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ABSTRACT

This dissertation consists of three assays. The first assay examines the robustness of lead time

demand models for the continuous review (r, Q) inventory policy. A number of classic distribu-

tions as well as distribution selection rules are examined under a wide variety of demand con-

ditions. First, the models are compared to each other by assuming a known demand process and

evaluating the errors associated with using a different model. Then, the models are examined using

a large sample of simulated demand conditions. Approximation results of inventory performance

measures − ready rate, expected number of backorders and on-hand inventory levels are reported.

Results indicate that distribution selection rules have great potential for modeling the lead time

demand.

Incorporating distributions that preserve higher moment information into an inventory control

system to determine the desired performance measures is a challenging task. One difficulty in

applying such distributions is estimating the parameters from the data. In most cases only the de-

mand per period is available. Thus, the demand per period moment data must be combined with

the knowledge of the lead-times to represent the moments of the lead-time demand. The other

difficulty lies in deriving closed form expressions that utilize an appropriate parameter fitting pro-

cedure. The second assay addresses these challenging issues by utilizing new parameter fitting

strategies. The experiment results, collected under across a large number of simulated demand

conditions, indicate that the models that preserve more flexible distributional form yield more ac-

curate inventory performance measure results.



The focus of the third assay is to develop generic simulation optimization techniques based

on sample average approximation (SAA) in order to set policy parameters of classical inventory

systems having constrained service levels. This work introduces a policy optimization procedure

for the continuous review (r, Q) inventory system having a ready rate service level constraint.

Two types of SAA optimization procedures are constructed based on sampling from two different

simulation methods: discrete-event and Monte-Carlo simulation. The efficiency of each sampling

method is evaluated through a set of experiments under a compound Poisson demand process.

In addition, the applicability of the proposed optimization procedure to the other re-order type

inventory systems is discussed.
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1 INTRODUCTION

Inventory control under intermittent demand is a challenging task, which is mostly due to the na-

ture of the demand pattern. The transaction (demand incidence) variability (sporadicity) and also

demand size variability (lumpiness) are two factors that together make it hard to model the lead

time demand, and accordingly set an appropriate inventory control policy. Intermittent demand

occurs when a demand series has a significant portion of the periods with no demand and that

when a demand does occur the size can have significant variability. Because of this, the variance

of the demand process for intermittent demand is often significantly high. Intermittent demand can

be observed for the items of engineering spares and stock keeping units (SKUs) observed at the

level of a warehouse or retailer or various products at different stages in a supply chain. For such

organizations, the dedicated amount of intermittent items can be a significant amount of opportu-

nity cost since even small improvements in their inventory management may result in a substantial

amount of cost savings. The primary concern in this research is to determine whether inventory

control models can achieve the target service levels during the planning period so that an inventory

manager is able to run the underlying lead time demand model, reach the planned service level and

determine the optimal policy levels. Therefore, the scope of this research is to identify and develop

effective inventory control models in the face of intermittent and highly variable demand situa-

tions. The research plan includes three major objectives: 1) developing mathematical procedures

for modeling lead-time demand and for inventory systems with intermittent and highly variable

demand situations, 2) identifying and developing inventory control models that are well-suited for

intermittent highly variable demand situations and 3) investigating simulation based procedures

for adjusting selected parameters to hit targeted service levels.
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The first objective examines the use of standard (r, Q) inventory control policies for situations

involving intermittent and highly variable demand. The purpose of the research is to develop a bet-

ter understanding of how various distributions and distribution selection rules perform in terms of

the related error in predicting the operational performance measures. Historical data from industry

are analyzed and used to develop realistic demand scenarios for the purpose of experimentation.

A number of classic distributions, namely, normal, lognormal, gamma, Poisson and negative bi-

nomial are examined. In addition, a number of distribution selection rules are evaluated for their

effectiveness across a wide variety of demand conditions. First the models are compared to each

other to examine their comparative error statistics. Then, the models are examined versus a large

sample of simulated conditions. The results will indicate the risks associated with various distribu-

tional families and distribution selection rules. These results can help inventory software vendors

to better tune their software to handle intermittent and highly variable demand situations.

The second objective extends the first objective by incorporating lead time demand models

that have more flexible distributional forms into the intermittent and highly variable demand en-

vironment. Typically, parameter fitting procedures are employed based on matching the first two

moments. The parameter fitting procedure can be strengthened by exploiting higher moments

information, which is essentially the focus of this research objective. In this research, moment

matching procedures are developed on higher moments for a number of distributions. For other

lead time demand models that also preserve more flexible distributional forms, special parameter

fitting procedures are applied by taking into account the structure of the intermittent and highly

variable demand. This, in principle, enhances the process of extracting and using more informa-

tion about the demand pattern that exhibits special structural forms as in the case of intermittent

and highly variable demand. The experiments are considered to be two fold. The first set of exper-
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iments will compare the results with the results of a known lead time demand process. The second

set of experiments will be performed in a more sophisticated experimental environment in order

to mimic more realistic situations. Throughout the experiments, it is intended to show that such

lead time demand models preserving more general form will yield more quality results in terms of

approximating the desired inventory performance measures. Clearly, this serves the objective of

the overall research that aims to meet the target service level.

The third research area investigates and develops simulation optimization-based methods that

can be used without relying on an explicit lead time demand model in order to allow target service

levels (e.g. ready rate) to be met for planned inventory policies. The proposed methods allow for

the joint optimization of policy parameters of a given classic stochastic inventory system with a

service level. This will obviously cover the gap of any risk of not meeting the desired service levels

in the case of using the offered models.
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2 EVALUATING LEAD TIME DEMAND MODELS FOR (R, Q) INVENTORY MODELS

UNDER INTERMITTENT AND HIGHLY VARIABLE DEMAND

2.1 Introduction

In determining inventory performance measures, the modeling of the lead time demand (LTD)

plays a key role. In practice it is common to assume that the LTD follows a particular distri-

butional family. The parameters of the assumed distribution are often estimated by employing

forecast estimates and the forecast error (or other knowledge). Then, an inventory policy is used

and inventory policy parameters are determined. During this process a number of assumptions are

made, starting with the assumed form of the distribution. In addition, a number of other speci-

fication errors (e.g. demand assumptions, forecasting selection procedures, estimation methods,

policy setting heuristics, etc.) may cause the planned inventory system performance to not be met

in practice. This is a problem in the use of inventory models in general, but it is especially so for

the case of hard to forecast demand situations where the characterization of the LTD is even more

problematic. This paper, focuses on the error of arbitrarily picking a distributional model used as

an approximation to the LTD. The key emphasis is to develop a better understanding of the ro-

bustness of the chosen model in characterizing the LTD under complex demand situations. In this

respect, we study a number of classic distributions, namely, normal, lognormal, gamma, Poisson

and negative binomial. In addition, this paper examines several distributional selection rules for

modeling the LTD. Therefore, a LTD model in this paper refers to a distribution or a distribution

selection rule that selects a most promising distribution by relying upon the given LTD parameters

(e.g. mean and variance).
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In this paper, we approach LTD modeling from the view point of a practitioner. Since, in most

situations, the LTD model is not known exactly, performance measures can only be approximated.

In this respect, the practitioner can employ a LTD model regardless of whether it is in continuous

or discrete distributional form. The characteristics of the inventory control system in this paper are

well described in section 2.1 in (Zhao et al., 2007) (without any storage constraints). Inventory is

managed for a single item at a single location. The inventory is controlled by a continuous review

(r, Q) inventory system with discrete policy parameters of r and Q. In simulating the inventory

system, a special demand generator is used to generate demand scenarios. The demand generator

creates demand incidences at arbitrary points in time followed by the generation of individual

demand sizes in discrete values. The parameters of the demand generator are set by taking into

account real data obtained from industry. The details of the demand generator can be found in

section 2.5.1. Demands that cannot be immediately fulfilled are fully backordered. Lead times are

assumed to be deterministic. All parameters associated with the demand, lead time, and inventory

policy are directly supplied (as test cases) by an associated test case generation algorithm in order to

cover a wide range of possible scenarios. Hence, no forecasting methodology is considered in this

paper. The mean and variance estimate values of LTD are matched to the parameters of the given

LTD model. Then, the LTD model can be employed to approximate the inventory performance

measures.

In the experiments, the robustness of an arbitrarily picked LTD model is evaluated by the

accuracy of approximations for the inventory performance measures. The analysis concentrates

on errors associated with computing the ready rate, the expected number of backorders, and the

on-hand inventory level. The ready rate is discussed here, instead of the fill rate, because of its

analytical tractability. The definitions of these performance measures can be found in section 2.3.
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The lead time demand models are evaluated under two demand groups: Group 1 and Group 2.

Both of these groups have significant levels of variability, with Group 2 having more variability

than Group 1. These groups were selected based on analysis of industrial datasets and to provide

challenging test conditions that may provide insights into the robustness of the models. Thus,

the term robustness is not meant to be interpreted in some statistical sense, but rather in the more

colloquial sense of “able to withstand or overcome adverse conditions”. The experiments provide a

statistical analysis of the modeling error, which is the difference between the true and approximated

performance measure values. The error statistics are tabulated via an analytical evaluation, and

a simulation evaluation. For the analytical evaluation, the actual LTD is assumed to follow a

known distribution. Therefore, the true performance measure value can be calculated using the

analytical formula associated with the known distribution. Then, a different LTD model is used

in order to investigate how well the performance measures are approximated by using a wrongly

selected LTD model. During the simulation evaluation, the true performance measure values are

estimated by employing a simulation model. The approximated performance measure values are

calculated by using the analytical formula associated with a LTD model. The analytical formulas

considered in this paper are used to approximate performance measures under a continuous review

(r, Q) policy in the face of a unit demand process (Zipkin, 2000, pg 188). Therefore, in order to

have comparable results, the simulation model processes the demand as individual units, even if it

arrives in sizes greater than 1. The simulation model was verified and validated by comparing with

analytical formulas in the case of a compound Poisson process with logarithmic demand sizes (i.e.

negative binomial LTD process, (Axsäter, 2006, pg 80).

The paper is organized as follows. In the next section, background on LTD distributions is

presented by reviewing relevant literature. In section 3, distributions and distribution selection
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rules to be evaluated within the paper are presented. Section 4 describes the error metrics and the

results associated with the use of a specific LTD model assuming that another model is actually

more appropriate. Section 5 discusses the effectiveness of the LTD models when compared to an

extensive set of simulated test cases. Finally, section 6 summarizes the findings and discusses the

possibilities for future research.

2.2 Literature Review

In the application of traditional inventory models, it is often assumed that the LTD distribution is

normal (Silver et al., 1998; Axsäter, 2006). (Lau and Lau, 2003) present a review of the literature

summarizing the appropriateness of using the normal distribution to model the LTD. In particular,

they show cases where the use of the normal distribution can result in significant cost penalties,

even if the coefficient of variation (CV) is low. They also found that the shape of the distribution

matters, especially its skewness and kurtosis. (Janssen et al., 2007) argue against the normal distri-

bution’s popularity in inventory control management by asserting several reasons. First of all, the

normal distribution does not fit the criteria discussed in (Burgin, 1975): Demand distributions can

generally be represented with nonnegative values of demand and the shape of the density function

changes from monotonic decreasing (low mean demand) to a normal type distribution that is trun-

cated at zero (high mean demand). However, there exists a probability of a normally distributed

random variable being negative and the normal distribution is symmetric. The gamma distribu-

tion, on the other hand, is nonnegative and the value of the shape parameter can be adjusted to get

all three forms. Hence, the gamma distribution does fit the criteria described in (Burgin, 1975).
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The authors study the applicability of the gamma distribution in inventory control. According to

their findings, the gamma distribution is more applicable for representing the demand of different

items than the normal distributions, since it is defined only for non-negative values. The Erlang

distribution, known as a special case of the gamma distribution with an integer parametrization,

is considered in (Leven and Segerstedt, 2004) for LTD modeling due to its facilitating inventory

calculations. The authors compare the results of the inventory systems with Erlang and normal dis-

tributed LTD cases. In their study, the inventory system with the Erlang distribution outperforms,

although the results are mostly predicated on the special structure of the inventory control sys-

tem. The authors also point out that skewed distributions are important in obtaining more accurate

inventory calculations as opposed to what is claimed in (Silver et al., 1998).

(Tadikamalla, 1984) examined the normal, logistic, lognormal, gamma, and Weibull distribu-

tions for adequacy in representing the LTD, arguing that these distributions represent “typical”

symmetric and asymmetric distributions. The results indicated that if the coefficient of variation

is small that no practical difference between the distributions exists with respect to quality of the

optimal solutions. He concluded that the normal and logistic distributions are inadequate when

the coefficient of variation is large and that the skewness becomes an important consideration. A

number of other distributions have been used for modeling the LTD including the uniform and

truncated exponential (Das, 1976), Weibull (Tadikamalla, 1978), Tukey’s lambda (Silver, 1977),

Pearson and Schmeiser-Deutsch (S-D) distributions (Kottas and Lau, 1980).

Most modeling is predicated on a two moment matching procedure; however, (Kottas and Lau,

1980) advocate for more flexible distributional forms, relying on other moments, to better capture

the shape of the distribution. They describe the use of the 4-parameter Pearson and the 4-parameter

Schmeiser-Deutsch (S-D) distributional families, and beta distributions. The challenge in applying
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these distributions is in estimating the parameters from the data. In most cases only the demand per

period is available (not actual observations of the LTD). Thus, the demand per period moment data

must be combined with knowledge of the lead times to represent the moments of the LTD. (Heuts

et al., 1986) refute earlier results in (Naddor, 1978) and show that the shape of the distribution is a

key factor in its ability to represent the LTD. In particular, they show that the cost of the inventory

policy is significantly affected by the skewness of the distribution and that relying on only the first

two moments of the distribution is problematic. They base their analysis on the S-D distribution.

(Shore, 1986) provides a number of useful approximations for computing inventory perfor-

mance based on approximations for the normal, Poisson, gamma, and negative binomial distri-

butions. He suggests that these approximations may also be useful for more complex inventory

systems. (Kumaran and Achary, 1996) compare the generalized type distribution to the approxi-

mations in (Shore, 1986). The generalized type distribution is a flexible 4-parameter distribution

specified by the pth quantile function. This distributional family includes both symmetric and

skewed distributions. It has the advantage of a relatively straightforward method of fitting the

parameters but does not have a closed form cumulative distribution function. (Lordahl and Book-

binder, 1994) describe distribution free calculations for the performance measures of (r, Q) inven-

tory systems. Their method relies on having available LTD data and using an approach based on

order statistics. That is, using the order statistics to estimate appropriate pth fractiles and directly

setting policy parameters. The approach also can be based on bootstrapping methods applied to

generating the LTD distribution. They carry out a simulation study to empirically show the value

of their method. An important addition of their work is the consideration of bi-modal distributions

having positive and negative skew. They conclude that the method gives reasonable results that

could easily be implemented in practice.
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(Bartezzaghi et al., 1999) examined the impact of skewness and multi-modality on inventory

cost calculations. They also looked at the impact of shape with increasing levels of coefficient of

variation and the interaction with target service levels via simulation. The focus was on comparing

these factors and not necessarily on the ability of the distributions to represent actual LTD distribu-

tions. They conclude that practitioners should be aware of the impact of coefficient of variation and

shape and how it can dramatically change the analysis of cost considerations. They indicate that

better planning methods should be available for specific situations identified by the characteristics

of the demand. (Zotteri, 2000) continues this line of research via a more comprehensive simulation

study, especially for the case of lumpy demand. The simulation was performed within the context

of a manufacturing planning and control system that uses a lot-for-lot rule with rolling horizons,

without backlogs. Again, the key finding is that the coefficient of variation and the shape of the

distribution is important. The combination is extremely relevant when considering high service

levels.

(Shore, 1999) discusses the challenges in using 4-parameter distributional families. The key

issue in this approach is adequately estimating the 3rd and 4th moments, which typically have

significant sampling error. He introduces a new 4-parameter distribution that has the advantage of

a closed form quantile function and a method to specify its 4 parameters by using only the first and

second moments. He shows that the procedure adequately preserves the skewness and kurtosis.

In addition, optimal solutions to the continuous review (r, Q) inventory model are presented in

terms of the new distribution. The results are compared to the normal, gamma, lognormal, and

Weibull distribution. He concludes that the method is highly accurate especially in situations

where the LTD distribution is highly skewed. (Ramaekers and Janssens, 2008) also describe a

procedure to use two-moment information when specifying a distribution from the 4-parameter
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Pearson family. They provide a useful summary of past research. They conclude that if the demand

process follows a Poisson distribution with some arbitrary demand size then the use of a unimodal

or J-shaped beta distribution for the LTD distribution should be considered because the impact of

shape is a very important factor. In more recent work, (Gallego et al., 2007) study the effect of

non-negative distributions on the optimal base stock levels for inventory systems having highly

uncertain demand (extremely large coefficients of variation e.g. greater than 3). A key finding for

the gamma, negative binomial, and lognormal distributions was that very little should be ordered

when the variance is excessively large. They conclude that when demand variability is very high,

it may be enormously expensive and unnecessary to insist on based-stock levels as suggested by

the normal distribution.

As for modeling the LTD, distribution selection rules are also advocated by the literature. (Sil-

ver et al., 1998) discuss the use of the coefficient of variation in determining the LTD distribution.

They state that if the estimated coefficient of variation of the demand is less than 0.5, the normality

assumption is often deemed appropriate. (Axsäter, 2006) proposed a rule of thumb, which we call

“Axsäter’s Rule,” in selecting the distribution to fit for the LTD. The LTD with estimated variance-

to-mean ratio (VMR) that lies within the range 0.9 and 1.1 can be fit with Poisson distribution. If

the estimated VMR is less than 0.9, then a Poisson or a mixture of binomials (described in (Adan

et al., 1995)) can be considered; and if the estimated VMR is greater than 1.1, the negative binomial

can be selected.
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2.3 Models For the Lead Time Demand

This section discusses the inventory performance measures, LTD distributions and distribution se-

lection rules. Three inventory performance measures are considered: ready rate (RR), the expected

number of backorders (B) and on-hand inventory level (I). The ready rate is the fraction of time

with positive stock on-hand (Axsäter, 2006, pg 94 and Silver et al., 1998, pg 245). Let IN be

the net inventory level. Then, ready rate is Pr{IN > 0} (i.e. 1−Pr{IN ≤ 0}) by definition. The

analytical formula used for RR in this paper is based on (Zipkin, 2000, p 188, formula 6.2.11).

Another commonly used performance measure in practice is called the fill rate (FR), which is the

fraction of total demand that can be immediately satisfied from inventory without backordering

(Silver et al., 1998, pg 245). It should be noted that the expression of 1−Pr{IN ≤ 0} represents

both the ready rate and fill rate in the case of a pure Poisson process (i.e. demand size is 1 and inter-

arrivals are exponentially distributed) (Zipkin, 2000, pg 183 and Axsäter, 2006, pg 95). However,

if the demand follows a process different from pure Poisson, then it is observed that FR≤ RR. The

reader is referred to (Larsen and Thorstenson, 2008) for further discussion. We examine ready rate

since a tractable analytical formula exists for the underlying inventory environment considered in

this paper. In addition, fill rate is clearly related to ready-rate and thus some of its behavior can

be inferred by the results on ready-rate. The expected number of backorders can be defined as the

long-run average number of backordered demands. On-hand inventory level refers to the long-run

average number of inventory units on-hand. Under the assumption that F is the LTD model, RRF ,

BF and IF represent the ready rate, expected number of backorders and on-hand inventory levels,

respectively. In case of picking a distributional model to be used as an approximation to the LTD,
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the desired performance measures are computed by using the following general formulations:

RRF = 1− 1
Q

[
G1

F (r)−G1
F (r+Q)

]
(1)

BF =
1
Q

[
G2

F (r)−G2
F (r+Q)

]
(2)

IF =
1
2
(Q+1)+ r−µ+BF (3)

where µ, r and Q are the mean of the LTD, the re-order point and the order quantity while G1
F (.)

and G2
F (.) are the first and second order loss functions of F , respectively. We explain how we

compute the parameters of F as follows. Suppose that the gamma distribution is the underlying

lead time demand model. The gamma distribution has two parameters α (shape) and β (scale). We

represent gamma distributed random lead time demand variables as X ∼ Γ(α, β) where (X ≥ 0).

The parameters of the gamma distribution should be determined in order to be used as an approx-

imation to LTD. One practical way to determine the parameters of the gamma distribution is to

use the demand per period data (Tyworth and Ganeshan, 2000). The estimate values of the mean

and standard deviation of demand (µD, σD) and the mean of lead time (µL) can be used in order

to compute the mean and standard deviation of LTD (µ, σ). The following standard equations:

µ = µDµL and σ = σD
√

µL are used. The mean and variance estimate values of LTD are matched

to the gamma distribution parameters µ = E [X ] = αβ, V [X ] = σ2 = αβ2, and therefore, the pa-

rameters of the gamma distribution are determined with µ and σ as: α = µ2

σ2 and β = σ2

µ . Then,

expressions (1), (2) and (3) along with the loss functions of F are used to calculate inventory per-
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formance measures. The term 1
2 (Q+1) in expression (3) is replaced with 1

2Q in the case where

F has a continuous distributional form. The formulae are exact in the case of the discrete demand

processes. Otherwise, they are approximations (Zipkin, 2000, p 211). The reader is referred to

(Zipkin, 2000) for details and further explanation of the formulations.

In this paper, the classic distributions of normal (N), lognormal (LN), gamma (G), Poisson

(P) and negative binomial (NB) are considered for F . In addition, F can be some distribution

recommended by a distribution selection rule. The distribution selection rules evaluated in this

paper are as follows: Adan et al. Rule (ADR), Gamma-Adan Rule (GADR), Axsäter’s Rule (AXR),

the mixture of normal and negative binomial (MNNB) and the mixture of gamma and negative

binomial (MGNBA).

In order to employ mixture distributions to calculate inventory performance measures by using

(1), (2) and (3), their loss functions should be derived. Let G1
MD (.) and G2

MD (.) be the first and

second order loss functions of a given mixture distribution, respectively. We derive the first and

second order loss functions of a mixture distribution with the following.

G1
MD (x) = (1−q)G1

1 (x)+qG1
2 (x) (4)

G2
MD (x) = (1−q)G2

1 (x)+qG2
2 (x) (5)

where G1
1 (.) and G1

2 (.) are the first order loss functions and G2
1 (.) and G2

2 (.) are the second order

loss functions of the two distributions being mixed, respectively. The proofs of expressions (4) and

(5) are given in Appendix A. It should be noted that if F is modelled by a mixture distribution, the

calculation of inventory performance measures is quite easy based on (4) and (5) as they facilitate
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the corresponding parameter fitting procedure. The mean and variance estimates of the LTD are

matched to the parameters of the distributions that are mixed. In addition, the mixture fraction q is

always provided by the associated mixture distribution in this paper.

Based on these preliminaries, the distribution selection rules considered in this paper are given

as follows. Adan et al. Rule (Adan et al., 1995) selects a distribution from the set of distributions

{the mixture of binomial (MB), the mixture of negative binomial (MNB), the mixture of geometric

(MG) and (P)}. The rule decides which distribution to select with respect to the parameter a. In

order to utilize the mean (µ) and variance (σ2) of the LTD, the parameter a is defined as σ2−µ
µ2 .

The rule selects MB if µ > σ2 (i.e. a < 0); MNB if µ < σ2 (i.e. a > 0) and the parameter fitting is

possible (i.e. a < 1) for NB; P if µ = σ2 (i.e. a = 0); MG for large coefficient of variation values

(i.e. (a≥ 1)). The rule ADR is presented in Exhibit A.1.

The mixture distributions used in the rule are re-defined based on (Adan et al., 1995) as follows:

The Mixture of Binomial Distribution: This distribution consists of the mixture of two binomial

distributions (BINi (k, p) where k is the number of trials and p is the probability of success). If u

is defined as the random variable generated from U (0,1) (uniform distribution), then the random

variable Y is determined by the following:

Y =


BIN1 (k, p) , i f u≤ q

BIN2 (k+1, p) , i f q < u≤ 1

where k =
∣∣⌊1

a

⌋∣∣, q =
1+a(1+k)+

√
−ak(1+k)−k

1+a and p = µ
k+1−q .

The Mixture of Negative Binomial Distribution: This distribution consists of the mixture of two

negative binomial distributions (NBi (k, p)) where k is the desired number of success and p is the
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probability of success). The random variable Y is determined by the following:

Y =


NB1 (k, p) , i f u≤ q

NB2 (k+1, p) , i f q < u≤ 1

where k =
∣∣⌊1

a

⌋∣∣, q =
a(1+k)−

√
(1+k)(1−ak)

1+a and p = k+1−q
k+1−q+µ .

The Mixture of Geometric Distribution: This distribution consists of the mixture of two geo-

metric distributions (GEOi (pi) where pi is the probability of successes). The random variable Y

is determined by the following:

Y =


GEO1 (p1) , i f u≤ q

GEO2 (p2) , i f q < u≤ 1

where p1 = 1− µ(1+a+
√

a2−1)
2+µ(1+a+

√
a2−1)

, p2 = 1− µ(1+a−
√

a2−1)
2+µ(1+a−

√
a2−1)

and q = 1
1+a+

√
a2−1

.

Axsäter’s Rule recommends a distribution from the distribution set {MB, P, NB} based on the

variance-to-mean ratio (V MR) of the LTD. The rule AXR is given in Exhibit A.2.

In this paper, we also present three additional LTD models, which we developed based on

preliminary results from the experiments. The rule called Gamma-Adan Rule (GADR) is given in

Exhibit A.3. We directly give the first and second order loss functions of the proposed rules called

the mixture of normal and negative binomial distribution (MNNB) and the mixture of gamma and

negative binomial (MGNBA) in Exhibit A.4 and Exhibit A.5, respectively.

We explain how we developed these models with an example. The other models presented in

this paper are developed by exploiting similar ideas. When the LTD is approximated by N and

NB to calculate B, the overlay plots of error across each target RR are depicted in Figure A.6 and
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Figure A.7, respectively. The definition of error can be obtained in Section 2.4.2. These two plots

indicate an opposite error behavior over target RR. Therefore, in order to decrease the size of

the error, a mixture distribution can be built by using N and NB and a mixture fraction q = 0.5

(arbitrarily selected for convenience). The model called MNNB basically uses the defined mixture

distribution whenever parameter fitting is possible for NB. If the parameter fitting is not possible,

then the model MNNB selects G which exhibits somewhat similar error behavior with NB. The

associated error plot for MNNB is given in Figure A.8. As can be seen from the figure, the error

for each target RR are scattered symmetrically around 0 in relatively smaller amounts. The error

behavior indicates that MNNB is a more robust LTD model as compared to both N and NB. We

also present the associated error plot for ADR in Figure A.9. The robustness of this rule can also

be noticed by observing the error behavior.

In what follows, the effectiveness of each of these LTD models will be tested on a set of test

cases. The next section presents the characteristics of the industrial data sets and describes the test

case generation methods utilized in this paper.

2.4 Analytical Evaluation

The models and procedures given in this section allow for the generation of test cases that

represent example data found in industrial practice and to cover a large portion of the possible

parameter values for the (r,Q) inventory policy. The industrial data sets consist of many monthly

recorded demand series. Let σNZ be the standard deviation of the nonzero demand within a demand
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series. Based on this parameter, the demand series were classified into two groups: 1) The demand

series showing the statistical property of 0 < σNZ < 4. This is the first data group and labeled

Group 1 within the analysis. This group represents 1017 demand series or 92% of the data sets. The

demand series showing the statistical property of 4≤ σNZ < 1000 represents the second data group

and called Group 2 within the analysis. This group has relatively high variability and represented

103 demand series or 8% of the datasets. Thus, the industry data used to motivate the generation

of test cases consisted of a total of 1120 demand series. In this analysis, a set of cases will be

generated and then performance computed for each of the LTD models. The following subsection

describes how the test cases are generated.

2.4.1 Test Case Generation

In the analytical evaluation, a test case refers to a vector of (r,Q,µ,σ,F). Re-order point (r),

re-order quantity (Q), the mean (µ) and the standard deviation (σ) of the underlying LTD (F) are

given as input parameters in order to calculate the inventory performance measures through the

analytical formulas. After randomly generating a pair of (µ and σ), the policy parameters (r and Q)

are obtained based on a specified service level of RR. Policy parameters are enumerated to cover a

range of many possible service levels. It should be noted that parameters r and Q are not selected

arbitrarily. They are determined based on (Algorithm A.1).

Since each test case requires values for the mean (µ) and the standard deviation (σ) of the

LTD, we needed a method for generating instances of these parameters. While, in general, µ and

σ, can take on any positive values, we thought it would be more realistic to generate their values

based on the characteristics of real industrial datasets. For the datasets, we performed a bi-variate

analysis of the estimated values of µ and σ. Our intuition is that these parameters should have some

18



relationships (e.g. if µ is high σ might be high). Thus, we wanted to model possible relationships in

the generated test cases. While we could have simply used the parameters implied by each dataset

directly, a model for generating test cases allows greater control during the experiments. Based on

an analysis of industrial data (not described here), the pair of µ and σ can be adequately represented

by a bivariate lognormal distribution. Two bivariate lognormal distributions were defined for Group

1 as BV ML and for Group 2 as BV MH.

In what follows, the policy parameters r and Q are determined under a constraint on RR. For a

range of values of Q, the value of r that approximately meets RR is determined. The approximation

is performed by using the gamma distribution. The values of RR are enumerated over the range

from 0 to 1 with an emphasis over the higher values. Let W = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.62,

0.64, 0.66, 0.68, 0.7, 0.72, 0.74, 0.76, 0.78, 0.8, 0.82, 0.84, 0.86, 0.88, 0.9, 0.91, 0.92, 0.93,

0.94, 0.95, 0.96, 0.97, 0.98, 0.99} be the set of target RR values. Notice that many service levels

are enumerated to generate test cases so that a large range of scenarios are covered. The ideas

of this section are brought together in the algorithm given in Appendix A (Algorithm A.1). The

given algorithm generates the test cases which captures many possible scenarios for the analytical

evaluation procedure. In using the algorithm, some target levels (wL) of RR (especially very low

ones) may not be hit for a randomly generated pair of (µ,σ). This causes the generation of more

test cases that hit the higher RR values. Thus, the test cases have a higher sampling frequency

of larger RR values. This is typically desirable, since in practice higher values of RR are more

pertinent. This algorithm can be used by other researchers to generate additional test cases.

2.4.2 Evaluation Procedure and Results

In calculating inventory performance measures, one basic question arises under the assumption
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that the true LTD model is known with certainty (FLT D): What would be the effect on inventory

performance measures if the LTD model is approximated by some other arbitrarily selected model

(Fa). Clearly, the aforementioned specification errors are of interest in order to identify the magni-

tude of the effect. In this respect, we define two types of errors.

Type-I error: error of not picking the LTD model given that it is actually the true model. This

type error is concerned with the potential error of not picking the true LTD model. For example,

consider the potential error of not approximating the LTD via the normal distribution in the case

where the LTD is actually distributed normal.

Type-II error: error of approximating the LTD via a distribution or rule given that the LTD

actually follows some other distribution. That is, type II error deals with the error of arbitrarily

picking a LTD model. For example, consider the potential error of approximating the LTD via

Adan et al. Rule although the true LTD actually follows a distribution (e.g. gamma).

The idea behind the foregoing error types can be observed in Table A.1. Let E i
j and

∣∣∣RE i
j

∣∣∣ be

the error and absolute relative error for the known LTD model i and test case j. Let θi
j be the value

of a performance measure for the true LTD model i as FLT D and the test case j. Let θa
j be the value

of a performance measure for the test case j under the assumption that the LTD model is arbitrarily

selected as Fa. Type-I error statistics are obtained for each distribution by collecting the following

error results across all the LTD models. Thus,

E i
j = θi

j−θa
j i ∈ {FLT D : N,G,P,LN,NB} (6)

∣∣∣RE i
j

∣∣∣= ∣∣∣∣θi
j−θa

j

θi
j

∣∣∣∣ i ∈ {FLT D : N,G,P,LN,NB} (7)

The ideas for type-I error are implemented by Algorithm 1 to record the associated statistics
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for all generated test cases.

Algorithm 1 Type-I Error Calculation in Analytical Evaluation
1: Generate test case j of (r,Q,µ,σ)
2: For i ∈ {FLT D : N,G,P,LN,NB} do
3: Match µ,σ to the parameters of FLT D
4: Evaluate θi

j for RRF , BF and IF where F = FLT D for test case j
5: For a ∈ {Fa : N,G,P,LN,NB,AXR,ADR,GADR} do
6: Match µ,σ to the parameters of Fa
7: Evaluate θa

j for RRF , BF and IF where F = Fa for test case j

8: Evaluate E i
j and

∣∣∣RE i
j

∣∣∣ for test case j using

9: E i
j = θi

j−θa
j and

∣∣∣RE i
j

∣∣∣= ∣∣∣∣θi
j−θa

j

θi
j

∣∣∣∣
10: Record the error statistics
11: End-do
12: End-do

Type-II error statistics of each LTD model are collected across all the distributions by using the

following expressions:

E i
j = θi

j−θa
j a ∈ {Fa : N,G,P,LN,NB,AXR,ADR,GADR} (8)

∣∣∣RE i
j

∣∣∣= ∣∣∣∣θi
j−θa

j

θi
j

∣∣∣∣ a ∈ {Fa : N,G,P,LN,NB,AXR,ADR,GADR} (9)

Algorithm 2 implements the ideas for type-II error to record the associated statistics for all

generated test cases.
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Algorithm 2 Type-II Error Calculation in Analytical Evaluation
1: Generate test case j of (r,Q,µ,σ)
2: For a ∈ {Fa : N,G,P,LN,NB,AXR,ADR,GADR} do
3: Match µ,σ to the parameters of Fa
4: Evaluate θa

j for RRF , BF and IF where F = Fa for test case j
5: For i ∈ {FLT D : N,G,P,LN,NB} do
6: Match µ,σ to the parameters of FLT D
7: Evaluate θi

j for RRF , BF and IF where F = FLT D for test case j

8: Evaluate E i
j and

∣∣∣RE i
j

∣∣∣ for test case j using

9: E i
j = θi

j−θa
j and

∣∣∣RE i
j

∣∣∣= ∣∣∣∣θi
j−θa

j

θi
j

∣∣∣∣
10: Record the error statistics
11: End-do
12: End-do

In what follows, the two types of error statistics are collected for each data group. For both

Group 1 and Group 2, the statistics of these error results are collected for 30,000 randomly gener-

ated test cases which give at least 2 digits of accuracy based on a classic half-width analysis. The

descriptive statistics of the generated test cases with respect to target RR levels (wL) are presented

for Group 1 and Group 2 in Table A.2 and Table A.3, respectively. In the tables, it can be seen

that the targeted RR (i.e. service level) covers the range over (0, 1) and yields a high frequency

on the high service levels, as mostly desired in industrial practice. Low and high variability of the

generated test cases can also be seen in the tables.

The error results are presented in Table A.4, Table A.5, Table A.6, Table A.7, Table A.8 and

Table A.9. Along with the descriptive statistics, these tables also present the statistics related to the

probability that the absolute relative error is less than or equal to 0.10 (PRE(.10)), 0.05 (PRE(.05))

and 0.01 (PRE(.01)). The statistics of PRE (%) provide a reliability measure for the use of the LTD

model. The discussion of the results related to the first and second type errors is given as follows.
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Type-I Error Statistics Results: The error results for Group 1 and Group 2 are tabulated in

Table A.4 and Table A.5, respectively. In some sense, the results indicate how bad the error can

be if the true LTD is some distribution and the modeler chooses to apply a different distribution or

rule. In Table A.5 the value PRE(.10) means that if NB is the true LTD distribution and some other

distribution or the rule is used for approximating the LTD, then 70.3% of the time the approximated

performance will be within 10% of the true performance (i.e. PRE
(∣∣∣∣θi

j−θa
j

θi
j

∣∣∣∣≤ 0.10
)

= 70.3%

where i = FLT D = NB). In almost all the cases, the error results indicate that the performance

measures of B, RR and I are mostly overestimated. In the case where the LTD actually follows

the normal distribution, PRE (%) statistics show that the other LTD models produce the worst

performance results. That is, if the true LTD model is actually normal and a different distribution

or the rule is used, then there is a higher risk of error if the modeler uses a different LTD model.

This also yields the highest range of variation on the error results of both performance metrics

in case of the actually normal distributed LTD. In the case where the Poisson distribution is the

true LTD model, PRE (%) statistics show that the performance measures of B, RR and I can be

reasonably approximated by the other LTD models. Thus, if the underlying model is actually

Poisson, then the use of a different LTD model appears to be reasonable. Other LTD models yield

the smallest deviation for the estimated performance measures in case of the Poisson distributed

LTD.

Type-II Error Statistics Results: The results are presented for Group 1 and Group 2 in Ta-

ble A.6, Table A.7, Table A.8 and Table A.9. The tables represent how well a randomly picked

LTD model performs in approximating the performance measures of RR, B and I. In Table A.6, the

value PRE(.01) means that if ADR is used and the true LTD is something else, then using ADR will
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result in 90.2% of the time being within 1% of the true performance (i.e. PRE
(∣∣∣∣θi

j−θa
j

θi
j

∣∣∣∣≤ 0.01
)
=

90.2% where a = Fa = ADR). In almost all the cases, the error values associated with B are higher

than those of RR. For the test cases in Group 2, there is much more variability in error results.

We may even observe excessively large error results as it can be seen by the minimum and max-

imum error values from Table A.8 and Table A.9. Although for test cases in Group 1 the models

performs somewhat well in approximating the service levels, some of them produce significantly

poor results for cases in Group 2. However, the LTD model GADR that we propose in this study

produces consistently better error results for cases both in Group 1 and Group 2. For cases in

Group 2, PRE (%) statistics show that the performance measures of B and I are best approximated

if the GADR is picked for approximating the LTD. The model also yields the smallest deviation for

the estimated performance measures. For the same statistical measures, GADR and ADR produce

similar statistical results for RR for cases in Group 2. As far as the statistics of PRE(.01) are con-

cerned, the quality of GADR in approximating B is noticed easily. The model yields 55.7% for the

cases in Group 1 and 54.1% for the cases in Group 2 although all the other models remain much

below 50%. This means that for more than half of all the cases, GADR yields error sizes less than

1% of the true value of B.

The gamma and negative binomial distributions produce competitive error results especially for

the cases in Group 2 where we observe much more variability. This points out that if a distribution

has to be employed other than a rule, then, either the gamma or the negative binomial may be

preferred to approximate the LTD in the case of high variability in demand. It should also be noted

that we observe the worst error results with the Poisson distribution. Throughout our experiments,

we observed that the Poisson distribution is inclined to yield better error results if the mean and
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variance of the LTD values are small and the ratio of variance to the mean is around 1. More

specific results for the performance of the Poisson distribution are available in Table A.17. For test

cases where µ≤ 1, σ2≤ 1 and 0.9≤σ2/µ≤ 1.1, Table A.17 shows the error results for Group 1. As

can be seen from PRE(%) statistics, the Poisson distribution yields better results as compared to the

results given in Table A.7. For example, as far as B results for P(10%) statistics are concerned the

Poisson distribution gives only 27% as can be seen from Table A.7. This means that only 27% of

the time absolute error results will be within 10% of the true performance. However, for test cases

where µ≤ 1, σ2≤ 1 and 0.9≤σ2/µ≤ 1.1, the performance of the Poisson distribution increases up

to 72% as can be seen from Table A.17. As can be noted from Table A.7, the Poisson distribution

gives somewhat good results for the cases where we observe less variability in demand. However,

its performance significantly decreases for the cases in Group 2 (Table A.8 and Table A.9) where

we frequently observe large variance values. This also explains why AXR gives poor results for

Group 2 as it relies heavily on the Poisson distribution.

There are two issues related to using the Poisson distribution as an approximation to the LTD.

First, the true LTD model may not be the Poisson distribution. In this case, we observe large error

values since the Poisson is able to model the LTD by using only the information of the mean.

Second, suppose that the true LTD is the Poisson distribution. In this case, the other LTD models

are able to approximate LTD fairly well since they utilize not only the information of the mean but

also the variance, which results in smaller error sizes. These two issues suggest that the Poisson

distribution should not be used to approximate the LTD unless the ratio of variance to the mean is

exactly 1.
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2.5 Simulation Evaluation

In this section, the specification errors are determined using the results of a simulation study.

In addition to the LTD models in the analytical evaluation, two additional LTD models are also

investigated; namely, MNNB and MGNBA. The simulation experiments were done in a rigorous

environment in terms of empirically generated test cases based on a special demand generator. The

demand generator (batch on/off model) is used to characterize the demand process. The parameters

generated by the batch on/off model also feed the (r, Q) algorithms for test case generation and the

simulation model. The created test case is utilized by both the simulation model and the analytical

models to evaluate the errors. The details of the simulation model are given in the following

section.

2.5.1 Simulation Model

The JSL is an open source simulation library developed for discrete event simulation model-

ing by supporting random number generation, statistical collection and basic reporting. The JSL

includes some packages for easily modeling complex inventory and supply chain systems.

The simulation model consists of 4 modules. The first module utilizes the demand generator to

draw the demand observations from the specified demand distributions. The most significant part

of the simulation model is that it generates demands by employing a flexible arrival process. The

second module receives the demand parameters and randomly generates lead times to approximate

the mean and the variance of the LTD. These two parameters are utilized for the test case generation

procedure. In the third module, by employing the demand generator, the standard (r, Q) model is

simulated while performance measures of RR, B and I are monitored during the simulation. This
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module is also responsible for capturing the LTD parameters (i.e. µ and σ) by implementing the

methodology described in (Brown, 1982). The last module calculates the performance measures

using the LTD models (N, G, P, LN, NB, AXR, ADR, GADR, MNNB, MGNBA) and tabulates the

error statistics.

We model the demand process with a continuous time batch-on/off model based on (Galmes

and Puigjaner, 2003 and also described in Rossetti et al., 2010). The batch-on/off model consists of

an arrival process which has two states: ON in which demand may be permitted to arrive and OFF

in which no demands are permitted to arrive. Let S (t) be the stochastic process that determines

whether demand can arrive at time t. Therefore,

S (t) =


1, state: ON

0, state: OFF

Let XI be the length of time spent in the OFF state. Let XB be the length of time spent in the

ON state. We assume that XI and XB are independent. Thus, S (t) is an alternating renewal process

with period (length) XI +XB. The steady-state probability of state ON is

Pb = P(S (t→ ∞) = 1) =
E [XB]

E [XI]+E [XB]

(Tijms (2003), pg 43). The potential arrival process is a renewal process with inter-occurrence

times, Yi, having time points T0 = 0 and Ti−1 < Ti < Ti+1. Let Di be the amount of demand at event

i. Then,

Di = 0, i f S (Ti) = 0

Di ∼ FNZ, i f S (Ti) = 1
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where FNZ is the cumulative probability distribution of non-zero demand. In a simulation model

in which demands are generated by the continuous time batch-on/off model, the demand sizes

are determined by the variable of Di and the events of demand arrivals are scheduled by Yi. The

alternating renewal process is scheduled by sampling, XI and XB. This gives an extensive amount

of flexibility in modeling a wide variety of demand processes. For example, if S (t) is always

ON and the demand occurrence process is Poisson (i.e. Yi is exponentially distributed), then the

resulting demand has a compound Poisson process. An algorithm of the demand generator and

more discussion can be obtained in (Rossetti et al., 2010).

In this study, the demand generator is set up as follows. The events of demand arrivals are

scheduled by an exponential distribution (i.e. Yi is exponentially distributed). A gamma distribution

is assumed to generate the input random variables of XI: whose mean and standard deviation are µI

and σI , XB: whose mean and standard deviation are µB and σB, Di (integer-rounded): whose mean

and standard deviation are µNZ and σNZ . Therefore, the set (µNZ , σNZ , µB, σB, µI , σI) represents the

demand generator parameters. The demand generator parameters set is generated via a multivariate

distribution which will be given in the next section. Based on the described set up, the algorithm

of the demand generator is given in Appendix A (Algorithm A.2).

The generated demands are processed in order to be consistent with the underlying theory of

the (r, Q) inventory model. Since the given demand generator drives demands in discrete units, it is

possible to apply demand-splitting (Teunter and Dekker, 2008). In addition, the simulation model

processes demands based on a first-come-first-served ordering. By doing so, the received (and

backordered) demands can be partially or fully satisfied from the available stock on-hand. There-

fore, based on these assumptions, a customer with a demand for multiple units can be regarded as

multiple customers with demand of unit size. This allows the simulation model to face the com-
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pound demand process as if it faces a unit demand process, which allows comparable results of

inventory performance measures with the analytical formulas (1), (2) and (3).

2.5.2 Test Case Generation

For the simulation evaluation, the test cases are generated as follows. The LTD parameters (i.e.

µ and σ) are captured during the simulation by the method described in (Brown, 1982, pg 260).

The policy parameters of r and Q are obtained with the same procedure given in section 2.4.1.

However, in order to meet the target service levels of RR, we first approximate the LTD parameters

(defined as µA and σA). A compound Poisson approximation method is applied in order to obtain

µA and σA. Suppose that Ti ∼ exponential( 1
λ
) where λ is the demand arrival rate. Thus, λPb is the

rate of non-zero demand. Then, D(t) = ∑
N(t)
i=1 Di where N (t) is the number of non-zero demand

incidences that have occurred up to time t and, therefore, N(t)∼ Poisson(λPb).

It follows that

E [D(t)] = λPbtE [Di]

and

Var (D(t)) = λPbtE
[
D2

i
]

Var (D(t)) = λPbt
[
Var (Di)+(E [Di])

2
]

The approximated mean and standard deviation of the LTD are expressed as follows:

µA = E [D(L)] = λPbLµNZ

σA =
√

Var (D(L)) =

√
λPbL

[
σ2

NZ +(µNZ)
2
]

In this study, observations of lead times were not directly available from industry sources;
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therefore, we considered the data for lead times (monthly) given in (Strijbosch et al., 2000). In

(Strijbosch et al., 2000), although the standard deviation of the lead time is not provided, the

average of monthly lead times is given as 5.17. The largest lead time is given as 20 months and

indicates the range of the lead time. Let µL, σL, R and d2 be the mean and standard deviation

of the lead time, the range of the lead times and a constant for σL, respectively. d2 is assumed

to be 3.9. The approach in (Eng., 2010) is used to calculate the standard deviation of the lead

time which is σL = R
d2

= 20
3.9 ' 5. Because of the parameter fitting and distribution shape issues,

the gamma distribution was selected to generate “constant” lead times for each test case using the

fitted parameters of µL and σL.

The algorithm given in Appendix A (Algorithm A.3) implements the ideas in this section. In

the given algorithm, the enumerated set of ready rates is defined as W = {0.2, 0.4, 0.6, 0.62, 0.64,

0.66, 0.68, 0.7, 0.72, 0.74, 0.76, 0.78, 0.8, 0.82, 0.84, 0.86, 0.88, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95,

0.96, 0.97, 0.98, 0.99}. In order to generate demand generator parameters set, two multivariate

lognormal distributions are used based on an analysis of industrial datasets: one for the cases

in Group 1 (MV ML) and one for the cases in Group 2 (MV MH). The multivariate distributions

are used to reflect the correlation among demand generator parameters. The algorithm generates

both demand generator parameters sets of (µNZ , σNZ , µB, σB, µI , σI) and the test case vectors of

(r,Q,µ,σ,F) which cover many possible scenarios for the simulation evaluation procedure.

2.5.3 Experiment Settings and Results

The simulation model for each generated case associated with Group 1 was run for 30 repli-

cations with 2,000,000 time units of run-time and 200,000 time units of warm-up period. Based

on these simulation run parameters, at least 2 digits of precision is achieved for the cases in Group
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1 for the performance measures of RR, B and I. The computational time for only one test case in

Group 2 took approximately 8 minutes. For some cases in Group 2, computational times may even

be much higher. Since there is a considerable constraint on the computational time of the simu-

lation runs, at least 1 digit of precision is achieved for the cases in Group 2 for the performance

measures through the experiments. Therefore, for cases in Group 2, the parameters setting for

simulation runs was 30 replications with 850,000 time units of run-time and 85,000 time units of

warm-up period. We define the variables ES
j and

∣∣∣RES
j

∣∣∣ as the error and absolute relative error for

the test case j. Let θS
j be the value of a performance measure estimated by the simulation model for

test case j and let θa
j be the value of a performance measure approximated for test case j under the

assumption that the LTD model is Fa. The same types of statistics with the analytical evaluation

are recorded for each assumed LTD model by using the following formulas:

ES
j = θS

j −θa
j a ∈ {Fa : N,G,P,LN,NB,AXR,ADR,GADR,MNNB,MGNBA} (10)

∣∣∣RES
j

∣∣∣= ∣∣∣∣θS
j−θa

j

θS
j

∣∣∣∣ a ∈ {Fa : N,G,P,LN,NB,AXR,ADR,GADR,MNNB,MGNBA} (11)

Algorithm 3 summarizes the recording of the error statistics for all generated test cases.

Algorithm 3 Error Calculation in Simulation Evaluation
1: Generate (µNZ,σNZ,µB,σB,µI,σI) and test case j of (r,Q,µ,σ) and
2: Estimate θS

j for RR, B and I through simulation model
3: For a ∈ {Fa : N,G,P,LN,NB,AXR,ADR,GADR,MNNB,MGNBA} do
4: Match µ,σ to the parameters of Fa
5: Evaluate θa

j for RRF , BF and IF where F = Fa for test case j

6: Evaluate ES
j and

∣∣∣RES
j

∣∣∣ for test case j using

7: ES
j = θS

j −θa
j and

∣∣∣RES
j

∣∣∣= ∣∣∣∣θS
j−θa

j

θS
j

∣∣∣∣
8: Record the error statistics
9: End-do
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In the simulation experiments, a total of 2,400 test cases are used to record the statistics. The

descriptive statistics of the generated parameters of (µNZ , σNZ , µB, σB, µI , σI , µ, σ, r, Q, L) and the

associated wL are given in Table A.10 and Table A.11 for 2,208 cases in Group 1 and 192 cases

in Group 2, respectively. In these two tables, the target ready rate covers the range over (0, 1) by

yielding high frequency coverage of the higher service levels. The tables also indicate a statistical

distinction for low and high variability of the generated test cases. Test cases for which a low

variability is observed (i.e. Group 1) have demand sizes ranging from 1.11 to 9.13. For the same

test cases, policy parameters r and Q range from -28 to 80 and from 1 to 40, respectively. The

cases in Group 2 have demand sizes ranging from 28.32 to 38112.17. The demand size variability

is also very high. For the same test cases, policy parameter r ranges from -46 to 146031 while

policy parameter Q ranges from 1 to 518.

For test cases in Group 1, the error results for distributions and distribution selection rules are

tabulated in Table A.12 and Table A.13, respectively. The error results for test cases in Group

2 for distributions and distribution selection rules are tabulated in Table A.14 and Table A.15,

respectively. The results indicate that in almost all the cases, the error values associated with

B are higher than those of RR. In fact, all the LTD models produce poor results in terms of

approximating B under these extremely variable demand scenarios. In addition, in most of the

cases, the performance measure of B is overestimated by all the models except AXR and P. As

far as test cases where µ ≤ 1, σ2 ≤ 1 and 0.9 ≤ σ2/µ ≤ 1.1 are concerned, the performance of

the Poisson distribution can be observed by comparing PRE (%) results in Table A.12 and Table

A.18. For cases in Group 2, PRE (%) statistics show that the performance measures of RR and I

are approximated much better as compared to B. As far as RR and I are concerned, ADR gives

relatively good error results as compared to the other models, although its B estimation results are
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off as compared to the simulation model. As can be seen from the PRE(%) statistics in tables,

the performance measure of B is estimated relatively well by ADR and MNNB as compared to the

other models. A key result is that the performance measure of B is overestimated. This means

that a planning model that attempts to set policies by penalizing back orders either in the objective

function or within constraints will set target policy parameter values higher than necessary because

it will (on average) plan for more backorders than what will actually occur. Given that the results

for B are so poor, it is recommended that additional LTD models or specialized inventory policy

models be developed to try to improve the performance in this area.

We also present box plots of RR error results for Group 1 and Group 2 in Figure 5. These plots

indicate that the more robust LTD models yield error results which condense around 0 in smaller

sizes. It is clear that MGNBA, MNNB, ADR, GADR and NB perform robustly for each group. In

addition, error values associated with each model are inclined to be higher for Group 2 where we

observe more variable demand cases.

The overall performance of the LTD models was analyzed by using the multiple comparison

procedure referred to as “Tukey-Kramer HSD” (Tukey, 1953 and Kramer, 1956) found in statistical

package MINITAB. The method compares the least square means for each pair of the LTD models

and presents results in a categorized manner. Each category is represented by a letter in a column.

Table A.16 tabulates the results of the procedure for Group 1 under 95% confidence level. The

LTD models that share a letter are not significantly different. In this respect, we can sort the

performance of the models in descending order as follows: {MGNBA} > {NB, ADR, GADR} >

{AXR, LN, G, P} > {N} and {MNNB} > {GADR}. As can be seen, MGNBA, MNNB are the

two models whose performance is significantly higher than many other LTD models. We applied

the same comparison method to the models for Group 2. However, the results indicated that the
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performance of the models were not significantly different.

We further analyzed the overall performance of the LTD models by using another multiple

comparison procedure referred to as “Hsu’s multiple comparisons with the best (Hsu’s MCB) (Hsu,

1981).” The difference of Hsu’s MCB from Tukey-Kramer HSD is that Hsu’s MCB reveals the best

mean by comparing the best level and other levels while Tukey-Kramer HSD compares all possible

pairwise comparisons. In case of determining minimum, the procedure tests whether means are

greater than the unknown minimum. For the difference between each level mean, Hsu’s MCB

computes a confidence interval. A statistically significant difference can only be observed between

corresponding means if an interval contains zero as an end point. The results, computed by setting

the default options of statistical package MINITAB, are depicted in Exhibit A.11 and Exhibit A.12

for Group1 under 95% confidence level. Exhibit A.11 shows that MGNBA has the minimum mean

among other LTD models meaning that it is selected as the best level to compare with other LTD

models. Exhibit A.12 that shows the pairwise comparisons with respect to the performance of

MGNBA determines whether other LTD models are significantly different. Since zero is contained

in all other confidence intervals as an end point, it is safe to state that MGNBA is the LTD model

whose performance is significantly higher than other LTD models. Exhibit A.13 and Exhibit A.14

provide the corresponding results when the same procedure is applied to Group 2. Exhibit A.14

indicates that AXR and P are not the best, and that there is no significant difference between the

others for this group.
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2.6 Summary and Future Work

In this paper, two types of evaluations were performed within an experimental framework.

First, an analytical evaluation is carried out to present the error metrics and the results related to

the use of a LTD under the assumption that the actual model is different from the one selected for

use. The experimental results reveal that there is a high potential for using distribution selection

rules. MGNBA, MNNB, ADR and GADR are the rules that give promising results in terms of

producing small range of variability in the error metrics. It is observed that there is variability in

the error metric results for the type of performance measure and generated test cases. In the case of

approximating B, the sizes of the error metrics are often higher as compared to RR. Further, there

is more error when approximating B as compared to RR. For cases in Group 2, excessively larger

error values are observed as compared to cases in Group 1. It should be noted that the gamma

and the negative binomial distributions yield fairly good results especially in Group 2 where there

is much more variability. The experiments reveal not only promising models (distributions and

selection rules) but also the models that produce poorest results. Two types of error results in

analytical evaluation reveal that the LTD should not be approximated by the Poisson distribution

unless the variance-to-mean ratio is exactly 1.

The second type of evaluation follows the simulation evaluation to reveal the effectiveness

of the LTD models. The simulation evaluation results indicate that all the models except AXR

and P overestimate the performance measure of B. One challenging issue that we experienced

during the simulation evaluation is the computational time of the simulation runs for the cases in

Group 2. Multiple computers (10 computers at a time) were dedicated for the runs in order to

have the statistical results in a reasonable time period. Some key conclusions can be drawn from
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the experiments. Distribution selection rules are promising for LTD modeling. In the simulation

evaluation part of the experiments, the potential use of the distribution selection rules is justified

as ADR yields relatively good results while the gamma and negative binomial distributions have

excellent potential in the case of high demand variability. The conclusion based on the (r, Q)

analysis and the simulation provide insights on the use of the LTD models, which may also provide

insight into the case of these distributions for other policies (e.g. (r, NQ), (s, S)). In this study, only

the first two moments of LTD model are considered for parameter fitting. There have been studies

within the literature that consider more than two moments in order to utilize more information

associated with the LTD although no comprehensive work has been done to draw full conclusions

of which model is more appropriate in LTD modeling. Therefore, one direction for further research

is to consider a similar study under more moments for a better parameter fitting among distributions

including other inventory policies (e.g. (r, NQ)), which will be the topic of forthcoming research

efforts. Developing a different more robust distribution selection rule can be regarded as another

research direction because of its potential use in LTD modeling.
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3 EVALUATING THE USE OF HIGHER-ORDER MOMENTS FOR LEAD TIME DE-

MAND MODELS

3.1 Introduction

This study extends the ideas in (Rossetti and Ünlü, 2011) by incorporating distributions that

include additional moments into LTD modeling. In the previous paper, the parameter fitting pro-

cedure utilized the first two moments. In this paper, moment matching procedures are developed

on higher moments for a number of distributions.

This paper examines the use of classical continuous review (r, Q) inventory system under a

number of lead-time demand models that have more general distributional forms within the context

of four demand classes. These classes are named “Group1”, “Group2”, “Erratic” and “Smooth.”

The demand classes are determined based on the demand classification scheme proposed by (Boy-

lan et al., 2008) and the demand variability observed in an industrial data set. The demand classes

will be discussed in Section 3.4.2. The lead time demand models considered in this paper re-

quire moment matching procedures on higher moments. These are, namely, the distributions of

phase-type (PT ), four-parameter Pearson (PD), four-parameter Schmeiser-Deutsh (SD), general-

ized lambda-type (GL), and two Poisson model (TPM). All these LTD models were defined in the

related literature. Other LTD models considered in this paper preserve special parameter structures

such as zero-modified distributions (ZM) . The term “zero-modified” embraces many distributions.

In this paper, the following distributions will be considered: zero-modified Poisson (ZMP), zero-

modified negative binomial (ZMNB), zero-modified geometric (ZMG) and zero-modified binomial

(ZMB) distributions. These distributions are also studied in the literature although they have not
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been traditionally used within inventory modeling. The motivation behind considering such distri-

butions is because these distributions are capable of explicitly modeling zero and nonzero demands.

Parameter derivations are necessary in order for zero-modified distributions to be employed by

classical inventory policies as a lead time demand model. This paper also introduces distribution

selection rules that utilize zero-modified distributions. The following distribution selection rules

are considered in this study: zero-modified Adan’s rules: ZMADR, ZMADR2, ZMADR2ADR

and ZMADR2PT. These rules are developed based on the initial empirical results. The common

name “LTD model” will be used to refer both a distribution and distribution selection rule.

No comprehensive study has been presented in the literature to show the effectiveness of the

LTD models considered in this paper for modeling the demand during lead-time for the classical

inventory control models in the face of different demand classes. Thus, the objective of this paper

is to cover this gap by evaluating the LTD models that have more flexible distributional forms. The

LTD models considered in this paper will be discussed in Section 3.3 in detail. The next section

will give some background about the models that have more general distributional forms.

3.2 Literature Review

There is a sparse body of literature in regard to distribution based LTD modeling. Rossetti and

Ünlü (2011) classify the literature into two groups: 1) LTD modeling predicated on one or two

moments 2) LTD modeling predicated on higher moments and/or more flexible forms. This paper

presents a review of the models that fall into the latter group.

A definition of phase-type distributions is provided by (Neuts, 1981). He defines a nonnegative

random variable X that is distributed as phase-type if and only if X is characterized as the time

until absorbed by some finite state continuous time Markov chain. The underlying Markov process
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consists of n transient states and one absorbing state. Thus, the total states defined in the Markov

process is n+ 1. A phase-type distribution is characterized by a triple parameter set of (n,T,α).

A phase-type distribution can be represented in many forms with respect to different forms of the

matrix representations of T and α. However, in practice, the majority of the values in these matrices

are taken as zero. For example the following shows the matrix representation of hypoexponential

distribution (i.e. generalized Erlang):

α = [1,0,0,0] and T =



−µ1 µ1 0 0

0 −µ2 µ2 0

0 0 −µ3 µ3

0 0 0 −µ4


Since closed form expressions are available in terms of the Markov chain parameters, the

phase-type distributions are applicable for various well-known problem areas in the literature.

The phase-type distributions were investigated to a great extent by (Neuts, 1981) in the context

of queuing and the associated stochastic problems. However, inventory modeling applications of

these distributions are limited. (Ravichandran, 1984) uses the phases-type distribution in order to

approximate the lead time which is defined as a random variable. In his work, the calculation of

the inventory level distribution is shown for the case where the demand follows a Poisson process.

He uses a continuous review (s, S) inventory policy. Later, (Federgruen and Zipkin, 1985) present

an iterative algorithm to compute an optimal (s, S) policy for an inventory model with continuous

demand. Since their approach is regarded as Markov decision process, the calculations can be

carried out with closed form phase-type distributions. A remarkable work was done by (Zipkin,

1988) in terms of investigating the potential use of phase-type distributions for inventory models.

39



His work will be discussed in detail. His main contribution is the expressions in closed form that

enable calculations of the performance measures. He applies the phase-type distribution in order

to model demand and lead-time processes in the context of the (r, Q) inventory control policy.

His approach is relatively simple as compared to previous phase-type distribution applications in

inventory control. The demand is assumed to be processed in a discretized manner (i.e. demand

occurs one at a time). In his paper, the phase-type distribution is utilized to characterize the time

between two consecutive demands. Lead-times are also assumed to follow a phase-type distri-

bution (i.e. stochastic lead times). Further assumptions regarding inventory system include that

the unmatched demand is backordered while inventory position is uniformly distribution over the

range [r+1, q]. These assumptions are still often applied today. Based on these assumptions, the

lead-time demand distribution is derived. The resulting marginal distribution is a discrete phase-

type distribution with the same number of states as the lead time distribution. This, actually, makes

sense under the assumption that lead-times and demand processes are independent. For example,

think about lead times as exponential random variables (i.e. phase-type distribution with one state).

In this case, the resulting marginal distribution of lead-time demand will also have one state. The

resulting lead time demand distribution can be used with inventory policy parameters (i.e. r and

Q) for the calculations of performance measures (e.g. probability of no stockout, the expected

number of backorders). Unfortunately, a parameter fitting methodology was not provided in his

work. However, he states that the modeler has to specify the structure and parameters in order to

make use of the distribution.

The assumption of lead-times and demand processes being independent was relaxed in (Boute

et al., 2007), however, for a different inventory problem. They tackle the problem of periodic

review base-stock policy where the replenishment orders are placed in a capacitated production
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facility. Therefore, a delay occurs due to this capacity because the production facility is regarded

as a single queuing system in which the replenishment orders have to be completed sequentially.

Thus, the inventory behavior is affected by the correlation between demand and lead times. They,

similar to (Zipkin, 1988), make use of the phase-type distribution to model both demand and lead

time processes. However, they choose to directly compute (derive) the probability distribution of

the inventory levels. Clearly, the derived distribution allows an inventory manager to calculate

performance measures such as fill rate, base-stock levels and optimal safety stock levels. Their

further contribution is an algorithm to fit the parameters of the phase-type distribution by employ-

ing a method of moment matching procedure. By means of this approach, the number of states in

the phase-type distribution can be decreased and accordingly the computational complexity can be

reduced to some extent.

Notice that the state of the art related to parameter fitting procedure was still under development

when (Zipkin, 1988) proposed his work. Therefore, the parameter fitting approach proposed later

can also be utilized in Zipkin’s initial work. On the other hand, many parameter fitting schemes

have been proposed in the literature for the phase-type distributions. Basically, two types of fit-

ting methods attributed to the phase-type distributions: (1) Maximum likelihood estimators (MLE)

and (2) Method of moment matching (MOM) techniques. A special algorithm called “Expectation

Maximization” (EM) algorithm is applied to compute MLE. A discussion can be found in (As-

mussen et al., 1996) for incorporating the EM algorithm into fitting parameters of the phase-type

algorithm. The MLE is often the most appreciated parameter estimation method in the literature

in terms of accuracy that an estimator can supply. However, it could be too taxing for a phase-type

distribution preserving large structural features. On the other hand, MOM is considered to be more

computationally efficient; however, its applicability is often limited with respect to the underlying
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phase-type distribution (Johnson and Taaffee, 1989). A procedure is described in their study to

match the first three moments of any distribution in order to represent it by a phase type distri-

bution. The literature also provides other procedures for MOM in the context of the phase-type

distributions. For example, (Bobbio et al., 2011) present an algorithm to match a set of sample

estimations of the first three moments with acyclic phase-type distributions (APH). They show the

possible sets that can be represented by an acyclic distribution of order n. Then they show how to

match the first three moments in a minimal way, i.e. using the minimal number of phases needed

to do it. (Pérez and Riaño, 2006) implement the algorithm in their object-oriented tool. One gets

the transition matrix (T ) and the vector (α) by supplying only the first three moments of the LTD.

A zero-modified distribution is known as a special type of mixture distribution. The distribu-

tion can either be continuous or discrete. Various mixtures of distributions have been studied in

the literature using different original distributions. The most well known ones are zero-modified

Poisson and zero-modified binomial distributions. Both distributions are discussed in (Johnson

et al., 2005) with their parameter estimation methods. Zero-inflated distributions are proposed in

the case where there are many zeros in the count data which is over than expected (e.g. Cameron

and Trivedi, 1998) and if the count data include zeros whose number is less than the expected, then

zero-deflated distributions are used. An example regarding two situations for the Poisson case can

be seen in (Dietz and Böhning, 1995).

Zero-modified distributions were proposed in the literature due to the need to better character-

ize count data with excess number of zeros collected from economic series, agricultural surveys,

manufacturing processes etc. Zero-modified distributions were proposed in the literature due to

the need to better characterize this type of data. Another name used for such distributions is known

as zero-inflated distribution. (Heilbron, 1994) provides methods constructing these distributions
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in the context of generalized linear models. (Böhning, 1998) presents a literature review for these

distributions by providing a variety of examples from different disciplines. A number of examples

for different application areas can be obtained in (Terza and Wilson, 1990; Lambert, 1992; Zorn,

1996; Yau et al., 2003; Lord et al., 2005). Such distributions may be especially suitable for inter-

mittent demand due to their capability for explicitly modeling non-zero and zero demand cases.

(Ünlü and Rossetti, 2011) examine the use of standard (r, Q) inventory control policies under a

number of zero-modified distributions, namely, zero-modified lognormal, zero-modified Poisson,

zero-modified negative binomial. However, their results are predicated on the probability of period

demand parameter which is corrected in this paper as the probability of LTD being zero.

The generalized lambda distribution is represented with four parameters which allows flex-

ibility in terms of taking wide variety of curve shapes. The generalized lambda distribution is

extensively discussed in (Ramberg and Schmeiser, 1974). The authors provide a method of mo-

ment matching which fits the distribution’s four parameters to the given sample estimates of the

first four central moments. The method moment matching technique relies on optimizing the

associated constrained non-linear model. In addition, as an alternative method for parameter es-

timation, the authors provide tables which include the estimated parameter values when kurtosis

and skewness estimations are given. (Lakhany and Mausser, 2000) provide a review of the avail-

able parameter fitting procedures for the generalized lambda distribution. Based on two different

parametrizations, the authors evaluate the following methods: the method of moment matching,

least squares, starship and the method proposed by (Ozturk and Dale, 1985). Their evaluation is

predicated on an adjusted Kolmogorov-Smirnov test. The method of moment matching technique

is one of the competitive approaches in their study.

pth quantile and density functions of the generalized lambda distribution are given in Kumaran

43



and Achary (Kumaran and Achary, 1996). For the generalized lambda-type distribution a closed-

form of cdf is not available. (Achary and Geetha, 2007) derive a formula for the kth partial expec-

tation for the generalized lambda-type distribution which can be used to derive the loss functions

in order to approximate desired inventory performance measures.

The four-parameter Schmeiser-Deutsh distribution is proposed by (Ramberg et al., 1979). The

method of moment matching is very similar to the procedure for the generalized lambda distribu-

tion. The distribution’s four parameters can be fitted to the given sample estimations of the first

four central moments by using the method of moment matching. The parameter fitting procedure is

dependent on the solution of a constrained nonlinear optimization problem. The authors also pro-

vide tables that facilitate the parameter fitting procedure based on the given kurtosis and skewness

estimations. The four-parameter Schmeiser-Deutsh distribution is used for inventory modeling in

(Kottas and Lau, 1979) and (Kottas and Lau, 1980). The latter study delivers the derived first or-

der loss function of the distribution as well as the some inventory calculations such as stock-out

probability.

The two-Poisson model, utilized in (Bookstein and Swanson, 1974) and (Harter, 1975), is a

mixture distribution of two Poisson distributions. The method of moment matching is used in

(Harter, 1975) to fit the distribution’s three parameters to the sample estimations of the first three

moments around zero. The two-Poisson models are also used in (Church and Gale, 1995) where

the authors show that Poisson mixtures fit the data better than standard Poissons.

3.3 Lead Time Demand Models

For some of the LTD models, moment matching procedure can be carried out based on higher

moments. Incorporating such distributions that preserve higher moment information into an inven-
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tory control policy (e.g. (r, Q)) to determine the desired performance measures is a challenging

task. One difficulty in applying these distributions is estimating the parameters from the data. As

previously noted, in most cases only the demand per period is available (not actual observations

of the lead-time demand). Thus, the demand per period moment data must be combined with the

knowledge of the lead-times to represent the moments of the lead-time demand.

We are interested in the moments of the LTD which is a random variable X . Let
[
µk

x
]
= E

[
Xk]

be the kth raw moment of random variable X . In addition, let µD, µ2
D and µ3

D be the first, second

and third raw moments of the demand. (Grubbström and Tang, 2006) provide the moments of X

(µX , µ2
X , µ3

X and µ4
X ) as follows.

E [X ] = µX = µLµD (12)

E
[
X2]= µ2

X = µLµ2
D +

(
µ2

L−µL
)
(µD)

2 (13)

E
[
X3]= µ3

X = µLµ3
D +3

(
µ2

L−µL
)

µY µ2
D +

(
µ3

L−3µ2
L +2µL

)
(µD)

3 (14)

where µL, µ2
L and µ3

L are the first, second and third raw moments of L, respectively. We assume

that µL is fixed and equals to L, which is a constant. Then,

First Raw Moment:

E [X ] = µX = LµD (15)

Second Raw Moment:

E
[
X2]= µ2

X = Lµ2
D +

(
L2−L

)
(µD)

2 (16)
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Third Raw Moment:

E
[
X3]= µ3

X = Lµ3
D +3

(
L2−L

)
µDµ2

D +
(
L3−3L2 +2L

)
(µD)

3 (17)

Let µ
′2
X , µ

′3
X and µ

′4
X be the second, third and fourth central moments of X , respectively. Let µ

′2
D ,

µ
′3
D and µ

′4
D be the second, third and fourth central moments of demand, respectively. In addition,

let µ
′2
L , µ

′3
L and µ

′4
L be the second, third and fourth central moments of L, respectively. (Grubbström

and Tang, 2006) derive the central moments of X as follows.

µ
′2
X = µLµ

′2
D +µ

′2
L (µD)

2 (18)

µ
′3
X = µLµ

′3
D +3µ

′2
L µDµ

′2
D +µ

′3
L (µD)

3 (19)

µ
′4
X = µLµ

′4
D +4µ

′2
L µDµ

′3
L +3

(
µ
′2
L +µL (µL−1)

)(
µ
′2
D

)2

+6
(

µ
′3
L +µLµ

′2
L

)
(µD)

2 µ
′2
D +µ

′4
L (µL)

4 (20)

In our analysis, we assume that L is fixed known quantity. Thus, µ
′2
L = 0, µ

′3
L = 0 and µ

′4
L = 0.

In this case, the central moments of X are expressed as follows:

Second Central Moment:

µ
′2
X = Lµ

′2
D (21)

Third Central Moment:

µ
′3
X = Lµ

′3
D (22)

Fourth Central Moment:

µ
′4
X = Lµ

′4
D +3(L(L−1))

(
µ
′2
D

)2
(23)
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Denote α∗3 and α∗4 the estimated kurtosis and skewness statistics based on the following expres-

sions:

α
∗
3 =

µ
′3
X(

µ′2X
)1.5 (24)

α
∗
4 =

µ
′4
X(

µ′2X
)2 (25)

The other difficulty lies in deriving closed form of expressions similar to the case of the first

and the second loss functions utilized in the case of first two-moment matching procedure. A

numerical-type-algorithm might be the procedure to determine the required performance measures.

In this section, these challenging issues are addressed on the LTD models while taking into account

the approaches already presented in the literature.

3.3.1 Phase-Type Distributions (PT )

(Zipkin, 1988) introduces the use of the phase-type distributions in modeling the lead time

demand. The loss functions of the phase-type distribution derived by (Zipkin, 1988) will be used

to approximate the inventory performance measures.

Loss Functions:

The following notation will be used to derive the first and second order loss functions of the

phase-type distributions.

PT : used to indicate that the expression is derived for the phase-type distributions

LT D: lead time demand

G1
PT : first order loss function

G2
PT : second order loss function

(n,TLT D,γ): phase-type parameter set for the random variable of lead-time demand
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Q: replenishment order quantity

e: column vector of 1’s

µLT D: mean of lead-time demand

σ2
LT D: variance of lead-time demand

I: nxn identity matrix

(Zipkin, 1988) successfully computed the first and second order loss functions of the lead-time

demand distribution as follows:

G1
PT (x) = γ(I−TLT D)

−1 T x
LT De for x≥ 0 (26)

G2
PT (x) = γ(I−TLT D)

−2 TLT DT x
LT De for x≥ 0 (27)

(Zipkin, 1988) extended his work by further apply the phase-type distribution for the inventory

policies of (s, S) and (r, NQ). Parameter fitting to a phase-type distribution is not provided in

(Zipkin, 1988) work. In what follows, the parameter fitting procedure will be introduced for the

phase-type distribution.

Parameter Fitting Procedure:

The parameter fitting procedure for the phase-type distribution follows two different moment

matching procedures. The first procedure relies on the first three factorial moments of the lead

time demand.

1) Using Higher Moments:

The first three factorial moments ( f1, f2 and f3) of X are expressed as follows:

f1 = E [X ] = µX = LµD (28)
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f2 = E [X (X−1)] = E
[
X2]−E [X ]

= µ2
X −µX

= Lµ2
D +

(
L2−L

)
(µD)

2−LµD (29)

f3 = E [X (X−1)(X−2)] = E
[
X3]−3E

[
X2]+2E [X ]

= µ3
X −3µ2

X +2µX

= Lµ3
D +3

(
L2−L

)
µDµ2

D +
(
L3−3L2 +2L

)
(µD)

3

−3
[
Lµ2

D +
(
L2−L

)
(µD)

2
]
+2LµD (30)

(Telek and Heindl, 2002) use the above derived first three factorial moments in order to match

the moments for acyclic discrete phase-type distributions of second order. They define the transi-

tion matrix (T ) and the vector (α) for the phase type distribution of second order as follows:

T =

 1−β1 β2

0 1−β1

 (31)

α = [p, 1− p] (32)

First they define auxiliary variables (a, b, c and d) based on the factorial moments:

d = 2 f 2
1 −2 f1− f2 (33)

c = 3 f 2
2 −2 f1 f3 (34)

b = 3 f1 f2−6
(

f1 + f2− f 2
1
)
− f3 (35)

a = b2−6cd (36)
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Then show that parameters can be fitted as follows.

If c > 0 then

p =
−b+6 f1d +

√
a

b+
√

a
(37)

β1 =
b−
√

a
c

(38)

β2 =
b+
√

a
c

(39)

if c < 0 then

p =
b−6 f1d +

√
a

−b+
√

a
(40)

β1 =
b+
√

a
c

(41)

β2 =
b−
√

a
c

(42)

and if c = 0 then

p = 0, β2 =
1
f1

Notice that if c = 0, then it is redundant to fit β1.

(Telek and Heindl, 2002)also list a number of conditions where the moment matching is feasi-

ble. If any of the indicated conditions are not met then the parameter fitting is infeasible. In case

of infeasibility, we follow the parameter fitting procedure provided by (Boute et al., 2007) whose

approach relies on the mean and variance of X (i.e. two-moment matching).

2) Using Two Moments:

The calculation of the number of phases (n) needed to match µX and σ2
X is given by (Telek and
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Heindl, 2002) as follows:

n = max
(

2,
⌈

µX

µXCV 2
X +1

⌉)
where CV 2

X =
σ2

X
µ2

X
. The authors choose α and T as

α =
(
β

1,
(
1−β

1) ,0,0, ..,0)

T =



1− p1 p1 0 0 ... 0

0 1− p2 p2 0 ... 0

0 0 1− p2 p2 ... 0

... ... ... ... ... ...

0 0 0 0 ... p2

0 0 0 0 ... 1− p2


This leaves 3 additional parameters: β1, p1 and p2 along with two equations: µX = E [X ] and

σ2
X =Var [X ]. The parameter of p1 and p2 are computed by p1 =

β1

µD
and p2 =

n
µD

where 0≤ p1≤ β1

and 0≤ p2 ≤ 1 while µX ≥ n. Also,

β
1 =

2µX

2µX +n
[
(n−µX)+nCV 2

X µX
]

where 0≤ β1 ≤ 1.

3.3.2 Four-Parameter Pearson Distribution (PD)

The four-Parameter Pearson distribution does not possess an explicit expression. As discussed

in (Johnson et al., 2005) a 4 parameter Pearson distribution can be approximated by a standard

normal cdf provided by (Barndorff-Nielsen, 1990) (Assuming distribution forms are placed in

Type IV region). However, the applicability of this approximation has to be investigated in terms

of representing lead-time demand modeling. According to (Kottas and Lau, 1980), 4 parameters
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of a distributional form are given as a,b, p and q.

(Kottas and Lau, 1980) provides the first order loss function of the 4-parameter Pearson Type-I

distribution (i.e. beta) as follows:

r =
x−a
b−a

G1
PD (x) =

(b−a) p
p+q

[1− Ir (p+1,q)]− (x−a) [1− Ir (p,q)] (43)

The second order loss function can be derived based on a similar method as follows:

G2
PD (R) =

1
2


(b−a)2 p(p+1)
(p+q)(p+q+1)Ir (p+2,q)+2(b−a)a

(
p

p+q

)
Ir (p+1,q)+a2 [1− Ir (p,q)]

−2R
[
(b−a)

[(
p

p+q

)
Ir (p+1,q)

]
+a [1− Ir (p,q)]

]
+R2 [1− Ir (p,q)]


(44)

The steps to derive (44) are given in Appendix B.

Parameter Fitting Procedure:

Parameter fitting process for 4-parameter Pearson Type-I distribution is described in (Gudum

and de Kok, 2002) as follows. The parameters of a and b are defined as the minimum and maximum

observed lead time demand values, respectively. Then the parameters of p and q are given by

p =
µ2

s (1−µs)

σ2
s

−µs

q =
p(1−µs)

µs

where µs =
µ−a
b−a

and σs =
σ

b−a
.

3.3.3 Four-Parameter Schmeiser-Deutsh Distribution (S−D)

(Kottas and Lau, 1980) states that 4-parameter Schmeiser-Deutsh (S-D) distributions have the
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following closed-form expressions:

F (x) =


d− [(a− x)/b]m i f B1 ≤ x≤ a

d +[(x−a)/b]m i f a≤ x≤ B2


where the parameters of the distribution are given as a, b, c, and d. Also, m = 1

c .

The distribution’s lower limit is given by:

B1 = a−bdc

The distribution’s upper limit is given by:

B2 = a+b(1−d)c

Also, the inverse of cdf function is represented by

x = F−1 (F (x)) =


a−b [d−F (x)]c i f F (x)≤ d

a+b [F (x)−d]c i f F (x)> d


Loss Functions:

Let G1
SD and G2

SD be the first and second order loss functions of the S-D distribution, respec-

tively. (Kottas and Lau, 1980) give the first order loss function of S-D distribution as follows:

For x < a,

G1
SD (x) = (a− x)

[
1−

(
d−

[
a− x

b

]1/c
)]

+
b

c+1

[
(1−d)c+1−

(
a− x

b

) c+1
c
]

(45)
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and for x≥ a,

G1
SD (x) = (a− x)

[
1−

(
d−

[
x−a

b

]1/c
)]

+
b

c+1

[
(1−d)c+1−

(
x−a

b

) c+1
c
]

(46)

One can derive the second order loss function of S-D distribution as follows:

For x < a,

G2
SD (x) = 0.5

{
a(a−2x)

[
1−

(
d−

[
a− x

b

]1/c
)]

+
2ab
c+1

[(
a− x

b

) c+1
c
]

+
b2

2c+1

(
a− x

b

) 2c+1
c

+
b

c+1

[
(1−d)c+1−

(
a− x

b

) c+1
c
]

+x

[
1−

(
d−

[
x−a

b

]1/c
)]} (47)

and for x≥ a,

G2
SD (x) = 0.5

{
a(a−2x)

[
1−

(
d +

[
x−a

b

]1/c
)]

+
2ab
c+1

[(
x−a

b

) c+1
c
]

+
b2

2c+1

(
x−a

b

) 2c+1
c

+
b

c+1

[
(1−d)c+1−

(
x−a

b

) c+1
c
]

+x

[
1−

(
d +

[
a− x

b

]1/c
)]} (48)

Appendix B provides the derivation of (47) and (48).

Parameter Fitting Procedure:

(Schmeiser and Deutsch, 1977) describe the following procedure to determine the parameters

a,b,c and d. First determine the parameters c and d by solving the following non-linear optimiza-

tion model (P1).
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min(α3−α
∗
3)

2 +(α4−α
∗
4)

2

s.t

0≤ d ≤ 1

where α∗3 and α∗4 are the estimated kurtosis and skewness statistics which are collected during

simulation using based on the following expressions:

α
∗
3 =

µ
′3
X(

µ′2X
)1.5

α
∗
4 =

µ
′4
X(

µ′2X
)2

where µ
′2
X , µ

′3
X and µ

′4
X are determined by (21), (22) and (23), respectively. In addition, α3 and

α4 are determined by

α3 =
µ3

µ1.5
2

α4 =
µ4

µ2
2

where µ3 =E
[
X3]−3E

[
X2]E [X ]+2(E [X ])3 and µ4 =E

[
X4]−4E

[
X3]E [X ]+6E

[
X2](E [X ])2−

3(E [X ])4. Also, kth raw moment is determined as follows:

E
[
Xk
]
=

[
(−1)k

]
dkc+1 +(1−d)kc+1

b−k (kc+1)

Notice that b−k is canceled out during the calculation of α3 and α4. Next, a and b are deter-
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mined as follows:

p = c+1 and q = 2c+1

b =

√
σ2 p2q

p2 (dp +(1−d)q)−q((1−d)p−dp)2

a = µ− b((1−d)p−dp)

p

Notice that the constrained non-linear equation is based on the parameters c and d.

3.3.4 Generalized Lambda-Type Distribution (GL)

pthquantile and density functions are given in (Kumaran and Achary, 1996). For the gener-

alized lambda-type distribution a closed-form cdf is not available. Achary and Geetha (Achary

and Geetha, 2007) derive the following formula for the kth partial expectation for the generalized

lambda-type distribution.

E
[(
[X− x]+

)k
]
=

∞̂

r

(x− r)k f (x)dx

E
[(
[X− x]+

)k
]
=

k

∑
j=0

(k, j)(λ1− r)k− j 1

λ
j
2

k

∑
i=0

( j, i)(−1)i IR (1+λ3 ( j−1) ,1+λ4i) (49)

where

IR (m,n) =
ˆ

t≤R

tm−1 (1− t)n−1 dt for 0 < R < 1 (50)

Numerical procedures are available for (50). One can use (49) to derive the first and second

order loss functions. Let G1
GL and G2

GL be the first and second order loss functions of the gener-

alized lambda-type distribution. Then the first and second order loss functions of the generalized
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lambda-type distribution are derived by using (49) and given as follows:

G1
GL (r) = (λ1− r)(1− pr)+

1
λ2

(
pλ3+1

r

λ3 +1
− (1− pr)

λ4+1

λ4 +1

)
(51)

G2
GL (r) = 0.5

{
(λ1− r)2 (1− pr)+2

λ1− r
λ2

[
1− pλ3+1

r

λ3 +1
− (1− pr)

λ4+1

λ4 +1

]

− 1
λ2

2

[
1− p2λ3+1

r

2λ3 +1
+

(1− pr)
2λ4+1

2λ4 +1
−2I(1−pr) (1+λ3,1+λ4)

]} (52)

where pr = P(X ≤ r) and r = λ1 +
pλ3

r − (1− pr)
λ4

λ2
0≤ pr ≤ 1.

Parameter Fitting Procedure:

Three algorithms (the moment matching, least squares and starship etc.) are described in

(Lakhany and Mausser, 2000). In order to be consistent with the outline of the paper, the mo-

ment matching method is used for the parameter fitting procedure. The parameters of λ3 and λ4

are determined by solving the following non-linear optimization model (P1).

min(G3 (λ3,λ4)−α
∗
3)

2 +(G4 (λ3,λ4)−α
∗
4)

2

s.t

λ3,λ4 ≥−0.25

where α∗3 and α∗4 are the estimated on the expressions (24) and (25), respectively. In addition,

G4 (λ3,λ4) and G3 (λ3,λ4) are determined by the expressions given in (Ramberg and Schmeiser,

1974). The authors also derive expressions for λ1 and λ2 based on λ3 and λ4.
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3.3.5 Two Poisson Model (TPM)

The two Poisson model was presented (Church and Gale, 1995) as follows.

P(x) = αP1 (x,θ1)+(1−α)P2 (x,θ2)

where

α =
µX −θ1

θ1−θ2

Loss Functions:

The two Poisson model is a mixture distribution whose loss functions of the mixing distribu-

tions (i.e. Poisson) are available. Thus, (58) and (59) can be used to compute the loss functions.

Parameter Fitting Procedure:

θ1 and θ2 are the roots of the quadratic equation: aθ2 +bθ+ c = 0, where:

a = (µX)
2 +µX −µ2

X

b = (µX)
2−µX µ2

X +2µX −3µ2
X +µ3

X

c =
(
µ2

X
)2− (µX)

2 +µX µ2
X −µX µ3

X

where µ2
X and µ3

X are obtained by using (16) and (17), respectively.

3.3.6 Zero-Modified Distributions (ZM)

Zero-modified distributions were originally derived due to the need to better characterize data
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sets that have a larger than expected number of zeroes, when considering a standard distribution

(e.g. Poisson). The analysis utilizes the degenerate distribution with all probability concentrated at the

origin (zero point in the axis). Let Pj = P(X = j) be the probability of j for the unmodified distribution

where j = 0,1,2, ... and, the random variable Y is defined by the following finite-mixture distribution.

Pr(Y = j) =


w+(1−w)P0 i f j = 0

(1−w)Pj i f j ≥ 1
(53)

The mixture distribution (53) is referred to as a zero-modified distribution or as a distribution

with added zeros. Notice that parameter w is easily computed by the expression w = f0−P0
1−P0

where

P0 = Pr(X = 0) and f0 is the probability of observing zero LTD in an experimental investigation.

Let N be total number of data points in a data series. We estimate it by f̂0 = p̂L
0 where p̂0 =

zerocount
N

, the probability of zero demand under the assumption that consecutive demand values

are not correlated with each other.

Loss Functions:

Proposition: Let G1
ZM and G2

ZM be the first and second order loss functions of a zero-modified

distribution, respectively. In addition, let G1
U and G2

U be the first and second order loss functions

of the unmodified probability distribution, respectively. Then, the following expressions hold for

G1
ZM and G2

ZM:

G1
ZM = w+(1−w)G1

U (54)

G2
ZM = w+(1−w)G2

U (55)
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where w is the previously defined parameter. The proofs of expressions (54) and (55) are given

in Appendix B.

Parameter Fitting Procedure:

The scope of the parameter fitting procedure is to estimate the parameters of the original dis-

tribution (i.e. θ1,θ2, ...,θm) so that the first and second order loss functions of the resulting zero-

modified distribution can be calculated. The procedure basically takes two steps:

(1) Step 1: This steps is carried out to estimate θ1,θ2, ...,θm by ignoring the observed frequency

in the zero class. A regular procedure (e.g. method of moment matching) may be applied to

estimate the parameters of θ1,θ2, ...,θm. This leads to the estimation of the parameter w after

estimating the probability of expecting zero value (P0) based on θ1,θ2, ...,θm and the probability

of observing zero LTD value ( f0) based on the given data (or other sources of information).

(2) Step 2: The parameters of θ1,θ2, ...,θm are updated by taking into account the observed

frequency in the zero class.

An algorithm of the parameter fitting procedure is given as follows:

Algorithm 4 Parameter fitting procedure of the zero-modified distribution
1) Estimate θ1,θ2, ...,θm by matching them to the estimated mean and variance of the data by using
method of moment matching. Denote the estimated parameters θ̂1, θ̂2, ..., θ̂m.
2) Compute P0 with P̂0 = f

(
0|θ̂1, θ̂2, ..., θ̂m

)
← unmodified distribution,

3) Estimate f0 from the count data by f̂0 = p̂L
0 where p̂0 =

zerocount
N

,

4) Finally, estimate w with ŵ =
f̂0− P̂0

1− P̂0
,

5) Update θ̂1, θ̂2, ..., θ̂m by taking into account the observed frequency in the zero class.

The parameters of the original distribution can be updated by exploiting the fact that the proba-

bility generating function (pg f ) of a zero-modified distribution is derived from that of the original

distribution. Let HO(z) and HZM(z) be the pg f of the original distribution and pg f of the zero-
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modified distribution, respectively. Then, the following holds (Johnson et al., 2005).

HZM (z) = w+(1−w)HO (z) (56)

The expression (56) points out an important property in regard to the parameter estimation

of the zero-modified distribution. Since the pg f of the original distribution is often known, then

one can have pg f of the zero-modified distribution after estimating the parameter w as described

previously. The probability generating function of the zero-modified distribution facilitates the

derivation of expressions for the moments. After these expressions are derived, the parameters of

the original distribution can then be updated based on the method of moment matching. This proce-

dure will be detailed in the next section where the zero-modified Poisson distribution is introduced.

Zero-Modified Poisson Distribution (ZMP): Let λ be the parameter of the original distribution

(i.e. Poisson). The random variable Y characterizing the zero-modified Poisson distribution is

defined by the following finite-mixture distribution.

Y =


Pr [X = 0] = w+(1−w)e−λ

Pr [X = j] =
(1−w)e−λλ j

j!
, j = 1,2, ...,

In addition, let HZMP (z) be the pg f of the zero-modified Poisson distribution. From (56),

clearly,

HZMP (z) = w+(1−w)eλ(z−1) (57)
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By using (57), the expression to update λ can be derived as follows. The first raw moment of

the zero-modified distribution is obtained by

E [X ] = H(1)
ZMP (z = 1) .

It follows that

H(1)
ZMP (z = 1) = (1−w)λeλ(1−1)

E [X ] = (1−w)λ.

Thus the updated parameter of λ is obtained by,

λ =
E [X ]

1−w
.

In most cases, E [X ] is estimated as the average of the data. The loss functions of zero-modified

Poisson distribution given in expressions (54) and (55) are then calculated using the loss functions

of the Poisson distribution based on the updated parameter of λ.

The parameters of the zero-modified distributions studied in this paper can be derived based on

the above discussed procedure. The related literature already presents the required expressions for

the parameter fitting procedure, which will be given as follows:

Zero-Modified Poisson Distribution (ZMP): Let λ be the parameter of the original distribution

(i.e. Poisson). The random variable Y characterizing the zero-modified Poisson distribution is
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defined by the following finite-mixture distribution.

Y =


Pr [X = 0] = w+(1−w)e−λ

Pr [X = j] =
(1−w)e−λλ j

j!
, j = 1,2, ...,

E [X ] = (1−w)λ.

Zero-Modified Negative Binomial Distribution (ZMNB): Zero-modified negative binomial dis-

tribution can be written as

Y =



Pr [X = 0] = w+(1−w) tk,

Pr [X = j] = (1−w)

 j+ k−1

j

 tk (1− t) j , j = 1,2,3, ...,

where t = k
k+µ . The mean and the variance of the ZMNB are derived by (Yau et al., 2003) as

follows:

E [X ] = (1−w)µ

Var [X ] = (1−w)(1+µ/k+wµ)µ

µ is the un-modified mean while k is the parameter of the original distribution.

Zero-Modified Binomial Distribution (ZMB): (Johnson et al., 2005) express the zero-modified

binomial distribution as follows:
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Y =


Pr [X = 0] = w+(1−w)qn

Pr [X = j] = (1−w)

 n

j

 p j (1− p)n− j, j = 1,2, ...,

E [X ] = (1−w)np.

Var [X ] = (1−w)np(1− p+wnp)

Zero-Modified Geometric Distribution (ZMG): The zero-modified geometric distribution is ex-

pressed as follows as follows:

Y =


Pr [X = 0] = w+(1−w) p

Pr [X = j] = (1−w) p(1− p) j, j = 1,2, ...,

E [X ] = (1−w)
(

1− p
p

)

Var [X ] = (1−w)
(
σ

2 +µ2)− (1−w)2 µ2

µ and σ2 are the un-modified mean and variance while p is the parameter of the original distri-

bution.

In what follows, a zero-modified distribution selection rule is proposed based on the above

defined distributions.
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3.3.7 A Zero-Modified Distribution Selection Rule (ZMADR1)

A selection rule determines which distribution to recommend based on (Adan et al., 1995).

The rule selects a distribution from the set of distributions {the zero-modified binomial (ZMB),

the zero-modified negative binomial (ZMNB), the zero-modified geometric (ZMG) and the zero-

modified Poisson (ZMP)}. The rule decides which distribution to select with respect to the param-

eter a. In order to utilize the mean (µ) and variance (σ2) of the LTD, the parameter a is defined as

σ2−µ
µ2 . The rule selects ZMB if µ > σ2 (i.e. a < 0); ZMNB if µ < σ2 (i.e. a > 0) and the parameter

fitting is possible (i.e. a < 1) for ZMNB; P if µ = σ2 (i.e. a = 0); ZMG for large coefficient of

variation values (i.e. (a≥ 1)). Let F be the lead time demand model to be selected by the rule.

The rule is presented in Exhibit 1.

Exhibit 1: Zero-Modified Distribution Selection Rule

a = σ2−µ
µ2

if a < 0 then F = ZMB (zero-modified binomial)
else if a > 0 and a < 1 then F = ZMNB (zero-modified negative binomial)

else if a = 0 then F = ZMP (zero-modified Poisson)
else (i.e. a≥ 1) then F = ZMG (zero-modified geometric)

A similar distribution selection rule can be created based on mixtures of zero-modified distri-

butions. The next section will provide the modeling steps of the foregoing distribution selection

rule.

3.3.8 Zero-Modified Adan Rule (ZMADR2)

(Adan et al., 1995) selects a distribution from the set of distributions {the mixture of binomial

(MB), the mixture of negative binomial (MNB), the mixture of geometric (MG) and (P)}. The rule
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decides which distribution to select with respect to the parameter a. In order to utilize the mean (µ)

and variance (σ2) of the LTD, the parameter a is defined as σ2−µ
µ2 . The rule selects MB if µ > σ2

(i.e. a < 0); MNB if µ < σ2 (i.e. a > 0) and the parameter fitting is possible (i.e. a < 1) for NB;

P if µ = σ2 (i.e. a = 0); MG for large coefficient of variation values (i.e. (a≥ 1)). Let F be the

lead time demand model to be selected by the rule. The rule is presented in previous paper. The

idea behind the Zero-Modified Adan Rule is to replace the mixture distributions with their zero-

modified versions. The rule still selects a distribution based on parameters a. The Zero-Modified

Adan Rule can be expressed in Exhibit 2.

Exhibit 2: Zero-Modified Adan Rule

a = σ2−µ
µ2

if a < 0 then F = ZMMB (mixture of zero-modified binomial)
else if a > 0 and a < 1 then F = ZMMNB (mixture of zero-modified negative binomial)

else if a = 0 then F = ZMP (zero-modified Poisson)
else (i.e. a≥ 1) then F = ZMMG (mixture of zero-modified geometric)

The mixture distributions used in the rule are re-defined based on (Adan et al., 1995) as follows:

The Mixture of Zero-Modified Binomial Distribution: This distribution consists of the mixture

of two binomial distributions (BINi (k, p) where k is the number of trials and p is the probability

of success). If u is defined as the random variable generated from U (0,1) (uniform distribution),

then the random variable Y is determined by the following:

Y =


ZMBIN1 (k, p) , i f u≤ q

ZMBIN2 (k+1, p) , i f q < u≤ 1

where k =
∣∣⌊1

a

⌋∣∣, q =
1+a(1+k)+

√
−ak(1+k)−k

1+a and p = µ
k+1−q .
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The Mixture of Zero-Modified Negative Binomial Distribution: This distribution consists of the

mixture of two negative binomial distributions (NBi (k, p)) where k is the desired number of success

and p is the probability of success). The random variable Y is determined by the following:

Y =


ZMNB1 (k, p) , i f u≤ q

ZMNB2 (k+1, p) , i f q < u≤ 1

where k =
∣∣⌊1

a

⌋∣∣, q =
a(1+k)−

√
(1+k)(1−ak)

1+a and p = k+1−q
k+1−q+µ .

The Mixture of Zero-Modified Geometric Distribution: This distribution consists of the mix-

ture of two geometric distributions (GEOi (pi) where pi is the probability of successes). The

random variable Y is determined by the following:

Y =


ZMGEO1 (p1) , i f u≤ q

ZMGEO2 (p2) , i f q < u≤ 1

where p1 = 1− µ(1+a+
√

a2−1)
2+µ(1+a+

√
a2−1)

, p2 = 1− µ(1+a−
√

a2−1)
2+µ(1+a−

√
a2−1)

and q = 1
1+a+

√
a2−1

.

It should be noted that the mixture distributions in the rule use the zero-modified versions of

the classic distributions. We use the algorithm in (Ünlü and Rossetti, 2011) in order to estimate

the parameter w while the parameters of the mixed distributions remain unmodified. That is, the

parameters of each distribution in a mixed distribution are not updated. Those parameters are de-

termined by the Adan et al Rule.
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Loss Functions: Let G1
MD (.) and G2

MD (.) be the first and second order loss functions of a given

mixture distribution, respectively. We derive the first and second order loss functions of a mixture

distribution with the following.

G1
MD (x) = (1−q)G1

1 (x)+qG1
2 (x) (58)

G2
MD (x) = (1−q)G2

1 (x)+qG2
2 (x) (59)

where G1
1 (.) and G1

2 (.) are the first order loss functions and G2
1 (.) and G2

2 (.) are the second order

loss functions of the two distributions being mixed, respectively. Thus, the loss functions of a

mixture distribution that mixes two zero-modified distribution can be expressed as follows:

G1
MD (x) = (1−q)

(
w1+(1−w1)G1

U1 (x)
)
+q
(
w2+(1−w2)G1

U2 (x)
)

(60)

G2
MD (x) = (1−q)

(
w1+(1−w1)G2

U1 (x)
)
+q
(
w2+(1−w2)G2

U2 (x)
)

(61)

Let

G1
ZM1 (x) =

(
w1+(1−w1)G1

U1 (x)
)

G1
ZM2 (x) =

(
w2+(1−w2)G1

U2 (x)
)

G2
ZM1 (x) =

(
w1+(1−w1)G2

U1 (x)
)

G2
ZM2 (x) =

(
w2+(1−w2)G2

U2 (x)
)

It follows that

G1
MD (x) = (1−q)G1

ZM1 (x)+qG1
ZM2 (x) (62)

G2
MD (x) = (1−q)G2

ZM1 (x)+qG2
ZM2 (x) (63)

In this paper, we also present two additional LTD models, which we developed based on pre-

liminary results from the experiments. The new rules ZMADR2ADR and ZMADR2PT are given

in Exhibit 3 and Exhibit 4, respectively. The probability of zero LTD (i.e. f̂0 = p̂L
0) has the major
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role in determining the selection of the recommended model. As can be seen from the exhibits,

ZMADR2 is selected if the probability of zero is greater than 0.50. Otherwise, one of the two other

competitive LTD models are selected, which also specifies the rule.

Exhibit 3: Distribution Selection Rule 1: ZMADR2ADR

if f̂0 > 0.50 then determine F with ZMADR2
else F = ADR

Exhibit 4: Distribution Selection Rule 2: ZMADR2PT

if f̂0 > 0.50 then determine F with ZMADR2
else F = PT

The effectiveness of each of these LTD models will be tested within an extensive set of test

cases. The next section describes the test case generation methods utilized in the simulation eval-

uation.

3.4 Simulation Evaluation

(Rossetti and Ünlü, 2011) tested a number of LTD models within a large sample of simulated

demand conditions. They apply moment matching technique to fit the LTD parameters to the pa-

rameters estimated based on the captured LTD observations during simulation. In order to capture

the LTD parameters, the authors use Brown’s method (Brown, 1982). This study includes a similar

simulation experimental environment while it differs in a number of aspects. First of all, most

of the LTD models tested in this study includes more than 2 parameters such as the third and

fourth moments. Next, by using the moment matching technique, the parameters are fitted to ones

whose estimation is based on the computed LTD parameters. As introduced in Section 3.3, one can
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compute the LTD parameters by using the expressions derived by (Grubbström and Tang, 2006).

The computation relies on the moments of the demand and the lead time, which is what is avail-

able in practice. The moments of the demand are estimated from simulation. The two parameter

estimation procedures are given in Algorithm 5 and Algorithm 6.

Algorithm 5 (Rossetti and Ünlü, 2011) Parameter Fitting Procedure

1. Estimate the moments of LTD based on the captured LTD observations from simulation.

2. By using the method of moment matching technique, fit the required parameters of the dis-
tributional model to the ones estimated at Step 1.

Algorithm 6 Modified Parameter Fitting Procedure

1. Estimate the moments of demand based on the demand observations from simulation.

2. By using the lead time and the moments of demand estimated at Step 1, compute the mo-
ments of LTD using the expressions derived by (Grubbström and Tang, 2006).

3. By using the method of moment matching, fit the required parameters of the distributional
model to the ones estimated at Step 2.

In order to apply the modified parameter fitting procedure, the period demand is captured dur-

ing simulation. Algorithm 7 provides the steps of capturing the period demand during the simu-

lation. Note that the observed total demand during 1 time unit is captured by CollectStatistics(.)

which also provides the required statistics (i.e. estimated period demand moments). These statis-

tics along with the formulas proposed by (Grubbström and Tang, 2006) allow for the estimation of

the moments of the LTD. Given a LTD model, these moments are used to approximate the required

inventory performance measures.
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Algorithm 7 The Method of Demand Capturing During Simulation
1: Initialization:

t←current time just after warm-up period,
EP←period demand event for the end of a period,
Sum = 0←cumulative demand between two period demand events,

2: Schedule EP at time t
3: Event EP:
4: CollectStatistics(Sum)
5: Sum = 0
6: Schedule EP at time t = t +1

Ideally, the modified parameter fitting procedure promises a better moment estimation than

the one used in (Rossetti and Ünlü, 2011). This is because the technique utilized in (Rossetti

and Ünlü, 2011) solely depends on the LTD observations from simulation. In a complex demand

environment such as intermittent demand process, the LTD observations may never be adequate

for an accurate moment estimation. On the other hand, the modified parameter fitting procedure

proposed in this paper depends on the demand observations from simulation and the theoretically

correct expressions that hold for the LTD moment estimations. The derived expressions utilize the

estimated demand moments which are based on a much larger set of observations as compared the

LTD observations case. Therefore, the modified parameter fitting procedure yields a more accurate

moment estimation.

This paper compares the LTD models based on the quality in approximating the inventory per-

formance measures of ready-rate (RR), the expected number of backorders (B) and the expected

number of inventory on-hand levels (I). Along with the models discussed in Section 3.3, the models

studied in (Rossetti and Ünlü, 2011) are also tested within the experimental analysis. The exper-

iments collect the similar error statistics introduced in (Rossetti and Ünlü, 2011). Therefore, the

reader is referred to (Rossetti and Ünlü, 2011) for the algorithms for computing the performance
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measure errors. In this paper, the LTD models are tested under two different types of investigations.

3.4.1 Case I: A Known LTD Process

The demand process follows the compound Poisson process with the logarithmic jump sizes.

The foregoing demand process yields a known LTD process whose distribution is the negative

binomial distribution. Thus, the analytical model (i.e. NB) is available for computing the true

performance measure values.

The test cases are generated based on the combination of the low and high values of a number of

experimental factors. These factors are given in Table 1. The given factors create 64 different test

cases. A test case refers to the collection of parameters of (µ,σ,r,Q,γ). The policy parameters r

and Q are obtained in a similar fashion through the test case generation algorithm given in (Rossetti

and Ünlü, 2011). The same notation is used verbatim. The reader is referred to (Rossetti and Ünlü,

2011) for the definitions of the notation used in this paper.

Table 1: Experimental Factors
Level Target Lead Mean Variance

Service Level Time LTD LTD
Low 0.90 1 1.8 4
High 0.95 4 3.6 8

The simulation model of the continuous review (r, Q) inventory system for each generated case

was run for 30 replications with 2,000,000 time units of run-time and 200,000 time units of warm-

up period. Based on these simulation run parameters, at least 3 digits of precision is achieved. The

error results for distributions and distribution selection rules are tabulated in Table B.1, Table B.2,

Table B.3, and Table B.4. The tables are very informative due to a number of aspects. First of all,
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NB results given in Table-B.1 indicate that the simulation model with the set-up parameters yields

the most accurate results. In this respect, the results validate the simulation model. Secondly, the

performance of the other LTD models can be determined based on the true performance results

gained by NB. From the tables, the quality of ZMADR2ADR in approximating performance mea-

sures is noticed easily. The model’s performance is very close to the true LTD model NB. As far as

the statistics of PRE are concerned, for almost all the cases and performance measures, the perfor-

mance results of ZMADR2ADR fall into 1% within the true performance results. The second best

performance results are observed by ADR which yields 0.92 for B based on PRE(.01) statistic.

3.4.2 Case-II: Unknown LTD Process

As an initial step, it is of interest to reveal the test cases for which the performance of the zero-

modified distributions and distribution selection rules is competitive. Therefore, the zero-modified

distributions, the zero-modified distribution selection rule (ZMADR1) and the zero-modified Adan

Rule (ZMADR2) are tested in 3 different phases. For each step, we apply a different fixed lead

time generation strategy in order to control the zero lead-time demand probability. For Phase-i,

the fixed lead times are randomly generated from the gamma distribution with parameters 1.5 and

5.01; for Phase-ii, the fixed lead times are randomly generated from the uniform distribution with

parameters 2 and 5; for Phase-iii, the fixed lead times are randomly generated from the uniform

distribution with parameters 0.1 and 2. The experimental observations reveal that

for Phase-i: the probability of zero lead time demand falls into a region that is mostly restricted

by 0.01 and 0.35;

for Phase-ii: the probability of zero lead time demand falls into a region that is mostly restricted

by 0.23 and 0.39; and
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for Phase-iii: the probability of zero lead time demand falls into a region that is mostly re-

stricted by 0.58 and 0.80.

The experimental results are collected for 100 test cases. In the experiments, the simulation model

of the continuous review (r, Q) inventory model for each test case was run for 10 replications with

100,000 time units of warm-up and 1,000,000 time units of run-time. The probability of zero

lead time demand and error results for each model along with the models presented in (Rossetti

and Ünlü, 2011) are tabulated for Table-B.9, Table-B.10 and Table-B.11 for Phase-i, Phase-ii and

Phase-iii, respectively.

As can be seen from each table, the performance of models improves in the probability of zero-

lead time demand. It should be noted that the distribution selection rules ZMADR and ZMADR2

produce much better results in the case where the probability of zero-lead time demand is very

high. For example, for Phase-ii, ZMADR gives 0.84 for PRE(0.10) statistic for BO results and

ZMADR2 gives 0.93 for the same statistic. However, the performance of ZMADR and ZMADR2

are only better than ADR for Phase-iii where the probability of zero-lead time demand is very high.

It should be noted that zero-modified distributions (e.g. ZMP) are not competitive even for the case

of high lead-time demand probability. On the other hand, the distribution selection rules including

these models provide fairly good results especially for high lead time demand probability cases.

As a next step, all the models in (Rossetti and Ünlü, 2011) and the models considered in this

study are evaluated. The demand process is created by using a special demand generator proposed

in (Rossetti et al., 2010) and (Rossetti and Ünlü, 2011). The latter study proposes a special test case

generator algorithm which sets the required parameters of the demand generator and generates the

test cases. In this paper, the test case generator algorithm is similar except that the generated test

cases cover many more possible outcomes. Therefore, the number of test cases are larger than the
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study in (Rossetti and Ünlü, 2011).

The demand generator used in (Rossetti and Ünlü, 2011) is set-up by assigning only one type

distribution. For example, events are generated based on assigning an exponential distribution

as shown byYi ∼ exponential(1). In this paper, a number of different distributions are randomly

assigned for each parameter.

The events are randomly generated by randomly selecting one the distributions given in Ex-

hibit 5:

Exhibit 5: Generation of Events in the Demand Generator

Yi = 1
Yi ∼ uniform(0,2)

Yi ∼ exponential(1)
Yi ∼ lognormal(fitted parameters of mean=1, variance=1)

Yi ∼ gamma(fitted parameters of mean=1, variance=1)

The length of times spent in the OFF state are randomly generated by randomly selecting one

the distributions given in Exhibit 6:

Exhibit 6: Generation of XI in the Demand Generator

XI = 1
XI ∼ gamma( f itted parameters o f µI and σI)

XI ∼ lognormal( f itted parameters o f µI and σI)
XI ∼ exponential( f itted parameters o f µI)

XI ∼ uniform( f itted parameters o f µI and σI)

The length of times spent in the ON state are randomly generated by randomly selecting one

the distributions given in Exhibit 7:

75



Exhibit 7: Generation of XB in the Demand Generator

XB = 1
XB ∼ gamma( f itted parameters o f µB and σB)

XB ∼ lognormal( f itted parameters o f µB and σB)
XB ∼ exponential( f itted parameters o f µB)

XB ∼ uniform( f itted parameters o f µB and σB)

Demand size values are randomly generated by randomly selecting one the distributions given

in Exhibit 8:

Exhibit 8: Generation of Di in the Demand Generator

Di = 1
Di ∼ gamma( f itted parameters o f µNZ and σNZ)(rounded up to positive integer)

XB ∼ lognormal( f itted parameters o f µNZ and σNZ)(rounded up to positive integer)
Di ∼ geometric( f itted parameters o f µNZ and σNZ)

(Rossetti and Ünlü, 2011)specify only two demand classes for which the LTD are evaluated

within experiments. In this study, the LTD models discussed in Section 3.3 are evaluated under

4 demand classes: Group 1, Group 2, Erratic and Smooth. The demand classes of Group 1 and

Group 2 are determined based on the same method described in (Rossetti and Ünlü, 2011). Erratic

and Smooth demand classes are determined based on the method described in (Boylan et al., 2008).

The authors propose a classification method determining 4 demand classes namely; Intermittent,

Lumpy, Erratic and Smooth. The percentages of these demand classes observed in an industrial

data set are given in Table 2. As can be noticed from the table, Group 1 and Group 2 include only

Intermittent and Lumpy demand classes.

76



Table 2: Percentages of Demand Classes
Demand Class % of Total

Group 1 (Intermittent and Lumpy) 75%
Group 2 (Intermittent and Lumpy) 7%

Erratic 9%
Smooth 9%

In what follows, the error statistics are collected for each demand class. For Group 1, the

statistics of these error results are collected for 20,000 randomly generated test cases which give

at least 2 digits of accuracy based on a classic half-width analysis. Based on the percentages of

demand classes as given in Table 2, 1740 test cases for Group 2; 2500 test cases for Erratic; and

2,500 test cases for Smooth are generated by using the the demand generator. The descriptive

statistics of the generated test cases with respect to target RR levels are presented for Group 1,

Group 2, Erratic and Smooth demand classes in Table B.5, Table B.6, Table B.7 and Table B.8,

respectively. These statistics are captured during simulation. In the tables, one can notice that the

targeted RR (i.e. service level) is covered between 0 and 1 by frequently having high values, which

is desired in most industrial practices.

3.4.3 Experiment Settings and Results

The same simulation model parameters as in (Rossetti and Ünlü, 2011) are used for the ex-

periments. For the demand classes of Group 1, Erratic and Smooth, the simulation model of

the continuous review (r, Q) inventory model for each test case was run for 30 replications with

200,000 time units of warm-up and 2,000,000 time units of run-time. As far as decimal points are

concerned for the estimated performance measures during simulation, the foregoing set-up pro-
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vides at least 2 digits of precision for the test cases in Group 1; at least 3 digits of precision for the

test cases in Erratic and 4 digits of precision for the test cases in Smooth demand class. For the

demand classes of Group 2, the same simulation model was run for 30 replications with 85,000

time units of warm-up and 850,000 time units of run-time, which provides 1 digit of precision for

the cases in Group 2. The experiments were carried out by using (HPC) (http://hpc.uark.edu/hpc/)

which allows many simulation experiments to be done simultaneously.

The error results of 21 LTD models for each demand class and each performance measure are

tabulated in 16 tables (Table B.12 - Table B.27) in the Appendix B. Four tables are given for each

demand class. For each of four tables, the first two tables tabulate the error results if the LTD is

approximated by a distribution while the next two tables tabulate the error results when the LTD is

approximated by a distribution selection rule.

The error results of Group 1 are given in Table B.12 Table B.13 for distributions and Table B.14

and Table B.15 for distribution selection rules. For the cases where the LTD is approximated by

a distribution, PRE statistics reveal that PT, TPM, GL and SD are the models whose performance

is superior to other distributions. Table B.12 shows that as far as B results are concerned PT gives

0.35 for PRE(.10) statistic which is the highest value among other distributions. The performance

of other distributions is poor for B approximation results. For example, NB gives only 0.09 for

PRE(.10) statistic as can be seen from Table B.12. The distributions often yield fairly good results

for RR while they give better I results than B. TPM is the distribution that provides the best per-

formance approximation results for RR yielding 1.00 for PRE(.10) statistic shown by Table B.13.

The overall performance of distribution selection rules is better performance approximation results

as compared to the distributions alone. For example, it is possible to increase B approximation

quality up to 0.39 via ZMADR2ADR rule under PRE(.10) statistic as shown by Table B.15. The
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other performance measure results are fairly well approximated via distribution selection rules.

The error results of Group 2 are given in Table B.16, Table B.17 for distributions and Table B.18

and Table B.19 for distribution selection rules. The performance of all models decreases for the test

cases in Group 2 where the demand is highly variable. The models’ performance for B is poor as

compared to other performance measures. As Table B.16 shows, the best performance is observed

by PT among distributions in terms of B approximation results by yielding 0.19 for PRE(.10)

statistic. PT and TPM provide fairly good results for both B and I. Table B.18 and Table B.19

indicate that the distribution selection rules provide better approximation results. ZMADR2ADR

and ZMADR2PT are the two models whose overall performance are better better than other mod-

els. According to PRE(.10) statistics, the best results are gained through ZMADR2ADR for all

performance measures. As far as B results are concerned ZMADR2ADR gives 0.29 for PRE(.10)

statistic. For the same statistic the model yields 0.99 for RR and 0.96 for I approximation results.

The error results of Erratic demand class are given in Table B.20, Table B.21 for distributions

and Table B.22 and Table B.23 for distribution selection rules. The error results of Smooth class

are given in Table B.24, Table B.25 for distributions and Table B.26 and Table B.27 for distri-

bution selection rules. As far as Erratic and Smooth demand classes are concerned, the overall

performance of all models much better than for Group1 and Group 2. As can be seen from Table

B.20 and Table B.24, the best performance approximation results are gained through NB among

distributions. As far as B results are concerned NB gives 0.96 and 0.95 for PRE(.10) statistic for

Erratic and Smooth demand classes, respectively. The approximation results are much better when

the LTD is approximated by distribution selection rules. ADR, GADR, ZMADR2, ZMADR2ADR

provide excellent results as can be seen from Table B.22, Table B.23, Table B.26 and Table B.27.

The performance results are gained through ZMADR2ADR which provide 0.96 for B as far as
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PRE(.01) statistic is concerned.

For Group 1 and Group 2, PT yields fairly good approximation results while its results degrade

for Erratic and Smooth demand classes. This can be explained by Table 3 which presents the usage

percentages of LTD models GL, SD and PT. It should be noted that the performance of PT is fairly

good as long as higher order moments are utilized. PT is used only about 30% for erratic and

smooth demand classes.

Table 3: Usage Percentages of Models
Smooth Erratic Group 1 Group 2

GL 82% 55% 37% 68%
SD 71% 54% 54% 83%

PT(higher moments) 33% 37% 69% 72%

3.4.4 Multiple Comparison Methods

In this section, we apply multiple comparison methods on a number of different error mea-

sures. We take into account only absolute error results. As discussed before, the LTD models

are tested within an extensive set of simulation experiments in order to capture the error results

of each performance measures of RR, B and I. For each of these results, we apply multiple com-

parison method to see if there exists a statistically significant difference among LTD models. In

addition, we obtain another error measure based on RR, B and I error measure results. The new

error measure is called standardized error measure. For a given test case, the standardized error

measure is obtained by dividing each error value with the largest observed error value. This way

each observed error value is standardized on the range between 0 and 1. For given performance

measure and test case, the value of 1 represents the highest observed error value while the value

of 0 represents the minimum observed error value. In order to get a single error measure across
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performance measures, each standardized value is summed. This allows for making a comparison

among LTD models based on a single error measure. The following section will present the results

of the foregoing error measure results.

For the standardized error measure, the overall performance of the LTD models was analyzed

by using the multiple comparison procedure referred to as “Tukey-Kramer HSD” found in statis-

tical package MINITAB. The method compares the least square means for each pair of the LTD

models and presents results in a categorized manner. Each category is represented by a letter in a

column. Table B.28 tabulates the results of the procedure across all demand classes within 95%

confidence level. The LTD models that share a letter are not significantly different. In this respect,

we can sort the performance of the models in descending order as follows: {ZMADR2ADR} >

{ZMADR2} > {GADR} > {ADR} > {TPM} > {MGNBA, ZMADR2PT, PT, NB, MNNB} > {P,

AXR, G, N} > {ZIP} > {LN} > {ZMNB} > {ZMG} > {ZMADR}. As can be seen, ZMADR2ADR

is the model whose performance is significantly higher than many other LTD models. Hsu’s MCB:

We further analyze the overall performance of the LTD models by using another multiple com-

parison procedure referred to as “Hsu’s multiple comparisons with the best (Hsu’s MCB)” The

difference between Hsu’s MCB and Tukey-Kramer HSD is that Hsu’s MCB reveals the best mean

by comparing the best level and other levels while Tukey-Kramer HSD compares all possible pair-

wise comparisons. In case of determining minimum, the procedure tests whether means are greater

than the unknown minimum. For the difference between each level mean, Hsu’s MCB computes

a confidence interval. A statistically significant difference can only be observed between corre-

sponding means if an interval contains zero as an end point. The results, computed by setting the

default options of statistical package MINITAB, are depicted in Exhibit B.1 and Exhibit B.2 for

across all demand classes under 95% confidence level. As can be seen from the exhibits, Hsu’s
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MCB reveals that the performance of ZMADR2ADR is significantly better than others.

We apply the multiple comparison method for each performance measure of B, RR and I. We

use their absolute error values. 1740 test cases are selected from each demand class to collect the

multiple comparison results.

i) Absolute B Error Measure: The HSD results are depicted in Table B.29. We can sort the per-

formance of the models in descending order as follows: {ZMADR2ADR, ZMADR2} > {GADR,

ADR} > {MGNBA, NB, LN, MNNB, PT, ZMADR2PT, TPM, AXR, P} > {ZMG, ZMNB, ZMADR,

N, G} > {ZIP}. As can be seen, ZMADR2ADR, ZMADR2 is the model whose performance is

significantly higher than many other LTD models. Hsu’s MCB results are depicted in Exhibit B.3

and Exhibit B.4. As can be seen from the exhibits, Hsu’s MCB reveals that no single LTD model’s

performance is significantly different than others.

ii) Absolute RR Error Measure: The HSD results are depicted in Table B.30. We can sort the

performance of the models in descending order as follows: {ZMADR2ADR, ZMADR2, GADR}

> {ADR} > {PT, ZMADR2PT} > {AXR, TPM, N, LN, MNNB, G, MGNBA, NB} > {P} > {ZMG,

ZIP} > {ZMADR} > {ZMNB}. As can be seen, ZMADR2ADR, ZMADR2 and GADR are the

models whose performance are significantly higher than many other LTD models. Hsu’s MCB

results are depicted in Exhibit B.5 and Exhibit B.6. As can be seen from the exhibits, Hsu’s MCB

reveals that no single LTD model’s performance is significantly different than others.

iii) Absolute I Error Measure: The HSD results are depicted in Table B.31. We can sort the per-

formance of the models in descending order as follows: {ZMADR2, ZMADR2PT, ZMADR2ADR}

> {TPM, ADR, PT, GADR} > {ZMG, ZMNB, P, AXR, N, MNNB, LN, G, MGNBA, NB, ZMADR}

> {ZIP}. As can be seen, ZMADR2ADR, ZMADR2 and ZMADR2PT are the models whose per-

formance is significantly higher than many other LTD models. Hsu’s MCB results are depicted in
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Exhibit B.7 and Exhibit B.8. As can be seen from the exhibits, Hsu’s MCB reveals that no single

LTD model’s performance is significantly different than others.

3.5 Conclusion and Future Research

This paper evaluates a large set of LTD models under different demand classes within a rigorous

experimental environment. A similar study is carried out in (Rossetti and Ünlü, 2011) that evaluate

the LTD models whose parameter fitting procedure is predicated on matching the first one or two

moments. This paper, on the other hand, focuses on the LTD models whose parameter fitting

procedure is dependent on higher order moments. The LTD sample moments are estimated based

on the information of the captured period demand during simulation and lead time. This strategy

is different from the previous paper in which the LTD sample moments are directly estimated by

capturing the LTD during simulation.

It is of interest to see whether the use of LTD models that have flexible distributional forms

reveal better inventory performance approximation results. In this respect, this paper evaluates

the LTD models whose parameter fitting procedure is predicated on first two moments (e.g. Nor-

mal), first three moments (e.g. Phase-Type), first four moments (e.g. Generalized Lambda) and

a particular updating strategy (e.g. Zero-modified Negative Binomial). In addition, a number of

distribution selection rules recommending the most appropriate lead time demand distribution are

evaluated within the same experimental environment. The experiments are carried out to exam-

ine the underlying LTD models within four different demand classes which are determined based

on the variability in the observed demand size and the variability in the frequency of the demand

incident.

The following are the key results:
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1. The distribution selection rules are of great potential in modeling lead time demand.

As can be seen from Table B.28, ZMADR2ADR is the distribution selection rule whose

performance is superior to other LTD models studied in this paper. In addition, ZMADR2,

GADR and ADR produce significantly better inventory performance approximation results

as compared to other LTD models.

2. The new strategy on the parameter fitting procedure improves the performance measure ap-

proximation results.

The formulas developed for the moments of the LTD give a better parameter estimation,

which also improves the approximation quality of the performance measures.

3. The approximation of the expected number of backorders is very sensitive to the parameter

estimation.

Clearly, the new parameter fitting strategy reveals improved parameter estimations. The

new parameter fitting strategy improves the expected number of backorders results much

better than other performance measures. This implies that the approximation of the expected

number of backorders is very sensitive to the parameter estimation procedure.

4. The LTD models preserving flexible distributional forms provides better approximation qual-

ity.

The experiment results reveal that the LTD models whose parameters are fitted to the first

three moments yield better approximation results than the LTD models (TPM and PT) whose

parameters are fitted to the first two moments. Clearly, supplying more information regarding

the LTD process to the parameter fitting procedure results in better performance approxima-

tions. The experiment results also reveal that the performance measure results degrade when
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the LTD is approximated by the models (GL and SD) whose parameters are fitted to the first

four moments. Although in most cases these models yield better results than classical distri-

butional models, their performance is not competitive as compared to the models TPM and

PT. This is because the higher moment estimation is very sensitive to the given sample. In

principle, the more accurate higher moment estimations leads to the better parameter fitting

and, accordingly, better performance approximation results.

5. Distributions capable of explicitly modeling zero and nonzero demands are of great potential

in modeling LTD.

Clearly, the outcomes of the previous papers results in insights to develop better models using

zero-modified distributions. The developed model is able to determine particular service lev-

els for a fully specified policy. The experiments reveal that zero-modified distributions yield

better results for test cases where the zero LTD probability is high. The distribution selec-

tion rules that utilize zero-modified distributions are very promising in terms of yielding the

most accurate performance approximations. The distribution selection rule ZMADR2ADR

provides fairly good results across all demand classes.

6. The performance of LTD models varies in different demand classes.

As can be seen from the experiment results the LTD models provide better results in Erratic

and Smooth demand classes as compared to Group 1 and Group 2 which contains intermit-

tent and lumpy demand classes. The best performance approximation results are observed

in Erratic and Smooth demand classes while the performance LTD models is poor for Group

2 which contains highly variable demand cases.
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In the context of modeling LTD, this paper evaluates the use of higher moments in approxi-

mating inventory performance measures. Significant improvement is observed along with the use

of new models and parameter fitting procedures. The use of the zero-modified distributions within

distribution selection rules is shown to be promising in terms of providing more accurate perfor-

mance measure results. However, the approximation results of the expected number of backorders

could be poor depending on the demand class. The future research is needed to develop differ-

ent modeling/parameter-fitting strategies in order to improve the foregoing performance measure

approximation results.
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4 SIMULATION METHODS FOR ENSURING TARGET SERVICE LEVELS IN INVEN-

TORY SYSTEMS

4.1 Introduction

In this paper, simulation optimization procedures will be considered as a potential approach

to set optimal policy parameters that ensure a particular target service level. The main objective

is to develop simulation-based methods for determining policy parameters of an inventory sys-

tem so that the desired service level can be attained for the situations involving complex demand

structures.

Policy parameter setting procedures can often be performed through the optimization of inven-

tory control policies. Optimizing inventory control policies can be interpreted by two perspectives:

optimality of inventory policies and optimality of inventory policy parameters. The following two

sections will discuss these two interpretations to reveal the research area of interest in this paper.

4.1.1 Optimality of Inventory Policies

The optimality of inventory policies is measured by total long-run costs that an inventory policy

provides. A particular inventory policy is said to be optimal if it provides required service level

with a minimum cost. (r, Q) and (s, S) type policies are often applied for inventory management.

One can naturally ask if there exists better policies. In general, this is not the case as pointed out in

(Axsäter, 2006). As far as a single-stage inventory system is concerned, one of these policies are

actually optimal (Axsäter, 2006). A total cost in an inventory system is often represented as the sum

of ordering, holding and shortage costs. Since shortages result in a variety of undesired effects,

it is common to impose a constraint on one of the service levels (i.e. performance measures).
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This is often done by the performance measure of the stockout frequency or the fill rate. It may

happen that a particular inventory policy may not give the desired service level. For such cases,

the inventory policy is said to be not optimal. (Zipkin, 2000) points out that the main issue when

using a particular inventory policy is whether it minimizes the cost. The optimal inventory control

policy is selected to ensure that it actually minimizes the inventory costs. In this respect, some

studies are presented in the literature to show whether a particular inventory control policy is

optimal. (Axsäter, 2006) states that an (r, Q) and (s, S) policies are equivalent in the case of

continuous or Poisson demand. Since (r, Q) policy is optimal in these assumptions, (s, S) policy

is also considered as optimal policy. He also points out that for inventory problems with service

constraints, (s, S) policies are not necessarily optimal since the policy may give a higher service

level than the desired. On the other hand, (Chen, 2000) proves that an (r, NQ) policy is optimal in

the case of no ordering costs.

4.1.2 Optimality of Inventory Policy Parameters

Parameter setting procedures are based on the solution of an inventory optimization problem

that arises in the case of minimizing long-run average inventory costs. Modeling the total cost

may differ with respect to the underlying inventory control policy. The total relevant cost function

of the corresponding optimization problem is often selected as the combination of ordering-set

up, holding and shortage-backordering costs. The optimization problem in this form is called

“unconstrained” version for which no service level is imposed. The performance measures of the

expected number of backorders (or shortages) and the number of orders (or set-ups) are controlled

by penalty costs in the objective function. In practice, the unconstrained version of the problem

is less frequently observed since the associated penalizing costs are hard to quantify. The other
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way of controlling performance measures of interest is to impose a service level constraint. From

the managerial perspective, it is relatively easier to set a specific service level that determines the

limits of performance measures allowed in the inventory system. This gives rise to a constrained

inventory optimization problem.

4.1.3 Potential Solution Approaches for the Inventory Optimization Models

There are a number of analytical procedures that focus on determining optimal policy parame-

ters for classical inventory control policies (Schneider and Ringuest, 1990; Tijms and Groenevelt,

1984). These analytical methods are computationally efficient procedures. However, (Bashyam

and Fu, 1998) point out that analytical procedures to determine policy parameters are limited in

terms of their range of validity. For example, for a periodic (s, S) inventory control system S− s

should be larger than the demand during lead-time (Izzet, 1990). The performance of analytical

procedures reflects poor results in the case where there is any violation to this rule. In addition,

the policy parameters are often kept constant during the analytical search in such procedures. For

example, in (Tijms and Groenevelt, 1984), S− s is previously determined by the economic order

quantity formula and kept constant while only the parameter s is determined through an analytical

search using a Lagrangian multiplier.

Simulation optimization is regarded as a promising tool to optimize the parameters of an inven-

tory control policy. The main motivation behind considering a simulation optimization approach

is because it allows much more flexibility that may relax certain restrictions that an analytical

procedure imposes. There are a number of simulation optimization procedures applicable to both

constrained and unconstrained version of the inventory optimization problem. The following ap-

proaches are available in the literature:
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1. Gradient-based approaches: A simulation optimization algorithm can be built based on the

gradient of the performance measure of interest for an inventory system. The policy param-

eters are gradually adjusted by exploiting the information of direction gained by the gradient

estimations. The gradient estimation is performed by running a single independent simu-

lation of the underlying inventory system. Each simulation run is initialized with updated

policy parameters which are determined by an approximation algorithm. The simulation

optimization algorithm is terminated when the estimations of gradient are close enough to

zero. As far as optimization of inventory systems is concerned, two main techniques are used

for gradient estimation: perturbation analysis and likelihood ratio method. These methods

make use of explicit formulas associated with the underlying inventory control system. The

methods give a considerable amount of flexibility for the target demand pattern. The method

so-called “finite difference” is also considered as a gradient based approach. However, the

gradient estimation is performed by two independent simulation runs. Therefore, the com-

putational aspects of the corresponding simulation optimization algorithm is much more

expensive as compared to other two approaches.

2. Retrospective simulation approaches: Suppose we have a known sequence of demand (pos-

sibly from historical data, possibly a forecast, or possibly a sequence of future requirements

as determined by an MRP lot-sizing procedure). Then, given an initial starting policy pa-

rameters, inventory level and a lead-time, the performance of the policy can be recreated or

simulated over time. From the sample path, the operational service level (e.g. fill rate, ready

rate, etc.) can be computed. (Wagner, 2002) argues that a retrospective simulation using real

data can be used to calibrate the inventory control policy or safety stock levels to increase the
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likelihood that the planned for performance will actually be met in practice. This approach

can be thought of as sample path optimization (or sample average approximation). The main

idea is to take the large enough set of samples so that the underlying stochastic problem turns

out to be a deterministic optimization problem.

3. Metaheuristics: A metaheuristic algorithm can be involved with a search routine which is

applied to approximate the optimal policy parameters. The objective of the procedure is

to determine the minimum cost at a desired service level. There are often a number of

probabilistic or statistical procedures incorporated into the search algorithm.

4. Response surface methods: Statistical methods are incorporate in the iterative algorithms to

build a regression model. In many cases, the model and its parameter values are unknown.

A sequence of designed experiments are performed for the required parameter estimation.

Methodology (3) and (4) do not use the information embedded inside the simulation model

and, therefore, treats the simulation as a black box. The other approaches, on the other hand,

treat the simulation as a white box. For example, (2) uses the information gained during the

course of the simulation. Specifically, (Fu and Healy, 1992) optimize the policy parameters of a

periodic review (s, S) inventory model by using a retrospective simulation algorithm which exploits

the piecewise linearity and convexity of the objective function of the corresponding inventory

optimization problem. The methodology in (Gudum and de Kok, 2002) keeps track of the net stock

during the simulation and builds an empirical probability distribution to adjust the safety stock level

for the desired service level. (1) utilizes explicit formulas that are built in the simulation model.

These approaches, among others, are discussed in the next section in detail while the approach in
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this paper will be introduced in section 4.4.

4.2 Literature Review

(Wagner, 2002) points out that a retrospective simulation using real data can be used to calibrate

(1) safety stock levels or (2) the inventory control policy to increase the likelihood that the planned

for performance will actually be met in practice. From the standpoint of determining safety stocks

to achieve a particular service level via simulation, the following key papers appear in the inventory

literature:

(Callarman and Mabert, 1978) investigates the potential use of so-called “Service Level De-

cision Rule (SLDR)” which is developed through a linear regression analysis in order to estimate

the service level. The rule is developed using a response surface mapping procedure that captures

the changes in the service level against the change in safety stock buffer levels. By changing the

safety stock levels systematically, the rule is built with the simulation of experimental factors of

coefficient of variation of demand, forecast error (expressed as a percentage of average demand),

the amount of safety stock (expressed as a percentage of average demand) and the time between

orders. A search routine was applied with SLDR in order to achieve the desired service level.

SLDR is also used in (Callarman and Mabert, 1978) to determine the required safety stocks

achieving 95% and 98% service levels. The authors present experimental comparisons of three

lot sizing rules; namely, economic order quantity, part-period balancing and Wagner-Whitin tech-

niques based on total inventory cost estimation. The assumption of deterministic demand is re-

moved. Instead, the demand (the demand for end item) in their study is assumed to be stochastic.
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They study a single stage MRP system (time phased order point) so that lumpiness and future

planning mechanisms are applied. The reason behind using SLDR is because it makes lot siz-

ing comparisons straight forward regardless of variety of service levels or stockout costs. Their

conclusion is mostly based on the comparison on the total costs of applying different lot sizing

techniques.

(Debodt and Van Wessenhove, 1983) present a case study at a company that adopts MRP sys-

tems in a highly variable demand environment. The authors utilize a simulation study to analyze

the safety stock settings. However, they do not discuss how the safety stock should be determined

to meet a desired service level. The experiments indicate the relationship between the average

inventory levels and service level. They provide high level insight to management by showing that

savings can be possible at the company.

Wemmerlöv and Whybark (Wemmerlöv and Whybark, 1984) also perform simulation experi-

ments to compare single-stage lot-sizing rules by determining net requirements based on allowing

backorders under demand uncertainty. The demand uncertainty is introduced to the lot sizing prob-

lem via forecast error logic. Fourteen different lot sizing rules were compared to each other based

on the cost of keeping a certain level of safety stock to achieve nearly a 100% service level for fill

rate. The safety stocks are determined by repeating the simulations until the target service levels

are reached (i.e. a search routine through simulation). (Wemmerlöv, 1986)studied a similar prob-

lem by determining net requirements based on lost sales. The performance measure of fill rate (i.e.

the fraction of demand satisfied directly from stock) is used in these two studies.

The methodology labeled, “Safety Stock Adjustment Procedure” (SSAP), in (Gudum and

de Kok, 2002) is also motivated by the problem of comparing different lot-sizing rules. When

comparing lot-sizing rules via total cost, it is important that the rules be compared under exactly
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the same service levels. Thus, decision makers can directly determine the better rule without re-

sorting to more complicated analysis via a trade-off curve approach. By assuming a particular time

phased order point policy (TPOP Orlicky, 1975), the authors are able to show that a simulation

based procedure that estimates the empirical probability distribution of the net stock at the end of

a period can be exploited to develop update formulas for the safety stock. That is, the procedure

keeps track of the behavior of the net stock levels observed through the simulation run and builds

an empirical probability distribution to determine the amount of safety stock to be adjusted so that

the target service level is exactly achieved. The updated safety stock values can then be tested to

see if they meet the target level via another simulation. The procedure in (Gudum and de Kok,

2002) constitutes a beginning for other related studies and practical applications. The objective

of attaining the target service level may be pursued by developing a method through simulation

approaches to determine the inventory policy parameters (e.g. safety stock) for various inventory

systems. For example, (Boulaksil and Fransoo, 2009) adopts the procedure to determine the em-

pirical probability distribution of the backorder quantities instead of the net stock levels. In their

approach, net stock levels in a multi-stage inventory system are determined based on backorder

quantities by solving the mathematical model repetitively in a rolling horizon. Other simulation

based methodologies are also available in the literature on determining safety stocks in multi-stage

inventory systems. The reader is referred to (Boulaksil and Fransoo, 2009) for further discussion

and the literature.

A rich body of the literature including a variety of methods is available for the unconstrained

version of the problem of determining the optimal parameters of a stochastic re-order type in-

ventory control system. However, the methods including simulation optimization techniques are

limited. (Fu and Healy, 1992) apply two simulation optimization techniques, namely, the gradient-
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based and the retrospective, for the periodic review (s, S) inventory system. In order to apply the

gradient-based method, the demand is assumed to be continuous in their study. In addition, the

inventory control system is assumed to receive demands in zero lead-time. The gradient-based

optimization techniques are known to find only local optima. However, the authors point out that

the local optima obtained by the gradient-based algorithm is also a global optima due to the con-

vexity of the underlying cost function (ς) which is the linear combination of order, holding and

backorder costs. As far as the gradient-based algorithm is concerned, the authors apply the per-

turbation analysis whose estimators are derived by (Fu, 1994). For an (s, S) inventory system, the

optimization problem is to find s and S for which the variable4 can be defined to represent S− s.

Therefore, the optimization problem can also be defined as to determine s and 4. The authors

present the perturbation analysis algorithm in order to estimate the corresponding gradients (i.e.

∂ς/∂s and ∂ς/∂4). The forgoing gradients are estimated for N periods. After every N periods, the

policy parameters of s and4 must be updated based on an optimization algorithm. In this respect,

the authors adopt the two dimensional Robbins-Munro stochastic approximation algorithm intro-

duced by (Kushner and Clarck, 1978). In the modified version of the approximation algorithm,

the step size is reduced by one unit only if both gradient estimates chance sign. Otherwise, the

step size is increased by one unit. The idea principally leads to a search routine to find better local

optima. The half of the expected demand (E [D]/2) is selected for the initial starting point for

both parameters of s and 4. Therefore, no particular methodology is applied to initialize these

parameters in their study. In addition, no convergence proofs are given by the authors. The retro-

spective simulation technique in their study is predicated on the assumption that the realization of

the demand distribution is independent of the decision parameters (i.e. policy parameters of s and

S). Since the demand is known in the retrospective simulation technique, a search algorithm can
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be established in order to determine the optimal values of s and4. The search algorithm exploits

two facts: (1) orders are determined by 4 and (2) for fixed 4, the cost function ς is continuous,

piecewise linear and convex with respect to the policy parameter S. Therefore, the search algo-

rithm determines the optimal 4 by starting with 4 = 0 and ending with 4 = ∑
n
i=1 Di where n is

the horizon length. The former case implies that an order is placed in each of n periods whereas

the latter case implies that no orders are placed in any periods. Then the optimization problem can

be represented as the N-period sample path problem whose cost function is ςn
(
Ŝn,4

)
where Ŝn

is the corresponding order-up-to level for a given value of 4. A remarkable point related to the

forgoing problem is that it is a deterministic problem and Ŝn is a piecewise constant function of4.

Thus, a finite number of subintervals can be determined to find the corresponding value of Ŝn that

eventually minimizes the cost function of ςn
(
Ŝn,4

)
. The authors also propose a special technique

to determine the subsequent intervals of 4. Although the implementation of the gradient-based

method is relatively easier than the retrospective approach, the main difficulty lies in initializing

the parameters of s, 4, N and initial step size a. The authors also point out that for a moderate

sized planning period, the gradient-based technique is computationally less efficient as compared

to the retrospective simulation technique. However, as the horizon length increases, the increase

in the computational requirements of retrospective technique becomes excessively larger than the

gradient-based technique. In their experiments the sampling variance delivered by the retrospective

technique is lower than the gradient-based technique.

(Fu and Healy, 1997) continue this line of research by adding another search algorithm for

the same optimization problem. The new search algorithm is the hybrid of previously introduced

gradient-based and retrospective simulation optimization approaches. As discussed previously,

the gradient-based method suffers from the high sampling variance (i.e. slow convergence) while
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the retrospective technique can be computationally inefficient for large horizon lengths. Thus, the

objective of introducing the new search method is to alleviate the disadvantages of both approaches.

The idea behind the hybrid approach is that a search routine is applied over subintervals of4 with

the gradient method, instead of enumerating the subintervals of 4 over which Ŝn is constant (i.e.

instead of implementing the idea behind the pure retrospective technique introduced by (Fu and

Healy, 1992)). The authors conclude that the hybrid approach yields fairly good results in the

case of short and moderate sizes of horizons. However, the gradient-based technique still yields

superior results in the case of long horizons.

(Lopez-Garcia and Posada-Bolivar, 1999) propose a simulation optimization procedure by em-

ploying a tabu search to approximate optimal solutions of stochastic inventory models. The opti-

mal solution in their approach is determined by the lowest total cost out of a number of inventory

policies, namely; (r, Q), (S, T), (r, NQ, T) and (s, S, T).

As far as simulation-based procedures are concerned, there is a scant literature on the con-

strained version of the defined optimization problem. From the standpoint of determining optimal

inventory control policy parameters to meet a target service level via simulation, the inventory liter-

ature delivers the following key studies in the context of single-stage inventory systems: (Bashyam

and Fu, 1998) consider the problem of minimizing total relevant costs (ordering and holding) sub-

ject to a service level (complement of the fill rate) for the periodic review (s, S) inventory systems

under continuous demand, full backordering and random lead-times. The random lead-time, in

essence, relaxes the no order crossing assumption, meaning that orders are allowed to cross in time.

Therefore, the optimization problem becomes harder than what is originally defined. The analyti-

cal methods, such as those introduced by Tijms and (Tijms and Groenevelt, 1984) and (Schneider
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and Ringuest, 1990), yield poor results. The authors consider the following optimization model:

minC (s,4)

sub ject toF (s,4)≤ β

In the above optimization model, C (s,4) is the long-run average cost per period while F (s,4)

is the long-run estimation of the complement of the fill rate measure for a given s and4. Also, β

denotes the desired service level (e.g. 10%). The simulation optimization approach is applied to

find the optimal (or near optimal) values of s and 4. In order to apply a simulation optimization

algorithm, the authors consider perturbation analysis which requires the calculation of the estima-

tors of ∂C/∂s, ∂C/∂4, ∂F /∂s and ∂F /∂4. The estimators of ∂C/∂s and ∂C/∂4 were already

derived by Fu and (Fu and Hu, 1994). The authors derive the estimators of ∂F /∂s and ∂F /∂4.

These estimators are then used in a simulation optimization algorithm based on an adaptation of

the feasible directions method which ensures the search in the feasible region defined by the op-

timization model. The authors point out that feeding the simulation optimization algorithm with

a good starting point plays a key role for rapid convergence. In addition, a good starting point

directly affects the quality of the solution found by the simulation optimization algorithm. Thus,

before the simulation optimization algorithm, the procedure starts with two phases which find good

initial values of s and4 . In the first phase,4 is calculated based on the economic order quantity

formula. In the second phase, a line search is performed to estimate s by keeping4 constant. The

authors do not provide any convergence proof for the proposed approach. However, they conduct

extensive empirical experiments to exhibit the procedure gives promising results.
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The brute force method is also applied in the literature (Bashyam and Fu, 1998; (Angün et al.,

2006); Wan and Kleijnen, 2006) to estimate the optimal policy parameters. However, (Kleijnen

and Wan, 2006) point out that these papers report different parameter values as optimal (i.e. s

and S). (Kleijnen and Wan, 2006) apply a simulation optimization methodology based on a search

technique which is composed of several metaheuristic such as Tabu Search, Neural Networks and

Scatter Search. This search technique is implemented within OptQuest (provided by Opt-Tek

System Inc.) which uses more than one heuristic during the search. The authors set a minimum

90% of service rate (fill rate) as a constraint for the optimization problem to determine s and S.

In the given procedure, Karesh-Kuhn-Tucker (KKT) conditions are used to determine the stopping

criteria of the search. In the experimental part, authors compare their results with the results of

(Bashyam and Fu, 1998) who applied perturbation analysis and feasible directions techniques (PA

and FD) and the results of (Angün et al., 2006) who applied the modified response surface method

(modified RSM). According to the results, among others, OptQuest yields the minimum cost at the

desired service level.

In the case where the inventory system is the continuous review (r, Q), the literature on the so-

lution methods providing joint optimization of policy parameters can be classified into two groups.

The literature in the first group provides techniques to solve the problem so that the solution has

integer values of r and q. (Zipkin, 2000) points out that this is a hard problem in general and dis-

cusses some sort of the solution approaches. For fixed q, the smallest feasible value of r, which is

easy to find, is the optimal solution for the problem. As he explains, finding q requires a full search.

Zipkin proposes a very simple heuristic for which a backorder cost is defined in his heuristic based

on the given value of fill rate (w). Order cost is also redefined so that fill rate can be expressed

as w_= (backorder cost)/(backorder cost + holding cost). After these modifications, the algorithm
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proposed by (Federgruen and Zheng, 1992) is used to find the values of r and q. (Zipkin, 2000)

claims that the resulting policy from the heuristic has close values of stockout probability A values

to the (1-w_).

The literature in the second group offers approaches to solve the problem so that the solu-

tion has continuous values of r and q. (Axsäter, 2006) discusses solution techniques. First of all,

(Axsäter, 2006) recommends the literature by (Rosling, 002b) for a pure optimal strategy. How-

ever, he reformulates the problem so that it has a fill rate constraint rather than a stock out proba-

bility. His formulation also depends on only single variable. This single variable is derived based

on the given demand and cost parameters. His solution is based on linearly interpolated values of

replenishment quantity. These values are provided as tables in (Axsäter, 2006). In (Axsäter, 2006),

the author explains that these tables are created for normally distributed demand during lead time

cases. Therefore, the solution approach in (Axsäter, 2006) is limited to this special demand case.

(Rosling, 002b) proposes an optimization algorithm. Rosling’s algorithm is known as square-root

algorithm. In the square root algorithm, first an initial solution is determined. In the initial solution,

the replenishment quantity is determined via the classic economic order quantity expression. Re-

order point is determined so that the given constraint is satisfied. Next, the value of replenishment

quantity is obtained via a square root expression which takes into account the Lagrange multipliers

of the constraint. The reorder point satisfying the constraint is determined in the same way. This

process is repeated until r and q converge. (Yano, 1985) also proposes an optimization algorithm.

(Yano, 1985) derives two expressions to build the optimization algorithm. The first expression is

to optimize based on a given reorder point. The second expression is responsible for optimizing

reorder point for a given replenishment quantity. For an initial value of r or q, the algorithm given

in (Yano, 1985) converges to the optimal solution via iterative optimization of r and q. A proof
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also provided in (Yano, 1985). In addition to an optimization algorithm, (Yano, 1985) provides an

iterative heuristic that is proved to converge. However, the given heuristic works a for normally

distributed lead time demand. (Platt et al., 1997) provide a comprehensive review of the procedures

for different inventory systems with constrained service levels.

The single-stage inventory policy optimization problem was studied in different forms in the

literature. It may be of interest to compare the optimization procedure in this paper and a procedure

proposed in the literature. Table 4 provides the related literature.

Table 4: Literature: Solution Approaches
Literature Approach Optimality Discrete Service Level Explicit LTD

Guaranteed Policy Variables Considered Independence

Yano (1985) Optimization procedure Yes No Yes No

based on Lagrange multiplier

Federgruen and Zheng Optimization algorithm Yes Yes No* No

(F&Z) (1992)

Rosling (1999) Square root algorithm Yes No Yes No

Zipkin (2000) Heuristic based on F&Z (2000) No Yes Yes No

Agrawal and Seshadri Optimization algorithm Yes Yes Yes No

(A&S) (2000) based on bounded Q

Ünlü and Simulation optimization Yes Yes Yes Yes

Rossetti (2011) procedure based on SAA

Our approach differs from the ones proposed in the literature in the following aspects. First

of all, the problem that we are concerned with in this study is defined under the cases where the

explicit LTD model is not known (or not available in a closed mathematical form). The associated

inventory policy optimization literature to date is only concerned with the cases where the LTD

model is known or available based on an assumed distribution. Secondly, we are interested in the

following inventory optimization problem: Find the integer policy parameters r and q in order to

minimize the sum of ordering and holding costs subject to the constraint that the ready rate should

be at least equal to γ. That is, it is the constrained version of the discrete policy optimization

101



problems.

In Table 4, the listed approaches deal with the constrained problem except the algorithm pro-

posed by (Federgruen and Zheng, 1992) (F&Z). However, with the help of Lagrange variables,

F&Z algorithm is applicable to the constrained problem provided that the LTD is Poisson. There-

fore, F&Z algorithm can be used for comparison only in the cases where the LTD follows the

Poisson distribution. Notice that the algorithms proposed by (Yano, 1985) and (Rosling, 002b)

cannot be used for comparison since these algorithms are applicable under continuous policy vari-

ables. Discrete case is a much harder problem as pointed out by (Zipkin, 2000, p 226). He proposes

a heuristic (Zipkin, 2000, p 226) for which no extra work is presented in terms of its optimization

quality. In addition, there is no guarantee that the heuristic finds optimal policy variables. However,

it is applicable for solving discrete policy optimization problem.

The algorithm proposed by (Agrawal and Seshadri, 2000) (A&S) is the most promising algo-

rithm in terms of addressing the majority of the criteria given in Table 4. As can be noted from the

table, the characteristics of the algorithm can be given as follows:

1. Guarantees the optimality (with an error bound),

2. Gives discrete optimal policy variables,

3. Service level can be imposed.

*Remark - A: The service level considered in A&S algorithm is given as the fill rate. The

authors make a common mistake in formulating the service level. The formula defined in the paper

represents the ready rate in the general form. It only represents the fill rate in the case of the
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Poisson LTD. Therefore, the algorithm is applicable for comparison since the ready rate constraint

is considered in our study.

*Remark - B: The paper by (Agrawal and Seshadri, 2000) does not reveal that the algorithm can

be used for compound demand processes. In addition, it is not discussed in the paper whether the

bounds on Q are applicable for compound demand cases. This remark is pointed out since our

SAA based optimization procedure is also applicable to the compound demand cases under the

assumption of the unit demand processing. However, the A&S algorithm is applicable under an

assumed LTD distribution regardless of continuous or discrete form.

4.3 Optimization Problem

4.3.1 System Description

The constrained optimization problem arises in the following inventory system. The inventory

is reviewed continuously at a single stage for a single item and controlled by the (r, q) policy

with the following mechanism. The items are replenished with a constant lead time (L). The net

inventory (IN (t)) and inventory position (IP(t)) are defined as follows: IN (t): A random variable

that refers to the amount of items on hand minus the number of backordered items at time point

t. The equilibrium net inventory is denoted by IN. IP(t): A random variable that refers to the

amount of the net inventory level plus the number of (outstanding) ordered items at time point t.

The equilibrium inventory position is denoted by IP. If no orders are currently outstanding, then

IN (t) and IP(t) are the same. Otherwise, their difference is the total amount of items ordered and

outstanding at the present time point. Notice that at any time there can be more than one order
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outstanding. Whenever the inventory position IP(t) drops to or below an integer value of re-order

level (r), the amount of q units of items is issued to replenish the inventory, and the ordered items

arrive at the inventory system after a constant time delay L. The inventory system faces a discrete

compound demand process. Let λ be the mean of the demand epoch rate random variable and

let E [J] be the mean of demand quantity (i.e. demand size) random variable. The lead times are

assumed to be independent of the demand process. Order crossings are not allowed, since lead

times are fixed. Let D be the random variable representing the total demand during a unit time.

Then E [D] = λ∗E [J]. Let Y be total demand during lead time, which is a random variable. Then

Y = L ∗E [D]. IP takes integer values on the set {r+1,r+2, ...,r+q} while IN can take integer

values on the set {−∞, ...,−1,0,1, ...,r+q}. The inventory position is assumed to be uniformly

distributed in the interval [r+1, r+q]. A customer demand can either be a batch of items or a

single item. In case of batch demand, a customer agrees that some of the batch can be satisfied

from on-hand stocks. If the available stock is not enough to fully meet the demand, then the batch

can be split. That is, a demand splitting rule (Teunter and Dekker, 2008) is applied to customer

demands. Unsatisfied demand is fully backordered. In addition, the inventory system processes

demands based on a first-come-first-served fashion. The received (and backordered) demands

can be partially or fully satisfied from the available stock on-hand. Therefore, based on these

assumptions, a customer with a demand for multiple units can be regarded as multiple customers

with demand of unit size. This allows the inventory system to face the compound demand process

as if it faces a unit demand process. The foregoing mechanism prevents the undershoot of the

re-order point, which validates the formulas used in this paper.
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4.3.2 Optimization Model

Under the above described inventory system, the following exact formulations are used to

compute the inventory performance measures of the ready rate (E [RR]), the expected number of

inventory on-hand (E [I]) and the expected order frequency (E [OF ]) (Zipkin, 2000).

E [RR] = 1− 1
q

[
G1 (r)−G1 (r+q)

]
(64)

E [I] =
1
2
(q+1)+ r−Y +

1
q

[
G2 (r)−G2 (r+q)

]
(65)

E [OF ] =
E [D]

q
(66)

where G1
F (.) and G2

F (.) are the first and second order loss functions of the lead time demand

distribution F . Let [κ]+ denote max{0, κ}. Then it follows that G1
F (κ) = E

[
[Y −κ]+

]
and

G2
F (r) = 0.5E

[
[Y − r]+ [Y − r−1]+

]
.

In modeling the inventory optimization problem, a cost structure is imposed on E [OF ] and

E [I]. The backordered demand is controlled by imposing a service level constraint in the model.

Although the fill rate constraint is mostly applied in the literature, the ready rate is used as the

service level in this study due to the existence of a tractable analytical formulation for the under-

lying inventory environment. The policy optimization of the continuous review (r, q) system is

performed by solving the corresponding stochastic inventory problem. The goal is to obtain the

optimal discrete policy parameters r and q which minimize the sum of ordering and holding costs

subject to the constraint that the ready rate should be at least equal to γ. Let k be the fixed cost to

place an order and h be the holding cost per unit per unit time. The cost measures are assumed to
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be positive in order for q to be finite positive integer value while policy parameter r takes any finite

integer values on the set Z. For a pair of (r, q), denote the expected total cost by E [T (r, q)]. Then

the optimization problem is given as follows.

Optimization Problem P1:

minE [TC(r, q)] = kE [OF ]+hE [I] (67)

subject to

E [RR]≥ γ (68)

If the LTD follows the Poisson distribution (i.e. demand size is 1 and inter-arrivals are expo-

nentially distributed), P1 can be solved through the algorithm proposed by (Federgruen and Zheng,

1992) with the help of Lagrange multipliers. The search of the optimal policy requires a full enu-

meration of q if the LTD follows a distribution other than Poisson (Zipkin, 2000, p 226). In the case

where the LTD follows a known distribution (e.g. gamma), (Agrawal and Seshadri, 2000) propose

an optimization algorithm for P1. This paper, on the other hand, is focused on the cases where the

lead time demand distribution model is not known (or not available in closed mathematical form).

4.4 Solution Procedure

The solution procedure in this paper is predicated on the sample average approximation (SAA)

technique. The SAA method (Ahmed and Shapiro, 2002; Kleywegt and Shapiro, 2001) is applied

in order to estimate the expected costs in the problem. The motivation behind employing SAA is

to exploit the theoretical fact that the solution to the approximation problem exponentially con-

verges to the optimal solution as the number of scenarios increases (Kleywegt and Shapiro, 2001).

The SAA method has been applied to many different stochastic problem domains in the litera-

ture. Examples include the stochastic bidding and stochastic scheduling problems (Greenwald,

106



Guillemette, Naroditskiy, and Tschantz 2006), vehicle assignment, aircraft allocation, network de-

sign and cargo flight scheduling (Linderoth et al., 2006). (Shapiro and Philpott, 2007) present a

tutorial that introduces some basic ideas of the stochastic programming in the contex of the SAA

approach. The following section will provide an overview of the SAA approach.

4.4.1 An Overview of the SAA

The SAA provides many statistical tools that may be used to determine/optimize the number

of the scenarios required to approximate the true problem. We provide the most generic version of

the SAA applied in this paper. The following notation is used.

N: sample size used to build a single SAA problem (replication).

M: number of independent and identically distributed (i.i.d.) batches of random samples of

size N.

N′: sample size used to build independent SAA replications.

M′: number of SAA replications based on independently generated sample size N′. The SAA

replications based on independently generated sample size N′ are solved to optimality M′ times.

Parameters N′ and M′ are set to estimate a lower bound for the candidate solution.

σ̂2
LB: an estimate of the lower bound variance

σ̂2
UB: an estimate of the upper bound variance

ˆTC: estimated total cost

ÛB: estimated upper bound

L̂B: estimated lower bound

ˆgap: estimated optimality gap obtained by (ÛB− L̂B)

σ̂2
gap: estimated gap variance
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Under the assumption that the problem is defined based on minimizing total costs, we are

interested in solving optimization problems of the form:

v∗ = min
x∈χ

g(x) (69)

where

g(x) = E [TC (x, ϒ)] (70)

where TC (.) is the (total cost) function of x and ϒ. x ∈ χ is a vector of decision variables that

take values in the finite set χ. ϒ is a vector of discrete random variables with joint probability

distribution f . Suppose that the distribution f has a domain ϖ with realized values w. Then,

E [TC (x, ϒ)] = ∑
w∈ϖ

[ f (X = w)TC (x, w)] (71)

We call each realization w of ϒ a scenario which is generated from the distribution f . There

may be infinitely many possible scenarios. Hence, it may be prohibitively expensive to compute

E [TC (x, ϒ)]. On the other hand, it is relatively less expensive to compute TC (x, w). Therefore,

the sample average approximation technique is applied to approximate E [TC (x, ϒ)]. That is, given

a sample of size N (i.e. batch of a random sample), E [TC (x, ϒ)] is approximated by the following

q̂N (x) =
1
N

N

∑
i=1

TC
(
x, wi) (72)

As commonly known, the sample average approximation method is a numerical means of ap-

proximating a solution to the true problem (v∗ = minx∈χ g(x)) via Monte Carlo simulation. Monte
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Carlo simulation technique is used to generate a batch of a random sample and, accordingly, create

an SAA problem. The SAA problem can be expressed by

min
x∈χ

[
q̂N (x) =

1
N

N

∑
i=1

TC
(
x, wi)] (73)

Suppose that we are given a feasible point x̂ ∈ χ gained through solving 73. It is of iterest to

see if this feasiable point can be used as a candidate solution to solve the true problem. One way

to evaluate the quality of this feasible point is to estimate a probabilistic optimization gap. An

optimization gap can be built based on the difference between an estimate of the upper and lower

bounds.

Note that for a given feasible point x̂,

g(x̂) ≥ v∗

Therefore, in order to estimate an upper bound, we first construct an unbiased estimator of

g(x̂). We generate M independent and identically distributed (i.i.d.) batches of random samples.

In addition, each batch consists of N random elements. Let the generated batches be denoted by

i.i.d. random elements of w1, j, w2, j, ..., wN, j j = 1,2, ...,M. Then, the unbiased property of each

batch can be denoted by

E

[
q̂ j

N (x̂) =
1
N

N

∑
i=1

TC
(
x̂,wi, j)]= g(x̂) (74)

Let g(x̂)N,M be an estimate for g(x̂). Then
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g(x̂)N,M =
1
M

M

∑
j=1

[
q̂ j (x̂)

]
(75)

is an unbiased estimate of g(x̂). The associated sample variance estimator is obtained by

σ̂
2
UB =

1
M−1

M

∑
j=1

[
q̂ j (x̂)−g(x̂)N,M

]2
(76)

Since g(x̂) ≥ v∗ (for minimization type problems), an approximate 100(1−α)% upper bound

estimate is given by

ÛBN,M = g(x̂)N,M +
tα,νσ̂UB√

M
(77)

where ν = M−1 and tα,ν is the α-critical value of the t-distribution with ν degrees of freedom.

Let v̂N′ be the optimal value of an SAA problem based on sample size N′. Then, a lower bound

can be estimated based on the fact that

v∗ ≥ E [v̂N′]

We estimate a lower bound for E [v̂N′]. E [v̂N′] can be estimated by solving SAA problems several

times and averaging the calculated optimal values. M′ SAA problems are created based on gener-

ated i.i.d. batches which contain i.i.d. random elements of w1, j, w2, j, ..., wN′, j j = 1,2, ...,M′. Let

v̂1
N′ , v̂

2
N′, ..., v̂

M′
N′ be the computed optimal values of the SAA problems. Then

vN′,M′ =
1

M′
M′

∑
i=1

v̂i
N′ (78)
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is an unbiased estimator of E [v̂N′]. We can estimate the variance of vN′,M′ as follows

σ̂
2
LB =

1
(M′−1)

M′

∑
i=1

(
vN′,M′− vi

N′
)2

(79)

An approximate 100(1−α)% lower bound for E [v̂N′] is then given by

L̂BN′,M′ = vN′,M′−
tα,νσ̂LB√

M′
(80)

where ν = M′−1 and tα,ν is the α-critical value of the t-distribution with ν degrees of freedom.

The quality of x̂ can be measured by the optimality gap

gap(x̂) = g(x̂)− v∗ (81)

We outline a statistical procedure for estimating this optimality gap via upper bound (ÛB) and

lower bound (L̂B) analysis. Thus,

ˆgap(x̂) = ÛB− L̂B (82)

and

σ
2
gap = σ̂

2
UB + σ̂

2
LB (83)

In what follows, we present a pictorial representation of the generic SAA based optimization

procedure in Figure 9.
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Figure 9: SAA based Optimization Procedure
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We apply the SAA approach to the classic constrained stochastic inventory policy optimization

problem which is to minimize the total expected relevant inventory costs subject to a service level

constraint. The foregoing problem arises in the context of the continuous review (r, q) inventory

system where policy parameters are determined by discrete variables of r and q. We consider the

ready rate as the underlying service level constraint. The ready rate is known as the fraction of time

with positive stock on-hand (Axsäter, 2006, p 94). Even though the problem contains a service

level contraint, we propose a simple approach to represent it in a single objective function within

an expected form. The details of the problem will be introduced in the next section where we also

discuss how it can be solved via the SAA method.

The total expected costs expressed in (67) can be approximated using the sample of LTD values

or the sample of net inventory values. Thus, based on the sample, two types of solution methods

are proposed in this paper. 1) LTD bootstrapping method: lead-time demands are sampled by

performing bootstrapping randomly generated demand values. 2) Net inventory (IN) generation

procedure through discrete-event simulation: IN values are sampled from an empirical probability

mass function which is built through a single simulation run of the underlying inventory system.

4.4.2 LTD Bootstrapping Method

Let Y be the total demand during lead time, which is a random variable with the expected value

L ∗ E [D]. A bootstrapping method is of interest in generating lead time demand values which

will be utilized in the SAA procedure. Since the lead times are assumed to be independent of the

demand process, the following procedure can be used to generate Y . In most situations, even if

the inventory system faces a compound demand process, the information related to the demand

during a unit time (per day, per week, etc.) is available. By using the given mean (µX ) and variance
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(σ2
X ) parameter information of the demand during a unit time, demand amounts are generated for

discrete unit time points (t). The total sum value of the demand observed over a fixed lead time (L)

gives independent and identically distributed Y values. This procedure is independently repeated

to produce a sample of Y . We generate the unit time demand component from a distribution. Let

Xt be the generated demand amount during a time unit and Xt ∼ fX (.), then clearly,

Y =
L

∑
t=1

Xt (84)

Reformulation of P1:

The optimization problem P1 can be represented as

minE [TC(r, q)] = E

[
kE [D]

q
+h
(

q+1
2

+ r−Y
)

+
h

2q

(
max{Y − r, 0}max{Y − r−1, 0}

−max{Y − (r+q) , 0}max{Y − (r+q)−1, 0}

)]
(85)

subject to 1− 1
q

E [max{Y − r, 0}−max{Y − (r+q) , 0}]≥ γ (86)

For a given q, let r (q) be the re-order point that satisfies (86). Let S = {r : r ≥ r (q)}. Thus, S

represents the set of possible r that satisfy the service level. For a given q, let r∗ (q) be the optimal

re-order point to the optimization problem defined above. That is, r∗ (q) = argminr∈S E [TC (r, q)].

Then the optimization problem can be rewritten as a single objective function as follows:

Optimization Problem P2:
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minE [TC(q, r∗ (q))] = E

[
kE [D]

q
+h
(

q+1
2

+ r∗ (q)−Y
)

+
h

2q

(
max{Y − r∗ (q) , 0}max{Y − r∗ (q)−1, 0}

− max{Y − (r∗ (q)+q) , 0}max{Y − (r∗ (q)+q)−1, 0}

)]
(87)

If Y follows the Poisson distribution (i.e. demand size is 1 and inter-arrivals are exponentially

distributed), then (87) is convex since r (q) is unimodal. In this case, P1 can be solved through

the algorithm proposed by (Federgruen and Zheng, 1992) with the help of Lagrange multipliers.

Unfortunately (87) is generally not convex. The search of the optimal policy requires a full enu-

meration of q if Y follows a distribution other than Poisson (Zipkin, 2000, p 226). In the case

where Y follows a known distribution (e.g. gamma), (Agrawal and Seshadri, 2000) propose an op-

timization algorithm for P1. This paper, on the other hand, is focused on the cases where the lead

time demand distribution model is not known (or not available in the closed mathematical form).

The random lead time demand variable Y is bootstrapped by generating random demand values

over a lead time. We perform the full enumeration over a finite set of q which is determined by

bounds applied on q from (Agrawal and Seshadri, 2000). Each possible q value creates a candidate

solution. These candidate solutions are evaluated and the best solution is selected from the set. We

evaluate candidate solutions by using the sample average approximation (SAA) technique, which

allows the estimation of the expected value in (87). The next section gives the details related to the

solution procedure including the SAA method.
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4.4.3 SAA Problem and Obtaining a Candidate Solution

The evaluation procedure involves constructing the optimization gap for each candidate so-

lution x̂. The candidate solutions (i.e. pair of (q, r∗ (q))) are obtained follows. Let x = (q, r)

where r ∈ S, and S = {r : r ≥ r (q)}, and r (q) is the re-order point that satisfies the desired service

level. Then, for any given q≥ 1, the value of q̂N (x) = 1
N ∑

N
i=1 TC

(
x, wi) increases in r ∈ S where

wi ∼ F̂LT D (.). In addition, there exists r∗ (q) ∈ S such that r∗ (q) = argminr∈S q̂N (x). Thus, for

a fixed q, the optimal value of (87) can be obtained by the minimum feasible value of r. This

will provide r∗ (q). The solution is performed satisfying the constraint (86) in the sample average

sense. That is, for a given q and a sample of Y , r∗ (q) is the minimum value of r that satisfies the

following:

1− 1
q

{
1
N

(
N

∑
i=1

[
max

{
Y i− r, 0

}
−max

{
Y i− (r+q) , 0

}])}
≥ γ (88)

For a given value of q, it is trivial to obtain r∗ (q) through a line search. The candidate solution

is denoted by x̂ = (q, r∗ (q)). Clearly, the pair (q, r∗ (q)) minimizes the approximation q̂N (x̂).

This refers to the fact that the candidate solution x̂ = (q, r∗ (q)) is generated by “solving the corre-

sponding SAA problem to optimality.” However, this solution should be evaluated to see its quality

viewed as a candidate for solving the true problem. Notice that the true objective function value

of this solution is different from the approximated one. For a given q, we apply statistical methods

to estimate bounds for the true objective value. The details of constructing the optimization gap

based on upper and lower bounds will be discussed in Section 4.5.

4.4.4 IN Generation Method

The optimization model P1 can also be represented using the random variable IN which is
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generated from an estimated probability mass function, f̂IN (.). The empirical discrete distribution

of IN is estimated through a discrete event simulation run. The empirical probability mass function

is built based on the observed net inventory values during a single simulation run after warm-up

period. Suppose that the standard continuous review (r, q) inventory system creates an ergodic IN

process. Then the empirical probability mass function is built based on the observed IN values as

follows. By using the path of observed IN values, the probability of each observed value can be

estimated after warm-up period by the ratio of the total time where IN observed during simulation

and the total time where all observed IN. Thus, for i different IN observations

f̂ IN (IN = 0) =
total time where IN = 0

total time

f̂IN (IN = 1) =
total time where IN = 1

total time

...

f̂IN (IN = i) =
total time where IN = i

total time

Example:

During a single discrete event simulation run, let the observed IN values after warm-up period

be depicted in Figure 10.
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Figure 10: Observed Net Inventory After Warm-up Period

As can be seen from the figure, the simulation run length (after warm-up period) is 8 time

units. During the simulation, 4 different IN values are observed; 0, 1, 2 and 3. Thus, the estimated

probability values are

f̂IN (IN = 0) =
1
8

f̂IN (IN = 1) =
3
8

f̂IN (IN = 2) =
3
8

f̂IN (IN = 3) =
1
8

Reformulation of P1:

The optimization problem P1 can be represented as

minE [TC (r, q)] = kE [OF ]+hE
[
[IN]+

]
(89)

s.t

E [RR]≥ γ (90)
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where RR =


1, i f IN > 0

0, otherwise

and E
[
[IN]+

]
is the expected number of inventory on-hand.

Since [IN]+= max{0, IN}, E [I] = E [max{0, IN}]. Then, based on q and r∗ (q), the optimiza-

tion problem can be rewritten as a single objective function as follows:

Optimization Problem P3:

minE [TC(q, r∗ (q))] = E
[

kE [D]

q
+hmax{0, IN}

]
(91)

4.4.5 SAA Problem and Obtaining a Candidate Solution

The optimization problem P3 can be approximated via a sample average approximation prob-

lem. Suppose that the true net inventory distribution (i.e. fIN (.)) has a domain Ω with realized

values ω. Then,

E [TC (x, Y )] = ∑
ω∈Ω

fIN (ω)TC (x, ω)

Given a sample, we can approximate E [TC (x, Y )] by the following

q̂N (x) =
1
N

N

∑
i=1

TC
(
x, ω

i) (92)

Since fIN (.) is estimated by building the associated discrete empirical probability distribution

function f̂IN (.),

E [TC (x, Y )]≈ ∑
w∈Ω

f̂IN (IN = w)TC (x, w)
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and

q̂N (x) =
1
N

N

∑
i=1

TC
(
x, wi)

where w is the independent and identically distributed IN values generated from f̂IN (.).

The evaluation procedure involves constructing the optimization gap for each candidate solu-

tion x̂. The candidate solutions (i.e. pair of (q, r∗ (q))) are obtained as follows. Let x = (q, r)

where r ∈ S, and S = {r : r ≥ r (q)}, and r (q) is the re-order point that satisfies the desired service

level. Then, for any given q≥ 1, the value of q̂N (x) = 1
N ∑

N
i=1 TC

(
x, wi) increases in r ∈ S where

wi ∼ f̂IN (.). In addition, there exists r∗ (q) ∈ S such that r∗ (q) = argminr∈S q̂N (x). For a given q,

let ϑ∗ = minTC ({r∗ (q) , q} , Y ) be the optimal solution to the true problem. For a given q, let χ∗

be the set of all possible pairs of (q, r (q)). A set of scenarios (IN values) can be generated from

the empirical probability distribution f̂IN (.) which is built based on a given q, an arbitrary initial

r and a demand distribution FD (.). In our analysis, we set initial r equal to 0. The generated set

of IN values yields a sample path which can be regarded as a set of scenarios. Based on this set

of scenarios, we solve the corresponding SAA problem to optimality to get the pair of (q, r∗ (q)).

This solution is performed through the re-order point adjustment procedure. Then x̂ = (q, r∗ (q)).

The following theorem introduces the re-order point adjustment procedure within the context of

the translation invariance property of net inventory process.

Theorem: Let IN (t) be a random variable that refers to the amount of the net inventory at time

t. Let INt be the realized set of random variables through time t such that INt = {IN (t) : t ≥ 0}. We

call INt as the sample path of the net inventory process. Let r be the re-order point for this sample

path. Let v = IN (t = 0) and denote INt (r, v) the sample path of the net inventory process given
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r and v and a possible sequence of demand realizations after time t. Suppose that the continuous

review (r, Q) inventory system functions under the following assumptions:

1. The realization of the demand process is independent of the re-order point and the net inven-

tory process.

2. The excess demand is fully backordered.

3. Let INt (r′, v′) be a net inventory process which experiences the same realized demand and

r′ = r+4, v′ = v+4 and v′ = IN′ (t = 0)

Then, (93) holds.

INt
(
r′,v′

)
= INt (r+4, v+4) = INt (r, v)+4 ∀4 ∈ Z (93)

When (93) is true, we say that the process IN (t) is translation invariant to the re-order point

(r). The proof of the theorem is given in Appendix C. The theorem states that sliding the sample

path by 4 units to any direction on the y axis of the 2-dimensional axis does not deteriorate of

the previous sample path under the aforementioned assumptions (Figure 11). The re-order point

adjustment procedure is the shifting procedure of the given net inventory process, which enables

that the adjusted r actually attains the desired service level.
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Figure 11: Original and Shifted Net Inventory Sample Paths
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Let x = (q, r) where r ∈ S, and S = {r : r ≥ r (q)}, and r (q) is the re-order point that satisfies

the desired service level. Then, for any given q ≥ 1 and any given initial value of r ∈ Z, re-order

point adjustment procedure provides the optimal solution for the following SAA problem.

min q̂N (x) =
1
N

N

∑
i=1

TC
(
x, wi)

where wi ∼ f̂IN (.). Notice the re-order point adjustment procedure only promises the optimal

solution to the approximation problem not to the true problem min
x∈χ

g(x) where χ is a set including

all q and r (q) values. Since net inventory process is translation invariant, new sample of IN values

will be w1 + r∗ (q) , w2 + r∗ (q) , w3 + r∗ (q), ...,wN + r∗ (q). All statistical evaluation is done with

this new set of net inventory scenarios.

In what follows, we introduce sampling methods that use either the LTD bootstrapping method

or IN generation method to solve the introduced SAA problems. It is also possible to reduce the
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estimated variance through different sampling strategies. The following section will discuss these

ideas.

4.5 Sampling Methods

4.5.1 Independent Sampling (CMC: Crude Monte Carlo Method)

The sample set g(x̂)N,M (or vN′,M′) is obtained based on M (or M′) independent batches, re-

spectively. In addition, the elements in each batch are independent and identically distributed.

Therefore, the method can also be called Crude Monte Carlo Method. Then the same expressions

introduced in Section 4.4.1 are used to obtain an optimality gap for the candidate solution.

We determine the candidate solution (x̂) during the upper bound estimation procedure. The can-

didate solution, the optimality gap and gap variance are subject to change according to different

sample sizes. Although a large sample size gives a better estimate, it increases the computational

time of the evaluation procedure. Therefore, the SAA parameters N (batch size for UB estima-

tion), N′ (batch size for LB estimation), M (number of batches for UB estimation) and M′(number

of batches for LB estimation) should be wisely determined in the optimization algorithm devel-

opment phase. The optimality gap and gap variance are considered as major precision criteria in

the development of an optimization procedure that evaluates the candidate solutions. It should be

noted that the variance observed during the evaluation procedure also effects the precision of the

optimization gap. In this respect, reducing variance is the key to an efficient SAA based optimiza-

tion algorithm. Note that the random elements within a batch need not be i.i.d provided that the

statistical bounds are constructed based on the i.i.d. batches. The reader is referred to (Mak et al.,

123



1999) where the underlying theory is discussed in detail. We now present a number of variance

reduction techniques by utilizing the foregoing theory.

4.5.2 Antithetic Variates (AV)

In independent sampling method, g(x̂)N,M (or vN′,M′) is obtained based on M (or M′) indepen-

dent batches, respectively. As far as antithetic variates are concerned, independent batches can be

generated as follows. We first find an estimate for g(x̂) (or E [v̂N′]) based on a batch of random

sample of size N (or N′). Next, we find another estimate for g(x̂) (or E [v̂N′]) based on the same

sample size. However, the second batch contains the antithetics of the first batch. In order to reach

an independent estimate of g(x̂) (or E [v̂N′]), the average of those two estimates is obtained. There-

fore, g(x̂)N,M (or vN′,M′) is obtained based on M/2 (or M′/2) i.i.d. batches of random samples.

Then the same expressions introduced in Section 4.4.1 are used to obtain an optimality gap for the

candidate solution. AV is one of the most applied variance reduction techniques. An application

of the AV to the newsvendor problem is studied by (Freimer et al., 2010).

4.5.3 Latin Hypercube Sampling (LHS)

We generate random elements in each batch of samples via the Latin hypercube sampling

method. If the lead time is given as 1 time unit (i.e. L = 1), then in this one-dimensional sampling,

we divide the interval [0, 1] into N (sample size) equal segments. The lead time demand value is

drawn uniformly from the ith segment. That is, the lead time demand value under LHS is uniformly

distributed on [(i−1)/N, i/N]. If the lead time is greater than 1 unit, then in this multi-dimensional

sampling, the range of [0, 1] is portioned into N non-overlapping intervals of equal probability 1/N.

From each interval one demand value is selected randomly according to the probability density of
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the interval. The N values of D1 are paired in a random manner with values of D2, these pairs are

then paired similarly with values of D3 and so on, until N samples of L time units are formed. Then

the corresponding lead time demand value (Y ) is obtained by the total sum value of the demand

observed over L time units (i.e. Y = D1 +D2 + ...+DL). Note that the foregoing strategy allows

the generation of i.i.d. batches of random samples. Then the same expressions introduced in

Section 4.4.1 are used to obtain an optimality gap for the candidate solution. The reader is referred

to (Matala, 2008) for the accuracy of LHS method and the simple strategy to evaluate N for general

problem domains.

4.5.4 Common Random Numbers (CRN)

The common random numbers method within the sample average approximation is proposed

by (Mak et al., 1999). The idea is to use the batch means approach to directly estimate the op-

timization gap for the candidate solution. Based on a batch of sample of size N, an estimate for

gap(x̂) can be obtained by

E

[
1
N

N

∑
i=1

TC
(
x̂,wi)−min

x∈χ

1
N

N

∑
i=1

TC
(
x,wi)] (94)

Note that the upper and lower bounds are estimated by using the same batch, which can be

considered as an application of common random numbers. The optimization gap and gap variance

can be estimated based on separately estimated upper and lower bounds by using the formulas

introduced in Section 4.4.1.

The above discussed sampling methods are applied to the problem domain studied in this paper.

In Section 4.7, we evaluate these sampling techniques by using the LTD bootstrapping method. The
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next section will discuss the optimization algorithms that utilize the SAA approach.

4.6 Optimization Algorithms

This section introduces a number of optimization algorithms that eventually build the optimiza-

tion procedure to solve the problem P1 based on SAA technique. The optimization algorithms

utilize the solution of an individual SAA problem. Algorithm 8 and Algorithm 9 are developed for

each solution procedure of the LTD bootstrapping method and IN generation method, respectively.

Both algorithms are named “SolveSAA(.)” since the joint optimization algorithm (introduced next

section) will use any of these methods depending on the method selected.

Algorithm 8 SolveSAA(.): SAA Solution based on LT D Bootstrapping Method
1: Initialize N, q, r = −q and let achieved = f alse, countIN positive = 0, sum = 0, γ =

0, (δ = 1− γ)←disservice level
2: Generate WLT D ∼ f̂LT D (.)← set o f LT D with sample size of N
3: While(!achieved)
4: For LT D in WLT D Do
5: sum = sum+max{LT D− r, 0}−max{LT D− (r+q), 0} and δ = 1

Q ∗
1
N ∗ sum

6: sum2 = k ∗ ((q+1)/2+ r−LT D)
7: sum3 = max{LT D− r, 0}∗max{LT D− r−1,0}
8: sum4 = max{LT D− (r+q), 0}∗max{LT D− (r+q)−1, 0}
9: LT Dcost = sum2+(k/(2q))∗ (sum3− sum4) and S =CollectStatistics(LT Dcost)

10: End-Do
11: γ = 1−δ←achieved service level
12: If γ≥ γ then
13: achieved = true
14: End-if
15: r++
16: Loop
17: Report r, γ

18: Return S
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Algorithm 9 SolveSAA(.): SAA Solution based on IN Generation Method
1: Initialize N, q, r = −q and let achieved = f alse, countIN positive = 0, γ = 0, γ←desired

service level
2: Generate WIN ∼ f̂IN (.)← set o f IN with sample size of N
3: While(!achieved)
4: For IN in WIN Do
5: IN = IN + r
6: If IN > 0 then
7: countIN positive++
8: End-if
9: INcost = max{0, IN}∗HoldingCost and S =CollectStatistics(INcost)

10: End-Do
11: γ = countIN positive/N←achieved service level
12: If γ≥ γ then
13: achieved = true
14: End-if
15: r++
16: Loop
17: Report r, γ

18: Return S

Note that the algorithm SolveSAA(.) for the IN generation method performs the so-called

method “reorder point adjustment procedure.” For a given q, the procedure initially sets r to the

minimum possible value −q. Next, the sample path of IN values (i.e. given sample set of IN) are

shifted upward by increased values of r each time until the desired service level is achieved. The

solution of the SAA problem is the minimum value of r that satisfies the service level. On the other

hand, for a given q the algorithm SolveSAA(.) for the LTD bootstrapping method performs a line

search and estimates the service level based on the given sample set of LT D by increasing r every

time until the desired service level is achieved. The algorithms report the achieved service level

and the statistics on the estimated costs which will be used for the optimization gap construction

algorithm.

According to the method used for constructing the optimization gaps, two approaches are con-
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sidered: naïve approach and direct approach. These approaches will be discussed in the following

sections.

4.6.1 Naïve Approach

Naïve approach is concerned with developing an optimization gap by estimating upper and

lower bounds separately. Thus, an independent sampling is performed for each bound. For each of

the lower bound and upper bound an independent sampling is performed. The optimization gap is

obtained by the difference of these bounds. The following notation is used:

UB: desired upper bound estimate

L̂B: estimated lower bound

LB: desired lower bound estimate

Wq: finite set of q determined by the bounds applied on q∣∣Wq
∣∣: number of elements in Wq

ε: optimality gap tolerance

ρLB: maximum tolerable variance value for the estimate of the lower bound

ρUB: maximum tolerable variance value for the estimate of the upper bound

ρgap: maximum tolerable variance value for the estimate of the optimization gap

γ: desired service level

γ: achieved service level

As discussed in Section 4.5.1, the SAA parameters (N, M, N′ and M′) should be wisely de-
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termined in the optimization algorithm development phase. Although setting these parameters to

large values results in a more precise solution, it causes a substantial increase in the computational

time. Therefore, in the optimization algorithm development phase, the strategy for an SAA pa-

rameter is to start with an initial value and increase it based on a rule. This strategy is applicable

for both LB and UB estimation procedures. As can be seen from Algorithm 10 and Algorithm 11,

number of batches (M, M′) are increased by 1 while batch sizes (N, N′) are increased by half of the

previous size. The motivation behind this updating strategy is to achieve an economic sampling

plan. A new estimate of the bound is obtained at each updating step. The updating procedure

lasts until the desired precision is gained. The desired precision is determined based on the desired

bound (LB,UB) and the desired variance values (ρLB, ρUB). The major difference between the

two algorithms is the number of SAA problems solved to optimality at each updating step. As

Algorithm 10 indicates, a single SAA problem is solved to optimality at each step. The solution is

gained from either Algorithm 8 or Algorithm 9 depending on the underlying solution method (i.e.

LTD bootstrapping or IN generation). The solution is the so-called “candidate solution.” The can-

didate solution is used to estimate the upper bound based on M independent sets of batches. Note

that the candidate solution is subject to change at each updating step due to the size of the batch

(N). This, in principle, leads to more reliable candidate solution as the precision of the solution

increases. As Algorithm 11 indicates, an estimate of the lower bound is obtained by solving M′

independent SAA problems to optimality based on M′ independent batches of samples of size N′.
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Algorithm 10 Upper Bound Estimation Algorithm
1: Initialize N, M and let converged = f alse
2: Do
3: Candidate Solution (q, r∗ (q)): Solve 1 SAA problem with sample size of N and

S = SolveSAA(.)
4: For i = 1 to M Do
5: Using (q, r∗ (q)), ˆTC = S.getAverage(.)+(k ∗E [D])/q← an estimate using an

independent batch of sample of size N
6: s =CollectStatistics( ˆTC)
7: End-Do
8: σ̂2

UB = S.getVariance(.) and ÛB = ˆTC+ tα,υ
√

σ̂2
UB/M

9: If σ̂2
UB ≤ ρUB and ÛB≤UB Then

10: Record current solution
11: Let converged = true
12: End-If
13: M = M+1 and N = N +

⌊N
2

⌋
←update SAA parameters

14: While (!converged)
15: Report Candidate Solution, σ̂2

UB,
ˆTC and ÛB

Algorithm 11 Lower Bound Estimation Algorithm
1: Initialize N′, M′ and let converged = f alse
2: Do
3: For i = 1 to M′ Do
4: Solve 1 SAA problem with sample size of N′ and S = SolveSAA(.)
5: Get ˆTC = S.getAverage(.)+(k ∗E [D])/q and s =CollectStatistics( ˆTC)
6: End-Do
7: σ̂2

LB = S.getVariance(.) and L̂B = ˆTC− tα,υ
√

σ̂2
LB/M′

8: If σ̂2
LB ≤ ρUB and L̂B≤ LB Then

9: Record current solution
10: Let converged = true
11: End-If
12: M′ = M′+1 and N′ = N′+

⌊
N′
2

⌋
←update SAA parameters

13: While (!converged)
14: Report current solution, σ̂2

LB and L̂B

The pictorial representation of the estimation procedures of LB and UB for the LTD bootstrap-

ping and IN generation methods are given in Figure 12 and Figure 13, respectively.
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Figure 12: LTD Bootstrapping Method for a Given q
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Figure 13: IN Generation Method for a Given q
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Note that as Algorithm 13 indicates, only a single discrete-event simulation run is performed

for a given q. All the SAA procedure is carried out by using the empirical probability distribution

function which is built based on this single simulation run. For a given q, Algorithm 10 provides

the estimated upper bound
(
ÛB
)
, total cost

( ˆTC
)

and the solution (r,q) while Algorithm 11 pro-

vides the estimated lower bound. The joint optimization of policy parameters (r, q) is performed

by enumerating each possible value of q within a finite set (Wq) which is determined by the bounds

applied on q (Agrawal and Seshadri, 2000). The finite set Wq can be determined through Algo-

rithm 12.

Algorithm 12 Determining Finite Set of q (Wq)

1: Determine EOQ =

√
2kE[D]

h and Qr = q where r (q) = q
2: If EOQ < Qr then
3: Wq = [EOQ, 4Qr]
4: Else (i.e. EOQ≥ Qr)
5: Wq = [EOQ, 4EOQ]
6: End-if
7: Return Wq

In what follows, a joint optimization algorithm is developed to bring together the ideas from

Algorithm 10 and Algorithm 11. The joint optimization algorithm employs a single SAA parameter

for the number of batches (M′′) and batch size (N′′). The steps of the algorithm are depicted in

Algorithm 13.



Algorithm 13 Joint Optimization Algorithm
1: Initialize N′′, M′′, determine Wq←finite set of q
2: For q in Wq Do
3: let converged = f alse
4: Do
5: Solve 1 SAA problem with a sample size of N′′ and S1 = SolveSAA(.)
6: For i = 1 to M Do
7: Using (q, r∗ (q)), ˆTC1 = S1.getAverage(.)+(k ∗E [D])/q
8: Solve 1 SAA problem with an independent sample size of N′′ and S2 = SolveSAA(.)
9: Get ˆTC2 = S2.getAverage(.)+(k ∗E [D])/q

10: gap =
∣∣ ˆTC1− ˆTC2

∣∣ and S3 =CollectStatistic(gap)
11: End-Do
12: σ̂2

gap = S3.getVariance(.) and ˆgap = S3.getAverage(.)+ tα,υ
√

σ̂2
gap/M′′

13: If ˆgap≤ ε and σ̂2
gap ≤ ρgap Then

14: Record solution (q, r∗ (q)), ˆTC1 and ˆgap
15: Let converged = true
16: End-If
17: M′′ = M′′+1 and N′′ = N′′+

⌊N
2

⌋
←update SAA parameters

18: While (!converged)
19: End-Do
20: Select Solution with minimum ˆTC1 and report optimal solution (q∗, r∗ (q)), ˆTC1 and ˆgap
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In order to obtain an estimate for UB and LB by using any of the sampling methods including

the independent sampling, antithetic variables and Latin hypercube sampling methods, each batch

has to be independent and identically distributed. Clearly, Algorithm 13 can be used for any of the

foregoing sampling methods.

4.6.2 Direct Approach

Instead of developing an optimality gap by estimating ÛB and L̂B separately, as in the naïve

approach, observe the optimality gap expression (94) that uses the same batch samples for both

bounds. Thus, for the direct approach the same steps are used as depicted in Algorithm 13 except

that the batch samples used at step 5 and 8 are the same. The resulting algorithm can be used for

estimating the optimization gap based on the common random numbers sampling method.

4.6.3 An Extension: Lookahead Approach

The sequential sampling method (Law and Kelton, 1999) is a statistical means of stopping

rule for simulation replications. The sequential cumulative mean of the interested variable is ap-

proximated via a number of replications during which confidence intervals are constructed. The

replications are terminated when the user defined desired precision is achieved. (Hoad et al., 2010)

state that the sequential sampling method is very useful since it uses output data from the model.

In addition, a statistical precision can be gained from the procedure. However, the same authors

point out that the procedure may suffer from early convergence. Hence, they bring a revision to the

previously defined sequential method by suggesting an idea to avoid the early convergence. The

idea is based on using the sequential method to calculate the confidence interval. The difference
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in their method lies in determining the stopping criteria. The procedure does not stop as soon as

the desired confidence interval is achieved. At the number of replications (Nsol) where the de-

sired confidence interval is achieved, it rather looks a number of replications ahead to see if the

desired confidence interval is still preserved. If so, the procedure recommends Nsol as the number

of replications to achieve the desired confidence interval. Otherwise, the procedure continues with

the updated number of replications.

The idea behind the revised sequential sampling method (Hoad et al., 2010) is applicable to

determine the parameters M, M′ or M′′. We will describe the method for only M′′ in this section.

Likewise, M and M′ can be determined in a similar way. The parameter M′′ can be determined by

increasing by one unit every time as in depicted in Algorithm 14 until the desired optimization gap

and variance are satisfied. So the potential for overestimating the sample size is much reduced.

However, the user has to provide a stopping criteria for the desired convergence. The optimization

gap and its variance are used for the stopping criteria. Then the number of replications (i.e. batches)

M′′ is determined via the revised sequential sampling method. It should be noted that every increase

in the parameters should result in an independent set of random variables. This will guarantee valid

statistical estimation. However, the user still needs to determine the initial values of the parameters.

(Hoad et al., 2010) define f (κLimit, P) =
⌊

κLimit
κ
∗max(M′′, K)

⌋
which is the actual number of

replications checked ahead. The authors recommend K = 100 and κLimit = 5 for simulation based

experiments. Since the optimization procedure in this study is also predicated on simulation, we

also recommend the same parameter values for convenience.

136



Algorithm 14 Joint Optimization Algorithm based on Lookahead Approach
1: Initialize N′′, M′′, determine Wq←finite set of q
2: For q in Wq Do
3: let converged = f alse
4: Do
5: Solve 1 SAA problem with a sample size of N′′ and S1 = SolveSAA(.)
6: For i = 1 to M Do
7: Using (q, r∗ (q)), ˆTC1 = S1.getAverage(.)+(k ∗E [D])/q
8: Solve 1 SAA problem with an independent sample size of N′′ and S2 = SolveSAA(.)
9: Get ˆTC2 = S2.getAverage(.)+(k ∗E [D])/q

10: gap =
∣∣ ˆTC1− ˆTC2

∣∣ and S3 =CollectStatistic(gap)
11: End-Do
12: σ̂2

gap = S3.getVariance(.) and ˆgap = S3.getAverage(.)+ tα,υ
√

σ̂2
gap/M′′

13: If ˆgap≤ ε and σ̂2
gap ≤ ρgap Then

14: Record solution (q, r∗ (q)), ˆTC1 and ˆgap and let converged = true
15: Let κ′ = f (κLimit, M′′), set κ = 1 and Converged = true
16: While converged and κ≤ κ′ Do
17: Using (q, r∗ (q)), ˆTC1 = S1.getAverage(.)+(k ∗E [D])/q
18: Solve 1 SAA problem with an independent sample size of N′′ and S2 = SolveSAA(.)
19: Get ˆTC2 = S2.getAverage(.)+(k ∗E [D])/q
20: gap =

∣∣ ˆTC1− ˆTC2
∣∣ and S3 =CollectStatistic(gap)

21: σ̂2
gap = S3.getVariance(.) and ˆgap = S3.getAverage(.)+ tα,υ

√
σ̂2

gap/M′′

22: If ˆgap≥ ε or σ̂2
gap ≥ ρgap Then

23: Converged = f alse and M′′ = M′′+κ

24: End-if
25: κ = κ+1
26: Loop
27: End-If
28: M′′ = M′′+1 and N′′ = N′′+

⌊N
2

⌋
←update SAA parameters

29: While (!converged)
30: End-Do
31: Select Solution with minimum ˆTC1 and report optimal solution (q∗, r∗ (q)), ˆTC1 and ˆgap



Note that the algorithm applies lookahead approach when the convergence is achieved. The

lookahead approach checks ahead if the convergence is still preserved for a certain number of

replications (κ′). If the convergence is still preserved during lookahead steps, then the algorithm

proceeds with evaluating another candidate solution with a different value of q. Otherwise, the

evaluation process is continued by advancing the number of batches (M′′) and batch size (N′′).

4.7 Experimental Analysis – Evaluating the Sampling Methods

By using the LTD bootsrapping method, the quality of the variance reduction techniques is

computationally investigated on the estimated optimality gap and gap variance results across a

large set of test cases. The results are collected under different demand models; namely, Poisson,

negative binomial and gamma. The test cases are generated based on the combination of the low

and high values of a number of experimental factors. These factors are given in Table 5.

Table 5: Experimental Factors
Level Target Lead Mean Variance Ordering Holding

Service Level Time LTD LTD Cost Cost
Low 0.90 1 1.8 4 50 1
High 0.95 4 3.6 8 100 10

Based on the given experimental factors, the algorithm proposed by Agrawal and Seshadri

(2000) indicates that the optimal reorder quantity can take values over the range between 1 and

30. Therefore, test cases are generated based on the combination of the given values from Table 5

and reorder quantity enumerated over the set {1,2,3, ...,30}. This creates 26x30 = 1920 different

test cases. For each test case, the candidate solution (i.e. x̂ = (q, r∗ (q))) is obtained based on a
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given sample size. Then an estimate is obtained for the upper bound, lower bound, (accordingly,

optimization gap on the candidate solution) and their variances estimates. The average values of

these estimates are tabulated in Table 6 and Table 7 for different total sample size values. Notice

that tables show blank cells for upper and lower bounds of the sampling technique CRN whose

optimization gap and gap variance are directly estimated.
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Table 6: Optimization Gap and Variance Results for Total Sampling 1000
Sampling Upper Bound Lower Bound Total Optimization Total Variance
Technique N M UB Variance N′ M′ LB Variance Sampling Gap Gap Variance Reduction

CMC 50 10 0.0302 50 10 0.4721 1000 2.8488 0.5023 –
Pure AV 50 5 0.0399 50 5 0.0881 1000 2.5540 0.1280 75%

Poisson CRN 100 10 - - - - 1000 1.9162 0.0219 96%
LHS 50 10 0.0006 50 10 0.2178 1000 1.0169 0.2184 57%
CMC 50 10 0.0559 50 10 1.6389 1000 5.8829 1.6948 –

Negative AV 50 5 0.0618 50 5 0.2615 1000 4.0354 0.3233 81%
Binomial CRN 100 10 - - - - 1000 3.1389 0.0501 97%

LHS 50 10 0.0013 50 10 0.5932 1000 2.1755 0.5945 65%
CMC 50 10 0.0529 50 10 1.9523 1000 6.4134 2.0052 –

Gamma AV 50 5 0.0508 50 5 0.2930 1000 4.3434 0.3437 83%
CRN 100 10 - - - - 1000 3.2256 0.0448 98%
LHS 50 10 0.0011 50 10 0.6269 1000 2.2665 0.6280 69%140



Table 7: Optimization Gap and Variance Results for Total Sampling 2000
Sampling Upper Bound Lower Bound Total Optimization Total Variance
Technique N M UB Variance N′ M′ LB Variance Sampling Gap Gap Variance Reduction

CMC 100 10 0.0156 100 10 0.3843 2000 2.2486 0.3999 –
Pure AV 100 5 0.0127 100 5 0.0668 2000 1.8927 0.0795 80%

Poisson CRN 200 10 - - - - 2000 1.4477 0.0173 96%
LHS 100 10 0.0002 100 10 0.1392 2000 0.6324 0.1393 65%
CMC 100 10 0.0282 100 10 0.9693 2000 4.1098 0.9975 –

Negative AV 100 5 0.0184 100 5 0.1655 2000 3.1790 0.1839 82%
Binomial CRN 200 10 - - - - 2000 2.2823 0.0265 97%

LHS 100 10 0.0004 100 10 0.2869 2000 1.2596 0.2873 71%
CMC 100 10 0.0267 100 10 1.1145 2000 4.4636 1.1413 –

Gamma AV 100 5 0.0178 100 5 0.1893 2000 3.3281 0.2071 82%
CRN 200 10 - - - - 2000 2.3415 0.0258 98%
LHS 100 10 0.0003 100 10 0.2769 2000 1.1935 0.2772 76%141



As can be noted from both tables, the VRTs are effective in terms of reducing the optimization

gap variance estimated through the crude Monte Carlo sampling method. In addition, the value

of the optimization gap is inclined to be smaller under the applied VRTs. For example, as can

be seen from Table 6, for the negative binomial model with sample size 1000, CMC sampling

method yields 5.8829 for optimization gap and 1.6948 for optimization gap variance while the

optimization gap and gap variance under CRN are observed 3.1389 and 0.0501, respectively. CRN

is able to reduce the optimization gap variance by 97%. The minimum optimization gap value

is always estimated by the Latin hypercube sampling method. Common random numbers yield

the minimum estimated optimization gap results among all considered sampling methods. By

comparing the observed variance results in Table 6 and Table 7, one can note that the VRTs are

more effective under a larger amount of sampling since VRTs are able to reduce the observed

variance by similar percentages. For example, for the gamma distribution CRN is able to reduce

the observed optimization gap variance by approximately 98% for each sample size 1000 and 2000.

Therefore, VRTs yield much smaller variance values for large sample sizes.

Table 8, Table 9 and Table 10 tabulate the results of the “Tukey-Kramer HSD” procedure

for the Poisson, negative binomial and gamma models, respectively with 95% confidence level

and with sample size 2000. If two sampling techniques share a letter, then they are regarded

as not significantly different from each other. In this respect, the performance if the VRTs is

sorted in descending order as follows: {CRN} > {AV} > {LHS} > {CMC} for the Poisson and

negative binomial models and {CRN} > {AV, LHS} > {CMC} for the gamma model. For all

models, AV, LHS are the two VRTs whose performances are significantly higher than CMC while

the performance of CRN is significantly higher than other VRTs.
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Table 8: Comparisons for all Sampling Techniques using Tukey-Kramer HSD for the Poisson Model

Models Category 1 Category 2 Category 3 Category 4 Mean

CMC D 0.3999

AV B 0.0795

CRN A 0.0173

LHS C 0.1393

Table 9: Comparisons for all Sampling Techniques using Tukey-Kramer HSD for the Negative Binomial Model

Models Category 1 Category 2 Category 3 Category 4 Mean

CMC D 0.9975

AV B 0.1839

CRN A 0.0265

LHS C 0.2873
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Table 10: Comparisons for all Sampling Techniques using Tukey-Kramer HSD for the Gamma Model

Models Category 1 Category 2 Category 3 Category 4 Mean

CMC D 1.1413

AV B 0.2071

CRN A 0.0258

LHS B 0.2772
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Exhibit 14: For the Poisson Model, Hsu’s MCB Results

Level     N    Mean   StDev    +---------+---------+---------+--------- Level    Lower   Center   Upper  ------+---------+---------+---------+---

CMC    1920  0.3999  0.5749                                    (*-) CMC     0.0000   0.3825  0.4083        (-------------------------*)

AV     1920  0.0795  0.1700         (-*) AV      0.0000   0.0621  0.0879        (---*-)

CRN    1920  0.0173  0.0411    (*-) CRN    -0.0879  -0.0621  0.0000  (-*---)

LHS    1920  0.1393  0.4863              (-*) LHS     0.0000   0.1220  0.1477        (-------*-)

                               +---------+---------+---------+---------                                  ------+---------+---------+---------+---

                             0.00      0.12      0.24      0.36                                      0.00      0.15      0.30      0.45

Hsu Individual 95% CIs For Mean Based on Pooled StDev Hsu Intervals for Level Mean Minus Smallest of Other Level Means

Exhibit 15: For the Negative Binomial Model, Hsu’s MCB Results

Level     N   Mean  StDev   -+---------+---------+---------+-------- Level   Lower  Center  Upper  -------+---------+---------+---------+--

CMC    1920  0.998  1.984                                    (*-) CMC     0.000   0.971  1.045         (---------------------------*-)

AV     1920  0.184  0.597        (-*-) AV      0.000   0.157  0.231         (---*--)

CRN    1920  0.026  0.064   (-*-) CRN    -0.231  -0.157  0.000  (--*---)

LHS    1920  0.287  0.779            (-*) LHS     0.000   0.261  0.335         (------*--)

                            -+---------+---------+---------+--------                               -------+---------+---------+---------+--

                           0.00      0.30      0.60      0.90                                    0.00      0.35      0.70      1.05

Hsu Individual 95% CIs For Mean Based on Pooled StDev Hsu Intervals for Level Mean Minus Smallest of Other Level Means

Exhibit 16: For the Gamma Model, Hsu’s MCB Results

Level     N   Mean  StDev   -+---------+---------+---------+-------- Level   Lower  Center  Upper  -------+---------+---------+---------+--

CMC    1920  1.141  2.390                                   (-*) CMC     0.000   1.116  1.203         (---------------------------*-)

AV     1920  0.207  0.741        (-*-) AV      0.000   0.181  0.269         (----*-)

CRN    1920  0.026  0.060   (-*) CRN    -0.269  -0.181  0.000  (-*----)

LHS    1920  0.277  0.851          (-*-) LHS     0.000   0.251  0.339         (-----*-)

                            -+---------+---------+---------+--------                               -------+---------+---------+---------+--

                           0.00      0.35      0.70      1.05                                    0.00      0.40      0.80      1.20

Hsu Individual 95% CIs For Mean Based on Pooled StDev Hsu Intervals for Level Mean Minus Smallest of Other Level Means
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In order to recommend the best VRT with a confidence, we apply the multiple comparison

procedure so-called Hsu’s multiple comparisons with the best (Hsu’s MCB). The method tests

whether means are greater than the unknown minimum in case of determining the minimum. A

statistically significant difference can only be observed between corresponding means if an interval

contains zero as an end point. The results that are collected via the statistical package MINITAB

by setting the default options are depicted in Exhibit 14, Exhibit 15 and Exhibit 16 under 95%

confidence level for the Poisson, negative binomial and gamma models, respectively, with sample

size 2000. As can be noted, CRN is the VRT whose performance is significantly different from

others across all the demand models.

The experiment results indicate that all three VRTs are effective at reducing the total gap vari-

ance, with the CRN outperforming other VRTs. In what follows, we evaluate the efficiency of the

optimization algorithm within the proposed sampling methods.

4.8 Experimental Analysis – Evaluating the Optimization Algorithm

The experimental analysis is two fold for evaluating the optimization algorithms. First of all,

it is of interest to show that the SAA based optimization procedure reveals more quality solutions

as compared to an optimization algorithm proposed in the literature. A&S algorithm addresses the

same optimization problem (i.e. constrained policy optimization with discrete policy parameters).

In this respect, we perform the experimental analysis by comparing the results of A&S algorithm

and the SAA based optimization procedure. The SAA based optimization procedure promises

joint optimization of discrete policy parameters (r, q) for any type of demand process. For the sake
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of showing the solution quality, a known demand process is employed so that the comparison is

possible. The inventory system is assumed to face the compound Poisson demand process with

logarithmic demand sizes. The underlying demand process creates the negative binomial LTD

process (Axsäter, 2006). Thus, the true LTD process is available. In addition, the true optimal

solution is obtained through the A&S algorithm since the LTD process is known.

The quality of the SAA based joint optimization procedure is computationally investigated

across a number of test cases. The test cases are generated based on the combination of the low

and high values of a number of experimental factors. These factors are given in Table 5. The given

factors create 64 different test cases.

In order to use A&S algorithm, a LTD distribution must be given. The following distributions

are assumed: Normal (N), Gamma (G), Poisson (P), Negative Binomial (NB) and Lognormal (LN).

Of these assumed LTD models, NB provides the optimal solution through A&S algorithm. Table 11

provides the number and percentage of test cases solved to optimality based on the underlying

optimization procedure. A&S algorithm assuming a LTD model is run for each assumed LTD

model. For example, A&S(LN) indicates that A&S algorithm is run under the assumption that

the LTD model is LN. For the SAA based optimization procedure Algorithm 13 is used for the

joint optimization of policy parameters. The SAA based optimization procedure utilizes only the

independent sampling strategy (CMC). The LTD bootstrapping and IN generation methods are

denoted by LTD(CMC) and IN(CMC), respectively. For these methods both the total gap variance

tolerance and total gap value tolerance are chosen as 0.1. The IN generation method requires the

discrete event simulation of (r,Q) inventory system. The simulation parameters (warm-up and

replication length) are set based on an initial experimental investigation. Using larger simulation

lengths result a significant increase in the computational time while yielding more true optimal
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solutions. On the other hand, using lesser simulation length increases the efficiency while yielding

less true optimal solutions. Thus, by tuning the parameters, the empirical probability distribution

is built based on a single simulation run with 10,000 time units of warm-up and 100,000 time units

of run-time.

Table 11: Comparison of A&S and SAA based Optimization Procedure
A&S(NB) LTD(CMC) IN(CMC) A&S(G) A&S(P) A&S(N) A&S(LN)

Number of 64 64 64 64 64 64 64
Test Cases

Number of Cases 64 46 45 45 16 17 19
Solved to Optimality

% of Cases 100% 71.88% 70.31% 70.31% 25.00% 26.56% 29.69%
Solved to Optimality

The results indicate that the SAA based optimization procedure is able to produce as many

optimal solutions as the best assumed LTD model (G). As can be seen from Table 11, A&S(G)

solves 45 test cases to optimality while LTD(CMC) and IN(CMC) produce 45 and 46 optimal

solutions, respectively.

The performance of the SAA based optimization procedure can be improved by setting a much

tighter desired optimization gap value and its variance value. However, this will affect the com-

putational time spent when evaluating each candidate solution. Thus, the second experimental

analysis lies in tuning the associated parameters of the SAA based optimization algorithm. In

addition, it is of interest to compare the performance of the the sampling methods under naïve

and direct approaches. Therefore, along with the independent sampling (CMC), the second exper-

imental analysis compares the performance of the SAA based optimization procedure using the

antithetic variables (AV) and common random numbers (CRN). For each sampling technique, the

SAA based optimization algorithm is run by using two different values (0.1 and 0.001) for each of
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the optimization gap value and optimization gap variance value. The value of 0.001 is quite tight

for the optimization gap, which might cause computational issues for some test cases. Therefore, a

time limit is imposed on the evaluated candidate solution. The joint optimization algorithm is run

under the constraint that the time spent on each candidate solution is at most 300 seconds. There-

fore, for the joint optimization procedure, the worst computational time will be at most 300∗
∣∣Wq
∣∣

seconds. After the given time limit for a candidate solution, the solution with the gained precision

is used (i.e. optimization gap value and optimization gap variance value).

The experimental results are collected across the same 64 test cases. The results are tabulated

in Table 12 and Table 13 for each tolerance value of 0.1 and 0.001, respectively. The results of

LTD(CMC), LTD(AV), IN(CMC) and IN(AV) are gained through Algorithm 13 while the results of

LTD(CRN) and IN(CRN) are gained through the same algorithm after the foregoing modifications

discussed in Section 4.6.2 are carried out. For the IN generation method the same simulation

parameters are used.

Table 12: Results with Total Gap Variance 0.1 and Total Gap Value 0.1
Approach # of Test # of Test Cases % of Test Cases Average

Cases Solved to Optimality Solved to Optimality Computational Time
(sec)

A&S(NB) 64 64 100% 1
A&S(G) 64 45 70.31% 1

LTD(CMC) 64 46 71.88% 87.07
LTD(AV) 64 57 89.06% 11.22

LTD(CRN) 64 59 92.19% 10.76
IN(CMC) 64 45 70.31% 185.28
IN(AV) 64 49 76.56% 250.08

IN(CRN) 64 50 78.13% 426.01
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Table 13: Results with Total Gap Variance 0.001 and Total Gap Value 0.001
Approach # of Test # of Test Cases % of Test Cases Average

Cases Solved to Optimality Solved to Optimality Computational Time
(sec)

A&S(NB) 64 64 100% 1
A&S(G) 64 45 70.31% 1

LTD(CMC) 64 59 92.19% 227.71
LTD(AV) 64 63 98.44% 111.05

LTD(CRN) 64 61 95.31% 107.54
IN(CMC) 64 52 81.25% 896.42
IN(AV) 64 58 90.63% 632.76

IN(CRN) 64 52 81.25% 648.26

In the tables, the true optimal solution is gained through A&S(NB). A&S(G) results are also

provided since A&S algorithm produces the best results only with the assumption that the LTD

model is G among others. In this case, A&S produces only 45 true optimal solutions out of 64

test cases. In terms of solution quality, both LTD bootstrapping and IN generation methods yield

better results than the results with A&S algorithm. The performance of A&S is low because the

underlying LTD model (i.e. NB) is different from what is assumed for A&S algorithm (i.e. G).

In the case where the total gap variance tolerance and total gap value tolerance are set equal to

0.1 (Table 12), the best performance is observed by LTD(CRN) yielding 59 true optimal solutions

out of 64 test cases. One can observe that the LTD generation method produces more true optimal

solutions as compared to the IN generation method. The IN generation method can produce 50

optimal solutions through IN(CRN) for the same tolerance values. When the tolerance values

are decreased to 0.001 (Table 13), the performance of both LTD bootstrapping and IN generation

methods increases in terms of yielding more true optimal solutions. The best results are gained

through LTD(AV) yielding 63 true optimal solutions out of 64 test cases. The IN generation method

can produce 58 optimal solutions through IN(AV) for the same tolerance values.
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As far as the computational time is concerned, A&S algorithm works very efficient. It pro-

duces solutions in a matter of seconds. The computational time of the LTD bootstrapping and

IN generation methods are much higher than A&S. Even though more true optimal solutions are

gained, their computational time increases when using a smaller tolerance value. For example, as

can be seen from Table 12, when the tolerance values are set equal to 0.1, IN(CMC) produces 45

true optimal solutions out of 64 test cases within an average computational time of 185.28 sec-

onds. The same approach yields 52 true optimal solutions within an average computational time

of 896.42 seconds. The LTD bootstrapping method is a more efficient method as compared to the

IN generation method. As Table 13 shows, LTD(AV) is able to produce 63 true optimal solutions

out of 64 test cases within an average computational time of 111.05 seconds. IN(AV) can produce

58 true optimal solutions within an average computational time of 632.76 seconds.

Using a variance reduction technique reduces the overall average computational time for each

of the LTD bootstrapping for each different tolerance value and IN generation methods for the tol-

erance value of 0.001. For example, Table 13 shows that when no variance reduction technique is

used, the LTD bootstrapping method (i.e. LTD(CMC)) gives solutions within an average computa-

tional time of 227.71 seconds. Along with employing a variance reduction technique, the average

computational times are decreased to 111.05 seconds for LTD(AV) and 107.54 for LTD(CRN).

When a variance reduction technique is used, the average computational time reduction is much

smaller for the LTD bootstrapping method as compared to the IN generation method.

4.9 Extension to Other Inventory Systems

The sample average approximation technique was previously shown to be applicable for the

optimization of the continuous review (r, q) inventory system. Two approaches were proposed to
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optimize r for a given q: 1) LTD bootstrapping and 2) IN generation. The proposed approaches

lie in creating candidate solutions by enumerating possible values of q from a finite set. This set

can be determined by appropriately setting bounds on q. The optimization can then be performed

by selecting the policy (candidate solution) which provides the minimum total expected inventory

costs. In this section, the applicability of these approaches to the other inventory models will be

discussed. In addition, model specific approaches will also be discussed for the sake of the use of

SAA. In addition, lead time bootstrapping method will be discussed in the context of application

of SAA technique in optimizing policy parameters.

As far as the periodic review (s, S) inventory system is concerned inventory position is checked

in constant intervals of length R. If inventory position is less than or equal to s then an order is

placed in order to bring the inventory position to S. The periodic review (s, S) inventory model is

often denoted by (R, s, S) where R is the review period. In this study, R is assumed to be given and

can be discrete or continuous. The IN generation method is applicable for the periodic review (s, S)

inventory system since an optimal s can be set for (R, s, S) by using the re-order point adjustment

procedure, if we are given a fixed4= S− s. The same optimization procedure introduced for the

continuous review (r, Q) inventory model can be applied for the periodic review (s, S) inventory

model. However, the cost function should appropriately be set according to the inventory model.

Although the cost function associated with the expected inventory on-hand remains the same, the

cost function related to the ordering cost should be updated. The following holds for the net

inventory inventory position processes: E [IN] = E [IP]− E [X∗] where X∗ is the total demand

during lead time and review period. The cost function for the periodic review (s, S) inventory
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model (for non-zero lead times) can be defined as follows.

TC (s(4) , S) = E
[
I ({IN +X∗} ∈ A){k+ c(S− (IN +X∗))}+h [IN]+

]
(95)

where I (x ∈ A) is the indicator function of set A. If x represents IN +X∗, then we define A =

{IN +X∗ < s}. The LTD bootstrapping method can not be applied for the periodic review (s, S)

inventory system due to the undershoot occurrence. The available optimization models are based

on modeling undershoot in the approximation sense. Hence, a proposed LTD based optimization

model may not reveal the optimal solution in the long run. Thus, the LTD bootstrapping method

can not be applied under the periodic review (s, S) inventory model in the context of the proposed

methodology.

In what follows, the corresponding inventory optimization problem is defined. We first assume

that the lead times are zero so that the net inventory and inventory position processes coincide.

This assumption reveals the following optimization problem.

The continuous review (s, S) inventory model is a special case of the (R, s, S) inventory model

if R is set equal to 0. Since we do not impose any restriction on the parameter R, the optimization

procedure given for the (R, s, S) inventory model is directly applicable for the continuous review

(s, S) inventory model. Therefore, no further explanation is given here. The objective function of

P1 can be modified with the updated ordering cost expression. Then the corresponding objective

function value can be represented as follows:

TC (s(4) , S) =
kE[D]

S− s
+hE [I] (96)
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where s(4) is the re-order point that satisfies the service level for a given fixed 4. The IN

generation method is directly applicable based on the above defined objective function. In order

to apply the LTD generation method, one needs to derive exact expressions for the performance

measures of the expected value of on-hand inventory and ready ready. Based on the objective

function (96) and new expressions for the performance measures P1 is redefined. Then the same

optimization procedure is applied in the context of the LTD generation method.

For the (R, r, Q) inventory model, every R time units an order Q is given to bring the inventory

position above r (if inventory position hits or falls below r). For the (R, r, NQ) inventory model,

every R time units a multiple N of the order size Q is given to bring the inventory position above

r (if inventory position falls below r). In order to apply the IN generation method, the objective

function of the optimization problem can be expressed as follows:

TC (r (Q) , Q) = E
[
I ({IN +X∗} ∈ A){k+ c(S− (IN +X∗))}+h [IN]+

]
(97)

where I (x ∈ A) is the indicator function of set A and A = {x : x < r}. For the IN generation

method, we follow the same optimization procedure given for the case of the continuous review

(r, Q) inventory model.

As far as the continuous review (r, NQ) systems concerned, the inventory position is reviewed

continuously. A multiple N of the order size Q is given to bring the inventory position above

r whenever inventory position falls below r. In order to apply the IN generation method, the

objective function of the optimization problem can be expressed as follows:

TC (r (Q) , Q) = E
[
I ({IN +X} ∈ A){k+ c(S− (IN +X))}+h [IN]+

]
(98)
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For the IN generation method, we follow the same optimization procedure given for the case

of the continuous review (r, Q) inventory model.

The LTD bootstrapping approach can not be applied under the (R, r, Q), (r, NQ) and (R, r, NQ)

inventory models in the context of the proposed methodology. The available optimization models

are based on modeling undershoot in the approximation sense. Hence, a proposed LTD based

optimization model may not reveal the optimal solution in the long run.

4.10 Conclusion and Future Research

Setting policy parameters of an inventory system plays a major role in an effective inventory

management. In practice, an inventory manager first attempts to tackle with the uncertainty by

assuming a distributional model for the stochastic lead time demand. Next, the inventory manager

sets optimal policy parameters with respect to a desired customer service level. Setting optimal

policy parameters often takes place in the literature as the solution of the stochastic constrained

policy optimization problem. There are far too many example solution methods available in the

literature. Most of the solution methods are predicated on analytical LTD models that are capable

of capturing the uncertaintity to some extent. Unfortunately, such optimization procedures may

not provide true optimal solutions for the cases where the true LTD model is different from the

assumed one. Hence, the policy parameters are set inaccurately.

In this study, we propose an optimization procedure that does not rely on an explicit LTD

model. The problem is to jointly optimize policy parameters of the continuous review (r, Q) inven-

tory system with a service level constraint. The problem is modeled by describing the minimization

of the total expected ordering and inventory holding costs for the inventory system where back-

orders are allowed. Since backorder costs are often hard to estimate, a service level constraint is
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imposed to control the number of backorders. The proposed optimization procedure utilizes the

sample average approximation technique to estimate the expected total costs. In addition, the SAA

technique provides many statistical tools that facilitate developing the optimization algorithm. We

apply the SAA method to evaluate each candidate solution which is determined by a finite set of

Q. This set is obtained by applying the distribution free bounds proposed in the literature. There-

fore, the optimization procedure enumerates each Q in the finite set by using the SAA technique.

Clearly, the efficiency of the proposed procedure is more or less dependent on the size of the

foregoing finite set.

The LTD bootsrapping and IN generation are the two methods evaluated throughout the ex-

periments in order to investigate their efficiency and quality in terms of producing true optimal

solutions. The experiment results based on 64 test cases indicate that these two methods are able

to produce more true optimal solutions than the A&S algorithm which can be used by assuming

a LTD model. However, A&S algorithm is much more efficient than the LTD bootsrapping or

IN generation method. The experiment results also state that LTD bootstrapping is a more effi-

cient method than IN generation method. This is because the generation of IN requires a discrete

event simulation of the underlying inventory system, which often takes more computational time

than generating LTD values that requires an efficient bootstrapping method. In addition, using a

variance reduction technique reduces the total computational time of the proposed optimization

algorithm for each method. For the given 64 test cases, the average computation time for LTD

bootstrapping method can be decreased to less than 1 minute when employing a variance reduc-

tion technique.

In terms of applicability to the different inventory systems, the proposed IN generation method

is a much more generic method as compared to LTD bootstrapping method. In addition, from a
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simulation optimization perspective, it should be considered as one of the efficient methods due to

the following reason. Only a single discrete-event simulation run is performed for a given Q. The

existence of the distribution free bounds on Q for the continuous review (r, Q) inventory system

gives rise to a joint optimization procedure in this paper. A similar approach is applicable as long as

a finite search space is obtained through similar distribution free bounds for other inventory systems

such as (s, S). Therefore, the future research is to investigate developing a similar optimization

procedure for other inventory systems.

157



REFERENCES

Achary, K. K., and K. K. Geetha. 2007. “On solving multi-item inventory model using GLD
approximation”. Information and Management Sciences 18:147–156.

Adan, I., M. van Eenige, and J. Resign. 1995. “Fitting Discrete Distributions on the First Two
Moments”. Probability in the Engineering and Informational Sciences 9:623–632.

Agrawal, V., and S. Seshadri. 2000. “Distribution free bounds for service constrained (r, q) inven-
tory systems”. Naval Research Logistics 47:635–656.

Ahmed, S., and A. Shapiro. 2002. “The Sample Average Approximation Method for Stochastic
Programs with Integer Recourse”. Technical report, Georgia Institute of Technology.

Angün, E. D. and Gürkan, G. and Kleijnen, J. P. C. 2006. “Response surface methodology with
stochastic constraints for expensive simulation”. Working Paper, Tilburg University, Tilburg,
Netherlands, 2006.

Asmussen, S., O. Nerman, and M. Olsson. 1996. “Fitting Phase-Type Distributions via the EM
Algorithm”. Scandinavian J. Statistics 23:419–441.

Axsäter, S. 2006. Inventory Control. Springer, New York.

Barndorff-Nielsen, O. E. 1990. “Approximate interval probabilities”. J. Roy. Statist. Soc. Ser.
B 52:485–496.

Bartezzaghi, E., R. Verganti, and G. Zotteri. 1999. “Measuring the impact of asymmetric demand
distributions on inventories”. International Journal of Production Economics 60-61:395– 395–
404.

Bashyam, S., and M. C. Fu. 1998. “Optimization of(s, S) inventory systems with random lead
times and a service level constraint”. Manage. Sci. 44 (12): 243–256.

Böhning, D. 1998. “Zero Inflated Poisson Models and C.A.MAN A Tutorial Collection of Evi-
dence”. Biometrical Journal 40 (7): 833–843.

Bobbio, A., A. Horváth, and M. Telek. 2011. “Matching three moments with minimal acyclic
phase type distributions”. Stochastic Models 21 (2-3): 303–326.

Bookstein, A., and D. R. Swanson. 1974. “Probabilistic models for automatic indexing”. Journal
of the American Society for Information Science 25 (5): 312–316.

Boulaksil, Y., and J. C. Fransoo. 2009. “Setting safety stocks in multi-stage inventory systems
under rolling horizon mathematical programming models”. OR Spectrum 31:121–140.

Boute, B. N., M. R. Lambrecht, and B. V. Houdt. 2007. “Performance evaluation of a produc-
tion/inventory system with periodic review and Endogenous Lead Times”. Naval Research Lo-
gistics 54:462–473.

158



Boylan, J. E., A. A. Syntetos, and G. C. Karakostas. 2008. “Classification for forecasting and stock
control: a case study”. Journal of the Operational Research Society 59:473–481.

Brown, R. 1982. Advanced Service Parts Inventory Control. 2nd edition, Materials Management
Systems, Inc., Norwich, VT.

Burgin, T. 1975. “The gamma distribution and inventory control”. Operational Research Quar-
terly 26:507–525.

Callarman, T. E., and V. A. Mabert. 1978. “Using Material Requirements Planning With Demand
Uncertainty”. In Proceedings of the 9th Annual Midwest AIDS Conference.

Cameron, A. C., and P. K. Trivedi. 1998. Regression Analysis of Count Data. Cambridge Univer-
sity Press.

Chen, F. 2000. “Optimal Policies for Multi-Echelon Inventory Problems with Batch Ordering”.
Operations Research 48 (3): 376–389.

Church, K., and W. Gale. 1995. “Poisson Mixtures”. Journal of Natural Language Engineer-
ing 1:163–190.

Das, C. 1976. “Explicit formulas for the order size and reorder point in certain inventory prob-
lems”. Naval Research Logistics Quarterly 23:25–30.

Debodt, M., and L. Van Wessenhove. 1983. “Lot sizes and safety stocks in MRP: a case study”.
Production and Inventory Management 24:1–96.

Dietz, E., and D. Böhning. 1995. “Statistical Inference Based on a General Model of Unobserved
Heterogeneity”. Lecture Notes in Statistics 104:75–82.

Eng. 2010. “An Online Resource Page for Engineering Statistics Book”. last accessed 04/07/2010.

Federgruen, A., and Y. S. Zheng. 1992. “An Efficient Algorithm for Computing an Optimal (r, Q)
Policy in Continuous Review Stochastic Inventory Systems”. Operations Research 40:808–813.

Federgruen, A., and P. Zipkin. 1985. “Computing Optimal (s,S) Policies in Inventory Models with
Continuous Demands”. Advances in Applied Probability 17:424–442.

Freimer, M. B., D. J. Thomas, and T. Linderoth. 2010. “The impact of sampling methods on
bias and variance in stochastic linear programs”. Computational Optimization and Applica-
tions 46:1–25.

Fu, M. C. 1994. “Sample Path Derivatives for (s, S) Inventory Systems”. Operations Re-
search 42:351–364.

Fu, M. C., and K. J. Healy. 1992. “Simulation optimization of (s,S) inventory systems”. In WSC
’92: Proceedings of the 24th conference on Winter simulation, 506–514. New York, NY, USA:
ACM.

159



Fu, M. C., and K. J. Healy. 1997. “Techniques for optimization via simulation: an experimental
study on an (s, S) inventory system”. IIE Transactions 29:191–199.

Fu, M. C., and J. Q. Hu. 1994. “Inventory systems with random lead times: Harris recurrence
and its implications in sensitivity analysis”. Probability in the Engineering and Informational
Sciences 8:355–376.

Gallego, G., K. Katircioglu, and B. Ramachandran. 2007. “Inventory management under highly
uncertain demand”. Operations Research Letters 35:281–289.

Galmes, S., and R. Puigjaner. 2003. “Correlation analysis of a discrete-time flexible arrival pro-
cess”. Computer Networks 41:795–814.

Grubbström, R. W., and O. Tang. 2006, April. “The moments and central moments of a compound
distribution”. European Journal of Operational Research 170 (1): 106–119.

Gudum, C. K. and de Kok, T. G. 2002. “A Safety Stock Adjustment Procedure To Enable Target
Service Levels In Simulation Of Generic Inventory Systems”. Preprint 2002-1, Copenhagen
Business School (http://ir.lib.cbs.dk/paper/ISBN/x656149131) accessed 3/18/2008.

Harter, S. P. 1975. “A probabilistic approach to automatic keyword indexing. Part I. On the Dis-
tribution of Specialty Words in a Technical Literature”. Journal of the American Society for
Information Science 26 (4): 197–206.

Heilbron, D. C. 1994. “Zero Altered and other Regression Models for Count Data with Added
Zeros”. Biometrical Journal 36 (5): 531–547.

Heuts, R., J. Lieshout, and K. Baken. 1986. “An inventory model: What is the influence of
the shape of the lead time demand distribution”. Mathematical Methods of Operations Re-
search 30:1–14.

Hoad, K., S. Robinson, and R. Davies. 2010. “Automated selection of the number of replications
for a discrete-event simulation”. Journal Of The Operational Research Society 61:1632–1644.

Hsu, J. C. 1981. “Simultaneous confidence intervals for all distances from the "best"”. Annals of
Statistics 9:1026–1034.

Izzet, S. 1990. Regenerative Inventory Systems: Operating Characteristics and Optimization
(Bilkent University Lecture Series). Springer.

Janssen, E. and Strijbosch, L. and Brekelmans, R. 2007. “Assessing the effects of using demand
parameters estimates in inventory control”.

Johnson, M. A., and M. R. Taaffee. 1989. “Matching moments to phase distributions: mixtures of
Erlang distributions of common order”. Stochastic Models 5:711–743.

Johnson, N. L., A. W. Kemp, and S. Kotz. 2005. Univariate Discrete Distributions. Wiley-
Interscience.

160



Kleijnen, Jack P.C. and Wan, Jie 2006. “Optimization of simulated inventory systems: OptQuest
and alternatives”. DISCUSSION PAPER No. 28, Mansholt Graduate School.

Kleywegt, A. J., and A. Shapiro. 2001. “The sample average approximation method for stochastic
discrete optimization”. SIAM Journal on Optimization:502.

Kottas, J. F., and H. S. Lau. 1980. “The use of versatile distribution families in some stochastic
inventory calculations”. Journal of the Operational Research Society 31:393–403.

Kottas, J. F., and J. Lau. 1979. “A Realistic Approach for Modeling Stochastic Lead Time Distri-
bution”. AIIE Transactions 11:54–60.

Kramer, C. Y. 1956. “Extension of multiple range tests to group means with unequal number of
replications”. Biometrics 12:307 – 310.

Kumaran, M., and K. Achary. 1996. “Approximating Lead Time Demand Distributions Using the
Generalized Lambda-type Distribution”. Journal of the Operational Research Society 47:395–
404.

Kushner, H. J., and D. S. Clarck. 1978. Stochastic Approximataon for Constrained and Uncon-
strained Systems. Springer, Berlin.

Lakhany, A., and H. Mausser. 2000. “Estimating the Parameters of the Generalized Lambda Dis-
tribution”. Algo Research Quarterly 3:47–58.

Lambert, D. 1992. “Zero Inflated Poisson Regression, with an Application to Defects in Manufac-
turing”. Technometrics 34 (1): 1–14.

Larsen, C., and A. Thorstenson. 2008. “A comparison between the order and the volume fill rate
for a base-stock inventory control system under a compound renewal demand process”. Journal
of the Operational Research Society 59:798–804.

Lau, H. S., and A. H. L. Lau. 2003. “Nonrobustness of the normal approximation of lead-time
demand in a Q, R system”. Naval Research Logistics 50:149–166.

Law, A. M., and D. M. Kelton. 1999. Simulation Modeling and Analysis. 3rd ed. McGraw-Hill
Higher Education.

Leven, E., and A. Segerstedt. 2004. “Inventory control with a modified Croston procedure and
Erlang distribution”. International Journal of Production Economics 90:361–367.

Linderoth, J., A. Shapiro, and S. Wright. 2006, February. “The empirical behavior of sampling
methods for stochastic programming”. Annals of Operations Research 142 (1): 215–241.

Lopez-Garcia, L., and A. Posada-Bolivar. 1999. “A simulator that uses Tabu search to approach
the optimal solution to stochastic inventory models”. Computers & Industrial Engineering 37
(1-2): 215 – 218. Proceedings of the 24th international conference on computers and industrial
engineering.

161



Lord, D., S. P. Washington, and J. N. Ivan. 2005. “Poisson, Poisson gamma and zero inflated re-
gression models of motor vehicle crashes balancing statistical fit and theory”. Accident analysis
and prevention 37 (1): 35–46.

Lordahl, A., and J. Bookbinder. 1994. “Order-statistic calculation, costs, and service in an (s, Q)
inventory system”. Naval Research Logistics 41:81–97.

Mak, W.-K., D. P. Morton, and R. K. Wood. 1999. “Monte Carlo bounding techniques for deter-
mining solution quality in stochastic programs”. Operations Research Letters 24 (1-2): 47 –
56.

Matala, A. 2008. “Sample Size Requierement for Monte Carlo – simulations using Latin Hyper-
cube Sampling”. Technical report, Helsinki University of Technology, Department of Engineer-
ing Physics and Mathematics.

Naddor, E. 1978. “Sensitivity to Distributions in Inventory Systems”. Management Sci-
ence 24:1769–1172.

Neuts, M. F. 1981. Matrix-geometric solutions in stochastic models. Johns Hopkins University
Press, Baltimore, MD.

Ünlü, Y., and M. D. Rossetti. 2011. “Zero-Modified Distributions for Inventory Control under
Intermittent Demand”. In Industrial Engineering Research Conference Proceedings.

Orlicky, J. 1975. Material Requirements Planning. McGraw-Hill, New York.

Ozturk, A., and R. Dale. 1985. “Least squares estimation of the parameters of the generalized
lambda distribution”. Technometrics 27:81–84.

Platt, D. E., L. W. Robinson, and R. B. Freund. 1997. “Tractable (Q, R) Heuristic Models for
Constrained Service Levels”. Management Science 43 (7): 951–965.

Pérez, J. F., and G. Riaño. 2006. “jPhase an Object Oriented Tool for Modeling Phase Type
Distributions”. In Proceedings of the SMCtools 2006, Pisa, Italy, 2006.

Ramaekers, K., and G. Janssens. 2008. “On the choice of a demand distribution for inventory
management models”. European Journal of Industrial Engineering 2:479–491.

Ramberg, J. S., and B. W. Schmeiser. 1974, February. “An approximate method for generating
asymmetric random variables”. Commun. ACM 17:78–82.

Ramberg, J. S., P. R. Tadikamalla, E. J. Dudewicz, and E. F. Mykytka. 1979. “A Probability
Distribution and Its Uses in Fitting Data”. Technometrics 21:201–214.

Ravichandran, N. 1984. “A note on (s, S) inventory policy”. IIE Transactions 16:387–390.

Rosling, K. 2002b. “The Square Root Algorithm for Single Item Inventory Optimization”. Vaxjo
University.

162



Rossetti, M., and Y. Ünlü. 2011. “Evaluating the Robustness of Lead Time Demand Models”. The
International Journal of Production Economics 134:159–176.

Rossetti, M. D., V. M. Varghese, and Y. Ünlü. 2010. “Modeling and Generating Intermittent
Demand”. Submitted.

Schmeiser, B. W., and S. J. Deutsch. 1977. “Quantile estimation from grouped data the cell mid
point”. Comm. Stat. sim.comp B6:221–234.

Schneider, H., and J. L. Ringuest. 1990. “Power Approximation for Computing (s, S) Policies
Using Service Level”. Management Science 36:822–834.

Shapiro, A. and Philpott, A. 2007. “A Tutorial on Stochastic Programming”.

Shore, H. 1986. “General approximate solutions for some common inventory models”. Journal of
the Operational Research Society 37:619–629.

Shore, H. 1999. “Optimal solutions for stochastic inventory models when the lead-time demand
distribution is partially specified”. International Journal of Production Economics 59:477–485.

Silver, E. 1977. “A safety factor approximation based on Tukey s lambda distribution”. Operational
Research Quarterly 28:743–746.

Silver, E., D. Pyke, and R. Peterson. 1998. Inventory management and production planning and
scheduling. Wiley, New York.

Strijbosch, L., R. Heuts, and E. van der. Schoot. 2000. “A combined forecast inventory control
procedure for spare parts”. Journal of Operations Research Society 51:1184–1192.

Tadikamalla, P. 1984. “A comparison of several approximations to the lead time demand distribu-
tion”. OMEGA 12:575–581.

Tadikamalla, P. R. 1978. “Applications of the Weibull distribution in inventory control”. Journal
of the Operational Research Society 29:77–83.

Telek, M., and A. Heindl. 2002. “Matching Moments For Acyclic Discrete And Continuous Phase
Type Distributions Of Second Order”. Internation Journal of Simulation 3:?–?

Terza, J. V., and P. Wilson. 1990. “Analyzing Frequencies of Several Types of Events A Mixed
Multinomial Poisson Approach”. Review of Economics and Statistics 72:108–115.

Teunter, R., and R. Dekker. 2008. “An easy derivation of the order level optimality condition for in-
ventory systems with backordering”. International Journal of Production Economics 114:201–
204.

Tijms, H. C. 2003. A First Course in Stochastic Models. Wiley.

Tijms, H. C., and H. Groenevelt. 1984. “Simple approximations for the reorder point in peri-
odic and continuous review (s, S) inventory systems with service level constraints”. European
Journal of Operational Research 17 (2): 175 – 190.

163



Tukey, J. W. 1953. The Collected Works of John W. Tukey VIII. Multiple Comparisons: 1948–1983.
Chapman Hall, New York.

Tyworth, J. E., and R. Ganeshan. 2000. “A Note on the Solution to the Inventory Model for
Gamma Lead Time Demand”. International Journal of Physical Distribution and Logistics
Management 30:534–539.

Wagner, H. M. 2002. “And Then There Were None”. Operations Research 50 (1): 217–226.

Wan, J. and J.P.C. Kleijnen 2006. “Simulation for the optimization of (s, S) inventory system with
random lead times and a service level constraint by using Arena and OptQuest”. Working Paper,
Hebei University of Technology.

Wemmerlöv, U. 1986. “A time phased order-point system in environments with and without de-
mand uncertainty: a comparative analysis of non monetary performance variables”. Interna-
tional Journal of Production Research 242:343–358.

Wemmerlöv, U., and D. C. Whybark. 1984. “Lot sizing under uncertainty in a rolling schedule
environmentll”. International Journal of Production Research 22:467–487.

Yano, C. A. 1985. “New Algorithms for (Q,r) Systems with Complete Backordering Using a
Fill-Rate Criterion”. Naval Research Logistics Quarterly 32:675–688.

Yau, K. K. W., K. Wang, and A. H. Lee. 2003. “Zero Inflated Negative Binomial Mixed Regression
Modeling of Over Dispersed Count Data with Extra Zeros”. Biometrical Journal 45 (4): 437–
452.

Zhao, X., F. Fan, X. Liu, and X. J.. 2007. “Storage-Space Capacitated Inventory System with (r,
Q) Policies”. Operations Research 55:854–865.

Zipkin, P. 1988. “The use of phase-type distributions in inventory-control models”. Naval Research
Logistics 35:247–257.

Zipkin, P. 2000. Foundations of Inventory Management. McGraw Hill, New York.

Zorn, C. J. W. 1996. “EVALUATING ZERO-INFLATED AND HURDLE POISSON SPECIFI-
CATIONS”. Midwest Political Science Association April 18-2:1–16.

Zotteri, G. 2000. “The impact of distributions of uncertain lumpy demand on inventories”. Pro-
duction Planning and Control 11:32–43.

164



A APPENDIX

Proof of Expression (4) and (5): Let Y be a random variable that has a mixture distribution having

k mixing distributions with cumulative distribution function FY (y) = ∑
k
i=1 qiFWi (y) where 0 <

qi < 1, ∑
k
i=1 qi = 1 k ≥ 2 and FWi (y) is the cumulative distribution function of a random variable

Wi, i = 1, . . . ,k. Let h be the function of a given random variable, then clearly,

E [h(Y )] =
k

∑
i=1

qiEWi [h(Wi)] (99)

where E is the expectation of a given function. Then we can prove (4) in the following way.

G1
1 (x) = ∑

x∈χ

x f1 (x)− ∑
0≤y<x

(1−F1 (y))

G1
2 (x) = ∑

x∈χ

x f2 (x)− ∑
0≤y<x

(1−F2 (y))

G1
MD (x) = E f [X ]− ∑

0≤y<x
(1−FY (y))

and by expression (99):

G1
MD (x) =

[
(1−q) ∑

x∈χ

x f1 (x)+q ∑
x∈χ

x f2 (x)

]
− ∑

0≤y<x
(1−FY (y))

= (1−q) ∑
x∈χ

x f1 (x)+q ∑
x∈χ

x f2 (x)− ∑
0≤y<x

1+ ∑
0≤y<x

FY (y)

= (1−q) ∑
x∈χ

x f1 (x)+q ∑
x∈χ

x f2 (x)− ∑
0≤y<x

((1−q)+q)+ ∑
0≤y<x

[(1−q)F1 (y)+qF2 (y)]

= (1−q) ∑
x∈χ

x f1 (x)+q ∑
x∈χ

x f2 (x)− ∑
0≤y<x

(1−q)− ∑
0≤y<x

q+ ∑
0≤y<x

(1−q)F1 (y)+ ∑
0≤y<x

qF2 (y)
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= (1−q)

[
∑
x∈χ

x f1 (x)+ ∑
0≤y<x

(1−F1 (y))

]
+q

[
∑
x∈χ

x f2 (x)+ ∑
0≤y<x

(1−F2 (y))

]

= (1−q)G1
1 (x)+qG1

2 (x)�

We can prove (5) in the following way.

G2
MD (x) = 0.5

[
E f
[
X2]−E f [X ]

]
− ∑

0<y≤x
G1

MD (y)

and by expression (99):

G2
MD (x) = 0.5

[
(1−q) ∑

x∈χ

x2 f1 (x)+q ∑
x∈χ

x2 f2 (x)− (1−q) ∑
x∈χ

x f1 (x)−q ∑
x∈χ

x f2 (x)

]
− ∑

0<y≤x

[
(1−q)G1

1 (x)+qG1
2 (x)

]

= 0.5(1−q) ∑
x∈χ

x2 f1 (x)+0.5q ∑
x∈χ

x2 f2 (x)−0.5(1−q) ∑
x∈χ

x f1 (x)−0.5q ∑
x∈χ

x f2 (x)

−(1−q) ∑
0<y≤x

G1
1 (x)−q ∑

0<y≤x
G1

1 (x)

= (1−q)

[
0.5

[
∑
x∈χ

x2 f1 (x)−∑
x∈χ

x f1 (x)

]
− ∑

0<y≤x
G1

1 (x)

]

+q

[
0.5

[
∑
x∈χ

x2 f2 (x)−∑
x∈χ

x f2 (x)

]
− ∑

0<y≤x
G1

2 (x)

]

= (1−q)

[
0.5
[
E f1
[
X2]−E f1 [X ]

]
− ∑

0<y≤x
G1

1 (y)

]
+q

[
0.5
[
E f2
[
X2]−E f2 [X ]

]
− ∑

0<y≤x
G1

2 (y)

]

= (1−q)G2
1 (x)+qG2

2 (x)�

For the algorithm that generates test cases in analytical and simulation evaluation, the following

notation is used.
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Notation:

Z+: positive integers.

n: number of generated demand scenarios.

p̂: determines the percentage of the data for cases in Group 1. p̂ is set to 0.92 since approxi-

mately 92% of all test cases fall into Group 1.

wL: element from the set of target ready rates.

Qmin: minimum re-order quantity.

Qmax: maximum re-order quantity.

QR: set of integer re-order quantity values such that QR =
{

Q j ∈ Z+|Qmin ≤ Q j ≤ Qmax
}

.

|QR|: number of elements in the set of QR.

z: step size parameter used to determine the next enumerated re-order quantity from set QR.

mq: input parameter used to determine the maximum number of re-order quantity values enu-

merated from QR. If z =
⌊
|QR|
mq

⌋
≤ 1, then each re-order quantity value in QR is enumerated. Oth-

erwise, mq re-order quantity values are enumerated. The enumeration is performed by skipping z

successive re-order quantity values in QR every time. We set mq equal to 10 for convenience.

M: a large number.

ε: maximum tolerance between the desired ready rate and actually hit by the corresponding

test case.

r(wL(Q)): computed re-order point with respect to corresponding wL and Q.

W
(
µ,σ,r(wL(Q)),Q

)
: achieved RR value under the gamma distribution with respect to the spec-

ified test case.
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Algorithm A.1 Test Case Generation Algorithm for Analytical Evaluation
1: Set p̂ = 0.92 and mq = 10
2: For i = 1 to n do
3: Generate u∼U(0,1)
4: If u < p̂ then
5: Generate (µ,σ)∼ BV ML
6: Else
7: Generate (µ,σ)∼ BV MH
8: End-if
9: For WL ∈W do

10: If µ−3σ < 0 then
11: Qmin = 1
12: Else
13: Qmin =

⌈
(µ−3σ)0.5

⌉
14: End-if
15: Qmax = max

(
Qmin +1,

⌈
(µ−3σ)0.5

⌉)
, z =

⌊
|QR|
mq

⌋
and

16: QR =
{

Q j ∈ Z+|Qmin ≤ Q j ≤ Qmax
}

17: If z≤ 1 then τ = 1
18: else τ = z
19: End-if
20: For j = 1 to |QR| do Q = Q j and j = j+ τ

21: r(wL(Q)) =−Q
22: while

(
r(wL(Q)) < M

)
loop

23: If (W
(
µ,σ,r(wL(Q)),Q

)
−WL ≤ ε) then

24: Accept test case
25: Set test case

(
µ,σ,r(wL(Q)),Q

)
26: Else
27: Reject test case
28: End if
29: r(wL(Q)) = r(wL(Q))+1
30: End-loop
31: End-do
32: End-if
33: End-do
34: End-do
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Algorithm A.2 Demand Generator
1: Initialization:

t←current time,
EI ←demand event for the end of a period in OFF state,
EB←demand event for the end of a period in ON state,
EY ←demand arrival event
(µNZ,σNZ,µB,σB,µI,σI)←demand generator parameters set

2: Set S (t) equal to 0 or 1
3: If (S (t) = 0) then
4: Generate XI ∼gamma(fitted parameters of µI and σI)
5: Schedule EI at time t = t +XI
6: End-if
7: If (S (t) = 1) then
8: Generate XB ∼gamma(fitted parameters of µB and σB)
9: Schedule EB at time t = t +XB

10: End-if
11: Generate Yi ∼exponential(1)
12: Schedule EY at time t = t +Yi
13: Event EY :
14: If (S (t) = 1) then
15: Generate Di ∼gamma(fitted parameters of µNZ and σNZ)(rounded up to nearest integer)
16: End-if
17: Generate Yi ∼exponential(1)
18: Schedule EY at time t = t +Yi
19: Event EB:
20: Set (S (t) = 0)
21: Generate XI ∼gamma(fitted parameters of µI and σI)
22: Schedule EI at time t = t +XI
23: Event EI:
24: Set (S (t) = 1)
25: Generate XB ∼gamma(fitted parameters of µB and σB)
26: Schedule EB at time t = t +XB
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Algorithm A.3 Test Case Generation Algorithm for Simulation Evaluation
1: Set p̂ = 0.92 and mq = 10
2: For i = 1 to n do
3: Generate u∼U(0,1)
4: If u < p̂ then
5: Generate (µNZ,σNZ,µB,σB,µI,σI)∼ BV ML
6: Else
7: Generate (µNZ,σNZ,µB,σB,µI,σI)∼ BV MH
8: End-if
9: Pb =

µB
µB+µI

10: Generate L∼ gamma( f itted parameterso f µL and σL)
11: µA = PbLµNZ

12: σA =

√
λPbL

[
σ2

NZ +(µNZ)
2
]

13: Determine µ and σ from simulation (through LTD capturer)
14: For WL ∈W do
15: If µA−3σA < 0 then
16: Qmin = 1
17: Else
18: Qmin =

⌈
(µA−3σA)

0.5
⌉

19: End-if
20: Qmax = max

(
Qmin +1,

⌈
(µA−3σA)

0.5
⌉)

, z =
⌊
|QR|
mq

⌋
and

21: QR =
{

Q j ∈ Z+|Qmin ≤ Q j ≤ Qmax
}

22: If z≤ 1 then τ = 1
23: else τ = z
24: End-if
25: For j = 1 to |QR| do Q = Q j and j = j+ τ

26: r(wL(Q)) =−Q
27: while

(
r(wL(Q)) < M

)
loop

28: If (W
(
µ,σ,r(wL(Q)),Q

)
−WL ≤ ε) then

29: Accept test case
30: Set test case

(
µ,σ,r(wL(Q)),Q

)
31: Else
32: Reject test case
33: End if
34: r(wL(Q)) = r(wL(Q))+1
35: End-loop
36: End-do
37: End-do
38: End-do
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Exhibit A.1: Adan et al. Distribution Selection Rule

a = σ2−µ
µ2

if a < 0 then F = MB
else if a > 0 and a < 1 then F = MNB

else if a = 0 then F = P
else (i.e. a≥ 1) then F = MG

Exhibit A.2: Axsäter’s Distribution Selection Rule

V MR = σ2

µ
if V MR < 0.9 and a < 0 then F = MB

else if V MR < 0.9 and a≥ 0 then F = P
else if V MR≥ 0.9 and V MR < 1.1 then F = P

else (i.e. if V MR≥ 1.1) then F = NB

Exhibit A.3: Gamma-Adan Distribution Selection Rule

if r > 0 then determine F with ADR
else F = G

Exhibit A.4: MNNB Distribution Selection Rule

if µ < σ2 then
G1

MNNB (x) = qG1
N (x)+(1−q)G1

NB (x)
G2

MNNB (x) = qG2
N (x)+(1−q)G2

NB (x)
else

G1
MNNB (x) = qG1

N (x)+(1−q)G1
G (x)

G2
MNNB (x) = qG2

N (x)+(1−q)G2
G (x)
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Exhibit A.5: MGNBA Distribution Selection Rule

if µ < σ2 then
G1

MGNBA (x) = qG1
G (x)+(1−q)G1

NB (x)
G2

MGNBA (x) = qG2
G (x)+(1−q)G2

NB (x)
else

G1
MGNBA (x) = qG1

G (x)+(1−q)G1
ADR (x)

G2
MGNBA (x) = qG2

G (x)+(1−q)G2
ADR (x)

Figure A.6: Backorder Error versus Target RR When the LTD is Approximated by N

Figure A.7: Backorder Error versus Target RR when the LTD is Approximated by NB
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Figure A.8: Backorder Error versus Target RR when the LTD is Approximated by MNNB

Figure A.9: Backorder Error versus Target RR when the LTD is Approximated by ADR

Table A.1: Error Types in Approximating the LTD
Reality

Decision True LTD is F True LTD is not F
F is picked no error type II error

F is not picked type I error no error

Table A.2: Statistical Summary of the Generated Data in Group 1 for Analytical Evaluation
Statistics µ σ r Q wL CV

Mean 6.78 3.34 1 24 0.71 0.74
Std Dev 6.66 2.07 12 11 0.24 0.53

Min. 0.01 0.10 -37 1 0.05 0.13
25%ile 2.37 1.87 -6 15 0.58 0.44
Median 4.81 2.87 0 25 0.76 0.60
75%ile 8.96 4.29 6 34 0.91 0.85
Max. 139.67 30.43 137 40 0.99 0.85
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Table A.3: Statistical Summary of the Generated Data in Group 2 for Analytical Evaluation
Statistics µ σ r Q wL CV

Mean 3676.00 1458.70 4360 63 0.67 0.73
Std Dev. 5625.62 1231.47 6394 47 0.23 0.58

Min. 1.52 32.51 -79 1 0.05 0.06
25%ile 826.41 664.19 945 27 0.54 0.39
Median 1940.98 1119.52 2410 54 0.71 0.58
75%ile 4283.62 1847.97 5246 87 0.85 0.87
Max. 217780.96 19319.47 223750 547 0.99 22.40
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Table A.4: For Group 1, Error Results (Type-I) in Analytical Evaluation

G LN N NB P

B RR I B RR I B RR I B RR I B RR I

PRE(.10) 0.540 0.980 0.896 0.515 0.974 0.896 0.501 0.969 0.892 0.502 0.980 0.888 0.504 0.997 0.890

PRE(.05) 0.412 0.956 0.828 0.378 0.947 0.826 0.359 0.921 0.824 0.345 0.958 0.821 0.367 0.991 0.828

PRE(.01) 0.320 0.827 0.590 0.256 0.763 0.556 0.237 0.708 0.575 0.232 0.829 0.548 0.299 0.940 0.589

Mean 0.122 -0.001 0.122 0.122 0.001 0.122 0.103 -0.005 0.103 -0.026 -0.002 -0.026 -0.100 0 -0.100

StdDev. 0.210 0.013 0.210 0.204 0.014 0.204 0.220 0.017 0.220 0.212 0.013 0.212 0.125 0.004 0.125

Min. -0.279 -0.116 -0.279 -0.417 -0.105 -0.417 -0.475 -0.153 -0.475 -0.720 -0.117 -0.720 -0.502 -0.059 -0.502

25%ile 0 -0.001 0 0 0 0 -0.003 -0.006 -0.003 -0.119 -0.001 -0.119 -0.159 0 -0.159

Median 0.042 0 0.042 0.054 0 0.054 0.012 0 0.012 0 0 0 -0.047 0 -0.047

75%ile 0.174 0 0.174 0.172 0.003 0.172 0.165 0 0.165 0.015 0 0.015 0 0 0

Max. 3.341 0.114 3.341 3.179 0.153 3.179 3.299 0.108 3.299 3.158 0.111 3.158 0.004 0.043 0.004
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Table A.5: For Group 2, Error Results (Type-I) in Analytical Evaluation

G LN N NB P

B RR I B RR I B RR I B RR I B RR I

PRE(.10) 0.630 0.703 0.712 0.479 0.644 0.589 0.335 0.459 0.616 0.630 0.703 0.710 0.462 0.891 0.724

PRE(.05) 0.557 0.631 0.660 0.316 0.546 0.499 0.202 0.314 0.548 0.557 0.630 0.658 0.448 0.884 0.719

PRE(.01) 0.437 0.465 0.503 0.083 0.130 0.281 0.035 0.085 0.124 0.439 0.465 0.497 0.405 0.872 0.708

Mean 73.301 -0.001 73.301 60.666 0.003 60.666 72.378 -0.050 72.378 71.107 -0.001 71.107 53.192 0.034 53.192

StdDev. 209.00 0.152 209.00 208.60 0.148 208.60 212.90 0.156 212.90 226.40 0.153 226.44 439.60 0.181 439.60

Min. -541.9 -0.438 -541.9 -637.2 -0.523 -637.2 -567.6 -0.477 -567.6 -15138 -1.230 -15138 -0.508 -0.131 -0.508

25%ile 0 -0.020 0 -17.09 -0.027 -17.09 -21.36 -0.104 -21.36 -0.178 -0.020 -0.178 -0.017 0 -0.017

Median 0.417 0 0.417 2.387 0.012 2.387 12.137 -0.042 12.137 0.240 0 0.240 0 0 0

75%ile 45.274 0.002 45.274 42.660 0.032 42.660 80.332 0.005 80.332 45.052 0.002 45.052 0 0 0

Max. 15102 1.116 15102 15154 1.115 15154 14969 1.119 14969 4349.4 0.881 4349.4 18931 1.128 18931
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Table A.6: For Group 1, Error Results (Type-II) in Analytical Evaluation (1)

GADR ADR AXR G

B RR I B RR I B RR I B RR I

PRE(.10) 0.730 0.993 0.964 0.586 0.995 0.901 0.400 0.953 0.838 0.549 0.992 0.925

PRE(.05) 0.651 0.980 0.933 0.410 0.985 0.844 0.285 0.908 0.743 0.423 0.978 0.871

PRE(.01) 0.557 0.885 0.796 0.314 0.902 0.594 0.210 0.724 0.454 0.307 0.867 0.647

Mean -0.036 -0.002 -0.036 0.079 0.002 0.079 0.187 -0.004 0.187 -0.072 -0.004 -0.072

StdDev 0.085 0.007 0.085 0.136 0.006 0.136 0.290 0.019 0.290 0.111 0.007 0.111

Min. -0.470 -0.013 -0.470 -0.496 -0.090 -0.496 -0.477 -0.137 -0.477 -0.491 -0.113 -0.491

25%ile -0.036 -0.001 -0.036 0 0 0 0.003 -0.004 0.003 -0.115 -0.008 -0.115

Median 0 0 0 0.033 0 0.033 0.101 0 0.101 -0.022 0 -0.022

75%ile 0 0.001 0 0.142 0.000 0.142 0.275 0 0.275 0 0.000 0

Max. 0.278 0.039 0.278 0.716 0.062 0.716 3.340 0.110 3.340 0.278 0.039 0.278
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Table A.7: For Group 1, Error Results (Type-II) in Analytical Evaluation (2)

LN N NB P

B RR I B RR I B RR I B RR I

PRE(.10) 0.545 0.982 0.924 0.549 0.984 0.917 0.465 0.991 0.877 0.273 0.941 0.801

PRE(.05) 0.420 0.962 0.871 0.411 0.953 0.865 0.223 0.975 0.802 0.130 0.882 0.680

PRE(.01) 0.296 0.809 0.628 0.279 0.771 0.639 0.096 0.850 0.469 0.035 0.643 0.331

Mean -0.072 -0.002 -0.072 -0.054 0.003 -0.054 0.123 0.002 0.123 0.247 -0.005 0.247

StdDev 0.111 0.010 0.111 0.130 0.012 0.130 0.127 0.008 0.127 0.296 0.022 0.296

Min. -0.489 -0.153 -0.489 -0.720 -0.052 -0.720 -0.299 -0.093 -0.299 -0.031 -0.137 -0.031

25%ile -0.121 -0.002 -0.121 -0.101 0 -0.101 0.024 -0.005 0.024 0.059 -0.008 0.059

Median -0.029 -0.000 -0.029 -0.008 0.002 -0.008 0.096 0 0.096 0.166 0 0.166

75%ile 0 0 0 0.006 0.003 0.006 0.181 0.001 0.181 0.334 0.001 0.334

Max. 0.416 0.052 0.416 0.475 0.153 0.475 0.720 0.059 0.720 3.340 0.110 3.340
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Table A.8: For Group 2, Error Results (Type-II) in Analytical Evaluation (1)

GADR ADR AXR G

B RR I B RR I B RR I B RR I

PRE(.10) 0.787 0.870 0.869 0.715 0.833 0.794 0.261 0.402 0.434 0.628 0.850 0.795

PRE(.05) 0.688 0.807 0.826 0.607 0.762 0.749 0.238 0.340 0.367 0.523 0.784 0.750

PRE(.01) 0.541 0.576 0.632 0.412 0.539 0.551 0.210 0.268 0.276 0.363 0.548 0.552

Mean -3.446 -0.010 -3.446 53.297 0.031 53.297 189.72 -0.039 189.72 -3.485 -0.010 -3.485

StdDev 71.565 0.045 71.565 451.92 0.187 451.92 291.17 0.227 291.17 71.560 0.045 71.560

Min. -15086 -1.451 -15086 -438.5 -0.546 -438.5 -10849 -1.654 -10849 -15086 -1.456 -15086

25%ile -8.632 0 -8.632 -3.307 -0.001 -3.307 0 -0.200 0 -8.632 -0.001 -8.632

Median -0.095 0 -0.095 0 0 0 87.438 -0.014 87.438 -0.162 0 -0.162

75%ile 0 0.001 0.000 1.566 0.006 1.566 267.27 0.000 267.27 0 0.001 0

Max. 541.9 0.347 541.9 18931.6 1.127 18931 6565 0.6357 6565 541.9 0.3472 541.9
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Table A.9: For Group 2, Error Results (Type-II) in Analytical Evaluation (2)

LN N NB P

B RR I B RR I B RR I B RR I

PRE(.10) 0.530 0.792 0.719 0.426 0.660 0.721 0.716 0.827 0.825 0.080 0.170 0.242

PRE(.05) 0.366 0.695 0.651 0.287 0.511 0.678 0.584 0.742 0.768 0.055 0.085 0.160

PRE(.01) 0.138 0.338 0.420 0.110 0.286 0.269 0.389 0.434 0.510 0.023 0.012 0.055

Mean 7.571 -0.013 7.571 -2.677 0.033 -2.677 -2.034 -0.013 -2.034 251.82 -0.025 251.82

StdDev 76.650 0.056 76.660 82.647 0.063 82.647 135.04 0.053 135.04 300.91 0.287 300.91

Min. -15138 -1.457 -15138 -14953 -1.457 -14953 -445.1 -0.543 -445.1 -10849 -1.210 -10849

25%ile -4.510 -0.029 -4.510 -16.010 0 -16.010 -16.45 -0.019 -16.47 64.503 -0.250 64.503

Median 0 -0.007 0 0 0.013 0 0.088 0 0.088 160.21 -0.100 160.21

75%ile 18.651 0 18.651 22.448 0.064 22.448 0.410 0.011 0.410 331.36 0.197 331.36

Max. 637.2 0.5234 637.2 567.6 0.4774 567.6 15138 1.119 15138 6565 0.8809 6565
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Table A.10: Statistical Summary of Generated Cases within Group 1 for Simulation Evaluation

Statistics µNZ σNZ µB σB µI σI µ σ r Q L wL CV

Mean 1.83 1.26 2.33 2.15 1.78 1.43 8.42 4.43 7 22 8.33 0.82 0.75

Std Dev 0.53 0.63 0.60 0.92 0.32 0.55 7.22 2.40 12 12 6.43 0.17 0.51

Min. 1.11 0.25 1.23 0.37 1.19 0.38 0.07 0.37 -28 1 0.05 0.20 0.22

25%ile 1.49 0.82 1.90 1.51 1.55 1.03 3.44 2.79 0 12 3.63 0.74 0.47

Median 1.70 1.13 2.21 1.98 1.73 1.32 6.63 4.04 6 23 6.74 0.90 0.62

75%ile 2.02 1.53 2.63 2.57 1.95 1.73 11.24 5.57 13 32 11.32 0.95 0.85

Max. 9.13 6.88 5.53 8.31 3.66 4.66 61.60 21.28 80 40 44.85 0.99 8.73
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Table A.11: Statistical Summary of Generated Cases within Group 2 for Simulation Evaluation

Statistics µNZ σNZ µB σB µI σI µ σ r Q L wL CV

Mean 1938.64 841.70 2.17 1.46 2.01 1.26 6548.50 3609.20 9769 77 8.10 0.77 0.91

Std Dev 4357.47 1356.76 1.67 2.09 0.89 1.06 14979.45 6914.34 20261 82 6.01 0.20 0.65

Min. 28.32 22.55 1.08 0.34 1.04 0.24 29.30 63.20 -46 1 0.05 0.20 0.28

25%ile 235.82 167.30 1.39 0.61 1.42 0.64 602.78 531.14 976 23 3.95 0.66 0.49

Median 606.78 375.27 1.79 0.93 1.72 0.93 1890.00 1357.04 2910 53 6.73 0.82 0.73

75%ile 1812.02 974.51 2.32 1.53 2.27 1.55 5076.02 3400.59 7968 106 10.65 0.94 1.11

Max. 38112.17 10243.04 20.38 22.19 6.16 7.53 136760.42 54478.69 146031 518 36.23 0.99 4.75
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Table A.12: For Group 1, Error Results in Simulation Evaluation When the LTD is Approximated by Classic Distributions

G LN N NB P

B RR I B RR I B RR I B RR I B RR I

PRE(.10) 0.024 0.993 0.794 0.029 0.993 0.790 0.152 0.975 0.755 0.161 0.993 0.961 0.194 0.963 0.855

PRE(.05) 0.001 0.973 0.290 0.001 0.977 0.310 0.070 0.916 0.257 0.065 0.970 0.809 0.126 0.880 0.639

PRE(.01) 0 0.600 0 0 0.706 0 0.013 0.541 0 0.001 0.597 0.096 0.027 0.368 0.065

Mean -0.15 0.010 0.807 -0.159 0.006 0.798 -0.097 0.011 0.860 -0.08 0.010 0.376 0.115 -0.008 0.572

StdDev 0.202 0.009 0.312 0.179 0.011 0.313 0.237 0.022 0.363 0.152 0.010 0.298 0.270 0.031 0.555

Min. -3.628 -0.004 0.124 -3.411 -0.038 0.127 -4.230 -0.017 0.080 -3.237 0 0 -2.277 -0.166 0.005

25%ile -0.195 0.004 0.627 -0.202 0.002 0.620 -0.140 -0.002 0.653 -0.093 0.004 0.189 0.007 -0.020 0.249

Median -0.09 0.007 0.750 -0.112 0.005 0.735 -0.009 0.006 0.790 -0.038 0.007 0.299 0.040 -0.005 0.413

75%ile -0.037 0.012 0.915 -0.057 0.009 0.895 0.008 0.016 0.985 -0.013 0.012 0.467 0.132 0.006 0.683

Max. 0 0.134 3.949 0 0.149 3.990 0.225 0.279 4.605 0 0.136 3.539 2.852 0.338 6.947
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Table A.13: For Group 1, Error Results in Simulation Evaluation When the LTD is Approximated by Distribution Selection Rules

ADR GADR AXR MNNB MGNBA

B RR I B RR I B RR I B RR I B RR I

PRE(.10) 0.161 0.993 0.961 0.059 0.993 0.906 0.166 0.966 0.871 0.315 0.988 0.964 0.054 0.993 0.969

PRE(.05) 0.065 0.970 0.809 0.007 0.971 0.646 0.105 0.884 0.661 0.146 0.944 0.812 0.011 0.971 0.840

PRE(.01) 0.001 0.594 0.096 0 0.594 0.072 0.024 0.377 0.068 0.028 0.596 0.134 0 0.600 0.151

Mean -0.08 0.010 0.377 -0.117 0.010 0.471 0.095 -0.006 0.552 -0.089 0.010 0.368 -0.115 0.010 0.342

StdDev 0.151 0.010 0.3 0.196 0.010 0.314 0.278 0.03 0.542 0.188 0.016 0.326 0.175 0.010 0.303

Min. -3.268 -0.002 0 -3.628 -0.002 0.039 -2.277 -0.166 0 -3.734 -0.005 -0.188 -3.433 0 -0.188

25%ile -0.092 0.004 0.189 -0.150 0.004 0.250 -0.002 -0.018 0.238 -0.108 0 0.172 -0.146 0.004 0.156

Median -0.037 0.007 0.299 -0.047 0.007 0.407 0.029 -0.003 0.395 -0.026 0.006 0.294 -0.064 0.007 0.275

75%ile -0.013 0.012 0.468 -0.015 0.012 0.607 0.123 0.008 0.657 -0.002 0.014 0.472 -0.026 0.012 0.439

Max. 0 0.139 3.559 0 0.134 3.559 2.852 0.338 6.947 0.028 0.207 3.822 0 0.135 3.494
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Table A.14: For Group 2, Error Results in Simulation Evaluation When the LTD is Approximated by Classic Distributions

G LN N NB P

B RR I B RR I B RR I B RR I B RR I

PRE(.10) 0.31 0.89 0.63 0.42 0.87 0.51 0.30 0.56 0.66 0.31 0.89 0.64 0.05 0.26 0.26

PRE(.05) 0.12 0.82 0.42 0.22 0.67 0.41 0.13 0.43 0.33 0.13 0.82 0.43 0.03 0.14 0.14

PRE(.01) 0.03 0.47 0.09 0.06 0.26 0.14 0.03 0.18 0.02 0.04 0.47 0.09 0 0.03 0.01

Mean -70.66 0.02 119.11 -51.43 0.02 138.33 -36.91 0.08 152.86 -70.53 0.02 118.74 584.08 0.01 773.34

StdDev 168.92 0.06 244.62 250.1 0.10 307.27 207.81 0.1 418.29 168.92 0.06 244.63 1808 0.32 2086

Min. -1535 -0.03 -529.80 -2324.28 -0.07 -777.46 -1328.01 -0.02 -553.89 -1535.49 -0.03 -530.25 -301.47 -0.40 3.94

25%ile -65.84 0 15.54 -53.95 -0.03 15.09 -44.89 0 10.75 -65.69 0 15.15 22.77 -0.19 70.02

Median -20.73 0.01 47.49 -12.01 -0.01 47.58 0.01 0.05 47.94 -20.59 0.01 47.05 85.22 -0.08 172.71

75%ile -8.12 0.02 114.29 0.47 0.01 129.31 18.25 0.12 151.84 -7.96 0.02 113.81 353.55 0.02 534.35

Max. 340.61 0.34 1414.01 1569.08 0.62 2421.59 1102.23 0.56 3969.12 340.80 0.34 1414.0 14257.00 0.98 15774.01
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Table A.15: For Group 2, Error Results in Simulation Evaluation When the LTD is Approximated by Distribution Selection Rules

ADR GADR AXR MNNB MGNBA

B RR I B RR I B RR I B RR I B RR I

PRE(.10) 0.36 0.90 0.62 0.36 0.90 0.62 0.09 0.40 0.33 0.50 0.72 0.69 0.31 0.89 0.64

PRE(.05) 0.18 0.83 0.43 0.18 0.83 0.43 0.02 0.26 0.19 0.33 0.58 0.40 0.13 0.82 0.43

PRE(.01) 0.04 0.45 0.09 0.04 0.45 0.09 0 0.11 0.02 0.06 0.33 0.05 0.03 0.47 0.09

Mean -66.93 0.03 122.34 -67.01 0.02 122.26 555.89 -0.02 745.16 -53.72 0.05 135.55 -70.59 0.02 118.67

StdDev 165.55 0.09 243.33 165.57 0.07 243.36 1816.03 0.23 2093.9 124.18 0.07 311.39 168.92 0.06 244.62

Min. -1498 -0.04 -500.66 -1498 -0.04 -500.66 -330.37 -0.4 3.17 -1000.17 -0.01 -265.16 -1535.41 -0.03 -530.27

25%ile -64 0 15.45 -64.01 0 15.42 -2.57 -0.18 47.79 -49.56 0 13.31 -65.76 0 15.09

Median -19.86 0.01 52.36 -19.86 0.01 52.36 50.96 -0.04 118.48 -8.07 0.02 50.16 -20.66 0.01 47.02

75%ile -4.94 0.02 116.83 -4.94 0.02 116.83 321.87 0.04 478.74 -0.55 0.07 123.29 -8.04 0.02 113.80

Max. 234.00 0.75 1403.12 234.23 0.39 1403.57 14257.72 0.63 15774.85 59.94 0.38 2649.52 340.70 0.34 1414.82
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Table A.16: Comparisons for all Model Pairs using Tukey-Kramer HSD in Simulation Evaluation for Group 1

Models Category 1 Category 2 Category 3 Category 4 Category 5 Mean

N A 0.257

P B 0.226

G B 0.222

LN B 0.215

AXR B 0.213

GADR C 0.121

ADR C D 0.102

NB C D 0.101

MNNB D E 0.096

MGNBA E 0.078
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Table A.17: Error Results (Type-II) in Analytical Evaluation for Poisson Model (µ≤ 1, σ2 ≤ 1 and 0.9≤ σ2/µ≤ 1.1)

Statistics B RR I

PRE(.10) 0.729 1.000 0.860

PRE(.05) 0.612 0.999 0.760

PRE(.01) 0.448 0.971 0.454

Mean 0.129 0.000 0.129

StdDev. 0.124 0.003 0.124

Min. -0.001 -0.051 -0.001

25%ile 0.018 0.000 0.018

Median 0.091 0.000 0.091

75%ile 0.201 0.000 0.201

Max. 0.476 0.014 0.476
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Table A.18: (µ≤ 1, σ2 ≤ 1 and 0.9≤ σ2/µ≤ 1.1)

Statistics B RR I

PRE(.10) 0.527 1.000 1.000

PRE(.05) 0.367 1.000 1.000

PRE(.01) 0.187 0.833 0.333

Mean -0.019 0.004 0.178

StdDev. 0.041 0.003 0.088

Min. -0.102 0.000 0.084

25%ile -0.031 0.001 0.105

Median -0.003 0.005 0.160

75%ile 0.001 0.006 0.255

Max. 0.002 0.006 0.321

189



Figure A.10: Box Plots of RR Error Results in Simulation Evaluation for Group 1 and Group 2

190



Exhibit A.11: For Group 1, Hsu Individual 95% CIs For Mean Based on Pooled StDev

Exhibit A.12: For Group 1, Hsu Intervals for Level Mean Minus Smallest of Other Level Means
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Exhibit A.13: For Group 2, Hsu Individual 95% CIs For Mean Based on Pooled StDev

Exhibit A.14: For Group 2, Hsu Intervals for Level Mean Minus Smallest of Other Level Means
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B APPENDIX

Proposition: Let G1
ZM and G2

ZM be the first and second order loss functions of a zero-modified

distribution, respectively. In addition, let G1
O and G2

O be the first and second order loss functions

of the unmodified probability distribution, respectively. Then, the following expressions hold for

G1
ZM and G2

ZM:

G1
ZM (x) = w+(1−w)G1

O (x) (100)

G2
ZM (x) = w+(1−w)G2

O (x) (101)

where w is the parameter of mixing component and x ∈ χ.

Proof: Let Y be a random variable that has a mixture distribution having k mixing distributions

with cumulative distribution function F (y) = ∑
k
i=1 qiFωi (y) where 0 < qi < 1, ∑

k
i=1 qi = 1 for k≥ 2

and Fωi (y) is the cumulative distribution function of a discrete random variable ωi = 1,2, ...,k. Let

h be the function of a given random variable, then clearly,

EMD [h(Y )] =
k

∑
i=1

qiEωi [h(ωi)] (102)

and thus,

EZM [X ] = w+(1−w) ∑
x∈χ

x fO (x) (103)

where EMD and EZM are the expectation of a given function under a mixture distribution and

zero-modified distribution, respectively. In addition, fO (x) is the probability mass function of

the original distribution. Then, we can prove (100) by the following way. Clearly, the following

expressions hold due to the properties of loss functions:

193



G1
O (x) = ∑

x∈χ

x fO (x)− ∑
0≤y<x

(1−FO (y)) (104)

G1
ZM (x) = EZM [X ]− ∑

0≤y<x
(1−FZM (y)) (105)

where FO and FZM are the cumulative distributions of the original and zero-modified distribu-

tions, respectively. Then, by (103) and (105):

G1
ZM (x) =

[
w+(1−w) ∑

x∈χ

x fO (x)

]
− ∑

0≤y<x
(1−FZM (y))

It follows that

G1
ZM (x) = w+(1−w) ∑

x∈χ

x fO (x)− ∑
0≤y<x

(1)+ ∑
0≤y<x

(FZM (y))

G1
ZM (x) = w+(1−w) ∑

x∈χ

x fO (x)− ∑
0≤y<x

[w+(1−w)]+ ∑
0≤y<x

(w+(1−w)FO (y))

After some elaborations, we will obtain

G1
ZM (x) = w+(1−w)

[
∑
x∈χ

x fO (x)− ∑
0≤y<x

(1−FO (y))

]

By expression (104), we show that

G1
ZM (x) = w+(1−w)G1

O (x)

We can prove (101) by the following way. Clearly, the following expressions hold due to the

properties of loss functions:
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G2
ZM (x) =

1
2
(
EZM

[
X2]−EZM [X ]

)
− ∑

0<y≤x
G1

ZM (y) (106)

Suppose that fD (x) is a probability mass function whose second order loss function G2
D (x) = 1

for x ∈ χ. Suppose also that we construct a mixture distribution using fD (x) and fO as follows:

G2
MD (x) = wG2

D (x)+(1−w)G2
O (x) (107)

Since GD (x) = 1 for x ∈ χ, (107) will be equivalent to the zero-modified distribution. One can

express the right hand side of (107) as follows:

= w

[
1
2
(
ED
[
X2]−ED [X ]

)
− ∑

0<y≤x
G1

D (y)

]
+(1−w)

[
1
2
(
EO
[
X2]−EO [X ]

)
− ∑

0<y≤x
G1

O (y)

]

After some elaboration, it follows that

=

[(
1
2

w ∑
x∈χ

x2 fD(x)+
1
2
(1−w) ∑

x∈χ

x2 fO (x)− 1
2

w ∑
x∈χ

x fD(x)−
1
2
(1−w) ∑

x∈χ

x fO (x)

)]
− ∑

0<y≤x

[
wG1

D(y)+(1−w)G1
O (y)

]

=
1
2

[(
w ∑

x∈χ

x2 fD(x)+(1−w) ∑
x∈χ

x2 fO (x)

)
−

(
w ∑

x∈χ

x fD(x)+(1−w) ∑
x∈χ

x fO (x)

)]
− ∑

0<y≤x

[
wG1

D(y)+(1−w)G1
O (y)

]

=
1
2
[(

wED
[
X2]+(1−w)EO

[
X2])− (wED [X ]+ (1−w)E [X ])

]
− ∑

0<y≤x

[
wG1

D(y)+(1−w)G1
O (y)

]

195



By expression (102), it follows that

=
1
2
(
EZM

[
X2]−EZM [X ]

)
− ∑

0<y≤x
G1

ZM (y)

By expression (106), the above resultant expression will be equivalent to G2
ZM and this com-

pletes the proof �.
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*Second Order Loss Function of the S-D Distribution:

Second order loss function (G2
SD) of the S-D distribution can be derived as follows:

G2
SD (r) =

1
2

∞̂

r

(x− r)2 f (x)dx

It follows that

∞̂

r

(x− r)2 f (x)dx =

∞̂

r

(
x2−2xr+ r2) f (x)dx

=

∞̂

r

x2 f (x)dx−
∞̂

r

2xr f (x)+

∞̂

r

r f (x)dx

Therefore, the second order loss function consists of 3 integrals such that:

G2
SD (r) =

1
2
(ASD−BSD +CSD)

First Integral (ASD):

ASD =

∞̂

r

x2 f (x)dx

=

1ˆ

F(r)

[
F−1 (p)

]2
dF (x)

For r ≥ a:

=

1ˆ

F(r)

[a+b(F (x)−d)c]2 dF (x)

=

1ˆ

p

[a+b(p−d)c]2 d p

=

1ˆ

p

[
a2 +2ab(p−d)c +b2 (p−d)2c

]
d p
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=

[
a2 p+2ab

(p−d)c+1

c+1
+b2 (p−d)2c+1

2c+1

]1

F(r)

Since r ≥ a and F(r)≥ d then

p = F (r) = d +

(
r−a

b

)1/c

= a2

[
1−
[

d +
r−a

b

]1/c
]
+

2ab
c+1

[
d +

[
r−a

b

]1/c

−d

]c+1

+
b2

2c+1

[
d +

[
r−a

b

]1/c

−d

]2c+1

= a2

[
1−
[

d +
r−a

b

]1/c
]
+

2ab
c+1

[
r−a

b

] c+1
c

+
b2

2c+1

[
r−a

b

] 2c+1
c

For r ≤ a:

=

1ˆ

F(r)

[a+b(d−F (x))c]2 dF (x)

=

1ˆ

p

[
a2 +2ab(d− p)c +b2 (d− p)2c

]
d p

=

[
a2 p+2ab

(d− p)c+1

c+1
+b2 (d− p)2c+1

2c+1

]1

F(r)

Since r < a and F (r)< d then

p = F (r) = d−
(

a− r
b

)1/c

= a2

[
1−
[

d− a− r
b

]1/c
]
+

2ab
c+1

[
d +

[
a− r

b

]1/c

−d

]c+1

+
b2

2c+1

[
d +

[
a− r

b

]1/c

−d

]2c+1
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= a2

[
1−
[

d− a− r
b

]1/c
]
+

2ab
c+1

[
a− r

b

] c+1
c

+
b2

2c+1

[
a− r

b

] 2c+1
c

Thus, for r ≥ a

ASD = a2

[
1−
[

d +
r−a

b

]1/c
]
+

2ab
c+1

[
r−a

b

] c+1
c

+
b2

2c+1

[
r−a

b

] 2c+1
c

and for r < a

ASD = a2

[
1−
[

d− a− r
b

]1/c
]
+

2ab
c+1

[
a− r

b

] c+1
c

+
b2

2c+1

[
a− r

b

] 2c+1
c

Second Integral (BSD):

BSD =

∞̂

r

2xr f (x)

This integral is calculated by as follows. If r ≥ a, then equivalently F(r)≥ d.

Clearly, the following holds.

∞̂

r

2xr f (x) =

B2ˆ

r

2xr f (x)

In this form, this integral represented by density function, it can also be represented by cdf

F (x) and it follows that
B2ˆ

r

x f (x) =

1ˆ

F(r)

F−1 (F (x))dF (x)

=

1ˆ

F(r)

[a+b(F (x)−d)c]dF (x)
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=

1ˆ

F(r)

adF (x)+

1ˆ

F(r)

b(F (x)−d)c dF (x)

Since it is assumed that F (r)≥ d, then

F (x) = d +

[
x−a

b

]1/c

and

F (r) = d +

[
r−a

b

]1/c

It follows that

1ˆ

F(r)

adF (x)+

1ˆ

F(r)

b(F (x)−d)c dF (x) = a [dF (x)]1F(r)+

[
b [F (x)−d]c+1

c+1

]1

F(r)

= a

[
1−

(
d +

[
r−a

b

]1/c
)]

+
b

c+1

[
(1−d)c+1−

(
d +

[
r−a

b

]1/c

−d

)]

= a

[
1−

(
d +

[
r−a

b

]1/c
)]

+
b

c+1

[
(1−d)c+1−

[
r−a

b

] c+1
c
]

For r < a, then equivalently F(r)< d.

Clearly, the following holds.

∞̂

r

x f (x) =

B2ˆ

r

2xr f (x)

and it follows that
B2ˆ

r

2xr f (x) =

1ˆ

F(r)

F−1 (F (x))dF (x)
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=

1ˆ

F(r)

[a+b(d−F (x))c]dF (x)

=

1ˆ

F(r)

adF (x)+

1ˆ

F(r)

b(d−F (x))c dF (x)

Since it is assumed that F (r)< d, then

F (x) = d−
[

a− x
b

]1/c

and

F (r) = d−
[

a− r
b

]1/c

It follows that

1ˆ

F(r)

adF (x)+

1ˆ

F(r)

b(F (x)−d)c dF (x) = a [dF (x)]1F(r)+

[
b [d−F (x)]c+1

c+1

]1

F(r)

= a

[
1−

(
d−

[
a− r

b

]1/c
)]

+
b

c+1

[
(1−d)c+1−

(
d−

(
d−

[
a− r

b

]1/c
))]

= a

[
1−

(
d−

[
r−a

b

]1/c
)]

+
b

c+1

[
(1−d)c+1−

[
a− r

b

] c+1
c
]

Thus, for r ≥ a:

BSD = 2r

[
a

[
1−

(
d +

[
r−a

b

]1/c
)]

+
b

c+1

[
(1−d)c+1−

[
r−a

b

] c+1
c
]]

and for r < a:

BSD = 2r

[
a

[
1−

(
d−

[
r−a

b

]1/c
)]

+
b

c+1

[
(1−d)c+1−

[
a− r

b

] c+1
c
]]
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Third Integral (CSD):

CSD =

∞̂

r

r f (x)dx

Clearly, the following holds.

∞̂

r

r f (x)dx =

B2ˆ

r

r f (x)dx

It follows that
B2ˆ

r

r f (x)dx = [rF (x)]B2
r = r [F (B2)−F (r)]

F (B2) = 1

For a≥ r

F (r) = d +

[
a− r

b

]1/c

and

r [F (B2)−F (r)] = r

[
1−

(
d +

[
a− r

b

]1/c
)]

For a < r

F (r) = d−
[

r−a
b

]1/c

and

r [F (B2)−F (r)] = r

[
1−

(
d−

[
r−a

b

]1/c
)]

Thus, for a≥ r

CSD = r

[
1−

(
d +

[
a− r

b

]1/c
)]
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for a < r

CSD = r

[
1−

(
d−

[
r−a

b

]1/c
)]

All in all, G2
SD is expressed by using ASD, BSD and CSD as follows:

For r ≥ a

G2
SD (r) = 0.5


a2
[
1−
[
d + r−a

b

]1/c
]
+ 2ab

c+1

[ r−a
b

] c+1
c + b2

2c+1

[ r−a
b

] 2c+1
c

−2r
[
a
[
1−
(

d +
[ r−a

b

]1/c
)]

+ b
c+1

[
(1−d)c+1−

[ r−a
b

] c+1
c
]]

+r
[
1−
(

d +
[a−r

b

]1/c
)]


and for r < a

G2
SD (r) = 0.5


a2
[
1−
[
d− a−r

b

]1/c
]
+ 2ab

c+1

[a−r
b

] c+1
c + b2

2c+1

[a−r
b

] 2c+1
c

−2r
[
a
[
1−
(

d−
[a−r

b

]1/c
)]

+ b
c+1

[
(1−d)c+1−

[a−r
b

] c+1
c
]]

+r
[
1−
(

d−
[ r−a

b

]1/c
)]
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*Second Order Loss Function of the 4 Parameter Pearson Distribution:

Second order loss function (G2
PD) of the 4 parameter Pearson distribution can be derived as

follows:

G2
PD (R) =

1
2

∞̂

R

(x−R)2 f (x)dx

It follows that

∞̂

R

(x−R)2 f (x)dx =

∞̂

R

(
x2−2xR+R2) f (x)dx

=

∞̂

R

x2 f (x)dx−
∞̂

R

2xR f (x)+

∞̂

R

R2 f (x)dx

Therefore, the second order loss function consists of 3 integrals such that:

G2
PD (R) =

1
2
(APD−BPD +CPD)

First Integral (APD):

APD =

∞̂

R

x2 f (x)dx

The following transformation is applied:

x = (b−a) t +a

Then,

x2 = [(b−a) t +a]2

It follows that

∞̂

R

x2 f (x)dx =

1ˆ

r

[
(b−a)2 t2 +2(b−a) ta+a2

]
gI (t)dt

204



= (b−a)2
1ˆ

r

t2gI (t)dt +2(b−a)a

1ˆ

r

tgI (t)dt +a2 [1− Ir (p,q)]

= (b−a)2
1ˆ

r

t2gI (t)dt +2(b−a)a
(

p
p+q

)
Ir (p+1,q)+a2 [1− Ir (p,q)]

Notice that
1ˆ

r

t2gI (t)dt =

1ˆ

r

t2 Γ(p+q)
Γ(p)Γ(q)

t p−1 (1− t)q−1 dt

It follows that

=
Γ(p+2)Γ(q)
Γ(p+q+2)

.
Γ(p+q)

Γ(p)Γ(q)

1ˆ

r

Γ(p+q+2)
Γ(p+2)Γ(q)

t p+2−1 (1− t)q−1 dt

Thus,

APD =
(b−a)2 p(p+1)
(p+q)(p+q+1)

Ir (p+2,q)+2(b−a)a
(

p
p+q

)
Ir (p+1,q)+a2 [1− Ir (p,q)]

Second Integral (BPD):

BPD = 2R

∞̂

R

x f (x)

By the same transformation

∞̂

R

x f (x) =

1ˆ

r

[(b−a) t +a]gI (t)dt

It follows that

= (b−a)

1ˆ

r

tgI (t)dt +a [1− Ir (p,q)]
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Notice that
1ˆ

r

tgI (t)dt =

1ˆ

r

t
Γ(p+q)

Γ(p)Γ(q)
t p−1 (1− t)q−1 dt

It follows that

=
Γ(p+1)Γ(q)
Γ(p+q+1)

.
Γ(p+q)

Γ(p)Γ(q)

1ˆ

r

Γ(p+q+1)
Γ(p+1)Γ(q)

t p (1− t)q−1 dt

=

(
p

p+q

)
Ir (p+1,q)

Thus,

BPD = 2R
[
(b−a)

[(
p

p+q

)
Ir (p+1,q)

]
+a [1− Ir (p,q)]

]

Third Integral (CPD):

CPD =

∞̂

R

R2 f (x)dx

Clearly, the following holds under the same transformation:

∞̂

R

f (x)dx = 1− IR (p,q)

Thus,

CPD = R2 [1− IR (p,q)]

All in all, G2
PD is expressed by using APD, BPD and CPD as follows:

G2
PD (R) = 0.5


(b−a)2 p(p+1)
(p+q)(p+q+1)Ir (p+2,q)+2(b−a)a

(
p

p+q

)
Ir (p+1,q)+a2 [1− Ir (p,q)]

−2R
[
(b−a)

[(
p

p+q

)
Ir (p+1,q)

]
+a [1− Ir (p,q)]

]
+R2 [1− IR (p,q)]
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Table B.1: For Case-I: Error Results When the LTD is Approximated by Distributions (1)

G GL LN N NB P

Statistics B RR I B RR I B RR I B RR I B RR I B RR I

PRE(.10) 0.62 1.00 0.97 0.45 1.00 1.00 0.52 1.00 0.95 0.38 1.00 0.92 1.00 1.00 1.00 0.44 1.00 1.00

PRE(.05) 0.45 1.00 0.66 0.09 1.00 1.00 0.55 1.00 0.64 0.25 1.00 0.61 1.00 1.00 1.00 0.28 0.97 0.97

PRE(.01) 0.12 1.00 0.00 0.00 0.78 0.33 0.07 0.86 0.00 0.10 0.81 0.00 0.98 1.00 1.00 0.11 0.66 0.81

Mean -0.038 0.000 0.462 0.001 -0.005 0.151 -0.039 -0.005 0.461 -0.008 0.004 0.493 0.000 0.000 0.000 0.063 -0.010 0.063

Std Dev 0.013 0.002 0.014 0.024 0.008 0.024 0.018 0.007 0.018 0.035 0.007 0.035 0.001 0.000 0.004 0.055 0.016 0.054

Min -0.066 -0.004 0.434 -0.053 -0.034 0.097 -0.081 -0.032 0.419 -0.047 -0.021 0.444 -0.002 0.000 -0.012 0.004 -0.081 0.005

25%ile -0.049 -0.001 0.452 -0.014 -0.008 0.136 -0.048 -0.006 0.451 -0.034 0.001 0.466 0.000 0.000 -0.001 0.018 -0.013 0.018

Median -0.040 -0.001 0.461 -0.005 0.000 0.146 -0.040 -0.003 0.461 -0.012 0.003 0.488 0.000 0.000 0.000 0.052 -0.003 0.051

75%ile -0.025 0.000 0.474 0.015 0.000 0.165 -0.025 0.000 0.474 0.006 0.007 0.507 0.000 0.000 0.002 0.087 0.000 0.088

Max -0.019 0.006 0.497 0.084 0.002 0.236 0.000 0.007 0.501 0.137 0.026 0.632 0.003 0.000 0.021 0.260 0.000 0.255

Table B.2: For Case-I: Error Results When the LTD is Approximated by Distributions (2)

PT SD TPM ZIP ZMG ZMNB

Statistics B RR I B RR I B RR I B RR I B RR I B RR I

PRE(.10) 0.38 1.00 1.00 0.47 1.00 0.98 0.30 1.00 1.00 0.05 1.00 1.00 0.00 1.00 1.00 0.17 1.00 1.00

PRE(.05) 0.38 0.80 0.68 0.19 1.00 0.92 0.14 1.00 1.00 0.00 0.89 0.97 0.00 0.95 0.97 0.03 0.81 1.00

PRE(.01) 0.00 0.38 0.38 0.16 0.97 0.22 0.00 0.72 0.97 0.00 0.42 0.83 0.00 0.72 0.73 0.00 0.27 0.86

Mean -0.346 0.024 0.286 0.035 0.000 0.185 0.012 -0.008 0.012 0.042 -0.020 0.042 -0.073 0.009 -0.073 0.023 -0.024 0.023

Std Dev 0.409 0.021 0.277 0.100 0.003 0.099 0.017 0.006 0.017 0.075 0.020 0.075 0.090 0.016 0.090 0.042 0.025 0.042

Min -1.419 0.000 -0.004 -0.062 -0.014 0.088 -0.010 -0.020 -0.012 -0.046 -0.091 -0.050 -0.352 -0.008 -0.352 -0.043 -0.087 -0.054

25%ile -0.530 0.000 -0.003 -0.011 -0.001 0.139 -0.005 -0.013 -0.006 -0.020 -0.027 -0.023 -0.109 -0.001 -0.107 -0.014 -0.037 -0.013

Median -0.215 0.025 0.277 0.006 0.000 0.156 0.012 -0.007 0.012 0.016 -0.013 0.017 -0.051 0.003 -0.051 0.027 -0.020 0.028

75%ile -0.003 0.044 0.507 0.028 0.000 0.180 0.022 0.000 0.022 0.094 -0.005 0.093 -0.018 0.013 -0.018 0.049 -0.004 0.045

Max -0.002 0.063 0.963 0.438 0.010 0.588 0.053 0.000 0.053 0.263 0.000 0.263 0.086 0.066 0.081 0.129 0.011 0.128
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Table B.3: For Case-I, Error Results When the LTD is Approximated by Distribution Selection Rules (1)

ADR GADR AXR ZMADR ZMADR2

Statistics B RR I B RR I B RR I B RR I B RR I

PRE(.10) 1.00 1.00 1.00 0.56 1.00 1.00 0.98 1.00 1.00 0.14 1.00 0.72 0.83 1.00 1.00

PRE(.05) 1.00 1.00 1.00 0.55 1.00 1.00 0.70 1.00 1.00 0.02 0.95 0.50 0.75 1.00 1.00

PRE(.01) 0.92 1.00 1.00 0.48 0.88 0.95 0.67 1.00 0.89 0.00 0.39 0.44 0.52 0.97 1.00

Mean 0.000 0.000 0.000 0.020 -0.004 0.020 -0.004 0.000 0.041 0.024 -0.017 -0.651 0.005 -0.001 0.005

Std Dev 0.001 0.001 0.002 0.032 0.010 0.033 0.006 0.001 0.063 0.042 0.016 0.651 0.009 0.003 0.008

Min -0.003 -0.006 -0.005 -0.002 -0.046 -0.012 -0.015 -0.004 -0.003 -0.140 -0.051 -1.549 0.000 -0.013 -0.001

25%ile 0.000 0.000 0.000 0.000 -0.003 -0.001 -0.007 0.000 0.000 0.014 -0.024 -1.330 0.000 -0.002 0.000

Median 0.000 0.000 0.000 0.004 0.000 0.006 0.000 0.000 0.000 0.022 -0.015 -0.640 0.001 0.000 0.001

75%ile 0.000 0.000 0.001 0.041 0.000 0.040 0.000 0.000 0.135 0.044 -0.003 0.012 0.009 0.000 0.008

Max 0.001 0.000 0.008 0.139 0.000 0.139 0.001 0.000 0.149 0.107 0.000 0.040 0.032 0.001 0.032

Table B.4: For Case-I, Error Results When the LTD is Approximated by Distribution Selection Rules (2)

ZMADR2ADR ZMADR2PT MGNBA MNNB

Statistics B RR I B RR I B RR I B RR I

PRE(.10) 1.00 1.00 1.00 0.42 1.00 1.00 0.16 1.00 1.00 0.52 1.00 1.00

PRE(.05) 1.00 1.00 1.00 0.39 0.82 0.72 0.00 1.00 1.00 0.17 1.00 1.00

PRE(.01) 0.95 1.00 1.00 0.21 0.42 0.39 0.00 1.00 1.00 0.02 0.95 0.97

Mean 0.000 0.000 0.000 -0.002 0.000 -0.002 -0.019 0.000 -0.019 -0.004 0.002 -0.004

Std Dev 0.000 0.000 0.000 0.001 0.001 0.001 0.007 0.001 0.008 0.017 0.004 0.018

Min -0.001 -0.001 -0.001 -0.004 -0.003 -0.004 -0.033 -0.002 -0.036 -0.024 -0.011 -0.034

25%ile 0.000 0.000 0.000 -0.003 -0.001 -0.003 -0.024 -0.001 -0.024 -0.017 0.001 -0.017

Median 0.000 0.000 0.000 -0.002 0.000 -0.002 -0.020 0.000 -0.019 -0.006 0.002 -0.006

75%ile 0.000 0.000 0.000 -0.001 0.000 -0.001 -0.013 0.000 -0.013 0.003 0.003 0.003

Max 0.000 0.000 0.002 0.000 0.000 0.000 -0.009 0.003 0.009 0.069 0.013 0.064
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Table B.5: Statistical Summary of Generated Cases within Group 1

Statistics µNZ σNZ CV 2
NZ µB σB µI σI µ σ CV r Q L wL

Mean 3.64 2.49 0.66 2.31 2.12 1.79 1.43 8.49 6.02 1.16 7.00 32.00 4.27 0.85

Std Dev 0.99 1.20 0.17 0.60 0.88 0.33 0.54 9.71 3.65 0.75 17.00 18.00 4.67 0.17

Min. 2.17 0.42 0.19 1.24 0.40 1.32 0.30 0.07 0.48 0.21 -45.00 1.00 0.05 0.20

25%ile 2.97 1.64 0.54 1.89 1.50 1.56 1.05 2.72 3.55 0.71 -2.00 19.00 1.44 0.76

Median 3.41 2.25 0.65 2.20 1.96 1.73 1.34 5.64 5.21 0.96 5.00 34.00 2.96 0.92

75%ile 4.04 3.05 0.76 2.59 2.55 1.96 1.72 9.70 7.50 1.36 13.00 48.00 4.73 0.97

Max. 18.41 14.26 1.52 7.66 10.67 4.55 5.43 110.93 37.52 7.43 135.00 60.00 48.48 1.00209



Table B.6: Statistical Summary of Generated Cases within Group 2

Statistics µNZ σNZ CV 2
NZ µB σB µI σI µ σ CV r Q L wL

Mean 2791.32 1420.31 0.71 2.24 1.54 2.00 1.32 4097.63 3474.02 1.45 7606 654 3.72 0.82

Std Dev 6407.94 3212.69 0.63 1.42 1.57 1.06 1.31 7511.23 5785.22 1.13 13601 646 4.12 0.18

Min. 39.53 37.03 0.03 1.04 0.32 1.32 0.23 10 33.91 0.25 -415 1 0.1 0.2

25%ile 434.28 233.25 0.31 1.43 0.65 1.38 0.60 388.6 577.64 0.77 572 234 1.23 0.72

Median 1135.34 573.45 0.54 1.81 1.02 1.69 0.91 1368.73 1598.06 1.13 2410 462 2.56 0.88

75%ile 2670.92 1420.18 0.86 2.58 1.73 2.22 1.52 4067.51 3575.96 1.69 8275 864 4.42 0.96

Max. 143810.23 47182.73 5.28 15.06 19.10 10.23 14.88 60557.3 79653.78 9.3 97408 7250 28.23 0.99210



Table B.7: Statistical Summary of Generated Cases within Erratic

Statistics µNZ σNZ CV 2
NZ µB σB µI σI µ σ CV r Q L wL

Mean 5.21 3.88 0.77 5.19 5.72 1.25 0.70 20.64 8.53 0.59 22.00 21.00 8.15 0.82

Std Dev 1.37 1.16 0.09 1.06 1.29 0.05 0.13 16.88 4.11 0.47 22.00 12.00 6.28 0.16

Min. 3.31 2.32 0.70 1.11 3.30 1.08 0.29 0.01 0.18 0.20 -29.00 1.00 0.01 0.20

25%ile 4.24 3.07 0.72 2.43 4.82 1.22 0.62 8.52 5.62 0.37 7.00 11.00 0.99 0.74

Median 4.86 3.60 0.75 4.86 5.47 1.26 0.70 16.09 7.87 0.49 17.00 22.00 6.53 0.87

75%ile 5.76 4.36 0.82 5.60 6.36 1.29 0.78 27.86 10.73 0.68 33.00 32.00 11.28 0.94

Max. 16.25 12.48 1.19 13.67 14.98 1.32 1.17 159.52 43.94 16.85 194.00 40.00 40.93 1.00211



Table B.8: Statistical Summary of Generated Cases within Smooth

Statistics µNZ σNZ CV 2
NZ µB σB µI σI µ σ CV r Q L wL

Mean 3.19 2.10 0.53 5.99 6.73 1.22 0.66 14.71 5.38 0.53 14.00 22.00 8.38 0.83

Std Dev 0.73 0.56 0.09 1.88 2.00 0.06 0.16 11.91 2.47 0.34 16.00 12.00 6.49 0.17

Min. 1.87 1.01 0.20 1.01 3.39 1.05 0.25 0.08 0.42 0.15 -30.00 1.00 0.05 0.20

25%ile 2.70 1.71 0.48 2.66 5.31 1.18 0.55 6.13 3.63 0.33 4.00 12.00 0.99 0.75

Median 3.11 2.07 0.55 5.43 6.18 1.23 0.66 11.65 5.03 0.44 11.00 23.00 6.73 0.90

75%ile 3.55 2.42 0.61 6.67 7.65 1.27 0.78 19.94 6.80 0.60 22.00 32.00 11.56 0.95

Max. 12.86 8.93 0.70 19.20 18.47 1.32 1.14 103.33 20.83 5.34 105.00 40.00 54.13 1.00212



Table B.9: For 100 test cases and Fixed Lead-Time~Gamma(1.5,5.01), the Zero-Modified Distribution Selection Rules Results

ADR ZMP ZMADR ZMG ZMNB ZMADR2

Statistics f̂0 B RR I B RR I B RR I B RR I B RR I B RR I

PRE(.10) - 0.71 1.00 1.00 0.12 0.94 0.95 0.32 1.00 0.70 0.15 0.97 0.85 0.19 0.97 0.97 0.52 0.98 0.98

PRE(.05) - 0.53 1.00 1.00 0.03 0.81 0.87 0.23 0.96 0.46 0.03 0.85 0.76 0.11 0.85 0.94 0.26 0.95 0.97

PRE(.01) - 0.16 0.87 0.94 0.01 0.29 0.59 0.02 0.64 0.24 0.00 0.50 0.49 0.01 0.57 0.73 0.04 0.67 0.83

Mean 0.214 0.025 -0.004 0.025 0.144 -0.028 0.144 0.061 -0.010 -1.050 -0.529 0.016 -0.529 -0.001 -0.017 -0.002 0.055 -0.010 0.055

Std Dev 0.224 0.061 0.006 0.061 0.367 0.028 0.364 0.108 0.012 1.377 1.094 0.029 1.097 0.139 0.025 0.139 0.095 0.012 0.094

Min 0.000 -0.021 -0.027 -0.067 -0.380 -0.112 -0.361 -0.050 -0.058 -7.448 -7.073 -0.040 -7.086 -0.370 -0.095 -0.359 -0.015 -0.056 -0.023

25%ile 0.011 -0.001 -0.005 -0.003 0.000 -0.042 -0.006 0.002 -0.014 -1.442 -0.565 -0.001 -0.582 -0.070 -0.026 -0.077 0.003 -0.011 0.006

Median 0.154 0.004 -0.002 0.008 0.055 -0.018 0.057 0.017 -0.005 -0.569 -0.113 0.004 -0.116 0.000 -0.007 -0.003 0.024 -0.006 0.025

75%ile 0.352 0.025 0.000 0.031 0.178 -0.007 0.181 0.073 -0.001 -0.053 -0.036 0.028 -0.036 0.034 0.000 0.038 0.064 -0.002 0.062

Max 0.897 0.401 0.002 0.387 2.244 0.000 2.230 0.549 0.000 0.117 0.059 0.104 0.069 0.546 0.026 0.583 0.629 0.001 0.590
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Table B.10: For 100 test cases and Fixed Lead-Time~Uniform(2, 5), the Zero-Modified Distribution Selection Rules Results

ADR ZMP ZMADR ZMG ZMNB ZMADR2

Statistics f̂0 B RR I B RR I B RR I B RR I B RR I B RR I

PRE(.10) - 0.74 1.00 1.00 0.13 0.94 0.95 0.45 1.00 0.96 0.23 1.00 0.98 0.29 0.99 0.98 0.56 1.00 0.97

PRE(.05) - 0.52 1.00 1.00 0.03 0.85 0.93 0.34 0.99 0.84 0.08 1.00 0.97 0.10 0.94 0.95 0.44 0.99 0.89

PRE(.01) - 0.18 0.88 0.93 0.01 0.37 0.69 0.07 0.87 0.34 0.02 0.86 0.78 0.01 0.55 0.79 0.17 0.89 0.30

Mean 0.315 0.013 -0.003 0.013 0.045 -0.026 0.046 0.018 -0.005 -0.288 -0.049 0.000 -0.049 -0.005 -0.010 -0.004 0.039 -0.008 0.037

Std Dev 0.113 0.033 0.004 0.037 0.180 0.030 0.181 0.040 0.007 0.262 0.068 0.006 0.071 0.089 0.019 0.091 0.061 0.008 0.064

Min 0.123 -0.010 -0.020 -0.067 -0.393 -0.157 -0.383 -0.034 -0.043 -0.952 -0.363 -0.021 -0.371 -0.352 -0.119 -0.360 -0.007 -0.036 -0.036

25%ile 0.238 0.000 -0.004 -0.005 -0.033 -0.036 -0.029 0.000 -0.007 -0.479 -0.072 -0.003 -0.074 -0.016 -0.017 -0.019 0.004 -0.012 0.001

Median 0.305 0.004 -0.001 0.007 0.015 -0.014 0.018 0.005 -0.002 -0.262 -0.030 0.001 -0.031 0.001 -0.004 0.007 0.014 -0.007 0.018

75%ile 0.392 0.013 0.000 0.025 0.092 -0.006 0.097 0.025 -0.001 -0.010 -0.010 0.003 -0.010 0.027 0.000 0.038 0.044 -0.002 0.043

Max 0.634 0.277 0.004 0.266 1.157 0.009 1.167 0.268 0.001 0.026 0.142 0.016 0.131 0.362 0.016 0.371 0.389 0.000 0.391
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Table B.11: For 100 test cases and Fixed Lead-Time~Uniform(0.1,2), the Zero-Modified Distribution Selection Rules Results

ADR ZMP ZMADR ZMG ZMNB ZMADR2

Statistics f̂0 B RR I B RR I B RR I B RR I B RR I B RR I

PRE(.10) - 0.73 1.00 1.00 0.16 0.95 0.92 0.84 1.00 0.97 0.20 0.99 0.93 0.23 0.99 0.93 0.93 1.00 0.99

PRE(.05) - 0.64 0.98 0.99 0.07 0.89 0.89 0.57 0.99 0.94 0.08 0.97 0.92 0.11 0.97 0.91 0.61 0.99 0.98

PRE(.01) - 0.38 0.92 0.96 0.01 0.18 0.73 0.09 0.97 0.91 0.01 0.52 0.75 0.01 0.72 0.73 0.19 0.86 0.95

Mean 0.694 0.002 -0.002 0.000 -0.032 -0.021 -0.034 -0.011 -0.002 -0.014 -0.055 -0.009 -0.057 -0.055 -0.002 -0.057 0.012 -0.003 0.012

Std Dev 0.133 0.012 0.007 0.022 0.137 0.025 0.139 0.021 0.002 0.026 0.103 0.011 0.105 0.103 0.013 0.106 0.025 0.004 0.025

Min 0.437 -0.026 -0.044 -0.089 -0.434 -0.182 -0.435 -0.076 -0.020 -0.103 -0.381 -0.099 -0.388 -0.387 -0.075 -0.388 -0.010 -0.017 -0.008

25%ile 0.583 -0.002 -0.002 -0.014 -0.068 -0.022 -0.077 -0.016 -0.003 -0.019 -0.073 -0.013 -0.082 -0.083 -0.004 -0.091 0.001 -0.005 0.000

Median 0.684 0.000 0.000 -0.001 -0.010 -0.014 -0.017 -0.003 -0.001 -0.005 -0.016 -0.007 -0.021 -0.018 -0.001 -0.025 0.004 -0.002 0.004

75%ile 0.801 0.003 0.000 0.014 0.012 -0.009 0.012 0.001 -0.001 0.002 0.004 -0.003 0.008 0.001 0.003 0.003 0.013 0.000 0.013

Max 0.940 0.080 0.021 0.080 0.490 -0.002 0.490 0.014 0.001 0.019 0.072 0.010 0.072 0.174 0.043 0.174 0.181 0.004 0.185
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Table B.12: For Case-II and Group 1: Error Results When the LTD is Approximated by Distributions (1)

G LN N NB P PT

Statistics B RR I B RR I B RR I B RR I B RR I B RR I

PRE(.10) 0.12 0.87 0.48 0.11 0.88 0.48 0.11 0.85 0.47 0.09 0.87 0.54 0.08 0.89 0.53 0.35 0.97 0.98

PRE(.05) 0.08 0.72 0.32 0.07 0.74 0.32 0.08 0.72 0.32 0.04 0.72 0.37 0.04 0.78 0.38 0.29 0.96 0.97

PRE(.01) 0.02 0.36 0.1 0.02 0.35 0.1 0.02 0.44 0.1 0.01 0.36 0.08 0.01 0.51 0.09 0.15 0.87 0.62

Mean -0.390 0.030 2.940 -0.100 0.030 2.940 -0.350 0.040 2.980 0.190 0.030 2.500 -0.160 0.020 2.800 0.240 0.000 0.450

Std Dev 0.940 0.060 3.980 50.130 0.060 3.970 0.960 0.070 4.020 62.190 0.060 3.980 0.750 0.070 21.670 317 0.030 317

Min -25.400 -0.140 -1.630 -25.290 -0.200 -1.590 -25.650 -0.080 -1.150 -24.990 -0.130 -2.090 -24.000 -0.230 -1.530 -9142 0.000 -9142

25%ile -0.390 0.000 0.450 -0.400 0.000 0.450 -0.300 0.000 0.450 -0.320 0.000 -0.010 -0.060 0.000 0.010 -0.030 0.000 0.000

Median -0.070 0.010 2.030 -0.100 0.010 2.040 -0.020 0.000 2.050 -0.040 0.010 1.600 0.000 0.000 1.700 -0.010 0.000 0.130

75%ile 0.000 0.050 3.890 -0.010 0.040 3.890 0.000 0.050 3.950 0.000 0.050 3.450 0.020 0.030 3.670 0.000 0.000 0.250

Max 1.140 0.970 69.710 8543 0.980 69.670 1.100 0.950 70.410 7728 0.970 69.340 2.180 1.000 3628 9508 0.970 9508

Table B.13: For Case-II and Group 1: Error Results When the LTD is Approximated by Distributions (2)

TPM ZIP ZMG ZMNB SD GL

Statistics B RR I B RR I B RR I B RR I B RR I B RR I

PRE(.10) 0.21 1 0.97 0.11 0.89 0.53 0.1 0.84 0.54 0.09 0.88 0.53 0.19 0.95 1 0.21 0.98 0.91

PRE(.05) 0.17 0.98 0.85 0.08 0.78 0.36 0.07 0.67 0.36 0.06 0.73 0.36 0.1 0.99 0.87 0.15 0.91 0.83

PRE(.01) 0.07 0.83 0.36 0.03 0.49 0.08 0.02 0.27 0.07 0.02 0.33 0.07 0.05 0.71 0.28 0.04 0.74 0.18

Mean -0.040 0.000 0.520 -0.250 0.010 2.590 -0.500 0.040 2.610 -0.350 0.030 2.480 -0.040 0.010 0.500 -0.070 0.010 0.460

Std Dev 0.160 0.010 0.860 0.890 0.070 4.170 1.200 0.060 39.430 0.910 0.160 4.020 0.220 0.010 0.440 0.170 0.010 0.400

Min -5.310 -0.060 -1.240 -26.480 -0.340 -5.940 -32.300 -0.410 -2.110 -26.550 -0.260 -17.150 -3.110 -0.010 -2.020 -3.450 -0.120 -2.930

25%ile -0.010 0.000 -0.010 -0.090 -0.010 -0.040 -0.540 0.000 -0.050 -0.330 0.000 -0.090 -0.060 0.000 0.150 -0.070 0.000 0.140

Median 0.000 0.000 0.320 0.000 0.000 1.580 -0.100 0.010 1.540 -0.060 0.010 1.550 -0.010 0.000 0.450 -0.010 0.000 0.440

75%ile 0.000 0.000 0.720 0.010 0.010 3.590 0.000 0.060 3.330 0.000 0.040 3.460 0.010 0.010 0.760 0.000 0.010 0.720

Max 0.500 0.240 15.240 2.270 1.000 75.790 1.050 0.650 6458.000 1.540 0.320 69.100 1.510 0.060 5.050 0.980 0.080 3.540
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Table B.14: For Case-II and Group 1, Error Results When the LTD is Approximated by Distribution Selection Rules (1)

ADR AXR GADR MGNBA MNNB

Statistics B RR I B RR I B RR I B RR I B RR I

PRE(.10) 0.18 0.97 0.86 0.09 0.88 0.53 0.24 0.99 0.92 0.11 0.87 0.53 0.1 0.86 0.53

PRE(.05) 0.11 0.9 0.61 0.05 0.77 0.37 0.16 0.94 0.7 0.07 0.72 0.36 0.06 0.72 0.36

PRE(.01) 0.02 0.57 0.22 0.01 0.47 0.08 0.06 0.64 0.28 0.02 0.36 0.08 0.01 0.4 0.08

Mean -0.130 0.010 1.000 -0.210 0.030 2.620 -0.110 0.010 0.790 -0.130 0.030 2.480 -0.340 0.030 2.490

Std Dev 0.370 0.030 1.600 0.790 0.070 4.160 0.290 0.020 1.180 37.910 0.060 3.980 0.930 0.070 4.000

Min -10.000 -0.060 -0.870 -24.000 -0.130 -2.090 -7.620 -0.050 -0.650 -25.200 -0.130 -2.110 -25.320 -0.090 -1.870

25%ile -0.130 0.000 0.000 -0.160 0.000 -0.010 -0.110 0.000 0.090 -0.350 0.000 -0.030 -0.300 0.000 -0.030

Median -0.020 0.000 0.640 0.000 0.000 1.640 -0.020 0.000 0.520 -0.060 0.010 1.570 -0.030 0.010 1.580

75%ile 0.000 0.020 1.380 0.000 0.040 3.620 0.000 0.010 1.060 0.000 0.050 3.430 0.000 0.050 3.450

Max 4.180 0.410 27.740 10.440 1.000 75.780 3.130 0.310 20.810 6458.000 0.970 69.270 1.170 0.960 69.630

Table B.15: For Case-II and Group 1, Error Results When the LTD is Approximated by Distribution Selection Rules (2)

ZMADR ZMADR2 ZMADR2ADR ZMADR2PT

Statistics B RR I B RR I B RR I B RR I

PRE(.10) 0.14 0.97 0.79 0.27 0.99 0.98 0.39 1 0.99 0.4 1 0.99

PRE(.05) 0.1 0.89 0.53 0.12 0.98 0.9 0.21 0.99 0.97 0.27 0.99 0.99

PRE(.01) 0.04 0.49 0.16 0.02 0.74 0.4 0.03 0.82 0.55 0.04 0.88 0.66

Mean -0.170 0.010 1.650 -0.030 0.000 0.400 -0.020 0.000 0.230 0.000 0.000 0.200

Std Dev 0.460 0.030 48.830 0.150 0.010 0.590 0.090 0.010 0.360 2.740 0.010 2.760

Min -13.270 -0.200 -1.050 -3.750 -0.070 -1.650 -2.250 -0.040 -0.990 -203.760 0.000 -203.720

25%ile -0.160 0.000 -0.020 -0.040 0.000 0.040 -0.030 0.000 0.020 -0.020 0.000 0.010

Median -0.030 0.000 0.780 0.000 0.000 0.270 0.000 0.000 0.150 0.000 0.000 0.110

75%ile 0.000 0.020 1.730 0.000 0.010 0.530 0.000 0.000 0.310 0.000 0.000 0.240

Max 5.440 0.820 6209.000 1.570 0.150 10.400 0.940 0.090 6.240 276.400 0.550 276.930
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Table B.16: For Case-II and Group 2: Error Results When the LTD is Approximated by Distributions (1)

G LN N NB P PT

Statistics B RR I B RR I B RR I B RR I B RR I B RR I

PRE(.10) 0.02 0.71 0.46 0.01 0.71 0.44 0.1 0.68 0.43 0.02 0.71 0.46 0.01 0.75 0.41 0.19 0.92 0.89

PRE(.05) 0.01 0.57 0.29 0 0.58 0.29 0.09 0.58 0.3 0.01 0.57 0.3 0.01 0.68 0.29 0.17 0.87 0.86

PRE(.01) 0 0.36 0.09 0 0.36 0.09 0.07 0.44 0.09 0 0.36 0.09 0.01 0.52 0.09 0.01 0.64 0.47

Mean -70.110 0.050 356 -60.260 0.050 366 -70.460 0.090 356 -70.050 0.050 356 9.420 0.070 435 -113 0.040 -83.850

Std Dev 214.990 0.130 649 202 0.140 647 249 0.160 676 214 0.130 649 172 0.270 715 835 0.210 837

Min -2400 -0.490 -487 -2382 -0.500 -503 -2584 -0.470 -1159 -2399 -0.490 -488 -2380 -0.680 -459 -2071 -0.030 -20387

25%ile -62.470 0.000 -0.220 -66.870 0.000 6.480 -20.090 0.000 -8.550 -62.350 0.000 -0.720 0.000 -0.020 21.100 -14.040 0.000 -1.870

Median -2.030 0.000 128 -5.730 0.010 132 0.000 0.000 120 -2.020 0.000 128 1.490 0.000 168.690 -0.800 0.000 4.890

75%ile 0.000 0.080 434 0.000 0.070 451 1.920 0.150 444 0.000 0.080 433 20.370 0.000 540.060 0.000 0.010 27.690

Max 499 0.780 8205 599 0.810 8174 536 0.760 8259 499 0.780 8205 759 1.000 8293 215 1.000 574

Table B.17: For Case-II and Group 2: Error Results When the LTD is Approximated by Distributions (2)

TPM ZIP ZMG ZMNB SD GL

Statistics B RR I B RR I B RR I B RR I B RR I B RR I

PRE(.10) 0.02 0.93 0.74 0.01 0.76 0.41 0.06 0.65 0.4 0.02 0.68 0.43 0.005 0.899 0.152 0.047 0.848 0.145

PRE(.05) 0.02 0.88 0.59 0.01 0.68 0.29 0.06 0.52 0.26 0.01 0.56 0.29 0.001 0.268 0.093 0.043 0.842 0.077

PRE(.01) 0.02 0.69 0.29 0.01 0.52 0.09 0.05 0.34 0.08 0.01 0.36 0.09 0.001 0.102 0.002 0 0.149 0.023

Mean -70.280 0.030 15.000 -353 0.110 72.800 -333 0.050 93.020 8.976 0.038 435 -476 0.110 -1718 447 0.150 -793

Std Dev 1009 0.450 1020 4923 1.220 4976 3291 0.120 3329 1933 0.707 2039 1839 0.120 2490 494 0.130 1018

Min -23684 -0.140 -2608 -1101 -0.680 -1124 -7598 -0.400 -7221 -8217 -0.912 -7915 -6690 -0.240 -6960 -2629 -0.590 -4152

25%ile 0.000 -0.010 4.220 0.000 -0.040 21.110 -109 0.000 -6.740 -52.225 0.000 11.415 -837 0.000 -3364 0.320 0.000 -1646

Median 0.510 0.000 37.460 1.560 0.000 183 -6.690 0.000 124 -2.023 0.003 150 -837 0.100 -3364 881 0.000 -1646

75%ile 6.030 0.000 119 21.310 0.000 572 0.000 0.110 403 0.000 0.064 476 11.670 0.150 86.670 881 0.080 56.430

Max 265 1.000 1658 1327 1.000 8293 1034 0.490 6646 57044 0.895 57421 4874 0.690 10298 2553 0.890 6370
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Table B.18: For Case-II and Group 2, Error Results When the LTD is Approximated by Distribution Selection Rules (1)

ADR AXR GADR MGNBA MNNB

Statistics B RR I B RR I B RR I B RR I B RR I

PRE(.10) 0.04 0.86 0.66 0.02 0.8 0.46 0.08 0.92 0.76 0.02 0.71 0.46 0.02 0.72 0.44

PRE(.05) 0.01 0.72 0.48 0.01 0.69 0.3 0.02 0.79 0.56 0.01 0.57 0.3 0.01 0.6 0.28

PRE(.01) 0 0.46 0.18 0 0.48 0.09 0.01 0.51 0.22 0 0.36 0.09 0 0.41 0.09

Mean -26.500 0.020 144 -31.800 0.050 394 -19.920 0.010 107 -70.080 0.050 356 -70.250 0.070 356

Std Dev 85.370 0.060 259 181 0.200 706 64.040 0.040 194 214 0.130 649 228 0.140 661

Min -962 -0.190 -199 -2380 -0.680 -488 -721 -0.150 -149 -2399 -0.490 -488 -2491 -0.480 -580

25%ile -25.430 0.000 1.840 -6.770 -0.010 -0.720 -19.070 0.000 0.850 -62.410 0.000 -0.720 -39.770 0.000 -7.540

Median -1.650 0.000 51.720 0.000 0.000 129 -1.240 0.000 38.790 -2.030 0.000 128 -0.740 0.010 124

75%ile 0.000 0.030 174 4.360 0.010 478 0.000 0.020 130 0.000 0.080 433 0.000 0.090 441

Max 236 0.310 3282 499 1.000 8293 177 0.230 2461 499 0.780 8205 430 0.770 8232

Table B.19: For Case-II and Group 2, Error Results When the LTD is Approximated by Distribution Selection Rules (2)

ZMADR ZMADR2 ZMADR2ADR ZMADR2PT

Statistics B RR I B RR I B RR I B RR I

PRE(.10) 0.08 0.84 0.61 0.1 0.98 0.87 0.29 0.99 0.96 0.29 0.95 0.9

PRE(.05) 0.06 0.69 0.4 0.04 0.89 0.69 0.05 0.96 0.85 0.08 0.91 0.85

PRE(.01) 0.04 0.45 0.14 0.03 0.62 0.35 0.01 0.66 0.44 0.01 0.65 0.47

Mean -148 0.020 65.180 -4.670 0.000 59.280 -4.500 0.000 33.870 -39.880 -0.070 -10.690

Std Dev 1644 0.060 1672.480 29.460 0.020 98.460 21.000 0.010 57.880 346.660 1.330 345

Min -3299 -0.260 -3110 -299 -0.100 -71.250 -216 -0.060 -42.750 -9762 -0.101 -9679

25%ile -36.980 0.000 -3.370 -6.460 0.000 3.860 -5.260 0.000 2.100 -6.110 0.000 -0.190

Median -2.020 0.000 65.510 -0.130 0.000 24.660 -0.090 0.000 13.680 -0.060 0.000 8.190

75%ile 0.000 0.040 222.200 0.100 0.010 72.040 0.050 0.010 40.500 0.030 0.010 29.390

Max 517 0.360 4102 163.030 0.110 1230 97.820 0.070 738 215 0.660 574
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Table B.20: For Case-II and Erratic: Error Results When the LTD is Approximated by Distributions (1)

G GL LN N NB P

Statistics B RR I B RR I B RR I B RR I B RR I BO RR I

PRE(.10) 0.74 0.97 0.79 0.13 0.68 0.37 0.74 0.93 0.68 0.85 0.95 0.88 0.96 0.98 0.96 0.17 0.56 0.35

PRE(.05) 0.46 0.95 0.5 0.11 0.56 0.3 0.55 0.81 0.43 0.49 0.8 0.59 0.9 0.96 0.89 0.09 0.39 0.21

PRE(.01) 0.03 0.52 0.01 0.01 0.3 0.07 0.16 0.28 0.01 0.04 0.32 0.04 0.55 0.66 0.63 0.03 0.15 0.04

Mean -0.198 -0.004 0.301 -4.825 -0.022 -4.675 -0.142 -0.009 0.357 -0.238 0.009 0.261 0.015 -0.002 0.014 1.114 0.013 1.114

Std Dev 0.116 0.006 0.126 10.51 0.042 10.51 0.115 0.014 0.126 0.261 0.013 0.265 0.079 0.004 0.095 0.884 0.077 0.886

Min -0.621 -0.052 -0.306 -37.53 -0.753 -37.39 -0.561 -0.075 -0.297 -1.237 -0.03 -0.770 -0.276 -0.049 -0.707 -0.061 -0.202 -0.504

25%ile -0.262 -0.007 0.232 -10.97 -0.045 -10.81 -0.196 -0.017 0.293 -0.448 0.001 0.049 -0.022 -0.005 -0.029 0.465 -0.035 0.461

Median -0.185 -0.003 0.308 -1.345 -0.015 -1.208 -0.140 -0.007 0.354 -0.191 0.007 0.297 0.002 -0.002 0.010 0.911 0.000 0.911

75%ile -0.121 -0.000 0.376 -0.002 -0.000 0.1492 -0.084 -0.001 0.418 -0.023 0.016 0.476 0.042 0.000 0.050 1.544 0.064 1.535

Max 1.035 0.023 2.532 155.61 0.174 155.785 1.224 0.057 2.639 0.720 0.121 2.489 1.356 0.015 2.244 7.344 0.280 7.255

Table B.21: For Case-II and Erratic: Error Results Evaluation When the LTD is Approximated by Distributions (2)

PT SD TPM ZIP ZMG ZMNB

Statistics B RR I B RR I B RR I B RR I B RR I B RR I

PRE(.10) 0.11 1.00 0.98 0.23 0.80 0.33 0.10 0.45 0.51 0.19 0.55 0.36 0.07 0.48 0.19 0.20 0.31 0.52

PRE(.05) 0.11 0.11 0.20 0.18 0.73 0.24 0.10 0.30 0.40 0.08 0.37 0.22 0.03 0.32 0.14 0.08 0.20 0.39

PRE(.01) 0.09 0.11 0.09 0.09 0.51 0.03 0.01 0.10 0.17 0.02 0.12 0.04 0.01 0.11 0.04 0.01 0.07 0.13

Mean -137 0.034 0.415 -1.922 0.014 -1.772 1.211 -0.078 1.211 1.048 0.009 1.048 -6.223 -0.092 -6.223 1.313 -0.168 1.313

Std Dev 146 0.021 0.376 9.230 0.12 9.23 1.762 0.058 1.762 0.991 0.079 0.992 6.859 0.1404 6.859 2.683 0.138 2.684

Min -558 -0.002 -0.056 -163 -2.469 -163 -1.01 -0.199 -0.998 -3.182 -0.208 -3.249 -55.105 -0.476 -55.07 -5.416 -0.602 -5.411

25%ile -219 0.017 0.103 -2.054 -0.003 -1.901 0.155 -0.124 0.154 0.422 -0.041 0.426 -9.481 -0.188 -9.497 -0.074 -0.263 -0.087

Median -81.774 0.037 0.331 0.019 0.000 0.172 0.601 -0.073 0.600 0.922 -0.002 0.923 -4.288 -0.045 -4.281 0.364 -0.142 0.352

75%ile -16.562 0.053 0.659 1.241 0.006 1.395 1.564 -0.031 1.568 1.552 0.062 1.548 -1.285 0.009 -1.294 1.836 -0.053 1.864

Max 0.0062 0.068 1.872 25.256 0.640 25.414 18.767 0.129 18.774 7.344 0.261 7.255 22.960 0.146 22.853 21.216 0.232 21.280
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Table B.22: For Case-II and Erratic, Error Results When the LTD is Approximated by Distribution Selection Rules (1)

ADR AXR GADR MGNBA MNNB

Statistics B RR I B RR I B RR I B RR I B RR I

PRE(.10) 0.99 1.00 0.99 0.19 0.56 0.35 1.00 1.00 0.99 0.88 0.98 0.89 0.96 0.98 0.80

PRE(.05) 0.98 0.99 0.97 0.11 0.40 0.22 0.98 0.99 0.97 0.71 0.95 0.81 0.85 0.95 0.70

PRE(.01) 0.81 0.89 0.79 0.04 0.16 0.06 0.77 0.93 0.76 0.22 0.58 0.36 0.14 0.57 0.42

Mean 0.0059 -0.001 0.0058 1.1086 0.0138 1.1084 -0.0029 -0.0007 0.0127 -0.0918 -0.0033 -0.092 -0.1116 0.0037 -0.1118

Std Dev 0.0314 0.0019 0.0382 0.8902 0.0767 0.892 0.0343 0.0015 0.0383 0.0814 0.0056 0.0968 0.1318 0.0061 0.1411

Min -0.1105 -0.0199 -0.2832 -0.0611 -0.2023 -0.5046 -0.1757 -0.0149 -0.1778 -0.4256 -0.0513 -0.757 -0.7013 -0.0392 -0.7551

25%ile -0.0086 -0.002 -0.0117 0.458 -0.0335 0.4554 -0.011 -0.0015 -0.0075 -0.1262 -0.0063 -0.1365 -0.2013 -0.0002 -0.2072

Median 0.0008 -0.0008 0.004 0.9112 0.0007 0.911 -0.001 -0.0006 0.0057 -0.0835 -0.0028 -0.0919 -0.0897 0.003 -0.1022

75%ile 0.0167 0.0002 0.0199 1.5443 0.0641 1.535 0.012 0.0001 0.0224 -0.0529 0.0002 -0.0518 -0.0112 0.0069 -0.0125

Max 0.5421 0.0057 0.897 7.3442 0.2802 7.2551 0.4066 0.0045 0.6727 1.1961 0.0189 2.1382 1.0385 0.0511 2.1166

Table B.23: For Case-II and Erratic, Error Results When the LTD is Approximated by Distribution Selection Rules (2)

ZMADR ZMADR2 ZMADR2ADR ZMADR2PT

Statistics B RR I B RR I B RR I B RR I

PRE(.10) 0.03 0.22 0.05 1.00 1.00 1.00 1.00 1.00 1.00 0.12 1.00 0.98

PRE(.05) 0.02 0.11 0.04 1.00 1.00 0.99 1.00 1.00 1.00 0.12 0.13 0.21

PRE(.01) 0.00 0.03 0.03 0.91 0.96 0.91 0.96 0.98 0.97 0.10 0.12 0.10

Mean 3.2026 -0.2031 -12.6968 0.0045 -0.0007 0.0044 0.0015 -0.0002 0.0015 -133.0086 0.0341 0.4112

Std Dev 4.3402 0.1345 10.8791 0.0152 0.0014 0.0172 0.0074 0.0006 0.0089 144.4777 0.0214 0.3789

Min -0.4506 -0.4997 -101.1715 -0.0414 -0.0175 -0.0901 -0.0249 -0.0076 -0.0637 -558.5728 -0.0059 -0.0564

25%ile 0.5866 -0.3103 -17.9361 -0.0025 -0.001 -0.0034 -0.0019 -0.0005 -0.0026 -210.9927 0.0163 0.0945

Median 1.6816 -0.1874 -9.8868 0.0021 -0.0005 0.0028 0.0002 -0.0002 0.001 -79.3061 0.0367 0.3269

75%ile 4.1271 -0.089 -4.8111 0.0088 0 0.0099 0.0039 0 0.0046 -14.2931 0.0533 0.6593

Max 46.9174 0.0546 7.8687 0.2584 0.0021 0.3368 0.122 0.0013 0.2018 0.042 0.0685 1.8382
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Table B.24: For Case-II and Smooth: Error Results When the LTD is Approximated by Distributions (1)

G GL LN N NB P

Statistics B RR I B RR I B RR I B RR I B RR I B RR I

PRE(.10) 0.46 0.99 0.86 0.20 0.85 0.61 0.47 0.97 0.82 0.68 0.98 0.92 0.95 0.99 0.98 0.28 0.86 0.68

PRE(.05) 0.17 0.97 0.49 0.16 0.77 0.52 0.22 0.92 0.49 0.25 0.94 0.51 0.87 0.98 0.96 0.15 0.74 0.55

PRE(.01) 0.00 0.74 0.00 0.01 0.57 0.12 0.01 0.57 0.00 0.02 0.64 0.01 0.48 0.85 0.78 0.04 0.37 0.22

Mean -0.1703 -0.0027 0.3291 -2.0547 -0.0086 -1.9048 -0.1628 -0.0065 0.3367 -0.1616 0.0043 0.3378 -0.0002 -0.0011 -0.0008 0.374 -0.0037 0.3734

Std Dev 0.11 0.0055 0.1186 6.8367 0.041 6.8367 0.0939 0.0105 0.1043 0.163 0.0085 0.1686 0.0418 0.0036 0.0663 0.3908 0.0353 0.3951

Min -0.6119 -0.0593 -1.471 -46.6187 -0.7751 -46.4497 -0.5776 -0.0789 -1.5014 -0.7124 -0.0196 -1.4279 -0.1797 -0.0539 -1.9574 -0.0764 -0.1193 -1.9205

25%ile -0.2331 -0.005 0.2619 -0.496 -0.014 -0.3516 -0.2096 -0.0104 0.2833 -0.2501 -0.0005 0.2445 -0.016 -0.0027 -0.0289 0.0947 -0.0191 0.0998

Median -0.1513 -0.0017 0.3429 -0.0375 -0.0004 0.1144 -0.1497 -0.0042 0.3449 -0.1215 0.0028 0.3735 -0.0029 -0.0007 -0.0015 0.2386 -0.0032 0.2418

75%ile -0.085 0.0005 0.4113 0.1709 0.0005 0.3207 -0.0971 -0.0004 0.401 -0.0299 0.0074 0.467 0.0116 0.0009 0.0255 0.5451 0.0031 0.5407

Max 0.4591 0.0267 0.9044 109 0.3039 109 0.5355 0.0543 0.9808 0.4561 0.0699 0.9014 0.6701 0.0272 0.6154 3.794 0.1875 3.7796

Table B.25: For Case-II and Smooth: Error Results When the LTD is Approximated by Distributions (2)

PT SD TPM ZIP ZMG ZMNB

Statistics B RR I B RR I B RR I B RR I B RR I B RR I

PRE(.10) 0.22 1.00 0.98 0.33 0.93 0.51 0.16 0.64 0.70 0.24 0.85 0.67 0.08 0.61 0.29 0.15 0.41 0.64

PRE(.05) 0.22 0.20 0.24 0.29 0.90 0.43 0.15 0.49 0.61 0.08 0.73 0.54 0.04 0.40 0.22 0.06 0.29 0.53

PRE(.01) 0.17 0.17 0.15 0.14 0.73 0.05 0.02 0.22 0.36 0.01 0.32 0.19 0.00 0.16 0.07 0.01 0.14 0.23

Mean -25.737 0.0379 0.4007 0.2254 0.0061 0.3752 0.4794 -0.0532 0.4793 0.3183 -0.0057 0.3178 -4.0351 -0.035 -4.0356 0.7798 -0.1695 0.7792

Std Dev 30.097 0.023 0.3513 5.8635 0.06 5.8634 0.8874 0.0512 0.8876 0.4602 0.0364 0.4628 4.9263 0.1224 4.926 2.1361 0.1706 2.1372

Min -112 -0.0007 -0.0343 -83.986 -0.718 -83.831 -0.9704 -0.1998 -0.9684 -2.1492 -0.1734 -2.1389 -33.502 -0.4961 -33.4836 -4.7417 -0.7605 -4.7196

25%ile -42.305 0.02 0.0925 -0.0375 -0.0016 0.114 0.0232 -0.0871 0.0233 0.0545 -0.0215 0.0457 -6.1207 -0.086 -6.1338 -0.1164 -0.276 -0.1227

Median -13.031 0.0438 0.3465 0.0898 0 0.2383 0.1601 -0.0397 0.1587 0.2291 -0.0058 0.2288 -2.5172 0.0008 -2.5311 0.0969 -0.1139 0.0938

75%ile -0.2842 0.058 0.6277 1.3725 0.0023 1.5211 0.5898 -0.0109 0.5909 0.5489 0.0025 0.5434 -0.4262 0.0402 -0.4129 0.9015 -0.025 0.8962

Max -0.0001 0.0692 1.568 48.907 0.6519 49.058 13.7779 0.2008 13.795 3.797 0.1874 3.7827 16.717 0.1953 16.739 27.994 0.5899 28.080
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Table B.26: For Case-II and Smooth, Error Results When the LTD is Approximated by Distribution Selection Rules (1)

ADR AXR GADR MGNBA MNNB

Statistics B RR I B RR I B RR I B RR I B RR I

PRE(.10) 0.99 1.00 1.00 0.29 0.86 0.69 0.99 1.00 0.99 0.72 0.99 0.91 0.91 0.99 0.89

PRE(.05) 0.96 1.00 0.99 0.16 0.74 0.55 0.95 1.00 0.98 0.47 0.98 0.85 0.64 0.98 0.82

PRE(.01) 0.74 0.96 0.92 0.05 0.37 0.22 0.64 0.97 0.80 0.05 0.79 0.45 0.06 0.80 0.53

Mean -0.0001 -0.0004 -0.0003 0.3731 -0.0036 0.3726 -0.0104 -0.0003 0.0145 -0.0853 -0.0019 -0.0858 -0.0809 0.0016 -0.0815

Std Dev 0.0167 0.0014 0.0265 0.3915 0.0352 0.3957 0.0299 0.0011 0.0413 0.0626 0.0044 0.079 0.0841 0.0044 0.0966

Min -0.0718 -0.0216 -0.782 -0.0764 -0.1193 -1.9205 -0.1621 -0.0162 -0.5865 -0.3765 -0.0566 -1.9642 -0.4246 -0.0359 -1.9426

25%ile -0.0063 -0.0011 -0.0115 0.0929 -0.0189 0.0986 -0.011 -0.0008 -0.0069 -0.1178 -0.0039 -0.1289 -0.1256 -0.001 -0.1357

Median -0.0011 -0.0003 -0.0006 0.2385 -0.003 0.2415 -0.0022 -0.0002 0.0019 -0.0744 -0.0012 -0.081 -0.0615 0.0011 -0.0686

75%ile 0.0046 0.0003 0.0102 0.5451 0.0031 0.5407 0.0023 0.0003 0.0167 -0.0405 0.0007 -0.0417 -0.0156 0.0036 -0.0142

Max 0.2680 0.0109 0.2461 3.7940 0.1875 3.7796 0.2010 0.0080 0.1846 0.5646 0.0269 0.5099 0.5631 0.0275 0.5084

Table B.27: For Case-II and Smooth, Error Results When the LTD is Approximated by Distribution Selection Rules (2)

ZMADR ZMADR2 ZADR2ADR ZMADR2PT

Statistics B RR I B RR I B RR I B RR I

PRE(.10) 0.03 0.37 0.06 1.00 1.00 1.00 1.00 1.00 1.00 0.25 1.00 0.98

PRE(.05) 0.01 0.21 0.03 0.99 1.00 0.99 1.00 1.00 1.00 0.25 0.22 0.26

PRE(.01) 0.00 0.05 0.02 0.91 0.98 0.96 0.95 0.99 0.99 0.20 0.19 0.17

Mean 1.4093 -0.1477 -8.5444 0.0007 -0.0003 0.0006 0 -0.0001 0 -24.6903 0.037 0.3918

Std Dev 2.2566 0.1192 7.4477 0.008 0.0009 0.0112 0.0044 0.0005 0.0064 29.8573 0.0235 0.3537

Min -1.7232 -0.4995 -48.7399 -0.0317 -0.0255 -0.2924 -0.019 -0.0153 -0.1759 -112 -0.0119 -0.0343

25%ile 0.1841 -0.2239 -11.9959 -0.0022 -0.0005 -0.004 -0.0014 -0.0002 -0.0026 -40.494 0.0172 0.0634

Median 0.5912 -0.1155 -6.6301 -0.0001 -0.0002 0.0001 -0.0002 -0.0001 -0.0001 -11.5887 0.0428 0.3375

75%ile 1.6528 -0.0515 -3.0877 0.0025 0.0001 0.0045 0.0011 0.0001 0.0023 -0.0325 0.0579 0.6243

Max 34.4448 0.0176 4.4557 0.179 0.0079 0.1679 0.1074 0.0047 0.1007 0.0835 0.0692 1.568
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Table B.28: For Standardized Error Measure Comparisons for all Model Pairs using Tukey-Kramer HSD across All Demand Classes

Models Mean Categ. 1 Categ. 2 Categ. 3 Categ. 4 Categ. 5 Categ. 6 Categ. 7 Categ. 8 Categ. 9 Categ. 10 Categ. 11 Categ. 12 Categ. 13

ZMADR 1.4639 A

ZMG 1.3232 B

ZMNB 1.2125 C

LN 0.9169 D

ZIP 0.8488 E

P 0.7848 F

AXR 0.7719 F G

G 0.7664 F G

N 0.7332 G

MGNBA 0.6893 H

PT 0.6851 H

ZMADR2PT 0.6707 H

NB 0.6552 H

MNNB 0.6511 H

TPM 0.3352 I

ADR 0.2756 J

GADR 0.2225 K

ZMADR2 0.1436 L

ZMADR2ADR 0.0774 M
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Exhibit B.1: For Standardized Error Measure, Hsu Individual 95% CIs For Mean Based on Pooled StDev
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Exhibit B.2: For Standardized Error Measure, Hsu Intervals for Level Mean Minus Smallest of Other Level Means
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Table B.29: For Absolute Error Results of BO, Comparisons for all Model Pairs using Tukey-Kramer HSD across All Demand Classes

Models Mean Category 1 Category 2 Category 3 Category 4 Category 5
ZIP 164 A

ZMG 135 A B
ZMNB 98 A B

ZMADR 93 A B
N 59 B
G 56 B

MGNBA 36 C
NB 36 C
LN 36 C

MNNB 36 C
PT 34 C

ZMADR2PT 34 C
TPM 33 C
AXR 21 C

P 20 C
ADR 13 D

GADR 11 D
ZMADR2 5 E

ZMADR2ADR 4 E
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Exhibit B.3: For Absolute Error Results of B, Hsu Individual 95% CIs For Mean Based on Pooled StDev
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Exhibit B.4: For Absolute Error Results of B, Hsu Intervals for Level Mean Minus Smallest of Other Level Means
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Table B.30: For Absolute Error Results of RR, Comparisons for all Model Pairs using Tukey-Kramer HSD across All Demand Classes

Mean Category 1 Category 2 Category 3 Category 4 Category 5 Category 6 Category 7 Category 8 Category 9 Category 10 Category 11

ZMNB 0.2204 A

ZMADR 0.1746 B

ZMG 0.1417 C

ZIP 0.1245 C

P 0.1014 D

AXR 0.0821 E

TPM 0.0739 E F

N 0.0666 E F G

LN 0.058 F G H

MNNB 0.0543 G H

G 0.0521 G H

MGNBA 0.0513 G H

NB 0.0511 H

PT 0.0441 I

ZMADR2PT 0.0379 I

ADR 0.0219 J

GADR 0.0157 K

ZMADR2 0.0097 K

ZMADR2ADR 0.0058 K
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Exhibit B.5: For Absolute Error Results of RR, Hsu Individual 95% CIs For Mean Based on Pooled StDev
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Exhibit B.6: For Absolute Error Results of RR, Hsu Intervals for Level Mean Minus Smallest of Other Level Means
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Table B.31: For Absolute Error Results of I, Comparisons for all Model Pairs using Tukey-Kramer HSD across All Demand Classes

Mean Category 1 Category 2 Category 3 Category 4 Category 5
ZIP 335 A

ZMG 228 B
ZMNB 228 B

P 191 B C
AXR 182 B C

N 171 B C
MNNB 167 B C

LN 167 B C
G 165 B C

MGNBA 164 B C
NB 164 B C

ZMADR 129 C
TPM 70 D
ADR 66 D
PT 63 D

GADR 50 D
ZMADR2 26 E

ZMADR2PT 19 E
ZMADR2ADR 15 E
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Exhibit B.7: For Absolute Error Results of I, Hsu Individual 95% CIs For Mean Based on Pooled StDev
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Exhibit B.8: For Absolute Error Results of I, Hsu Intervals for Level Mean Minus Smallest of Other Level Means
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C APPENDIX

Proof of Theorem in Section 4.4.5. Let t i be the time of the ith demand event. Let Xi be the amount

of the ith demand. Let D(t) be the cumulative demand through time t. Let N (t) be the number of

events through time t. Then

D(t) =
N(t)

∑
i=1

Xi t ≥ 0

We denote the realized values of random variables with lower case letters. For example, xi

represents ith realized demand. Suppose that we are given n realized demand event times such that

t0 < t1 < t2 < ... < tn. Observe that

d (ti)−d (ti−1) =
N(ti)

∑
i=1

xi−
N(ti−1)

∑
i=1

xi−1 = xti f or i = 1,2,3, ...,n

Notice that

in(t0) = IN (t = 0) = v

and

in′ (t0) = IN′ (t = 0) = v′

and

4= v′− v

Then

in′ (t0)− in(t0) =4 (108)

We consider two cases. In the first case, we assume that no outstanding orders exist between
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two consequetive demand events. Then, clearly,

in(t1) = in(t0)− (d (t1)−d (t0))

in(t1) = in(t0)− xt1

in(t1) = v− xt1

In addition,

in′ (t1) = in′ (t0)− (d (t1)−d (t0))

in′ (t1) = in′ (t0)− xt1

in′ (t1) = v′− xt1

Thus, observe that

in′ (t1) = in(t0)− xt1 +4

in′ (t1) = in(t1)+4 (109)

By (108) and (109), for n demand events

in′ (t2) = in(t2)+4

in′ (t3) = in(t3)+4

...

in′ (tn) = in(tn)+4

Therefore,

in′ (ti) = in(ti)+4 f or i = 0,1,2, ...,n (110)
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Note also that IN (t) only changes value at demand arrivals and replenishment times. Thus,

IN′ (t) = IN (t)+4 (111)

for all t that are not replenishment event times.

In the second case, we assume that an outstanding order (Q) exists between an infinitesimal

time interval. Let Ai be the time of the ith replenishment event where i = 1,2,3, ...,n. Denote A−i

as an infinitesimal time prior to Ai and let A+
i be an infinitesimal time after Ai. By the development

of net inventory process, clearly,

in
(
A+

1
)
− in

(
A−1
)
= Q

and

in′
(
A+

1
)
− in′

(
A−1
)
= Q

Then, since IN′ (t) = IN (t)+4 from (111) above, we have:

in′
(
A+

1
)
= in

(
A−1
)
+4+Q

For other replenisment events

in′
(
A+

2
)

= in
(
A−2
)
+4+Q

in′
(
A+

3
)

= in
(
A−3
)
+4+Q

...

in′
(
A+

n
)

= in
(
A−n
)
+4+Q

Therefore,

in′
(
A−i
)
= in

(
A−i
)
+4 f or i = 1,2, ...,n
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and

in′
(
A+

i
)
= in

(
A+

i
)
+4 f or i = 1,2, ...,n

which implies that

in′ (Ai) = in(Ai)+4 f or i = 1,2, ...,n (112)

Based on (111) and (112),

INt
(
r′,v′

)
= INt (r+4, v+4) = INt (r, v)+4 ∀4 ∈ Z�
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