS of soils
almost universally assess the ability of NIRS to predict soil C
and N independently, no published studies have examined the
potential for NIRS to directly measure soil C:N ratio. Soil C:N
ratio has profound effects on the stability of soil carbon pools
and rates of soil C enrichment/depletion (Lal 2001a; Melillo
2002), and the potential of soils to sequester large amounts of
atmospheric carbon to offset greenhouse gas emissions (Lal et
al. 1998; Lal 2001b) makes it desirable to have information on
the C:N status of soils across large geographic areas. However,
if NIRS models are used to determine the concentration of
soil C and N independently to derive the ratio of C to N, then
the error of prediction for both elements will be compounded.
Direct measurement ofC:N avoids the error inflation issue, and
our model explained 82% of the variation in C:N for the Ozark
soils (Fig. 2). While there is variability in model performance,
it is clear that NIRS modeling is highly effective for quantifying
a number of non-elemental soil chemical parameters across a
broad range of soils. Collectively, our results and the results of
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Fig. 2. Actual values from standard laboratory chemical analyses for select soil chemical properties compared ,,\<ith predicted values
using NIRS and multivariate calibration models.

other studies suggest that additional work should be conducted
to evaluate the potential ofNlRS for quantifYing soil properties
that are both important for biomass production and ecosystem
services and more complex than individual elemental analyses.

Clearly, since models developed in each of the cited studies
differ with respect to the spectral data included in the models
as well as the mathematical treatments and the modeling
methodologies, it is inappropriate to universally apply spectral
data scanned using one type of machine under a given set of
conditions to any other published model. To assure reliable

and accurate results, spectral libraries must be developed using
one set of procedures, and all soil samples for which analyses
are needed must be processed following clearly defined and
reproducible protocols.

Conclusions

Our results demonstrate that NIRS analytical methodologies
can provide a rapid, cost-effective, and robust means by which
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land managers can accurately quantifY soil quality with respect
to potential productivity and ecosystem services. Our findings
show that NIRS is a viable analytical approach for quantifYing
most of the elemental components of Ozark forest soils.
Additionally, NIRS also is highly effective for quantifYing other
soil chemical properties, such as pH and C:N ratio, which are
of profound significance for interpreting soil test results and
estimating the potential mineralization or immobilization of
plant essential elements. Through additional investigation it
should be possible to quantifY other soil chemical and physical
properties with NIRS to glean additional information that can
improve both biomass production and ecosystem services.

With increasing pressures globally to increase food and
fiber production while also preserving or improving ecological
services, analytical tools like NIRS are needed in order for
precision resource management to be viable. Once a reference
library of spectral data is established. subsequent soil samples
can be processed for little more than the cost ofsample collection
and preparation. Additionally, as the size ofthe reference library
increases, the ability to create robust, accurate models of soil
chemical properties also is expected to improve. Advances
in spectral analytical technologies are progressing in many
disciplines, and it is both wise and appropriate for soil scientists,
ecologists, foresters, and biologists to explore the potential of
NIRS for advancing our understanding of the processes that
drive our natural systems.
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