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Abstract 

Cytokine-based cancer immunotherapies stimulate a host’s immune system to fight 

cancer. In particular, interleukin-12 (IL-12), a potent pro-inflammatory cytokine, has 

demonstrated the ability to eliminate tumors in a number of preclinical models. Toxicities 

associated with the systemic delivery of IL-12 have precluded its use in the clinic. We are 

developing a novel chitosan-based hydrogel to maintain high local concentrations of 

cytokines, such as IL-12, in the tumor while minimizing its systemic dissemination. This 

hydrogel was found to form spontaneously within ten seconds of mixing two proprietary 

components. To increase the usefulness of the hydrogel, an efficient mixing and delivery 

system is needed. We designed and evaluated a device capable of mixing two solutions 

from two syringes during injection. A total of eight prototypes were created using three-

dimensional printers; six were printed on an Object30; one was printed on a MakerBot; 

another was printed on an uPrint SE Plus. Three tests were used to determine the 

effectiveness of the device. The first test was a dimensional test to check for fitting of the 

syringes and needle. After passing this test, the fluid dynamics were tested using distilled 

water. If the device pasted the previous tests, the third test determined the mixing ability 

of the device using the novel hydrogel. After success in all three tests, the sterility of the 

device became the main goal. Hydrogel formation was achieved but a better material for 

the device is still under investigation. 
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1. Introduction 

With the rise of cancer, investigation of cures has come to the forefront of biomedical 

sciences research. One method to fight off the disease is overstimulation of the immune 

system. Previous research demonstrated cytokine-based cancer immunotherapies are able 

to fight cancer. Interleukin-12 (IL-12) is a potent pro-inflammatory cytokine with the 

ability to eliminate tumors. IL-12 activates T lymphocytes and natural killer (NK) cells to 

cause recession of the tumors. A byproduct of the immune stimulation is the production 

of interferon (IFN)-γ. This byproduct increases the toxicity of IL-12 treatments. Phase I 

and II clinical trials determined a need for safer dosages calling for a wider therapeutic 

range. For example, the treatment for renal carcinoma using 500 ng/kg/day of rhIL-12 

caused two deaths. Toxicities associated with the systemic delivery of IL-12 cause grade 

3 and 4 adverse events. These events have precluded its use in the clinic.1, 2 

Hydrogels are hydrophilic, cross linked single chain polymers or co-polymers; the cross 

linking causes them to be insoluble in water but allows them to intake 10-20 times their 

molecular weight while retaining their three dimensional structure. The aqueous uptake 

causes the hydrogel to mimic tissue physiology increasing patient compliance. The 

integrity of the structure enables the protection of encapsulated drugs such as proteins 

and peptides. Hydrogels often display biocompatible capabilities with minimal 

immunogenicity for synthetic hydrogels. The biocompatibility and physical similarities 

cause hydrogels to be considered the closest synthetic biomaterial replica of human 

tissue. These properties make hydrogels applicable in many biomedical fields including 

drug delivery. 3, 4, 5 
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Hydrogel drug delivery is favorable because it allows time controlled drug release and 

targeted delivery. The porosity of a hydrogel dictates the rate of drug release through 

either diffusion or convection. Porosity can be controlled through the cross-link ratio of 

polymers. A greater ratio decreases the porosity causing a lengthier drug release. Its 

adhesive property allows the hydrogel to anchor in one place. With the hydrogel in one 

location, the release of the drug is targeted toward local tissue. Some hydrogels are 

deformable allowing injection but most need surgical implantation. For ease of use, 

noninvasive hydrogels are desirable.2, 3, 4 

There are two different mechanisms for hydrogel formation: physical and chemical. 

Physical hydrogel formation is caused by molecular entanglement; a polyelectrolyte 

interacts with a multivalent ion of opposite charge to cause the cross-link network. 

Because entanglement is the main mechanism, these hydrogels are reversible. Chemical 

hydrogel formation creates cross-linked networks through covalent bonds. These bonds 

are irreversible causing permanent hydrogel formation. Both hydrogels are heterogeneous 

in regard to the non-uniform density of cross-links throughout the hydrogel.6 

Chitosan, a natural derivative of chitin (shrimp exoskeleton), is biocompatible, 

biodegradable, and mucoadhesive.  This biomolecule has shown to increase bioactivity 

and local retention of cytokines such as IL-12. Along with increased potency of the 

cytokine, the chitosan/IL-12 mixture is capable of generating immunological memory to 

control metastasis and prevent tumor reoccurrence.2, 7 

A novel chitosan-based hydrogel was developed to maintain high local concentrations of 

cytokines, such as IL-12, in the tumor while minimizing its systemic dissemination. This 
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hydrogel was found to form spontaneously within ten seconds of mixing two proprietary 

components. To increase the usefulness of the hydrogel, an efficient mixing and delivery 

system is needed. In this project, a device capable of mixing two solutions from two 

syringes during injection was designed and evaluated.7 

2. Methods and Materials 

2.1 Materials. The 3mL BD Luer-Lok tip disposable syringe (BD 309657) was 

purchased from Fisher Scientific (Pittsburgh, PA). A 20-gage BD needle (BD 305179) 

was purchased from Fisher Scientific (Pittsburgh, PA). An 18-gage BD needle (BD 

305199) was purchased from Fisher Scientific (Pittsburgh, PA). The proprietary hydrogel 

was created in the Laboratory of Vaccine and Immunotherapy Delivery (Fayetteville, 

AR). 

2.2 Three Dimensional Printers. Three printers were used to create prototypes. The first 

prototypes were printed on an Object30 printer using VeroWhite, a material similar to 

polypropylene (PP) created by Stratasys. Once the dimensions were correct, the 

prototypes were printed with two other materials, polylactide (PLA) and acrylonitrile 

butadiene styrene (ABS). The MakerBot printer was used to print the PLA prototype; the 

uPrint SE Plus printed the ABS prototype. 

2.3 Creation of Prototypes. The computer aided design (CAD) software, SolidWorks, 

was used to create the prototypes. The prototypes consist of two male luer locks allowing 

two 3mL syringes to attach to the top of the device. Channels from the 3mL syringes 

allowed the two solutions to mix. The newly mixed solution exits from a needle. The 

device has a female connector at the bottom where an 18- or 20-gage needle is able to 
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attach. Once the design was printed, the prototype was evaluated for fit by connecting the 

syringes and needle while the fluid dynamics of the device were tested using distilled 

water. If the water flowed from both syringes through the device and out of the needle 

consistantly, an instant forming chitosan-based hydrogel, with a proprietary formulation, 

was used to test the mixing efficiency of the device.  

3. Results 

3.1 Fitting the Syringes and Needle. 

3.1.1 Prototype One. After printing, the fit of the syringes and needle was tested. The 

first prototype was 85.52mm wide and 124.06mm tall with 99.mm separation between 

the two syringe connectors (see Figure 1a). The mixing portion included 15 rotations 

within 29.30mm to insure a homogenous solution (see Figure 1b). The separation and 

height were too large for practical use; the syringes were too far apart to simultaneously 

inject into the device (see Figure 1c).  

 

Figure 1a. This figure is the front 

view of prototype one. The 

syringes connect to the top and 

the needle connects to the 

bottom. 

Figure 1b. This figure is the 

translucent front view of 

prototype one. The mixing 

portion of the syringe contained 

15 rotations in 29.30mm. 

Figure 1c. This figure is the 

trimetric view of prototype one. 

The syringes were too far apart 

and the device was too tall. 
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3.1.2 Prototype Two. A more practical design was created for the second prototype (see 

Figure 2a). This design was much smaller at 40.66mm wide, 46.00mm tall, and 9.23mm 

separation between the syringe connectors. The thickness of the walls was 3.00mm while 

the syringe connector diameter was 16.00mm. The previous mixing component included 

in the first prototype was eliminated because the fluid dynamics of the small tube would 

cause natural mixing. Although the second prototype featured a more ergonomic design, 

the connectors were too large to secure the syringes and needle. The thickness of the 

device walls also needed modifications (see Figure 2c). 

 

3.1.3 Prototype Three. The ergonomic separation of connectors and height of the device 

were established in the second prototype and used throughout the rest of the prototypes; 

all future prototypes also eliminated the mixing component (see Figure 3b). The third 

prototype reduced the wall thickness to 0.40mm and connector diameter to 4.20mm (see 

Figure 2a. This figure is the front 

view of prototype two. The 

connectors for the syringes and 

the needle were too large. 

Figure 2b. This figure is the 

translucent trimetric view of 

prototype two. There is no 

mixing system: enough mixing 

will occur in the needle. 

Figure 2c. This figure is the 

trimetric view of prototype two. 

The thickness of device walls 

needs to be decreased. 
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Figure 3a). This design also failed to connect properly to the syringes and needle; the 

connectors for this prototype were too small (see Figure 3c). 

 

3.1.4 Prototype Four. The fourth prototype kept the same wall thickness but increased 

the connector diameter to 8.10mm (see Figure 4c). The geometry of the needle connector 

changed from an angular connector to a vertical connector (see Figure 4b); this change 

relieved SolidWorks design difficulties associated with the angular geometry. Two 

different syringe connectors were designed to test the assembly of the syringe and the 

device (see Figure 4c). The needle locked into the connector and the syringe locked into 

the right connector; this connector had an additional angular piece to help secure the 

locking mechanism. The left connector was straight making the syringe screw into the 

connector continuously thus interfering with the syringe locking into the device (see 

Figure 4a). 

Figure 3a. This figure is the front 

view of prototype three. The 

connectors for the syringes and 

the needle were too small. 

Figure 3b. This figure is the 

translucent front view of 

prototype three. The small 

opening causes enough mixing. 

Figure 3c. This figure is the 

trimetric view of prototype three. 

The device wall thickness was 

fixed from the previous 

prototype. 
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3.2 Reinforcing the Needle Connector 

3.2.1 Prototype Five. The fifth prototype was the same as the fourth design, but both 

syringe connectors resembled the right (angular) connector (see Figure 5a). After 

multiple demonstrations of the connectors and a fluid dynamic study with distilled water, 

the inside needle connector component broke. The thickness of the inside wall was weak 

at the interface of the two channels to one channel (see Figure 5b).  

Figure 4a. This figure is the front 

view of prototype four. The right 

connectors for the syringes and 

the needle fit best. 

Figure 4b. This figure is the 

translucent front view of 

prototype four. The needle 

connector changed from angular 

to straight. 

Figure 3c. This figure is the 

trimetric view of prototype four. 

To decrease prototype iterations, 

two different connector shapes 

were printed. 

Figure 5a. This figure is the 

front view of prototype five. 

The syringe connectors are 

the same as the right syringe 

connector in prototype four. 

Figure 5b. This figure is the 

translucent front view of 

prototype five. The clear part 

represents the wall thickness. 

The arrow points to the 

limited wall thickness.  
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3.2.2 Prototype Six. The thickness of the inside needle connector could not simply be 

increased without creating a completely new design. By making the two channels connect 

more quickly, the thickness of the inside connector was increased (See Figure 6). The 

increase was enough to last through multiple fluid dynamic tests with distilled water. The 

instant forming hydrogel was tested using the device. With pressure from the table, the 

solutions were mixed enough to form the hydrogel. After a few uses, again the inside 

needle connector broke. Instead of changing the device dimensions, the following 

prototypes tested the strength using different printing materials. 

 

3.3 Material Testing 

3.3.1 Prototype Seven. The first six prototypes were printed on an Object30 printer using 

VeroWhite material (similar to polypropylene (PP)). The dimensional limit of the printer 

is 0.1mm. In an attempt to reduce printing costs, the MakerBot Replicator 2X (from now 

on referred to as the MakerBot) printer was used; this printer uses polylactide (PLA). 

Figure 6. This figure is the 

front view of prototype six. 

The clear part represents the 

wall thickness. The arrow 

points to the increased wall 

thickness.  
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With a dimensional limit of 0.8mm, the seventh prototype was unusable because the 

device was not properly printed (see Figure 7). 

 

3.3.2 Prototype Eight. Because the sixth prototype was not strong enough for multiple 

uses, a stronger material was needed. For preclinical uses, a multiple-use device must be 

easily sterilized. VeroWhite cannot be sterilized by either ethylene-oxide or autoclaved, 

both available in the lab. Acrylonitrile butadiene styrene (ABS) can be sterilized by 

ethylene-oxide. An uPrint SE Plus printer was used to create the ABS prototype. Along 

with its sterility, the prototype was considerably stronger allowing many uses before 

failure (see Figure 8). The prototype was rougher than the VeroWhite prototype. The 

increased roughness led to increased pressure; the solutions no longer mixed into a single 

channel but overflowed at the site of the syringe connector. 

Figure 7. This figure is a 

photo of prototype seven. 

The dimensional limit of the 

MakerBot was not small 

enough causing inaccurate 

printing.  
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4. Discussion 

4.1 Fitting the Syringes and Needle. Except for the first prototype, the first four 

prototypes were iterations of differing connector diameter and wall thickness. The device 

was created for easy use in a laboratory setting and eventually a clinical setting; therefore 

the ergonomics of the device was a high priority. The trouble with connector fitting was 

an issue with measurements. With no prior SolidWorks experience, I learned how to use 

the software through trial and error. For the first prototype, my dimensions were not 

easily visualized causing a large and hardly usable device. The second and third 

prototype dimensional incorrectness arose from measuring errors of the needle and 

syringe and mistakes in distinguishing the radius and diameter of the connectors.  

By the fourth prototype, I had hours of exposure to SolidWorks keeping me from making 

novice mistakes. After using a caliber to measure the syringe and needle and confidence 

in my design ability, I chose to decrease the prototype iterations by utilizing the two 

Figure 8. This figure is a 

photo of prototype eight. The 

uPrint SE Plus printer created 

a prototype made of ABS. 

The material was too rough 

and caused overflowing of 

the hydrogel mixture. 
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syringe connectors. There were two proposed designs for this connector. Designing the 

connectors with the two different designs allowed for increased feedback because 

multiple prototypes did not need printing. The angled connector gave more support and 

was more appealing; the straight design on the other connector was simpler. The straight 

design was strong enough, but it made the syringe continuously screw onto the connector. 

This continuous screwing decreased stability. The angled connector increased the 

stability of the syringe device connection because a locking affect occurred between the 

female and male connector. Because proper fitting was not established for both syringes 

and the needle, no fluid dynamic studies ensued. 

4.2 Reinforcing the Needle Connector. At the time, I thought the fifth prototype would 

be the last iteration. All parts were able to connect, and the first fluid dynamics test with 

distilled water was successful. The water was able to flow from both syringes out of the 

needle. After multiple tries, the inside needle connector broke. The SolidWorks drawing 

gave insight to the broken connector; the wall at the interface to one connector was 

meager. The inside connector thickness was critical for the needle connection; an 

innovative modification was needed to add strength without directly changing the 

thickness. By decreasing the distance to combine the syringe channels into one channel, 

thickness was indirectly added to the interface. 

The sixth prototype used this design modification. The fluid dynamics were tested again 

with distilled water. With successful testing, the two components needed to create the 

instant forming hydrogel were tested. When pressure from the table was applied to the 

needle opening, the hydrogel formed as it came out of the needle tip. After a few more 

uses of the device, it broke again. With successful creation of the hydrogel from the 
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device, printing materials became the focus of strengthening the device and making the 

device sterile. 

4.3 Material Testing. The first six prototypes were printed with VeroWhite on an 

Object30 printer. Accessibility of the printer was the main reason the first prototypes 

were printed using the Object30. Once the material of the prototype became a factor, 

different printers were explored. 

The MakerBot printer used PLA, a more cost effective material. This printer was also 

easily accessible. One concern was the decreased dimensional limit of the printer. 

Because the prototype was small and precise, the dimensional limit of the printer needed 

to be on the order of a tenth of a millimeter. The seventh prototype was created using the 

MakerBot and was unusable. Without even trying to connect the syringe or needle, it was 

obvious the device could not be utilized. 

After investigating different materials, ABS was an accessible material with greater 

strength and the ability to be sterilized with ethylene-oxide. The first time the prototype 

was printed one of the connectors was filled with ABS. After changing the printer 

orientation from vertical to horizontal, both connectors were printed hollow. The 

promising strength and sterility of the material became useless after testing the hydrogel 

solutions. Both solutions overflowed from the syringe connection. We assumed the 

increased roughness of the ABS prototype caused the overflow. ABS was not an ideal 

material for this device. 
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5. Conclusion 

This study proposed creating a new medical device for the use of an injectable instant 

forming hydrogel. Through this investigation, the dimensions of a mixing device for two 

solutions into one mixture with immediate injection abilities were created. In the process, 

eight prototypes were created. Six of the prototypes were concerned with the dimensions 

of the device while the other two focused on the materials of the device. 

For multiple uses, the device needs sterility capabilities. With the hydrogel forming 

instantly, some hydrogel would form in the device. The sterilizing process would clean 

the device of any leftover materials and keep disease from spreading. The roughness of 

ABS was found to be cause problems with mixing. Another material is needed for the 

device to be used. 

Further studies could be conducted to determine a material suitable for the device and the 

feasibility of mass-producing the device. While determining the feasibility, the market 

value of the device could be determined. To increase the impact of the device, further 

research could determine other applications of the mixing device in medicine. 

Dimensional experimenting could lead to an optimal length of existing parts for hydrogel 

formation. Because changes in the two solutions impact the hydrogel formation time, the 

device could test the characteristics of different formulation times. 
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