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Abstract 

Bladder cancer is the 5th most common non-cutaneous human cancer in the United States. While 

effective methods of detecting bladder cancer are currently practiced, they are often expensive 

and invasive. There is a need for a noninvasive detection method that can be used in areas with 

few medical resources. Cell free DNA in urine is normally present only in very low 

concentrations. Abnormally high levels of cell free DNA in urine could be indicative of disease. 

This study tests the hypothesis that DNA present in urine can be used as a biomarker for bladder 

cancer before hematuria is seen in vivo. First, different DNA probes were compared, and SYBR 

green was selected as an ideal probe due to factors such as cost, safety concerns, and specificity. 

Second, a detection threshold of cells was determined using MB49 and MBT2 bladder cancer 

cell lines. Cells were lysed with either tap or DI water to determine which kind of water was 

more effective at creating a hypotonic solution for the cells. Two cell lines were used to 

determine if there was a statistical difference in the DNA detection threshold. A detection limit 

of between 600 cells/200µL and 300 cells/200µL was seen in both MB49 and MBT2 cells. 

Lastly, an in vivo study was done in which a group of mice was implanted with 75,000 MB49 

cells. Urine samples were obtained for five days before implantation, as well as for seven days 

after implantation. Evidence of excess DNA in the urine was seen as early as four days before 

hematuria was observed. This study provides evidence that quantifying levels of cell free DNA is 

an effective method of detecting bladder cancer before hematuria is present. Future studies will 

determine if the DNA being detected is mammalian, and eventually, a low cost, quantitative 

home test will be developed to aid in early detection of bladder cancer. 
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1. Introduction 

The direct medical costs relating to cancer in the United States were estimated to be $125 billion 

in 2010. By the end of 2020, bladder cancer is expected to account for more than 3% of those 

costs [9]. While effective methods of detecting bladder cancer are currently practiced, they are 

often expensive and invasive. If bladder cancer can be detected earlier, treatment can be 

administered before the cancer progresses too much. This study proposes a noninvasive bladder 

cancer test that uses biomarkers to detect the presence of abnormality within the bladder. 

Current invasive detection methods for bladder cancer can include a pelvic exam, cystoscopy, 

and transurethral resection [10]. These methods can involve inserting a camera endoscopically 

into the bladder or surgically removing a piece of the bladder to check for cancerous cells. All of 

these methods can be costly and are uncomfortable for the patient. A noninvasive detection test 

would increase patient comfort and could decrease the cost to the patient.  

Bladder cancer recurrence is also a major issue with regards to cost. Cystoscopy is currently the 

gold standard in detection recurrences. However, this method can currently only detect about 

80% of recurrences [9]. The detection test proposed in this study could help to increase the 

percentage of detectable recurrences while operating at a much lower cost than cystoscopy. 

Detection of DNA presents an easy way to check for abnormality within the bladder. As cells 

naturally die, they are sloughed off the walls of the bladder and are removed from the body 

through the urine. Thus, there is a consistent amount of detectable DNA within the urine at any 

given time. Elevated levels of DNA in the urine indicate that there is an abnormality within the 

bladder. This abnormality could be as simple as a urinary tract infection, or as serious as muscle 

invasive bladder cancer. By detecting elevated levels of DNA, a physician can begin to explore 

what might be causing this signal elevation. The methods outlined in this study can be used in 
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the future to develop a low cost point of care test. This test would qualify as point of care in that 

it could be performed at the time and place of patient care [8].  

The aim of this study is to develop a method to detect cell free DNA in the urine before other 

indicators of bladder cancer (such as hematuria) are present. The specific objectives to meet this 

goal involved identifying a biomarker that could detect low levels of DNA and determining the 

limit of detection of this biomarker. An in vivo test was performed to test whether or not elevated 

levels of DNA could be seen in the urine before other indicators were present. Future studies will 

determine if the DNA being detected is mammalian, and eventually, a low cost point of care test 

will be developed to aid in early detection of bladder cancer. 

2. Materials and Methods 

2.1 Reagents. Trypsin (1x, 0.25%) was purchased from Mediatech Inc. (Manassas, VA). DPBS 

(1x, +Ca, +Mg) was purchased from Thermo Scientific (Logan, UT). Trypan blue was purchased 

from Thermo Scientific (Logan, UT). SYBR green was purchased from Invitrogen (Carlsbad, 

CA). DMEM was purchased from GE Healthcare Life Sciences (Logan, UT).  

2.2 DNA Probe Comparison. Multiple DNA probes were compared qualitatively to determine 

which would be the best for this study. The DNA probes considered for this study were ethidium 

bromide, GelRed/GelGreen, SYBR green, SYBR gold, acridine orange, and DAPI. Criteria of 

cost, safety concerns, and specificity were considered.  

2.3 In Vitro Study 

2.3.1 Cell Culturing. MB49 cells were seeded in a T75 flask containing DMEM with 10% FBS 

and 1x penicillin streptomycin. In a cell culture hood, cell culture media was aspirated and cells 

were rinsed with 3mL phosphate buffered saline (PBS) twice to wash off excess media. 2mL 
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trypsin was added to the flask and the flask was placed in a 37°C incubator for 3-5 minutes, or 

until the cells detached from the wall of the flask. 4mL of cell culture media was introduced to 

the flask to neutralize the trypsin. The contents of the flask were placed into a 15mL centrifuge 

tube. The tube was centrifuged at 1400rpm for 5 minutes. The centrifuge tube was then 

transferred back into the cell culture hood and liquid was aspirated, leaving a pellet of cells at the 

bottom of the tube. 5mL of cell culture media was added to the tube and the cells were 

resuspended in the media. 12mL of fresh media was placed into a new T75 flask. A portion of 

the resuspended cell solution was pipetted into the new flask to obtain a 1/20 ratio of cells to 

media. Cells were passaged when the wall of the flask was 80% confluent. The same procedure 

was followed for MBT2 cells. 

2.3.2 Isolating DNA from Cells. After passaging the MB49 cells, the leftover resuspended cell 

solution was divided into four equal parts and placed into microcentrifuge tubes. Each tube 

contained approximately 1.25mL of cell solution once divided. The four tubes were centrifuged 

at 1400rpm for 5 minutes. The supernatant solution was aspirated, leaving a small cell pellet at 

the bottom of the tubes. Three experimental groups and one control group were set up as follows. 

3mL of deionized water was added to tube 1. 3mL of tap water was added to tube 2. 1.5mL of 

deionized water and 1.5mL of tap water was added to tube 3. 3mL of PBS was added to tube 4. 

Cells were resuspended in solution. After 5 minutes, the number of cells in each flask were 

counted using a hemocytometer. 20µL of cell solution, 10µL trypan blue, and 170µL of water or 

PBS (deionized water for tube 1, tap water for tube 2, 85µL deionized water/85µL tap water for 

tube 3, and PBS for tube 4) were mixed together. 20µL of this solution was placed onto each half 

of the hemocytometer (dilution factor of 10). Equation 1 was used to determine how many cells 

were present in the original solution: 
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#	 	 	#	 	 	 ∗ 10 ∗ 	   (Equation 1) 

This procedure was repeated in triplicate, and was also performed for MBT2 cells. 

A separate experiment was performed in which leftover MB49 and MBT2 cells after passaging 

were divided equally into a six-well plate and allowed to grow to 90% confluence. Media was 

aspirated and the cells were washed with PBS 2 times. The PBS was aspirated and the plate was 

placed onto a phase contrast microscope. Images were taken in real time as either tap or 

deionized water was added to each well under 10x magnification. 

2.3.3 Cell Staining. MB49 cells were cultured and lysed using methods stated previously. Cells 

were resuspended in both deionized and tap water at 100,000 cells/mL and sat for 5 minutes to 

allow total lysis. This was repeated with the MBT2 cells. SYBR green staining solution was 

prepared using 10µL concentrated SYBR green in 50mL TAE buffer (1:5000 dilution). In a 

black walled 96-well plate, 100µL of tap water was added to wells B-H 1-3 and 10-12. 100µL of 

deionized water was added to wells B-H 4-9. An additional 100µL of tap water was added to 

wells H1-3 and an additional 100µL of deionized water was added to wells H4-6. 200µL of 

MBT2 cells in tap water was added to wells A 1-3. 200µL of MBT2 cells in deionized water was 

added to wells A 4-6. 200µL of MB49 cells in deionized water was added to wells A 7-9. 200µL 

of MB49 cells in tap water was added to wells A 10-12. Serial dilutions were performed down 

each column of the well plate for rows A-G, so that each well in these rows had 100µL of 

solution. 100µL of diluted SYBR green was added to wells A-G 1-12 and H 7-12. The final 

volume in every well on the plate was 200µL. A summary of the contents of each well is shown 

in Table 1.  
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Table 1. Plate layout for DNA detection. Every well contained a final volume of 200µL. The numbers represent the 
number of cells from which DNA is being detected. 

 

The plate was covered and kept in a dark environment for 30 minutes to allow time for the 

SYBR green to bind to DNA. 

2.3.4 Plate Reading. The 96-well plate was quantified on a Synergy HT plate reader at an 

excitation of 480nm and an emission of 530nm. Fluorescence levels were recorded and a 

standard curve was generated for each cell type, as well as the type of water the cells were lysed 

in. 

2.4 In Vivo Study 

2.4.1 Sample Collection. Samples were collected from four groups of five mice for a total of 12 

days. Implantation of 75,000 MB49 cells occurred on day 5, and the samples taken for that day 

occurred before implantation. Urine samples of at least 20µL were obtained from each mouse 

and frozen at -80°C until all samples were collected.  

2.4.2 Cell Staining. Urine samples were warmed to room temperature on the lab bench. 5µL of 

urine and 95µL of deionized water were placed in each well of a black walled 96-well plate. 

Each sample was performed in triplicate (so a total of 15µL of urine from each mouse was used). 

The well plates were allowed to sit for 5 minutes to allow total lysis of cells. 100µL of diluted 

SYBR green staining solution was added to each well. The final volume in every well on the 

1 2 3 4 5 6 7 8 9 10 11 12

A 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000

B 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000

C 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500

D 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250

E 625 625 625 625 625 625 625 625 625 625 625 625

F 312.5 312.5 312.5 312.5 312.5 312.5 312.5 312.5 312.5 312.5 312.5 312.5

G 156.25 156.25 156.25 156.25 156.25 156.25 156.25 156.25 156.25 156.25 156.25 156.25

H tap water DI water SYBR + DI water SYBR + tap water

Lysate

MBT2 Cells MB49 Cells

Tap Water DI Water DI Water Tap Water
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plate was 200µL. A total of four well plates were used to read the samples from days N1-5 

(naïve mice), and a total of four well plates were used to read the samples from days I1-7 

(implanted mice). All eight plates contained a negative control of 100µL of SYBR green/100µL 

of deionized water. The four plates with samples from the implanted mice also contained a 

positive control with MB49 cells seeded from 10,000 cells to 156.25 cells. The plates were 

covered and kept in a dark environment for 30 minutes to allow time for the SYBR green to bind 

to DNA. 

2.4.3 Plate Reading. The 96-well plates were quantified on a Synergy HT plate reader at an 

excitation of 480nm and an emission of 530nm. Fluorescence levels were recorded and a 

quantification of number of cells in urine per day was generated. Statistical analysis of this data 

was performed using a t-test. 

3. Results 

3.1 DNA Probe Comparison. The DNA probes listed in Table 2 were evaluated qualitatively 

based on cost, safety concerns, and specificity. From these criteria, SYBR green was chosen to 

be the DNA probe for this study. 

Table 2. An evaluation of DNA stains in regards to cost effectiveness, safety concerns, and other measures. 

 Cost Safety Concerns Potential Problems 
Ethidium Bromide [3] $6/mL Highly mutagenic Used mostly in agarose gels 

and CsCl gradients 
GelRed/GelGreen [4] $200/mL N/A Can’t penetrate intact cell 

membranes 
SYBR Green [6][7] $453/mL Can be irritating to the skin Prolonged exposure to light 

decreases effectiveness 
SYBR Gold [5][7] $298/mL Can be irritating to the skin Typically, only used for gel 

electrophoresis 
Acridine Orange [1] $99/g Can be irritating to the skin Binds to acidic vacuoles and 

RNA as well as DNA 
DAPI [2] $89/10mg N/A Only binds to A-T rich regions 

in DNA 
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3.2 In Vitro Study. Results from counting cells after placing them in tap or deionized water 

were inconclusive. Figures 1 and 2 show real time cell death progression in deionized water and 

tap water.  

 

Figure 1. Phase contrast image (10x) of cell death progression in deionized water. 

 

Figure 2. Phase contrast image (10x) of cell death progression in tap water. 
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After cells were plated and read, a standard curve was generated, as shown in Figure 3. The 

detection threshold for all four experimental groups was determined to be between 300 and 600 

cells. 

 

Figure 3. Standard curve showing fluorescent signal vs. number of cells for MB49 and MBT2 cell lines. As shown 
in the graph, this is a roughly linear relationship. Cells lysed in deionized water produced higher signals than cells 
lysed in tap water, although both cases produce a strong signal. Limit of detection was determined to be between 

300 and 600 cells for both cell lines. 

 

3.3 In Vivo Study. Hematuria was seen in 100% of mice by day I7. However, elevated levels of 

DNA in the urine was seen as early as day I3. A standard curve was generated from cultured 

MB49 cells, as seen in Figure 4. Figure 5 shows the average number of cells in the urine per day 

of this study, based on fluorescent signals obtained from reading the plate, and a cross 

comparison of the standard curve generated in Figure 4. 
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Figure 4. Standard curve showing fluorescent signal vs. number of cells for MB49 cell lines. 

 

 

Figure 5. Average number of cells from all 20 mice over a period of 12 days. Implantation of MB49 cells took place 
on day N5. Hematuria was seen in 100% of mice by day I7. An * denotes a statistical difference between before 

implantation samples and after implantation samples (p<0.05 via t-test). 
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4. Discussion 

4.1 DNA Probe Comparison. Six DNA probes were evaluated based on cost, safety concerns, 

and potential problems in regards to this study. Ethidium bromide, although very cheap, was 

quickly eliminated due to the highly mutagenic nature of the probe, as well as the fact that it’s 

typically used in agarose gel staining. Acridine orange was eliminated because it wasn’t specific 

enough to cell free DNA (this probe also binds to RNA and acidic vacuoles). DAPI was 

eliminated because it only binds to A-T rich regions of DNA and there was concern that the 

fluorescent signal wouldn’t be strong enough to detect at low cell concentrations. SYBR gold 

typically is used in gel electrophoresis, and did not fit for this type of application in solution. 

GelRed/GelGreen was ultimately eliminated because the probes couldn’t penetrate intact cell 

membranes. If any cells remained intact in water, these probes wouldn’t be able to detect it. 

SYBR green was ultimately chosen despite its high cost. The amount of SYBR green used in 

each experiment was 10µL. So, 1mL of SYBR green would last for approximately 100 

experiments. Based upon this, it would only cost $4.53 per experiment to use SYBR green. This 

was determined to be worth the high initial cost. 

4.2 In Vitro Study. There were no cells still intact when they were counted after being placed in 

tap or deionized water for 5 minutes. Based on this, it was impossible to determine whether tap 

or deionized water was more effective at lysing cells. However, when cell death progression was 

imaged in real time, the cells in deionized water became more hypotonic and burst more quickly. 

Figure 1 clearly shows a bigger change in size from left to right than Figure 2 does. However, 

after 5 minutes, all cells were lysed in both tap and deionized water. Based on these 

observations, it was determined that either kind of water would be fine for lysing cells as long as 
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the cells were allowed to sit in water for at least 5 minutes. For the rest of the experiments 

performed for this study, deionized water was used for consistency. 

From the standard curve, it was determined that the relationship between fluorescence and the 

number of cells plated is consistently linear. The background signal of just SYBR green and 

water was usually around 300-400. While the data points on the standard curve did not have the 

background signal subtracted out, it was clear which data points fell below the background 

threshold. Based on this, the limit of detection of MB49 and MBT2 cells in either tap or 

deionized water was determined to be between 300 and 600 cells for every replication of this 

experiment. It is also clear to see that cells lysed in deionized water produced higher signals than 

cells lysed in tap water for both cell types. It is interesting to note that the limit of detection 

remained about the same for both types of water, even though the signal levels were drastically 

different.  

4.3 In Vivo Study. Hematuria was visibly seen in some of the urine as early as day I5. However, 

hematuria was not seen in 100% of mice until day I7. A standard curve from the positive control 

was generated (Figure 4) and the linear regression equation was used to convert fluorescent 

signal to number of cells in Figure 5. Figure 5 shows a flat trend from days N1 to approximately 

I2. From I3 to I7, a steady increase in the number of cells in the urine is seen. It is interesting to 

note that day I1 had a lower number of cells than the N signals. This is most likely the case 

because the bladder was washed with poly-L-lysine before implantation on day N5. Therefore, 

all cells not attached to the bladder wall would have been washed out of the bladder.  

There is not a statistical difference between N1-5 readings and I readings until day I4. This 

statistical difference was noted before hematuria was seen in any mice. This is indicative that 

infection in the bladder can be detected before hematuria is observed.  
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5. Conclusion 

This study evaluated the ability to detect elevated DNA levels in mouse urine before hematuria is 

visibly seen. It was demonstrated that deionized water is more effective than tap water at 

releasing DNA from cells, although both types of water provided strong signals. When DNA 

from MB49 and MBT2 cells was labeled with SYBR green in vitro, a consistent linear 

relationship between fluorescence signal and number of cells was seen. This standard curve was 

used to cross compare fluorescence signal in the in vivo study and determine the approximate 

number of cells present in urine per day of sampling. Indication of infection is present over a 

threshold of 300 to 600 cells. This was seen by day I4 of sampling. This indicates the presence of 

carcinoma in the bladder. In addition, a significant number of cells were present in the urine at 

least 2 days before hematuria was visibly present.  

This evidence suggests that labeling DNA with SYBR green can lead to earlier detection of 

bladder carcinoma in vivo. Future directions of this research include developing a second urine 

screen to distinguish bacterial from mammalian DNA in a low cost test for areas with low 

resources. In addition, micro hematuria levels could be monitored to see if indication of 

carcinoma can be detected even earlier. This study provides the foundation to fabricate a home 

kit that can be used as an aid in early screening for bladder cancer. 
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