
University of Arkansas, Fayetteville
ScholarWorks@UARK

Theses and Dissertations

5-2012

Effect of Enzymatic Treatments on the
Physiochemical Properties of Different Corn
Starches
Curtis Robert Luckett
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/etd

Part of the Food Microbiology Commons

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu.

Recommended Citation
Luckett, Curtis Robert, "Effect of Enzymatic Treatments on the Physiochemical Properties of Different Corn Starches" (2012). Theses
and Dissertations. 276.
http://scholarworks.uark.edu/etd/276

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fetd%2F276&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F276&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F276&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/86?utm_source=scholarworks.uark.edu%2Fetd%2F276&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd/276?utm_source=scholarworks.uark.edu%2Fetd%2F276&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu


 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
EFFECT OF ENZYMATIC TREATMENTS ON THE PHYSIOCHEMICAL PROPERTIES OF 

DIFFERENT CORN STARCHES 
  



EFFECT OF ENZYMATIC TREATMENTS ON THE PHYSIOCHEMICAL PROPERTIES OF 
DIFFERENT CORN STARCHES 

 
 
 

 

 

 

 

 

A thesis submitted in partial fulfillment 
of the requirements for the degree of 
Master of Science in Food Science 

 
 
 

 

 

 

 

 

 

By 
 
 
 

 

 

 

 

 

Curtis Luckett 
Oklahoma State University, 2007 

Bachelor’s of Science in Nutritional Sciences 
 
 

 

 

 

 

 

May 2012 
University of Arkansas 



ABSTRACT 

Amylose readily reassociates to form films and crystalline structures that are resistant to 

digestion by amylolytic enzymes and known as resistant starch type III (RS3). This study 

investigated the RS3 formation and cereal coating properties from enzyme-modified corn starches 

with varying amylose contents, including Hylon VII (70% amylose), Hylon V (50% amylose), 

and common corn (25% amylose). For RS3 formation, corn starches were first gelatinized and 

then hydrolyzed using β-amylase to varying degrees. The resultant hydrolyzed starch was 

debranched with isoamylase and then exposed to 3 times of temperature cycling at 135/133/133°C 

for 30 min and 95°C for 24 hr to promote RS3 formation. For cereal coating applications, corn 

starches were gelatinized and debranched, and then sprayed onto ready-to-eat breakfast cereal 

flakes. The proportions of amylose and amylopectin long and short chains were affected by the β-

amylase treatment and varied with starch type. All three corn starches had increased RS contents 

after moderate β-amylolysis with Hylon V having the highest RS content at 70.7% after 4 hr of β-

amylolysis. The RS content was positively correlated with amylose and amylopectin long chains, 

but negatively correlated with amylopectin short chains. A starch film of 50-130 µm was 

observed with scanning electron microscopy on the surface of the cereals coated with Hylon VII. 

After soaking in milk for 3 min, the peak force of the cereals coated with corn starches were 

higher than those of the controls. The cereals coated with Hylon VII were found to have an 

increase in dietary fiber content. The results suggest that RS3 formation is affected by starch 

composition as well as starch structure and can be increased by moderate β-amylolysis. 

Debranched amylose-containing corn starches could be used as cereal coatings to extend the 

bowl-life of ready-to-eat cereals. 
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CHAPTER 1 

GENERAL INTRODUCTION 

The starch that passes through the small intestine intact is known as resistant starch 

because of its ability to “resist” enzymatic hydrolysis. Resistant starch is fermented by the 

microflora native to the large intestine and has shown many health benefits such as lowering 

cholesterol, lowering glycemic index values of foods, and anti-carcinogenic effects.  

Resistant starch is classified into four major categories by the mechanism in which they 

are resistant to digestion.  Resistant starch type I (RS1) is physically inaccessible starch, type II 

(RS2) is native granular starch, type III (RS3) is retrograded starch, and type IV (RS4) is 

chemically modified starch. RS3 is primarily composed of retrograded amylose because of its 

strong tendency to reassociate. Therefore, amylose content is a main factor governing the 

formation of RS3. There are several ways to further increase RS3 formation in starch, such as 

debranching of starch to result in all linear glucans and temperature cycling.  

Alternative cereal coatings have been sought to replace traditional sugar coatings due to 

waning consumer acceptance of added dietary sugar. Starch films form through the reassociation 

of starch molecules, a mechanism shared by the formation of RS3. One problem with starch 

films is that gelatinized starch dispersions tend to be viscous, thus forming thick films and 

trapping air bubbles, both of which are not desirable. Debranching of starch would decrease the 

viscosity of starch dispersion for ease of film formation and at the same time enhance 

reassociation and formation of crystalline structures. 
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CHAPTER 2 

LITERATURE REVIEW 

Starch Composition and Structure 

 Starch is a naturally abundant biopolymer made up of repeating D-anhydroglucose units 

(AGU) linked via glycosidic linkages that can be either α-(1-4) or α-(1-6) in nature. These 

different linkages give rise to two distinct types of molecules, amylose and amylopectin, and 

their structure and proportions vary with botanical source.  

 Starch is present in many staple foods across the world such as corn, rice, potatoes, and 

wheat. Furthermore, starch is the main ingredient in some of the most widely consumed prepared 

foods such as pasta, bread, and tortillas. Starch is also widely used in the food industry to provide 

binding, thickening, gelling, and other properties. Starch is a diverse ingredient that can be 

modified in many ways to give a multitude of functions leading to use in a variety of 

applications. 

 Besides the branch density, the number of glucose monomers that make up a starch 

molecule is also important to its properties. The size of starch molecules is often measured in 

degrees of polymerization (DP), in reference to the number of glucose monomers in an 

individual starch molecule. In nature, starch molecules, i.e. amylose and amylopectin, do not 

exist in loose agglomeration, but are packed into a very organized structure known as granule.  

 

Granule Structure 

Starch granules are semi-crystalline because they contain alternating amorphous and 

crystalline regions (Gallant and others 1997). The crystalline regions are composed of radially 

oriented amylopectin molecules that form crystalline structures through double helix formation 
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of branch chains, and possibly intertwined with amylose molecules (Gidley and Bociek 1985). 

The amorphous regions are comprised of amylose and amylopectin branch points that do not 

align in an organized fashion (Robin and others 1974). These two distinct regions alternate, 

starting from the center, which is known as a hilum, to form the layers that make up the starch 

granule (Yamaguchi and others 1979). The location of amylose is not as well elucidated as 

amylopectin, but it is thought to be interspersed in both the crystalline and amorphous regions of 

the granule.  Native starch has a crystallinity ranging from 15-45% (Zobel 1988). Studies have 

shown that the amylose content of starch increases closer to the surface of the granule and the 

average chain length of amylose molecules decreases towards the surface of the granule 

(Morrison and Gadan 1987). Starch granules have the ability to swell slightly in cold water but 

return to their original shape and size after drying. 

Starch granule size and shape are affected by the botanical source. Tuber starches 

characteristically have larger, less dense granules than cereal starches. For example, corn starch 

granules range from 2-30 µm in diameter, while potato starches range in diameter from 5-100 

µm (Robyt 1988). The size and shape of starch granules vary, even in starches from the same 

botanical source. Common starch granule shapes include spherical, lenticular, and dented (Tester 

and others 2004). 
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Figure 2.1. Organization and Structure of Starch Granules. 

 

Starch granules contain trace amounts of proteins, lipids, and minerals. Tuber starches are 

characteristically very low in lipids. The lipid content of starch is correlated with its amylose 

content. High amylose corn starches have higher lipid contents than waxy corn starches, which 

consist exclusively of amylopectin (Tester and Morrison 1990). Because starch lipid content 

increases with increasing amylose content, the lipids are concentrated on the exterior of the 

granule where most amylose is located (Tester and Morrison 1990). Two primary types of lipids 

are found in starches, lysophospholipids and free fatty acids (Tester and others 2004). The type 

of lipid that is predominant in a starch is dependent on the botanical source. 

Starch also contains varying amounts of proteins and minerals. Phosphorus is the most 

common mineral found in starches. In tuber starches, especially potato, phosphorus significantly 

impacts starch properties. Phosphorus is found in amylopectin at a much higher percentage than 

in amylose because of the ability of phosphorus to covalently bond to glucose units at, or near, 
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the branching point. These phosphorus groups can increase the viscosity and lower the 

gelatinization temperature of potato starch. 

Proteins present in starch can form a variety of complexes with the starch depending on 

the nature of the protein. Starch-protein complexes can be formed by a variety of mechanisms 

such as hydrogen bonding, hydrophobic interactions, and electrostatic interactions (Damadaran 

and Paraf 1997). Proteins are often found bound to the surface of starch granules and have been 

reported to restrict granule swelling and improve the rigidity of swollen starch granules 

(Hamaker and Griffin 1993). 

 

Amylose 

Amylose is essentially linear and consists almost solely of α-D-(1,4) linked AGU with a 

very small quantity of branching points (Hizukuri and others 1981). Amylose of tuber starches, 

such as potato and tapioca, has a higher amount of branching points than that of cereal starches 

(Takeda and others 1987). Potato amylose was reported to average 9.8 chains per molecule, 

while corn amylose only has 2.9 chains per molecule (Takeda and others 1987). 

Similar to granule size, the molecular size of amylose also varies with botanical source. 

Amylose from tuber starches has a DP of 1000-6000, while amylose from cereal starches is 

significantly smaller, having a DP of only 200-1200. Among the cereal starches, corn amylose 

has an average DP of 960, while wheat amylose averages DP 1290. High amylose corn starches 

have the smallest amylose molecules with an average DP of approximately 700 (Takeda and 

others 1989). 

Amylose is a minor constituent in most starches making up only 20-30% of common 

starches. Amylose is known for its propensity to form double or single helices through hydrogen 



6 

bonding. In solution amylose is present in a random-coil state with a hydrophobic interior 

stabilized by hydrogen bonds. Amylose forms single helices when it wraps around another 

molecule of hydrophobic nature (Rundle and Edwards 1943). Hydrophobic molecules such as 

iodine, butyl alcohol, and fatty acids have been shown to complex with amylose (Rundle and 

French 1943; Bear 1944; Jane and Robyt 1984). These complexes are often referred to as V-

complexes because of their unique V-type X ray diffraction pattern (Rundle and French 1943). 

 

Amylopectin 

Amylopectin is the main glucan that makes up most starches. Amylopectin is much larger 

than amylose and highly branched. These branching points are products of α-(1-6) linkages and 

are estimated to make up 4-5% of the total linkages in the molecule (Manners 1989). The size of 

amylopectin can reach a DP of over 2 million, making it one of the largest biomolecules in 

nature (Sajilata 2006). Because of its large, branching structure, amylopectin does not easily 

form highly organized structures after gelatinization, nevertheless amylopectin still re-associates 

but with a low stability. 

The current model of amylopectin structure is the cluster model proposed by Hizukuri 

(1986). He used debranching enzymes and high performance size exclusion chromatography to 

well resolve amylopectin chains into a polymodal distribution with a tailing fraction, labeled as 

B4, B3, B2, B1, and A. Each of these chains has a distinctive chain length that confers it location 

within the amylopectin molecule. Of these chains, A is the shortest having a DP range of 12-16. 

The average chain lengths of fractions B1, B2, and B3 are DP 20-24, 42-48, and 69-75, 

respectively. The A and B1 fractions comprise a single cluster, whereas B2, B3, and B4 clusters 

span 2, 3, and 4 clusters, respectively (Hizukuri 1985). 
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Figure 2.2. Amylopectin cluster model proposed by Hizukuri (1986). 

 

Starch Properties 

X-ray diffraction pattern 

Because of the semi-crystalline structure, starch granules exhibit distinct X-ray 

diffraction patterns. Cereal starches give the A-type, and tuber starches give the B-type patterns 

(Gallant and others 1992). The C-type pattern can be seen in certain legume starches and is a 

combination of the A- and B-type patterns. The V-type pattern is seen in complexes of amylose 

and organic molecules such as linear alcohols, fatty acids, and iodine. B-type starches have been 

shown to have long amylopectin branch chains, while A-type starches have shorter branch chains 

(Hanashiro and others 1996). Starches with a B-type pattern have a higher percentage of long 

chains than A-type starches (Hizukuri 1985). Amylose double helices formed from temperature 

cycling have been shown to produce A-type or B-type patterns depending on the temperature 

used during processing (Eerlingen and others 1993; Zabar and others 2008). A-type and B-type 

patterns reflect the presence of double helices, and their difference lies in the packing of the 
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double helices. A-type starches contain more closely packed double helices than B-type starches 

(Ratnayake and others 2001). 

 

Figure 2.3. X-ray diffraction patterns of different types of starches.  

 

Gelatinization 

In its native granular form, starch is not soluble in cold water but reversibly swells to a 

limited extent. When heated in excess water, starch swells irreversibly and eventually loses its 

crystalline structure, which is known as gelatinization. Gelatinization of starch occurs in the 

preparation of almost all starchy foods, and gelatinized starch becomes more susceptible to 

hydrolysis by enzymes. 

During the initial swelling some amylose begins to leach out of granules (Miller and 

others 1973).  In cases of high heat and shear, the granules can be completely destroyed (Fannon 

and BeMiller 1992). In most food systems this level of granular disruption is never reached, and 
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the granule remnants, or granule ghosts, remain in the system (Hoseney and others 1977; Fannon 

and BeMiller 1992). The ability of starch to swell and produce a viscous paste when heated in 

water is very important for its functionality in food systems.  

Retrogradation 

When a starch paste is allowed to cool, the molecules begin to re-associate to a lower 

energy state (Atwell and others 1988), which is termed retrogradation. Retrogradation was first 

reported by Katz (1928) during the investigation into the cause of bread staling. The 

retrogradation of starch is often called crystallization, and the increase in crystallinity is often 

used to measure the extent of retrogradation of a starch paste or gel. The cooling of a starch paste 

has been reported to slowly form a B-type X-ray diffraction pattern, typical of native tuber starch 

(Rundel and others 1944). The rate of retrogradation depends on amylose to amylopectin ratio, 

chain length, starch concentration, temperature, and other substances present in the system. In 

general amylose retrogrades much faster than amylopectin (Jane and Robyst 1984). An optimum 

chain length of approximately 80-100 is reported to be ideal for retrogradation (Pfannemuller 

and Burchard 1969; Gidley 1989; Eerlingen and others 1993). Starch solutions containing 10-

30% (w/v) have shown good retrogradation characteristics (Berry 1986). Temperature cycling 

has been shown to be the most efficient way of promoting retrogradation in starch solutions 

(Berry 1986). The presence of sugars has been shown to slow the pace of retrogradation because 

of its ability to interrupt the hydrogen bonds that stabilize amylose double helices (Kohyama and 

Nishinari 1991). Lipids are also known to retard retrogradation by forming a complex with 

amylose. 
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Resistant Starch 

 Resistant starch was first reported as a source of error in calculating total dietary fiber in 

foods (Englyst and others 1987). It was later shown that resistant starch functions nutritionally 

similar to dietary fiber (Asp 1992). Resistant starch is defined as the fraction of starch that 

escapes digestion in the stomach and small intestine (Englyst and others 1992). When resistant 

starch reaches the large intestine, it is fermented by microorganisms into an array of short chain 

fatty acids. Resistant starch is presently classified into four types according to the mechanism of 

digestive resistance. A fifth type of resistant starch, known as amylose-lipid complex, has been 

recently proposed. 

 

Resistant Starch Type I (RS1) 

RS1 refers to starch that escapes digestion because of physical inaccessibility. These 

starches are typically found in whole grains, seeds, and vegetables (Sajilata and others 2006). 

RS1 is often reduced in food products by milling and further mastication once consumed. The 

amount of RS1 is calculated by the difference between the glucose released by enzymatic 

depolymerization of the whole food and the glucose released from the homogenized whole food 

(Sajilata and others 2006). 

 

Resistant Starch Type II (RS2) 

RS2 refers to granular starch that is not susceptible to enzymatic attack because of its 

tightly packed crystalline structure. Native B-type starches are more resistant to enzymatic 

degradation than A-type or C-type starches. It has been reported that B-type starches contain a 

larger amount of branching points and short branch chains in their amorphous region than A-type 
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points and short branch chains in their crystalline regions (Jane and others 1997). The higher 

proportion of branching points and short branch chains in the crystalline layers of A-type 

granules makes the granule more susceptible to enzyme digestion. Evans and Thompson (2004) 

showed that native potato starch of B-type pattern had over 70% resistant starch. However, upon 

cooking the resistant starch content of the potato starch decreased to less than 1%. High amylose 

corn starch is also highly resistant to enzymatic degradation and has become the basis for the 

successful commercial resistant starch product, e.g. Novelose 240 (National Starch LLC., 

Bridgewater, N. J., U.S.A.). In the creation of Novelose 240 high amylose corn starch is heated 

in limited water in the presence of swelling inhibitor, usually in the form of an inorganic salt 

(Chiu and others 1999). This treatment keeps the constituents of starch granules from leaching 

out and allows the starch to retain its granular structure. The amylose and amylopectin re-

associate upon cooling, thus increasing the resistant starch content of the starch. 

 

 Resistant Starch Type III (RS3) 

RS3 is formed as a result of retrogradation. Retrograded starch is the most common 

resistant starch type in processed foods, and therefore is the most important from a nutritional 

and technological viewpoint (Garcia-Alonso and others 1999). Both amylopectin and amylose 

retrograde, but RS3 mainly consists of retrograded amylose because the branched structure of 

amylopectin is not ideal for reassociation. The reassociation of branch chains is sterically 

hindered by the branching points and shorter than the optimum length for resistant starch with 

high thermal stability. Conversely, amylose retrogrades easily because of its linear structure.  

Retrograded amylose is often easily characterized by its thermal properties. It has been widely 

reported that retrograded amylose has a distinct B-type pattern and an endotherm at 130 – 170oC 
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(Eberstein 1980). Debranching of high-amylose corn starch has been used to create some of the 

first commercially available RS3 products (Henley and Chiu, 1995). 

Processing methods, such as extrusion, have also been used to create RS3 (Faraj and 

others 2004; Hasjim and Jane 2009). Extrusion has benefits over batch cooking methods of 

creating RS3, such as less energy, time, and moisture needed (Guy 2001). Hasjim and Jane 

(2009) produced products of 29.8 % RS by combining acid hydrolysis with low-shear extrusion. 

 

Resistant Starch Type IV (RS4) 

Resistant starch IV is formed by chemical modifications, such as crosslinking and 

dextrinization (Seib and others 2001). Crosslinking raises the gelatinization temperature, 

allowing the granule to stay intact at higher temperatures. Dextrinization creates new linkages 

between starch molecules that are unable to be degraded by mammalian digestive enzymes. 

These modifications render the starch more resistant to amylolytic degradation because the 

modified starch molecule can no longer fit properly in the active site of the amylase (Woo 2010).   

 

Resistant Starch Type V (RS5) 

Recently amylose-lipid complex has been proposed as a new type of resistant starch. 

When lipids are present they can form complexes with the available amylose (Schoch and 

Williams 1944; Mikus and others 1946). These complexes are resistant to amylase attack, and 

therefore can be considered resistant starch (Larsson and Miezis 1979, Mercier and others 1980, 

Eliasson and Krog 1985, Guraya, and others 1997). 
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Mechanism of Amylose Retrogradation  

Amylose forms double helices that give RS3 a very stable structure from extensive 

hydrogen bonding. The high thermal stability of retrograded amylose allows it to endure the 

thermal processing of most foods, which is of particular interest in food applications.  

Unlike amylose V-complexes, the details of amylose crystalline structures and the 

mechanism in which they form are not well known. There are two proposed mechanisms for 

amylose aggregation: micelle formation and lamellae formation (Eerlingen and Delcour 1995). 

Both structures contain a resistant portion formed by amylose double helices and an amorphous 

region. The micelle structure is thought to be similar to amylose V-complexes, which are made 

of crystalline fibrils approximately 100 Å in length with amorphous regions interdispersed 

between them, and the amorphous region is composed of non-aggregated amylose (Jane and 

Robyt 1984). In the lamellar structure, the amylose double helices are folded on top of each other 

with a lamellar thickness of approximately 100 Å (Pfannemuller and Bauer-Carnap 1977), and 

the amorphous region is present at the folds of each amylose chain. Upon further retrogradation, 

amylose double helices are packed into hexagonal unit cell (Haralampu 2000). 

 

Figure 2.4. Proposed structures of retrograded amylose micelle (A) and lamella (B) (Eerlingen 
and others 1993). 
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Factors affecting RS3 Formation 

Starch Source 

 Starches from a variety of backgrounds have been used to produce RS3, with high 

amylose corn starches showing the best results. Amylose, with its fundamentally linear structure, 

is much more prone to the formation of double helices. Amylopectin does not easily form 

resistant starch and is often enzymatically debranched to enhance the formation of resistant 

starch (Berry 1986). Waxy starches, after debranching, become essentially linear chains that are 

lower in molecular weight than the amylose chains from high amylose corn starches. These 

shorter amylose chains have also been used as a successful starting material for producing RS3 

(Berry 1986; Cai and Shi 2010). Berry (1986) reported that waxy corn starch showed an increase 

in resistant starch content from 0.2% to 33.6% after debranching. For purified potato 

amylopectin, debranching increased resistant starch from 1.3% to 46.8%. Nevertheless, RS3 

products from debranched amylopectin have a significantly lower thermal stability than RS3 

products from longer chain glucans. For example, it has been reported that retrograded products 

from waxy corn have a melting temperature of 136oC, while retrograded products form high 

amylose corn starches have a melting temperature above 150oC (Ozturk and others 2009; Cai and 

Shi 2009). 

 

Debranching Treatment 

In the preparation of resistant starch, the significance of the branching α-(1-6) linkages is 

twofold. Primarily, the branch points create a steric hindrance to the reassociation of starch 

molecules. The second is the slower speed at which amylolytic brush border enzymes hydrolyze 

α-(1-6) bonds compared with α-(1-4) bonds (Pazur and others 1960, Pazur and Kleppe 1962). 
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 Debranching is a valuable technique for the formation of RS3 and is usually 

accomplished with two main enzymes, isoamylase and pullulanase (Berry 1986, Ozturk and 

others 2009). The ability of debranched starch to form higher amounts of resistant starch than 

native starches lies within the lack of branching points to physically inhibit crystallization. The 

products from the debranching of various starches have unique chain lengths depending on the 

botanical source of the original molecule. Waxy starches produce short linear chains that have a 

narrow distribution of chain lengths. Other starches, such as high amylose corn starch, will 

produce a wide array of molecular-weight starch chains after debranching. 

 

Amylose Chain length 

There has been much debate on which chain lengths are ideal for the promotion of RS3 

formation. Early studies found that amylose double helix formation was independent of the 

amylose chain length, provided the minimum length (DP 10) for double helix formation was met 

(Eerlingen 1993). Eerlingen and others (1993) stated that the optimum chain length for resistant 

starch formation was DP 100, while earlier amylose aggregation was shown to be maximized at a 

DP of approximately 80 (Pfannemuller and Bruchard 1969). Gidley and others (1995) showed 

that amylose aggregated into crystalline double helices when DP was between 10 and 100 

glucose units. Guraya and others (2001) have hypothesized that shorter chain amyloses are more 

prone than longer chain amyloses to retrograde due to the propensity of large amylose molecules 

to form crosslinked networks that are not resistant to enzymatic degradation. 

To obtain glucan chains of a specific length, various enzymatic treatments have been 

explored. The debranching of waxy starches has been used extensively to create short-chain 

amylose molecules. Robin and others (2008) reported longer chains of debranched potato 
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amylopectin produced more resistant starch than shorter chains fractionated from the same potato 

amylopectin. Recently, Cai and Shi (2010) reported that the longer chains produced from waxy 

potato starch, DP = 32.1, were more resistant to enzymatic degradation than the amylose chains 

produced from waxy corn and waxy wheat with an average DP of 24.1 and 21.8, respectively 

(Cai and Shi 2010). Conversely enzymes such as amylomaltase can be used to synthesize linear 

glucans chains of 20-35 glucose units capable of forming products upon retrogradation of up to 

94% RS (Schmiedl 2000). The discrepancies regarding the role of chain length on resistant 

starch formation could be due to the amylose concentration in the systems being studied. The 

amylose concentration was 30% in Schmiedl (2000) in contrast to 0.5 – 1.0 % concentration in 

Gidley and others (1995). These results suggest that the optimum chain length for amylose 

aggregation may also be affected by amylose concentration. 

 

Temperature 

Temperature cycling has emerged as the predominant method of promoting RS3 

formation. Sievert and Pomeranz (1990) showed that the temperature cycling of high amylose 

starch increases the resistant starch by approximately 15%. During temperature cycling a starch 

solution is heated, usually in an autoclave, to a very high temperature (>120oC). After the 

autoclaving period the solution is stored at a specified temperature to promote retrogradation. In 

the autoclaving, less stable structures are melted, and the subsequent storage cycle would 

promote the formation of more stable structures. 

Because retrogradation is a crystallization process, temperature plays an important role in 

RS3 formation. Different storage temperatures have been examined based on crystallization 

principles. Amylose retrogradation, like any other crystal formations, is guided by the principles 
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that guide any crystallization. Wunderlich (1976) outlined the three stages that crystals go though 

during their production (Figure 3). The first stage is nucleation, which is the formation of a 

nucleus. The second stage is propagation or the expansion of the nuclei. The third phase is the 

maturation, which in most cases refers to the slow growth or increasing of molecular order that 

occurs over time (Eerlingen and others 1993). 

 

Figure 2.5. Effect of temperature on amylose recrystallization (Eerlingen and others 1993). 

 

At lower temperatures, amylose has lower mobility than it would have at higher 

temperatures. This lowered mobility is the primary reason that crystal nucleation is favored at 

lower temperatures where amylose molecules are less mobile. Conversely, at high temperatures 

nucleation is not favored because of the large amount of energy in the system. Overall 

crystallization is favored at a central temperature between the glass transition temperature and 

the melting temperature. The optimum temperature for amylose reassociation has yet to be 

determined. Garcia-Alonso and others (1999) reported that storage at 60oC produced more 

resistant starch than storage at 100oC. However, recently Ozturk and others (2009) reported that 

debranched high amylose starches when stored at 95oC produced 57.8% resistant starch 



18 

compared with 51.7% when stored at 4oC (2009). The starch source in Garcia-Alonso and 

others(1999) contained amylopectin, which provides insight into the lower optimum 

retrogradation temperature reported. Retrograded amylopectin melts at temperatures close to 

60oC, therefore at storage temperatures above 60oC any retrograded amylopectin would have 

been melted. The research by Garcia-Alonso and others (1999) and Ozturk and others (2009), 

showing more retrogradation at middle to high temperatures, suggests that propagation may be 

the step of amylose reassociation that is most affected by temperature. 

The autoclaving parameters have been shown to have a less pronounced effect on the 

final resistant starch content than the storage temperature of the starch (Sievert and Pomeranz 

1989). Autoclaving at temperatures up to the melting temperature of crystalline amylose (> 

140oC) have been used in the production of resistant starch. Berry (1986) observed a steady 

increase in resistant starch formation with an increase in autoclaving temperature from 100oC to 

134oC. Sievert and Pomeranz (1989) showed that autoclaving high amylose corn starch at 134oC 

produced more resistant starch than autoclaving at 121oC or 148oC. These two studies show the 

optimum autoclaving temperature to be very close to 134oC. 

The drying method also can impact the final RS content of starch. Different drying 

methods such as freeze drying, vacuum drying, oven drying have been used to dry resistant 

starch products (Berry 1986; Sievert and Pomeranz 1989; Escarpa and others 1996). Oven drying 

has been shown to be just as good and in some cases better than more complex drying methods 

in promoting the formation of resistant starch (Escarpa and others 1996). 

Starch to Water Ratio 

In temperature cycling starch slurry is prepared with a specified amount of water and 

starch. By varying the amount of each component, the retrogradation of amylose is affected. 
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Sievert and Pomeranz (1989) showed that the water content directly affects the ability of 

amylose to re-associate. A starch to water ratio of 1:3.5 (w/v) was shown to promote more 

resistant starch formation in high amylose corn starch products than a 1:10 (w/v) starch to water 

ratio. The low water content in 1:3.5 (w/v) starch slurry is often hard to manage because of the 

viscosity of the starch gel at this high of solids content. The low water content also makes 

enzymatic treatments, such as debranching, difficult. For these reasons, many studies on the 

formation of resistant starch use a starch to water ratio of 1:10 (w/v). 

 

Other substances in the food system 

 Food systems often contain a multitude of compounds that can have impacts on amylose 

retrogradation. Lipids and sugars have been reported to inhibit RS3 formation (Germani 1983; 

Czuchajowska and others 1991; Philpot and others 2006). The addition of sugar in a gelatinized 

starch solution makes the gelatinized starch molecules more stable through hydrogen bonding 

and therefore less likely to retrograde (Spies and Hoseney 1982; Slade and Levine 1987). In a 

system containing lipids, there is competition between amylose-lipid complex formation and 

amylose retrogradation (Czuchajowska and others 1991). Slade and Levine (1987) stated that 

amylose-lipid complex formation is favored over amylose aggregation. 

 

In vitro Starch Digestion 

Starch has been classified into three distinct nutritional categories, rapidly digestible 

starch (RDS), slowly digestible starch (SDS), and resistant starch (RS) based on their resistance 

to enzymatic digestion (Englyst and others 1992). Rapidly digestible starch (RDS) is hydrolyzed 

into glucose within the first 20 min of incubation. Slowly digestible starch (SDS) is digested 
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between 20 min and 120 min. Resistant starch (RS) is then categorized as the starch that resists 

enzyme degradation for 120 min.  

 The method proposed by Englyst and others (1992) is an indirect method that measures 

the glucose released from enzymatic digestion and calculates the resistant starch as the difference 

between the enzymatically digested starch at 120 min and the total starch content. The Englyst 

method attempts to mimic in vivo digestion of starch by using a variety of starch digesting 

enzymes. The three nutritional categories of starch in the Englyst method are defined by the time 

they can resist enzymatic hydrolysis. 

 

Starch Films and Cereal Coating 

The need for biodegradable and natural polymers for film applications has spurred an 

interest in starch films. Most applications of starch films have centered on food packaging and 

preservation. Historically, starches have been used to create biofilms because of their ability of 

form films with superior mechanical and barrier properties. Low moisture permeability is 

desirable in other food applications, most notably coatings for ready-to-eat cereals. 

Ready-to-eat (RTE) cereals include a wide variety of groups such as puffed, flaked, 

presweetened, or regular (Bartolomei and Thesing 1998). Ready-to-eat breakfast cereals are 

usually coated with a sugar-based solution to prevent moisture absorption, which can lead to 

staling and the loss of crispness. One of the most important factors for consumer appeal of RTE 

cereals is the texture after being submerged in milk (Calandro and Murray 1992). The time a 

cereal can retain its desired crispness after being added to milk is known as the “bowl life” 

(Bartolomei and Thesing 1998). Ready-to-eat cereals can also be classified into presweetened 

and unsweetened varieties. Presweetened cereals are sweetened by coatings to avoid having the 
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sweetener incorporated into the cereal itself, which can cause adverse attributes to the cereal 

(Bartolomei and Thesing 1998). Cereals that are not sweetened are still usually coated to 

decrease moisture absorption, increase bowl life, and add a desired sheen. The process of making 

cereals is dictated by the type of cereals, but most processing techniques involve similar basic 

techniques. In the production of flaked cereal the ingredients are mixed, cooked, cooled/dried, 

flaked, toasted, coated, and dried (Fast and Caldwell 2000). The end product is RTE cereal with 

low moisture content of less than 5% (Bartolomei and Thesing 1998). 

 The coatings used in the cereal industry range from fruit juices to metallic salt mixtures 

(Bone and others 1986; Carpenter and others 1989). Sugar solutions are the most common 

coating used in the cereal industry because of their sweetness, hygroscopicity, and ease of 

crystallization. A mixture of glucose and maltodextrins has replaced sucrose solutions as the 

preferred coating in most cereal applications (Sheng and Widicus 1986). These sugar solutions, 

nevertheless, present problems such as a high tackiness, carmelization, and the plugging of the 

spray nozzles used to spray the solution to cereal (Caldwell and others 2000). Consumer 

acceptance of sugary cereals is also diminishing because consumers are associating sugar cereal 

products with dental caries and hyperactivity. The major hurdle of creating a low sugar 

replacement for coating ready-to-eat cereals is the loss of the desirable texture, flavor, and color 

properties that sugar coated RTE cereals posses (Green and Nowakowski 2005). Alternative 

coating technologies have been developed using other substances, such as phytoglycogen 

(Anderson and others 2003) or maltodextrin (Long and Chatel 2006). These results have proved 

the viability of larger molecules as cereal coatings. 
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CHAPTER 3 

EFFECTS OF ββββ-AMYLOLYSIS ON THE RESISTANT STARCH FORMATION OF 

DEBRANCHED CORN STARCHES 

 
ABSTRACT 

Retrograded amylose is resistant to digestion by amylolytic enzymes, which is known as resistant 

starch type III (RS3). This study investigated the effect of β-amylase hydrolysis on the formation 

and physicochemical properties of RS3 from debranched corn starches. Three types of corn 

starch (Hylon VII, Hylon V, and common corn) were first gelatinized and then hydrolyzed using 

β-amylase to varying degrees. The resultant hydrolyzed starch was debranched with isoamylase 

and then exposed to 3 times of temperature cycling at 135/133/133°C for 30 min and 95°C for 24 

hr to promote RS formation. The proportions of amylose and amylopectin long and short chains 

were affected by the β-amylase treatment and varied with starch type. The crystallinity of 

retrograded starches decreased after 2.5 and 4 hr but then increased after 14 hr of β-amylolysis. 

A broad endotherm from approximately 45 to 120°C and a small endotherm above 150°C were 

noted for all retrograded starches. The β-amylase treatment increased the end temperature of the 

broad endotherm. All three corn starches had increased RS contents after moderate β-amylolysis 

with Hylon V having the highest RS content at 70.7% after 4 hr of β-amylolysis. The RS content 

was positively correlated with amylose and amylopectin long chains, but negatively correlated 

with amylopectin short chains. The results suggest that RS3 formation is affected by starch 

composition as well as starch structure and can be increased by moderate β-amylolysis. 
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INTRODUCTION 

Resistant starch is defined as the fraction of starch that escapes digestion in the small 

intestine of healthy people (Englyst and others 1992). This portion of starch is nutritionally 

relevant because it has been shown to contribute to the colonic heath in animal models and 

humans (Asp 1994; Eerlingen and Delcour 1995; Phillips and others 1995; Cummings and others 

1996). Resistant starch is classified into four major categories by the mechanism in which they 

are resistant to digestion.  Resistant starch type I (RS1) is physically inaccessible starch, type II 

(RS2) is native granular starch, type III (RS3) is retrograded starch, and type IV (RS4) is 

chemically modified starch.   

RS3 is primarily composed of retrograded amylose because of its strong tendency to 

reassociate (Berry 1986; Siljestrom and others 1989; Sievert and Pomeranz 1989; Eerlingen and 

others 1993). Therefore, amylose content is a main factor governing the formation of RS3 (Berry 

1986; Sievert and Pomeranz 1989). There are several ways to further increase RS3 formation in 

starch. Debranching of starch results in all linear glucans, which more readily to reassociate 

(Berry 1986; Henley and Chiu 1994).  In addition, autoclaving (Berry 1986; Sievert and 

Pomeranz 1989, Henley and Chiu 1994) and temperature cycling (Sievert and Pomeranz 1989; 

Ozturk and others 2009) have been shown to increase RS3 production. Temperature cycling 

refers to the process of autoclaving a starch slurry to a temperature >120°C and then storing it at 

a specified temperature to promote retrogradation. A storage temperature of 95-100°C produced 

higher amounts of RS than lower temperatures (Eerlingen and others 1993; Ozturk and others 

2009).  The high autoclaving temperatures melt less stable structures, and the subsequent storage 

cycles would promote the formation of more stable RS3 structures (Ozturk and others 2009).  

Higher autoclaving temperatures produced products slightly higher in resistant starch than 
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products autoclaved at lower temperatures (Berry 1986; Sievert and Pomeranz 1989). The 

number of autoclaving cycles also correlated with RS3 content (Sievert and Pomeranz 1989; 

Ozturk 2009). However, a decrease in RS3 was found when autoclaving temperature was above 

134°C (Sievert and Pomeranz 1989). 

Although amylose content is the predominant factor, amylose degree of polymerization 

(DP) has also been shown to affect RS3 formation. Eerlingen and others (1993) reported that 

resistant starch increased with increasing amylose DP up to 100 glucose units and then leveled 

off (Haralampu 2000). Gidley and others (1995) corroborated this by showing the minimum DP 

for double helix formation was 10 glucose units.  However, these results were obtained using 

purified amylose instead of debranched starch that contains linear glucans with a broader DP 

range.  Modifying the chain length of native starch to promote RS3 formation has shown mixed 

results. Hasjim and Jane (2009) found that a mild acid hydrolysis increased the RS content of 

extruded common corn starch. They hypothesized that the shorter, acid-modified starch 

molecules had more mobility and therefore reassociated more easily. Koksel and others (2011) 

reported that the RS content of acid-treated high-amylose starch did not increase under various 

storage conditions to promote retrogradation, however, when immediately dried a slight increase 

in RS content was observed. 

Acid-hydrolysis creates random cleavage of starch in contrast to more controlled 

cleavage by β-amylase, which is an exo-enzyme that cleaves the α-(1-4) linkages from the non-

reducing ends. In this study, corn starches of varying amylose contents were modified by the 

controlled hydrolysis of β-amylase to various degrees, in combination with debranching by 

isoamylase. The effects of β-amylase hydrolysis on the formation of RS and the physiochemical 

properties of the resultant starches were investigated. 
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MATERIALS AND METHODS 

Materials 

 Corn starches with different amylose contents were used in this study. Hylon VII (70% 

amylose) and Hylon V (50% amylose) were provided by National Starch LLC. (Bridgewater, 

N.J., U.S.A.).  Common corn starch (~25% amylose) was obtained from Cargill Inc. (Hammond, 

Ind., U.S.A.). Beta-amylase from Bacillus cereus (activity 2484 U/mg) and D-glucose assay kit 

were purchased from Megazyme International (Wickow, Ireland). Isoamylase from 

Pseudomonas amylodermosa (activity >1.25×106 U/g) was purchased from Hayashibara 

Biochemical Laboratories Inc. (Okyama, Japan). Porcine pancreatin (pancrease activity 200 U) 

and amyloglucosidase from Aspergillus niger (≥ 300 U/mL) were purchased from Sigma-Aldrich 

Chemical (St. Louis, Mo., U.S.A.). 

Enzymatic Treatments 

Twenty grams of starch was suspended in 400 mL of 100 mM acetate buffer (pH 6.5) in a 

boiling water bath for 30 min, and then autoclaved at 135°C for 30 min to become fully 

gelatinized. The starch solution was equilibrated in a 40°C water bath, added with 200 µL β-

amylase, and then incubated for 0, 2.5, 4, or 14 hr to achieve varying degrees of hydrolysis. After 

the incubation, the starch was precipitated with 2 L of ethanol and then centrifuged at 7000 ×g 

for 20 min. The supernatant was collected for the determination of the hydrolysis degree by 

measuring the total carbohydrate content using the phenol-sulfuric method (Dubrois others 

1956). The sediment was rinsed with a small amount of water and kept at 50°C for 30 min to 

evaporate any residual ethanol. The samples were then freeze-dried to allow for easier dispersion 

in buffer for the subsequent debranching treatment. 
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For the debranching treatment, the β-amylase-treated starch was dispersed in 200 mL and 

autoclaved at 135°C for 30 min to ensure complete dissolution. The amount of β-amylase-treated 

starch varied between 11 and 18 g because of viscosity variation from varying degrees of 

hydrolysis. The dispersion was then added with 200 mL of 200 mM acetate buffer (pH 3.5) and 

isoamylase (300 U/g starch) and incubated at 45°C with agitation for 48 hr to achieve complete 

debranching. 

Temperature Cycling 

The enzyme-treated starch solution was autoclaved at 135°C for 30 min, equilibrated in 

an oven at 95°C for 24 hr, and then autoclaved again at 133°C for 30 min and equilibrated at 

95°C for 24 hr. The second autoclaving temperature was 133°C to avoid melting any already 

formed RS (Ozturk and others 2009). The autoclaving-oven cycle was repeated one more time to 

result in a total of 3 temperature cycles. After the third cycle the starch was transferred to watch 

glasses and dried in a forced-air oven at 50°C for 48 hr. The dried sample was ground in a 

cyclone mill (UDY Corporation, Ft. Collins, Colo., U.S.A.) to fit through a 0.25-mm mesh. 

Structure of Enzyme-Treated Starch 

 The enzyme-treated starch (12 mg) was dissolved in 3 mL of 100% DMSO under boiling 

and stirring for 3 hr and allowed to cool overnight with stirring. The sample was filtered through 

a 0.45-um filter, and 200 uL of the filtrate was injected into a HPLC system consisting of a 

Waters 515 HPLC pump, Waters 2410 refractive index detector, and 2 size-exclusion columns 

(Shodex OH-804 and OH-802 Showa Denko K.K. Kawasaki, Japan) used in tandem with 0.1 M 

ammonium acetate at 0.5 mL/min as the eluent. Dextran standards of 4400, 9900, 21400, 43500, 

196,000, and 277,000 Da and glucose were used to establish the calibration curve. 
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Physiochemical Properties of Enzyme-Treated Starch 

The X-ray powder diffraction was measured using a Phillips analytical diffractometer 

(Phillips, Almelo, Netherlands). The samples were scanned from 4° to 35° (2θ) at 45 kV and 40 

mA with a step size of 0.02°. The background was subtracted from the diffractogram by drawing 

a straight baseline tangentially to the curve at 5°(2θ). A relative crystallinity can be determined 

by comparing the area under the crystalline peaks with the area of the amorphous under the 

peaks. 

Thermal properties were assessed by a differential scanning calorimeter (DSC, Perkin-

Elmer Co., Norwalk, Conn., U.S.A.). Approximately 10 mg (db) of starch was weighed into a 

stainless steel DSC pan, and 20 µL of deionized water was added by a microsyringe. The 

mixture was hermetically sealed and equilibrated at room temperature for at least 24 hr prior to 

heating from 25°C to 180°C at 10°C/min. An empty pan was used as the reference. The onset, 

peak and end gelatinization temperatures and enthalpy (∆H) was calculated from the endotherms. 

The proportion of rapidly digestible starch (RDS), slowly digestible starch (SDS), and 

resistant starch (RS) were determined by following the method of Englyst and others (1992), 

except that invertase was not used because of the absence of sucrose in starch. 

Structure of Resistant Starch  

 The chain-length distribution of the RS residue from the method of Englyst and others 

(1992) was analyzed with HPLC.  Three mL aliquots of the samples after 120 min hydrolysis 

was added to 30 mL of ethanol, and then centrifuged at 4000 ×g for 10 min. The supernatant was 

discarded, and the precipitate was freeze-dried.  Ten mg of the freeze-dried hydrolysate was 

added to 3 mL of water, heated in a boiling water bath for 1 hr, and injected into a HPLC system 

equipped with a guard column, a Carbopac PA1 analytical column, a pulsed amperometic 
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detector, and an AS40 autosampler (Dionex-ICS-3000, Dionex Corp., Sunnyvale, Calif., 

U.S.A.). The eluents and eluent gradient were setup according to the method of Kasemsuwan and 

others (1995). 

Statistical Analysis 

 The data were analyzed by using JMP software (SAS Institute Inc., Cary, N.C., U.S.A.). 

Comparison of means was executed using Tukey’s test and bivariate analysis was performed 

using the Pearson-product moment approach. 
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Results and Discussion 

ββββ-amylase Hydrolysis 

Fig. 3.1 displays the hydrolysis profiles of the three corn starches during the β-amylase 

treatment over 14 hr. Common corn starch had the lowest hydrolysis degree among the starches 

at 2.5 hr, which was not expected because of its higher proportion of amylopectin than Hylon V 

and VII, which consists of more non-reducing ends for β-amylase to hydrolyze. The slow initial 

rate of hydrolysis for common corn starch was attributed to its higher viscosity after 

gelatinization compared with those of Hylon V and Hylon VII, which hindered the enzyme 

diffusion. All three starches exhibited a similar degree of hydrolysis after 4 hr. At the end of the 

14 hr, the hydrolysis degrees of common corn, Hylon V, and Hylon VII were 40.5, 35.5, and 

30.1 %, respectively, which correlated with their amylopectin contents.  

 

 

Fig. 3.1. Hydrolysis of corn starches with varying amylose contents by β-amylase over time. 
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Structural Characteristics of Enzyme-Treated Starches 

The normalized molecular-size distributions of the enzyme-treated starches are displayed 

in Fig. 3.2, and the proportion and corresponding peak DP are listed in Table 3.1. Amylose was 

eluted first before 27 min (Fraction, Fr. I), followed by amylopectin long chains (Fr. II) and then 

amylopectin short chains (Fr. III and Fr. IV).  

There were notable changes in proportions of each fraction for all starches during β-

amylolysis. The Fr. I of all starches displayed a similar trend of an initial increase after 2.5 hr, 

but a decrease after 14 hr of β-amylolysis. The extent of changes, however, varied with starch 

type.  Hylon V had the most increase in Fr. I after 2.5 hr (18%), whereas Hylon VII had the least 

(4.6%). Overall, the Fr. I was least affected by β-amylase hydrolysis in Hylon VII and most 

affected in Hylon V.  

The Fr. II, amylopectin long chains with DP of approximately 20-210, increased with 

increasing β-amylolysis in both common corn starch and Hylon VII, but decreased in Hylon V 

from 45.6 to 37.6 % from 4 hr to 14 hr of β-amylolysis. For Fr. III, amylopectin short chains 

with DP of approximately 9-2, Hylon VII displayed a continual decrease as β-amylolysis 

increased. Common corn starch and Hylon V exhibited an initial decrease followed by an 

increase at higher β-amylase hydrolysis levels. The Fr. IV, amylopectin short chains with DP of 

approximately 5-9, decreased with increasing hydrolysis time for common corn starch and Hylon 

VII, but decreased initially before then increased at the 4 and 14 hr hydrolysis times for Hylon V. 



Fig. 3.2. Molecular-size distributions of common corn starch, Hylon V, and Hylon VII after 

amylase hydrolysis for varying times and then debranched by isoamylase.

  

31 

size distributions of common corn starch, Hylon V, and Hylon VII after 

amylase hydrolysis for varying times and then debranched by isoamylase. 

 
size distributions of common corn starch, Hylon V, and Hylon VII after β-
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Table 3.1 

Distribution of Chain Lengths of Enzyme-Treated Starch 

Sample 
ββββ-amylase 

hydrolysis (hr) Properties 
Fraction 

I 
Fraction 

II 
Fraction 

III 
Fraction 

IV 

Common Corn 
Starch 0 Peak Area (%) 11.6 28.2 24.6 35.6 

DPpeak 856 37 11 6 

2.5 Peak Area (%) 22.3 32.9 15.8 29.1 
DPpeak 824 27 11 6 

4 Peak Area (%) 22.9 40.0 9.9 27.3 
DPpeak 818 26 11 7 

14 Peak Area (%) 11.1 41.2 17.3 25.5 
DPpeak 475 25 12 7 

Hylon V 0 Peak Area (%) 16.4 39.6 20.1 23.9 
DPpeak 895 26 12 6 

2.5 Peak Area (%) 34.4 45.8 9.9 9.8 
DPpeak 878 39 12 19 

4 Peak Area (%) 25.8 45.6 10.0 19.2 
DPpeak 669 39 12 6 

14 Peak Area (%) 22.9 37.6 12.6 26.8 
DPpeak 275 40 15 10 

Hylon VII 0 Peak Area (%) 22.1 43.2 16.4 20.4 
DPpeak 832 30 12 6 

2.5 Peak Area (%) 26.7 51.5 6.8 14.5 
DPpeak 654 42 11 6 

4 Peak Area (%) 31.0 52.1 7.0 9.9 
DPpeak 646 43 12 6 

14 Peak Area (%) 27.2 58.8 6.4 7.5 
    DPpeak 520 44 11 6 

 

The Fr. I peak DP decreased from 856 to 475 for common corn starch, from 895 to 275 

for Hylon V, and from 832 to 520 for Hylon VII after β-amylolysis for 14 hr. Common corn 
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starch showed a slight decrease in peak DP of amylopectin long chains (Fr. II) with increasing β-

amylase treatment. Both Hylon V and VII showed an initial sharp increase in peak DP of Fr. II 

and then no change with further β-amylolysis. For all three starches the peak DP of Fr. III and IV 

remained relatively unchanged with varying β-amylase hydrolysis durations.  

 

X-ray Diffraction 

The X-ray diffraction patterns and relative cyrstallinities of retrograded enzyme-treated 

starches are shown in Fig. 3.3. Most starches with the exception of debranched-only common 

corn starch showed a B-type cyrstalline polymorph. Debranched-only common corn starch 

showed a A-type characteristic with major peaks at 2θ = 15.3, 17.2, 18.2, and 23.2° and minor 

peaks at 10, 11.5, 14.2, 19.5, 22.3, and 26.3°, but changed to a B-type pattern with major peaks 

at 17.2, 22.2, and 24.3°, and minor peaks at 14.2, 15.3, and 19.5° when the β-amylase treatement 

was applied. The β-amylase treatment had little impact on the crystalline structure of high-

amylose corn starches. The intenisty of the peaks at 14.2 and 19.5° remained relatively 

unchanged for all starches, but the peak at 15.3° seemed to be strongly affected by the β-amylase 

treatment. In high-amylose staches the peak at 15.3° was reduced at 2.5 and 4 hr hydrolysis, but 

increased with 14 hr hydrolysis.  For common corn starch this peak significantly decrased after 

2.5 hr hydrolysis, reduced further after 4 hr hydrolysis, but re-appeared after 14 hr β-amylase 

treatment. All three starches shared a similar X-ray pattern and relative crystallinity after 14 hr of 

β-amylolysis.  

The formation of the A-type crystalline polymoph has been shown to be favored with 

shorter chains amylose and higher temperatures (Gidley and Bulpin 1987; Pfannemuller 1987). 

The A-type pattern displayed by debranched-only common corn starch was attributed to the high 
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proportion of amylopectin short chains. The β-amylase treatment decreased the proportion of 

short chains, and therefore the transition to a B-type polymorph appeared to be associated with 

an increase in long chains after the degradation of short chains. In addition, the increase in 

intesity at 15.3° in all starches, when β-amylase hydrolysis time increased to 14 hr from 4 hr, 

indicates the increase of A-type polymorph with an increase in amylopectin short chains (Fr. III 

and IV) as reported in Table 3.1. 

A trend was noted among all starches that the crystallinity initially decreased with 2.5 

and 4 hr hydrolysis but then increased after 14 hr of hydrolysis. Common corn starch had the 

highest crystallinity after debranching alone, most likely because of its large proportion of short 

chains (Fr. III and IV) (Table 3.1.), which promoted the formation of the A-type polymorph. 

After 2.5 - 4 hr of β-amylase hydrolysis, a significant proportion of short chains in common corn 

starch was degraded, thus resulting in decreased crystallinity. However, after 14 hr of hydrolysis, 

long chains were degraded to short chains that again contributed to the increase in crystallinity.  



Fig. 3.3. X-ray diffraction patterns of retrograded debranched corn starches with varying times 

(hr) of β-amylolysis. The relative 
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ray diffraction patterns of retrograded debranched corn starches with varying times 

The relative crystallinity values are shown inside the parentheses. 

 

ray diffraction patterns of retrograded debranched corn starches with varying times 

crystallinity values are shown inside the parentheses.  
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Thermal Properties 

All three retrograded debranched-only starches showed a broad endotherm from 

approximately 45 to 120°C and a small endotherm above 150°C. The β-amylase treatment 

shifted the end temperature of the broad endotherm to a higher temperature and sometimes 

resulted in multiple smaller peaks. Moates and others (1997) reported that the melting 

temperature of crystals from short chains, such as the ones from retrograded debranched 

amylopectin, increased from 57 to 119°C as chain length increased from 12 to 55 glucose units. 

It is assumed that the multiple small peaks in the temperature range between 50 and 120°C 

corresponded to the three distinct populations of amylopectin chains (Fr. II, III, and IV in Fig. 

3.2). The small differences in the temperature range and size of these small peaks could be due to 

the differences in their chain length distributions of the amylopectin chains (Fig. 3.2).   

The endotherm above 150°C, which is associated with the melting of amylose double 

helices (Sievert and Pomeranz 1989), was the most pronounced for debranched-only Hylon VII, 

presumably because of its high amylose content. When β-amylase was applied, the high 

temperature endotherm became larger. Two possible factors could contribute to the increase of 

this endotherm with β-amylolysis. One is that the degradation of amylopectin short chains (Fr. 

III and IV) might allow improved amylose reassociation because the presence of large amounts 

of amylopectin short chains could interfere with amylose complexation. The other possibility is 

the long amylose chains might not be optimal but became more suited for reassociation after the 

β-amylase treatment. 



Fig. 3.4. DSC thermograms of different enzymatically

corresponds to time (hr) of the β-
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ms of different enzymatically-treated corn starches. Number 

-amylase treatment. 

 

treated corn starches. Number 
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Digestibility 

Table 3.2 summarizes the fractions of RDS, SDS, and RS of enzyme-treated starches 

assuming their total amount of starch is 100. The procedure for producing RS3 was modified 

from Ozturk and others (2009), in which RS contents ranged from 41 to 58 % as measured by 

Approved Method 32-40 (AACC International 2000). In the present study, increased RS3 

production was anticipated because of the incorporation of enzymatic treatments and temperature 

cycling. For the debranching-only treatment, Hylon V had a higher amount (58.7%) of RS than 

Hylon VII (50.7%), which was also reported by Ozturk and others (2009). All starches showed 

significantly higher RS contents after the β-amylase treatment for 2.5 and 4 hr, but their RS 

contents decreased after 14 hr of β-amylase treatment. Debranched and β-amylase-treated (4 hr) 

common corn starch produced more RS (55.5%) than debranched-only Hylon VII (50.7%). 

Although amylose content is one of the most important factors for starch to form RS3, these 

results indicate that other aspects of starch structure appear to be as important in RS3 formation. 

Hylon V had a higher RS content than common corn starch and Hylon VII at 2.5 hr hydrolysis, 

and had the highest RS content along with Hylon VII after 4 hr of hydrolysis. Within each starch 

type, the highest RS level was found at 4 hr hydrolysis. The present results support the findings 

of Hasjim and Jane (2009) and Koksel and others (2011), and their different conclusions were 

attributed to their uses of different extents of hydrolysis and starch types.  

The changes in RS seem to negatively correlate with the changes in RDS for common 

corn starch and Hylon VII, but negatively correlate with the changes in SDS for Hylon V. 

Debranched-only common corn starch had the highest RDS (62.1%) and also had the only with a 

strong A-type polymorph (Fig. 3.3) when compared with lower RDS and the B-type polymorph 

of the other starches. The RDS and SDS of common corn starch decreased with 2.5 and 4 hr β-
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amylolysis, but then increased with further treatment of 14 hr. During β-amylolysis, the RDS 

levels in Hylon V only slightly changed, while the SDS in Hylon VII stayed relatively constant. 

Amylopectin short chains after debranching has been associated with SDS formation (Robin and 

others 2008; Cai and Shi 2009, 2010). Robin and others (2008) reported that SDS formation was 

highest for chains with a peak DP of 32. However, recrystallization is also greatly affected by the 

retrogradation conditions, particularly temperature. In the present study, most Hylon V had a 

higher SDS than common corn starch for the same hydrolysis condition, suggesting that 

amylopectin structure may have a greater impact than amylopectin quantity in SDS formation. 

For common corn starch and Hylon V, their SDS significantly decreased with the 2.5 and 4 hr β-

amylolysis. However, with further hydrolysis the SDS of Hylon V increased to the level of the 

debranched-only one. The increase in SDS was attributed to the degradation of amylopectin long 

chains to short chains. For Hylon VII the SDS did not significantly change with the β-amylase 

treatment, probably because its high amylose content compensated for the degradation of 

amylopectin. 

Hylon VII is commonly used in the commercial production of RS3 due to its high 

amylose content, but it has a high gelatinization temperature and is not as readily available as 

common corn starch. The β-amylase treatment of common corn starch might provide an 

alternative way of producing RS3. 
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Table 3.2 

 Nutritional Properties of Retrograded Enzyme-treated Corn Starches* 

Sample ββββ-amylolysis (hr) RDS (%) SDS (%) RS (%) 

Common Corn Starch 0 62.1a 9.4b 28.6h 

2.5 49.9b 4.5bc 45.6g 

 
4 41.8c 2.7c 55.5ef 

  14 51.0b 4.6bc 44.5g 

 

Hylon V 0 

 

25.4ef 

 

20.6a 

 

58.7de 

 
2.5 27.4def 7.8bc 64.7bc 

 
4 28.1def 2.5c 70.7a 

  14 24.6f 17.0a 58.4de 

 

Hylon VII 0 

 

40.0c 

 

8.7bc 

 

50.7f 

 
2.5 29.3de 8.6bc 62.1cd 

 
4 25.0ef 6.6bc 67.9ab 

  14 30.2d 8.3bc 61.5cd 

Means of 3 replications.  Values with same latter in same column are not significantly different 

(p < 0.05).  RDS = rapidly digestible starch, SDS = slowly digestible starch, RS = resistant 

starch, RS = 100 – (RDS + SDS). 

 
In an effort to better understand how starch chain lengths correlated with its digestibility, 

a bivariate analysis was performed on starch structures (Fr. I to IV in Table 3.1) and digestibility 

(Table 3.2), and the results are displayed in Table 3.3.  The RS content was positively correlated 

with Fr. I and II and negatively correlated with Fr. IV, and the opposite trend was noted for the 

RDS with negative correlation with Fr. I and II and positive correlation with Fr. IV. The SDS did 

not show any significant correlation with any starch fraction. Others have reported that 

amylopectin branch chains are integral for SDS formation, which was not observed under the 

conditions of this experiment, which could be attributed to the high storage temperatures used. 
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The conditions to promote SDS formation often involve storage at lower temperatures (Guraya 

and others 2001a, 2001b; Miao and others 2009), which have been shown to increase 

retrogradation of debranched amylopectin. 

 

Table 3.3 

Bivariate Analysis of Starch Structure and Digestibility 

Fraction   RDS SDS RS 

Fraction I -0.6916* -0.3485 0.8409* 

Fraction II -0.5809* -0.3049 0.6428* 

Fraction III 0.0486 0.2739 -0.0873 

Fraction IV   0.7017* 0.2780 -0.7848* 

* Statistically significant (p < 0.05) 

 

The minimum and optimum chain lengths on amylose reassociation and RS3 formation 

have been well studied (Pfannemuller and Bauer-Carnap 1977; Gidley 1987; Eerlingen and 

others 1993). Pfannemuller and Bauer-Carnap (1977) reported that the maximum rate of 

aggregation took place in amylose molecules of DP 80. Gidley (1987) demonstrated that the 

minimum DP for amylose double helix formation was 10 glucose units and later reported that 

amylose molecules with DP values above 100 were likely to form networks that were more 

sensitive to enzyme digestion. Eerlingen and others (1993) showed that amylose chain length had 

no significant effect on RS formation once it reached DP 100. Gidley and others (1995) reported 

that RS3 was comprised of amylose chains of DP 10-100.   

When trying to analyze which chain lengths are most important for the formation of RS, 

Fraction I and IV showed the largest correlation. Fraction I continually decreased in DP with 
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increasing β-amylase treatment, but RS did not increase with continual β-amylase treatment. 

With this information it is logical to infer that the chain length of Fr. I is not the primary factor 

for RS formation. Increases in RS seem to be most affected by the amount of starch in Fraction I 

and IV. In the present study, some starches showed an overall decrease in the proportion of short 

chains because the long chains were not degraded to short chains at the same rate as short chains 

were hydrolyzed in to saccharides. Conversely, in some cases an increase in short chains was 

observed as longer amylopectin chains are degraded to shorter lengths and short chains. 

Therefore, because of the polymodal nature of debranched amylopectin chains, an increase in β-

amylase hydrolysis does not always correspond to a higher proportion of short chains. 

Understanding the degradation of amylopectin using β-amylase helps explain how a very strong 

negative correlation was shown between Fraction IV but most samples saw a decrease in RS as 

β-amylase treatment increased from 4 to 14 hr. During this same time period most samples 

displayed an increase in Fr. IV, as molecules from Fractions II and III were degraded further, 

which suggests that the amount of short chains (Fr. IV) is an important factor in RS formation. 

RS Residue Structure 

 Table 3.4 presents the average chain length and chain-length distribution of the recovered 

RS from the digestibility study. The average DP of recovered RS residue ranges 21.3 to 26.4 

with the DP 13-24 as the predominant fraction. In general, the 14 hr samples had smaller 

proportions of DP 36+ fraction. Small changes were noted in the average DP between the RS 

residue from common corn starch and those from the two high amylose corn starches. It has been 

reported that RS chain length is independent of the starting chain length prior to starch 

retrogradation (Eerlingen and others 1993). The present results of slight differences in average 

RS chain length with respect to starch source and β-amylase treatment might be due to 



43 

differences in the method of recovering the RS. Eerlingen and others (1993) recovered the RS 

residue after subjecting RS to a modified version of the dietary fiber method (AOAC 1985), 

whereas this study recovered the RS residue after the Englyst method (1992). However, the small 

DP range of RS residue between DP 21 - 27 supports the lamellar model (Jolley 1970) for 

polymer crystallization and the micelle model for starch reassociation by Jane and Robyt (1984). 

In these proposed models the molecules were proposed to align over short crystalline regions 

(~24 glucose units) interdispersed with amorphous regions. Once these RS molecules were 

exposed to digestive enzymes, the amorphous regions were digested, and the recovered resistant 

starch had a narrow range of DP corresponding to the length of the helical portion of the 

molecule involved in RS formation (Eerlingen and others 1993). 
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Table 3.4 

Chain-length Distribution of Recovered Resistant Starch* 

Sample 
ββββ-

amylolysis 
(hr) 

Average 
DP 

DP 
6-12 

DP 
13-24 

DP 
25-36 

DP  
36+ 

Common Corn 0 22.3 ± 0.3 17.6 ± 1.0 46.7 ± 0.2 25.1 ± 0.5 10.6 ± 0.3 

2.5 22.9 ± 0.6 17.8 ± 1.8 43.4 ± 0.7 26.7 ± 1.1 12.1 ± 1.4 

4 24.4 ± 0.9 14.6 ± 1.2 40.3 ± 1.4 30.4 ± 1.1 14.7 ± 1.5 

14 22.1 ± 0.9 17.2 ± 1.3 46.6 ± 1.6 27.4 ± 0.7 8.8 ± 0.2 

Hylon V 0 21.3 ± 0.8 23.9 ± 1.3 42.2 ± 3.6 24.2 ± 0.7 9.7 ± 4.2 

2.5 26.5 ± 0.1 11.1 ± 3.1 37.4 ± 3.3 30.9 ± 1.3 20.6 ± 1.4 

4 26.4 ± 0.0 10.0 ± 0.3 39.1 ± 0.5 31.2 ± 0.2 19.7 ± 0.4 

14 23.5 ± 0.2 15.8 ± 0.9 42.8 ± 0.1 28.7 ± 0.4 12.6 ± 0.2 

Hylon VII 0 26.1 ± 0.1 10.7 ± 0.4 39.8 ± 0.6 30.4 ± 0.3 19.2 ± 0.5 

2.5 24.0 ± 0.1 15.6 ± 2.8 41.6 ± 2.8 28.6 ± 1.2 14.2 ± 1.1 

4 25.0 ± 1.7 13.3 ± 2.1 40.6 ± 4.2 29.3 ± 1.5 16.8 ± 4.9 

  14 24.0 ± 0.4 17.6 ± 1.1 38.8 ± 0.3 28.4 ± 0.6 15.1 ± 0.5 

* Means of duplicate measurements with standard deviations. 
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CONCLUSIONS 

This study demonstrates that both chemical composition and structure of starch affected 

RS3 formation in debranched starch. Debranched amylose-containing corn starches had 

increased RS contents with the incorporation of a mild β-amylase treatment. The mild β-amylase 

treatment hydrolyzed amylopectin short chains, which interfere with reassociation of linear 

chains, and thus increased the proportions of amylose and amylopectin long chains, which 

contributed to RS formation. However extensive β-amylolysis might create new amylopectin 

short chains and/or shorten amylose and amylopectin long chains to become not as optimal to 

form RS under the temperature cycling conditions in this study.  
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CHAPTER 4 

APPLICATION OF ENZYME-TREATED CORN STARCHES IN BREAKFAST 

CEREAL COATING 

 

Abstract 

Presently ready-to-eat cereals are coated with high levels of sugar coating to extend the bowl life. 

Because of health concerns of added sugar, there is a need to identify alternative coating 

materials. This study was designed to test the efficacy of debranched corn starches with varying 

amylose contents as a cereal coating. Hylon VII (70% amylose), common, and waxy corn 

starches were gelatinized and debranched, and then sprayed onto ready-to-eat breakfast cereal 

flakes. The surface morphology, milk absorption, texture, and digestibility of coated cereals were 

determined. A starch film of 50-130 µm was observed with scanning electron microscopy on the 

surface of the cereals coated with Hylon VII. All starch-coated cereals had a lower milk 

absorption value than the uncoated and glucose-coated controls. Among starch coatings, 

common corn starch and Hylon VII resulted in lower milk absorption than did waxy corn starch. 

After soaking in milk for 3 min, the peak force and work to peak of the cereals coated with corn 

starches were higher than those of the controls. The cereals coated with Hylon VII were found to 

have an increase in dietary fiber content. The results suggest that debranched amylose-containing 

corn starches could extend the bowl-life of ready-to-eat cereals. 



47 

Introduction 

The process of making ready-to-eat (RTE) cereals is dictated by the type of cereals, but 

most processes involve similar techniques of mixing, cooking, cooling, shaping, toasting, 

coating, and drying (Fast and Caldwell 2000). The end product has a low moisture content of less 

than 5% (Bartolomei and Thesing 1998). One of the most important factors that RTE cereals 

appeal to consumers is the texture after being submerged in milk (Calandro and Murray 1992). 

Consumers prefer RTE cereals with the ability to retain their texture in milk. The time a cereal 

can retain its desired crispness after being added to milk is known as the “bowl life” (Bartolomei 

and Thesing 1998). Therefore RTE cereals are usually coated with a sugar-based solution to 

prevent moisture absorption, which leads to staling and loss of crispness. Ready-to-eat cereals 

can be classified into pre-sweetened and unsweetened types. Pre-sweetened cereals often contain 

a sugar coating to avoid the incorporation of sweetener into the cereals, which can cause adverse 

attributes to the cereals (Bartolomei and Thesing 1998). Cereals that are not sweetened are still 

usually coated to decrease moisture absorption, increase bowl life, and add a desired sheen.  

Although sugar solutions are widely used in the cereal industry because of their 

sweetness, low hygroscopicity, and ease of crystallization, they present problems such as high 

tackiness, carmelization, and plugging of the spray nozzles (Caldwell and others 2000). In 

addition, dietary sugar has been linked to obesity and tooth decay (Lewis and others 1992; 

Gibson 1993; Ruxton and others 1999; Johnson and Frayry 2001). The major hurdle of creating a 

low-sugar replacement for RTE cereal coating is the loss of the desirable texture, color, and 

flavor that sugar-coated RTE cereals posses (Green and Nowakowski 2005). Alternative coating 

systems have been developed using substances, such as phytoglycogen (Anderson and others 

2003) or maltodextrin (Long and Chatel 2006). Phytoglycogen-coated cereals had slightly 



48 

increased bowl-life and decreased milk absorption, but only when compared to a water-coated 

control. Due to the importance of bowl-life to consumer acceptance and increasing demand for a 

low-sugar product, a variety of alternatives have been developed, such as fruit juice coatings and 

adding metallic salts of fatty acids to the dough, to extend the bowl-life of cereals (Bone and 

others 1986; Carpenter and others 1989). 

Starch films form when gelatinized starch dispersions are cooled and starch molecules 

aggregate and reorganize (Liu and Han 2005). Starch films have been widely used as an edible 

film and coating because of their high performance and low cost (Wolff and others 1951; Jokay 

and Mitan 1969; Liu and Han 2002). However, starch films become brittle and lose flexibility 

over time from retrogradation (Yoshida and Hijiya 1973).  

Amylose content is considered as the most important intrinsic factor affecting the 

properties of starch films (Tharanathan 2003). The amount of amylose in starch is strongly 

correlated with the mechanical and physical properties of starch films. Starches with higher 

amylose contents produce strong yet flexible films, but those with high amylopectin contents 

produce brittle films with poor mechanical properties such as low tensile strength and low 

elongation (Wolff and others 1951; Moore and Robinson 1968; Palviainen and others 2001). 

Furthermore, gelatinized starch dispersions tend to be viscous, thus forming thick films and 

trapping air bubbles, both of which are not desirable (Yoshida and Hijiya 1973).  

It was hypothesized that starch films could function as a cereal coating to replace sugar 

because of the crystalline structure from starch retrogradation. Debranching of starch would 

decrease the viscosity of starch dispersion for ease of film formation and at the same time 

enhance reassociation and formation of crystalline structures. Therefore, the objective of this 

study was to investigate the film-forming properties of debranched corn starches with varying 



49 

amylose content as a cereal coating with respect to bowl-life extension and physicochemical 

properties. 

 

Materials and Methods 

Three types of corn starch with different amylose contents were used in this study. Hylon 

VII (70% amylose) and waxy corn starch (0% amylose) were provided by National Starch LLC. 

(Bridgewater, N.J., U.S.A.). Common corn starch (~25% amylose) was obtained from Cargill 

Inc. (Hammond, Ind., U.S.A.). Isoamylase from Pseudomonas amylodermosa (activity >1.25 

×106 U/g) was purchased from Hayashibara Biochemical Laboratories Inc. (Okyama, Japan). For 

the determination of total dietary fiber content, porcine pancreatin and amyloglucosidase from 

Aspergillus niger (≥ 300 U/mL) were purchased from Sigma Chemical (St. Louis, Mo., U.S.A.). 

The D-glucose assay kit was purchased from Megazyme International (Wickow, Ireland). 

Wheaties® (General Mills, Minneapolis, Minn., U.S.A.) and 2% reduced fat milk (Hiland Dairy, 

Springfield, Mo., U.S.A.) were purchased from a local grocery store. 

Preparation of coatings 

A 10% (w/v) slurry was prepared by adding 6 g of starch to 60 mL of 100 mM sodium 

acetate buffer (pH 3.5). The resultant slurry was cooked in a boiling water bath for 30 min and 

then autoclaved at 135°C for 30 min to fully gelatinize the starch. The starch solution was 

incubated with isoamylase (300 U/g starch) at 45°C for 48 hr to ensure complete debranching. 

Thereafter, the starch solution was autoclaved at 135°C for 30 min to disperse any aggregates 

formed during the enzyme treatment. 

The starch solution was poured into a 32 oz. plastic spray bottle with adjustable spray 

nozzle (Sprayco, Detroit, Mich., U.S.A.) directly after autoclaving. The spray nozzle was 
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adjusted to a mist, in which each spray dispensed approximately 1 mL of starch solution. Thirty 

grams of Wheaties® was placed on a 600-cm2 stainless steel mesh tray and sprayed with 10 mL 

of the starch solution at 80°C on each side. The starch coating was applied in three separate 

applications with a drying step of 50°C for 2 hr between each coating. The tray was then placed 

in a forced air oven at 50°C for 24 hr to allow the coating to dry. The weight of the finished 

coated cereals was determined to calculate the amount of starch coated onto cereals. For a 

control, 6 g of glucose was added to 60 mL of water to create a 10% (w/v) glucose solution, 

which was applied in identical fashion to the starch coatings. An uncoated cereal was also 

included as a reference.  

Surface Morphology 

The surface appearance of cereals was photographed using a Nikon D300s camera with 

DX 18-2000 mm zoom lens (Nikon Corporation, Tokyo, Japan) on a black cloth background. 

The morphology of surface and cross-section of flakes were observed using a FEI XL 30 

scanning electron microscope (SEM) (FEI Corporation, Hillsboro, Ore., U.S.A.). Cereals were 

sputter-coated in gold and mounted on a stub either vertically for cross-section viewing or 

horizontally for surface viewing using carbon tape. 

Milk Absorption 

Milk absorption was measured by following the method of Anderson and others (2002) 

with modification. Four grams of cereals was placed in 30 mL of milk at 8°C for 3 min, and then 

the cereals was removed from the milk and drained on a 2.8-mm stainless steel mesh screen. The 

percent milk absorption was calculated by dividing the absorbed milk weight, which was the 

weight difference between the original cereals and the drained cereals, with the original cereals 

weight. 
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Texture  

The texture of the coated cereals was measured using a modified method of Anderson 

and others (2002). Four grams of each cereal sample was placed in 30 mL of 2% reduced fat 

milk at 8°C for 3 min. After the soaking period, the cereals was removed from the milk using a 

strainer, placed on a paper towel for 10 sec, and then placed into a 10-blade Kramer shear cell 

assembly for a MTS Alliance RT/1 Texture Analyzer (MTS Systems Corp. Eden Prairie, Minn., 

U.S.A.). The peak force to fracture and the work required to peak was measured by using the 

following conditions: a pretest speed of 5 mm/s, a test-speed of 10 mm/s, a post-test speed of 5 

mm/s, and a distance of 120 mm/s. 

Nutritional Properties 

The cereals were crushed using a mortar and pestle, and the fraction passed through a 

2.8-mm screen but retained on a 1.4-mm screen was collected and used for analysis. This size 

range was chosen as an approximation of masticated particle size based on the work of Hoebler 

and others (2000). The dietary fiber content was determined using AACC method 32-05 (AACC 

International 1991). 

Statistical Analysis 

One-way ANOVA was performed, and means were compared with Tukey’s test using the 

JMP program (SAS Institute, Cary, N.C., U.S.A.). 

 
Results and Discussion 

Surface Morphology 

Although the total amount of starch coating applied was 60 mL (6 g of starch or glucose) 

for 30 g of cereals, the final coated cereals only increased approximately 10% over the precoated 
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weight, suggesting that only half of the applied starch solution was coated onto the flakes, and 

the other half was lost during application.  

 Flakes coated with Hylon VII showed a slight frosty surface with visible signs of an 

opaque coating (Fig 4.1A). Flakes coated with common corn starch showed a similar appearance, 

but with a less pronounced frosting effect (Fig. 4.1B) yet an increase in gloss or sheen. Flakes 

coated with waxy corn starch (Fig. 4.1C) displayed a glossy appearance that was much less 

opaque than Hylon VII and with more sheen than common corn starch. Samples coated with 

glucose (Fig. 4.1D) were very similar to cereals coated with waxy corn starch, but had a slightly 

darker brown color. 

 

 
 
Fig. 4.1. Photographs of cereal flakes with various coatings: Hylon VII (A), common corn starch 

(B), waxy corn Starch (C), and glucose (D). 

C 

B A 

D 
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The representative SEM micrographs of cereals coated with Hylon VII and glucose 

(control) are shown in Fig. 4.2. The surface morphology of coated cereals was different for 

different coatings. Fissures were evident in the Hylon VII coating (Fig. 4.2A), which, however, 

was not observed in other starch and glucose coatings (Fig. 4.2C). A starch layer of 

approximately 50-130 µm was visible in the cross-section of Hylon VII-coated cereals with a 

dense structure in contrast to the loose, open structure of the cereal flakes (Fig. 4.2B). Only 

Hylon VII coating displayed a visible dense layer on the surface of the cereals. No film or 

coating was observed on the surface of flakes coated with debranched common or waxy corn 

starch and glucose (Fig. 4.2D). Because all starches were debranched, the most notable 

difference among the starches was the chain length distribution. Previously, Yoshida and Hijiya 

(1973) reported that starch with a higher proportion of long chains produced a better film than 

starch with high amounts of short chains. It is possible that linear amylose molecules with long 

degrees of polymerization (DP), when present in a large amount as in Hylon VII, reassociated 

with themselves rapidly and formed a distinct layer from the cereal surface. In contrast, linear 

amylopectin chains did not reassociate as easily as amylose, and short amylopectin chains might 

interfere amylose reassociation. Therefore, smaller starch molecules and glucose became part of 

the cereal surface instead of forming a dense layer with fissures. 
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Fig. 4.2. SEM micrographs of cereal flakes with various coatings: Hylon VII (A & B) and 

glucose (C & D). 

Milk Absorption 

 All three starch-coated cereals showed significantly reduced milk absorption compared 

with the two controls of glucose-coated and uncoated cereals (Fig. 4.3). Within the starches, 

cereals coated with waxy corn starch showed a slightly higher milk absorption value than those 

coated with common corn and Hylon VII. Yoshida and Hijiya (1973) reported that a high 

percentage of short chains (DP ≤ 100) in debranched starches of varying amylose contents had 

an adverse effect on starch film formation. Being 100% amylopectin, waxy corn starch consists 

of a majority of linear glucan chains with DP < 100, which would negatively impact its film 

forming properties. Because milk absorption is directly related to barrier properties of the 

B 
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54.6 µm 
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coatings, these results suggest that these three starches coatings had better moisture barrier 

properties than glucose.  

 

Fig. 4.3. Milk absorption of cereals with different coating materials after soaking in milk at 8°C 

for 3 min. 

 

Textural Analysis 

The glucose coating produced the hardest dry cereal, but also lost the most of its texture 

with milk soaking (Fig. 4.4). The peak force of the coated-cereals in the dry state increased with 

increasing amylose content of the starch coating, which was attributed to the better film-forming 

properties of amylose. Cereals coated with common corn starch and Hylon VII exhibited similar 

peak forces before and after soaking in milk, while cereals coated with waxy corn starch showed 

an increase in peak force with milk soaking. This increase was ascribed to the force required to 

extrude the wet cereal through the slots in the Kramer shear cell, in contrast of the dry cereals, 

which was not an indication of hardness. Both the glucose-coated and uncoated cereals displayed 

significant losses in peak force with milk soaking. The decrease in peak force was coupled with a 

loss of a crunching sound during the analysis. The peak force was negatively correlated with 

milk absorption, which was expected due to the effect of absorbed milk on the texture of cereals.   



Fig. 4.4. Peak force of cereals with different coating materials before and after soaking in milk

8°C for 3 min. 

The work to peak (area under the force

the peak force measurements (Fig. 4.5). Similar to the peak force results, waxy corn starch 

displayed an increase in the work

substantial in the work to peak measurement, which also indicates that the extrusion

cereal flakes was a significant factor in the textural analysis of the cereals soaked in milk. The 

extrusion of cereals through the slots of the 

thus increasing the work to peak at higher rates tha
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Peak force of cereals with different coating materials before and after soaking in milk

The work to peak (area under the force-displacement curve) followed the general trend of 

measurements (Fig. 4.5). Similar to the peak force results, waxy corn starch 

displayed an increase in the work to peak with milk soaking. However, the increase was more 

substantial in the work to peak measurement, which also indicates that the extrusion

cereal flakes was a significant factor in the textural analysis of the cereals soaked in milk. The 

extrusion of cereals through the slots of the shear cell broadened the force-displacement curve, 

thus increasing the work to peak at higher rates than the peak force.  

 

Peak force of cereals with different coating materials before and after soaking in milk at 

displacement curve) followed the general trend of 

measurements (Fig. 4.5). Similar to the peak force results, waxy corn starch 

to peak with milk soaking. However, the increase was more 

substantial in the work to peak measurement, which also indicates that the extrusion of wet 

cereal flakes was a significant factor in the textural analysis of the cereals soaked in milk. The 

displacement curve, 



Fig. 4.5. Work to peak of cereals with different coating materials before and after soaking in 

milk at 8°C for 3 min. 

 

Nutritional Properties 

The dietary fiber contents of all cereals samples are presented in Table 4.1. In order to 

mimic the mastication experience, the particle size used for dietary fiber analysis was 1.4 

mm instead of ground cereal flours. Although there was variation in 

fiber content, which was largely attributed

showed a significantly higher dietary fiber content than the others when analyzed using Tukey’s 

test. The other coated cereals had si

suggest that the high amylose content in Hylon VII, when debranched, was capable of rapidly re

associate during the spraying and drying step of coating application to the extent that it formed a 

crystalline structure more resistant to enzymatic hydrolysis. These results also support the SEM 
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observations that only the Hylon VII-coated cereals showed a distinct starch layer, which was 

probably crystalline in nature and resistant to enzyme hydrolysis.  

 
Table 4.1 

Dietary Fiber Contents of Cereals with Different Coatings* 

Coating Uncoated Glucose Waxy Corn Common Corn Hylon VII 

Dietary fiber 
content (%) 11.8 ± 0.4 12.9 ± 1.2 13.2 ± 1.0 13.6 ± 1.6 15.6 ± 1.3 

*Means of triplicate measurements with standard deviations. 

 
 

Conclusions 

Debranched starches displayed better barrier properties than glucose when used as a 

flaked cereal coating. The increased ability of the debranched starches to reduce milk absorption 

was correlated with their increase in peak force and work to peak values. The formation of a 

layer of coating was only noted in cereals coated with debranched Hylon VII. The high amylose 

content in Hylon VII was ascribed to the rapid formation of a layer of coating and also resulted 

in a higher dietary fiber value. The use of debranched corn starches appears to be a viable 

alternative to sugar for extending the bowl-life of flaked cereal and at the same time increasing 

the dietary fiber content.  
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CHAPTER 5 

OVERALL CONCLUSION 

This study demonstrates that chain length distribution of starch is important for RS and 

film formation. Debranched corn starches of varying amylose contents had increased RS 

contents with the incorporation of a mild β-amylase treatment. The mild β-amylase treatment 

hydrolyzed amylopectin short chains, which interfered with reassociation of linear chains, and 

increased the proportions of amylose and amylopectin long chains, which contributed to RS 

formation. However extensive β-amylolysis might create new amylopectin short chains and/or 

shorten amylose and amylopectin long chains to become not as optimal to form RS under the 

temperature cycling conditions in this study. Furthermore, debranched starches displayed better 

barrier properties than glucose when used as a flaked cereal coating. The amylose content of the 

starch coating did not have significant effects on milk absorption or texture, but did affect the 

surface morphology and dietary fiber content of the coated cereals. In conclusion, debranched 

corn starches showed promise as an alternative to sugar for extending the bowl-life of flaked 

cereal and as a source to produce RS3 when combined with a mild β-amylase hydrolysis.  
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