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ABSTRACT 

 

This thesis explores a new approach to computational object recognition by 

borrowing an idea from child language acquisition studies in developmental psychology.  

Whereas previous image recognition research used shape to recognize and label a target 

object, the model proposed in this thesis also uses the function of the object resulting in a 

more accurate recognition.  This thesis makes use of new gaming technology, Microsoft’s 

Kinect, in implementing the proposed new object recognition model.  A demonstration of 

the model developed in this project properly infers different names for similarly shaped 

objects and the same name for differently shaped objects. 
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1.  INTRODUCTION 

1.1  Problem 

Object recognition is a subfield of machine vision and artificial intelligence.  

Earlier object recognition research required significant knowledge of the mathematics of 

image processing and expensive equipment like LIDAR cameras or SICK sensors.  The 

recent introduction by Microsoft of the Kinect for the Xbox 360 has changed the 

landscape and enabled many researchers to tackle a range of image recognition problems 

without such extensive knowledge or expensive equipment.  Most research on developing 

object recognition models has been based only on the shape of the objects.  Therefore, 

there has been a difficulty in recognizing objects like a uniquely designed chair or 

different objects that have similar shapes.   

In order to solve this problem, this thesis focuses on a strategy that human 

children use to solve the problem.  In the field of psychology, many studies have focused 

on language acquisition by children.  Results indicate that there exist two strong biases 

children use when they try to learn names of objects:  shape bias and function bias.  Most 

past studies of object recognition in computer science have focused on shape bias; only a 

few studies have focused on the function of objects to recognize objects.  In order to learn 

the name of object like a chair, if computer can learn the name not only based on its 

shape but also based on the functionality, which is a place to sit, then the program can 

perform more flexible object recognition in a manner more similar to humans. 
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1.2  Objective 

The objective of this research is to combine the Kinect sensor with machine 

learning techniques to implement an object recognition model that uses both shape bias 

and function bias to learn the names of objects in a manner similar to how human 

children acquire names of objects.  

1.3  Approach 

The first step of this research includes becoming familiar with machine learning 

techniques and with the Microsoft Kinect SDK.  To understand the basics of machine 

learning techniques and to select one for use in this project, the author wrote a program to 

recognize a hand-written number using a neural network program and a K-nearest 

neighbor algorithm.  Based on comparing the results from those two techniques, the K-

nearest neighbor algorithm was selected based on its speed and simplicity.  To become 

familiar with Kinect SDK, the author drew a 3D model of the environment with OpenGL 

by drawing polygon based on the point clouds retrieved from the Kinect sensor.  When it 

was determined that there was considerable noise in the raw data, a noise reduction by 

horizontal interpolation technique was applied.  Also, since the Microsoft SDK supports 

only one Kinect sensor to be used in a program, the author developed a program to use 

two different Kinects as clients to a shared server. 

The second step was to implement a shape bias capability.  In order to implement 

shape bias, the first step is to remove the plain surface where the object will be placed in 

the depth map retrieved from the Kinect sensor.  This allows the program to only have to 
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learn the shape of the target object.  Then, the K-nearest neighbor algorithm is used to 

recognize the object based on its shape.   

The third step was to implement a function bias capability.  In order to recognize 

the functionality of a target object, a program was written to recognize human activity, in 

this case walking, skipping, and running in place.  This was accomplished by first 

recording ten seconds of the movement as sets of xyz coordinates of twenty different 

human body joints as retrieved from the Kinect sensor.  Then a K-nearest neighbor 

algorithm was executed to make the program learn the activity.  Instead of using absolute 

distance from the Kinect sensor, by using relative distance of each joint from the head 

position, the program recognizes the correct activity even if the actor is facing a different 

direction.  This activity recognition technique for the learning of the use of objects 

enabled implementing the function bias.   

The final step was to combine the techniques of shape bias and the function bias 

so that the program can now recognize objects in a manner similar to the way human 

children learn names of objects. 

1.4  Organization of this Thesis 

Chapter 2 provides background on key concepts needed to understand the rest of 

the thesis including two machine learning techniques, the Kinect sensor, and existing 

approaches for object recognition.  Chapter 3 describes the architecture of the object 

recognition model developed in this thesis.  Chapter 4 provides a methodology, results, 

and analysis, describing activity recognition and also object recognition based on shape 

and function.  Chapter 5 summarizes the thesis, its potential impact and identifies areas 

for future work. 
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2.  BACKGROUND 

Section 2.1 of this chapter describes key concepts that the reader will need to 

understand the research reported in chapters 3 and 4.  Section 2.2 describes related work 

in developmental psychology, object recognition, and activity recognition. 

2.1  Key Concepts – Machine Learning and the Kinect 

Key concepts in this research include a machine learning technique for object 

recognition and the use of the gaming technology Kinect for Xbox 360.   

2.1.1  Machine Learning 

Machine learning is an important subfield of artificial intelligence aimed at giving 

computers a way to learn many kinds of things without explicitly being programmed.  

Examples of machine learning occur in domains like autonomous vehicles, checker 

playing, and signal processing.  Machine learning is also commonly used in the image 

processing area, especially for recognition of objects, which includes the human face and 

everyday objects. 

Machine learning is based on training, and there are two types:  supervised 

learning and unsupervised learning.  In supervised learning, training data always gives 

the right answer y to the corresponding input x so that the program determines a pattern to 

predict the function f(x) = y.  For unsupervised learning, a training set does not contain 

the output y, but instead, the computer must figure out the hidden structure of the data.  

This thesis uses supervised learning because the names of objects will be explicitly 

provided by the trainer. 
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A primitive model of machine learning based on experience is called rote learning.  

In this model, the program stores all input x and associated output y in the memory.  This 

is very simple algorithm, but this type of learning only works for small discrete number 

of possible input and output.  Another approach is decision tree induction which can be 

used in an algorithm like ID3 (Iterative Dichotomiser 3) by storing an attribute vector x 

with a corresponding output y.  However, overfitting is a problem in this technique.  Even 

if the model can perfectly predict an output y from an input x for a training set of data, it 

does not guarantee that the model is perfect for other data as well.   

One way to deal with the problem of overfitting is to use neural networks.  In this 

approach, all Boolean values of input vector x will be nodes in the input layer of the 

network and the corresponding output y will be at the output layer.  There can be several 

layers of nodes between the input layer and the output layer, and, with many iterations, 

the algorithm figures out a strong association of each node in the network.  This is 

generalizable technique, but the problem is that if the number of nodes in the training set 

becomes large, then the time to build the network will significantly increase.  

Another approach to dealing with the overfitting problem is a K-nearest neighbor 

algorithm [1].  Like rote learning, it stores all set of  <x, y> in the memory, but in the 

testing phase, the algorithm takes k <x, y> vectors from the memory of which the x value 

is most similar to the target input x.  Then, the algorithm determines the predicted output 

y by taking majority vote. 

2.1.2  Microsoft Kinect for the Xbox 360 

The Kinect is a sensing technology originally created for a controller for the 

Microsoft gaming console Xbox 360 and was released to the public in November 2010.  
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The features of this sensor include dynamic depth image retrieval, human body 

recognition, skeletal joint tracking, and a multi-array microphone, all at a cost of around 

$150.  Because of the high versatility and the low cost of the sensor, many people have 

experimented with using the Kinect in their projects for various ways.  Even before the 

Kinect SDK was officially released in June 2011, Kinect videos were already appearing 

on Internet video streaming websites like YouTube.   

This project depends directly on several of the features of the Kinect to build its 

object recognition model.  The Kinect can retrieve pixel-by-pixel distance map using its 

infrared sensor and a photo image using RGB camera.  It provides a feature of 

recognizing players’ real-time motion and posture.  It employs a machine learning 

technique to learn the shape of individual humans so that it can extract the image of a 

human from a background or tell multiple humans apart [2].  Additionally, by building a 

classifier to identify body parts, this Kinect sensor can track twenty different joints on a 

human body.  Since a certain region in a human’s lateral occipitotemporal cortex 

selectively responds to images of human bodies [3], we can see this technology is, in a 

way, a simulation of the body-selective-cells in our brain. 

2.2  Related Work 

The object recognition model proposed in this thesis is related to knowledge that 

comes from human children's language acquisition studies in the developmental 

psychology field (covered in section 2.2.1).  In order to build the model, it is important to 

understand how computer can recognize and learn the shape of objects (covered in 

section 2.2.2).  In order to understand how to recognize the functional use of objects, it 
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was also important to review research on activity learning research in computer science 

(covered in section 2.2.3). 

2.2.1  Study in Developmental Psychology 

In a field of psychology, researchers study the strategy or mechanism that 

children use to acquire their first languages.  They develop theories and models from 

different perspectives.  They attempt to simulate language acquisition by implementing 

such models on a computer.  For infants who have not yet acquired language, finding 

show that the infants have special skills like pattern recognition that are acquired before 

later learning more complex structures of linguistic communication.   

For infants and toddlers to learn the names of objects, a shape bias is one of the 

strongest cues used to categorize novel objects; i.e., infants tend to generalize the name of 

an object based on similar shapes of the objects [4].  Also, researchers have shown that 

just with the shape bias, three-to-four month olds can categorize objects in a similar way 

with a basic categorization by semantic meaning [5].  Function-bias is another cue for 

object-name learning.  Different research shows that two year-old children who learned 

the name of an object of which they can easily infer the function or use, generalized the 

name to other similarly functioning objects [6]. 

2.2.2  Object Recognition in Computer Science 

In the field of computer science, researchers have studied ways of labeling names 

of objects by running a machine-learning technique on three dimensional point cloud data 

retrieved from both real world environments and Google 3D warehouse, which stores 3D 
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models of objects.  In this way, Google 3D warehouse can be a teacher to teach the name 

of objects in the real world based on the shape of the model objects [7]. 

An interesting question posed by Dr.  Grabner at the Computer Vision Laboratory 

at ETH Zurich was "What makes a chair a chair?" and his group has implemented 

something similar to function-bias to recognize a particular object, a chair.  First, based 

on a shape-bias, his group generalized the shape of chairs.  Then, they defined a chair as 

something we can sit on, and built a model that can infer if the target object is sittable or 

not.  They first tested the procedure in a 3D virtual world setting, and then successfully 

applied the same method in a real world environment data reconstructed with 80 images 

to recognize chairs even if the shape is unusual [8].   

2.2.3  Activity Recognition 

In everyday activities, humans perform many routine tasks from brushing their 

teeth to performing heart operations.  These tasks involve objects that they see and touch.  

Consider a log of data trace in the form <time stamp, location stamp, observation> where 

observations could be RFID reads, smart phone actions like receiving or responding to a 

text message, Kinect readings, and other types of "sensory inputs".  Also, consider a 

collection of workflows which are named activities consisting of a set of steps, some of 

which may result in leaf level trace data.  In order to record human activity, previous 

research studies assigned RFID tag to objects around humans and participants wore RFID 

reader embedded gloves.  Then, after capturing trade data from the participants in the 

experiment consisting of a log of touch events, the researchers used the log of the order 

of touched objects to identify probably workflow activities of daily living, performing 

this task using dynamic Bayesian networks [9].   In order to recognize simpler segments 
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of activities, other researchers used four seconds of video recorded action data like 

walking, jogging, and running, and ran a support vector machine (SVM) learning 

algorithm to train a classifier to recognize sequences of those primitive actions [10]. 
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3.  APPROACH AND ARCHITECTURE 

In this chapter, section 3.1 describes the background acquired learning about 

machine learning techniques and the Kinect SDK; then section 3.2 covers the architecture 

of the object recognition model.  

3.1  Machine Learning Techniques and the Kinect SDK 

3.1.1  Selecting a Learning Technique 

To become familiar with machine learning techniques, the author developed a 

program for hand-written number recognition using a neural network.  The program, 

written in Java, had a GUI and a control section, and the latter called the neural library 

from the statistical computing language R. 

The control portion of the program represented a drawing canvas as a two 

dimensional 7x11 grid of 77 cells (see Figure 1).   The user is prompted to write a 

number on the canvas and whenever any potion of a grid is traced, a corresponding index 

of Boolean array is marked as true.  The neural network model used in this program is 

Radial Basis Function Network (RBFN). 

 

Figure 1:  Grid structure for the hand-written number recognition 
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Hand-written data was collected 10 times for each number and saved as a .csv file 

format.  Cell in Table 1 below represents the Boolean value of each cell of the grid, and 

the number on the right hand side represents the number the user are prompted to write in 

the corresponding trial.   

trial cell 0 cell 1 cell 2 … cell 77 0 1 … 9 

0 grid[0,0] grid [1,0] grid [2,0] … grid [10,6] 0.9 0.1 … 0.1 

1 grid [0,0] grid [1,0] grid [2,0] … grid [10,6] 0.9 0.1 … 0.1 

… … … … … … … … … … 

m grid [0,0] grid [1,0] grid [2,0] … grid [10,6] 0.1 0.1 … 0.1 

Table 1:  Neural net input data layout 

The program was setup with the two intermediate layers between the input and 

output layers; these intermediate layers contained five nodes and three nodes respectively 

as shown in Figure 2 below.   

 

Figure 2:  Neural network for the hand-written number recognition 
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The program took around fifteen minutes on the author’s laptop (an Intel Core i7 

720QM (1.6GHz) with 4 GB of memory) for 300 iteration.  The result of one run is 

shown in Figure 2 below. 

 

pred.  # / actual # 0 1 2 3 4 5 6 7 8 9 

0 0.838 0.088 0.087 0.090 0.094 0.091 0.091 0.099 0.085 0.302 

1 0.090 0.594 0.123 0.140 0.093 0.103 0.087 0.096 0.085 0.091 

2 0.142 0.127 0.907 0.092 0.109 0.099 0.108 0.093 0.109 0.764 

3 0.088 0.096 0.146 0.768 0.106 0.096 0.094 0.108 0.093 0.129 

4 0.104 0.110 0.091 0.089 0.882 0.100 0.146 0.095 0.114 0.106 

5 0.092 0.099 0.105 0.088 0.101 0.937 0.100 0.091 0.107 0.090 

6 0.108 0.102 0.102 0.237 0.122 0.349 0.860 0.092 0.090 0.090 

7 0.107 0.184 0.186 0.094 0.159 0.252 0.097 0.760 0.102 0.236 

8 0.100 0.093 0.089 0.089 0.594 0.087 0.088 0.096 0.106 0.093 

9 0.088 0.297 0.091 0.130 0.177 0.102 0.089 0.113 0.094 0.852 

Table 2:  Neural net program output for one experiment 

Except the trials for recognizing the number “8”, the program successfully 

recognized the hand-written numbers.  However, a problem was the speed to build the 

network.  In order to build and test a model more quickly, the author decided to use the 

K-nearest neighbor learning algorithm instead of this approach.   

3.1.2  Learning to Use the Kinect SDK 

In this research, the Microsoft Kinect SDK for Windows was first used to retrieve 

the dynamic depth map in C#.  Since the Kinect sensor supports depth detection in the 

range between 0.85 m to 4 m, code was written so any information out of bounds of that 

range would be displayed in white.  A seek bar was then added to make it easy to change 

the range of focus.  See Figure 3. 
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Figure 3:  Depth image retrieved from Kinect 

Because there is considerable noise in the raw depth map data, the author decided 

to apply a simple noise reduction by using a horizontal interpolation which ran a left-to-

right and top-to-bottom loop through the two-dimensional-depth array to fill small holes 

as shown in Figure 4. 
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Figure 4:  Noise reduction by horizontal interpolation 

Using the OpenGL library, the author wrote a code to display a dynamic 3D 

image of environment.  Initially, the approach was to draw the image by drawing a set of 

polygons made out of all the points retrieved from Kinect, but because of gaps between 

object and the background, the 3D image was poor.  Instead, it was decided to add a 

parameter for a tolerance gap so that the program does not connect any points that exceed 

the gap size.   See Figure 5 below. 
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Figure 5:  Set a tolerance of the gap between points to draw a smoother image 

In order to build a more realistic 3D view, it was decided to use two Kinects at the 

same time.  However, a weakness of the Microsoft Kinect SDK is that it does not support 

the use of multiple Kinects in a program.  Therefore, it was decided to write a server and 

client program so that two computers, both of which are connected with one Kinect 

sensor, can collaborate to draw one environment from different points of view.  A video 

can be seen at the following link:  http://www.youtube.com/watch?v=5iLW6MO6uAY.  

However, because two Kinect are facing and interfere with each other in this demo, a 

significant amount of noise was observed as shown in Figure 6.  Figure 7 shows the 

comparison of the actual layout of the room and the retrieved image, 
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Figure 6:  3D image using two Kinects 

 

Figure 7:  Room layout 

3.2  Architecture of the Object Recognition Model 

The proposed object recognition model consists of two distinct methods:  to infer 

the name of object based on the object’s shape and its functional use.  In a teaching phase, 
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the user sets a target object in front of the Kinect sensor and the program learns the 

object’s shape and name.  Then the user can perform some action associated with the 

object to teach object’s function.  Later, in the testing phase, the program infers the name 

of an object presented based on the object’s shape and its function.  Figure 8 below 

shows the teaching use case and the testing use case.   

 

Figure 8:  Use case for the object recognition model 

3.2.1  Plain Surface Removal with RANSAC Algorithm 

Kinects can instantly retrieve a depth map and an RGB image from a real world 

environment, so we might assume the Kinect provides a similar input we humans retrieve 

from using our eyes.  However, a problem is how to separate the target object to learn 

from its background.  We can use the already implemented seek-bar to adjust the range of 

focus.  It is then necessary to remove the surface where the object is placed.  One simple 
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way to do that is to use the Random Sample Consensus (RANSAC) routine for the 3D 

point clouds.  The idea is that, first the program randomly takes three points from the 

point cloud to determine a random plain; then, it counts how many points are on the plain.  

By iterating through this steps many times, the program finds the plain that has the 

maximum number of points, assuming the plain is the surface where the objects are 

placed.  See Figure 9.   

 

 

Figure 9:  RANSAC for surface detection 
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3.2.2  K-Nearest Neighbor Algorithm for Shape Learning 

Once we get a depth image of the target object, the program asks the user to name 

the object or asks the user to choose the name from a list of names the user has already 

told the program.  See Figure 10 below.  The user can change the angle of the same target 

object and label the object with the same name.  Then, in the testing session, the program 

compares the shape of the target object with all the shape information in the memory and 

chooses the closest shape of objects using the K-nearest neighbor algorithm.  Then, the 

program determines the name of the target object based on a majority vote by those k 

chosen sets of data. 

 

Figure 10:  Naming snack based on the shape 

3.2.3  Activity Recognition using the Kinect 

A weakness of an object recognition model based only on shape is that although it 

can recognize an object that has a similar shape to the objects in its memory, it cannot 
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generalize the name to other object’s which have the same functionality but a different 

shape (e.g., a chair and a sofa), or it makes a wrong answer to a similar looking object 

where the function is different (e.g., a glass and a vase).  This problem can be solved by 

implementing function bias, which human children use to infer the name of objects.  This 

thesis uses the human body recognition feature provided by Kinect SDK to distinguish 

uses of an object.  It enables overlaying the skeletal information of a human body on top 

of the 3D image reconstructed based on the depth map and the RGB image. 

 

Figure 11:  Skeleton on the 3D image and body joint tracking 

In order to implement this kind of functional bias, one has to first recognize 

human action.  By using the feature of Kinect to track twenty different joints of skeletal 

information, the program records coordinates for each joint every 0.1 seconds for 10 

seconds while the teacher performs some activity.  Then the system asks the teacher to 

name the activity.  Instead of storing absolute distance of each joint from the Kinect 

sensor, by storing relative distance of each joint from the coordinate of the head position, 

the recorded data become independent of the direction the actor is facing when 

performing the activity.  In the testing session, the program again uses the K-nearest 

neighbor algorithm on the stored data to infer the name of a target action.  The demo can 
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be seen at the following link:  http://www.youtube.com/watch?v=AxCn0eKWkiQ.  In 

the demonstration, a teacher demonstrates walking, skipping, and running activities and 

provides labels for these.  Later, during testing, the user goes through a sequence of 

walkings or skippings or runnings and the system identifies which the sequence of 

activities.  This demonstration by the author replicates the results from [9] but uses the 

Kinect instead of a more expensive solution. 

3.2.4  Object Recognition Model with Shape Bias and Function Bias 

In order to use both biases for object recognition, it is necessary to train two 

different classifiers; one is based on the shape and the other is based on the function.  In 

addition to the feature of activity recognition, users are now prompted to choose the name 

of the object associated with the action.  For example, the action drinking can be 

associated with a cup and a glass.  See Figure 12. 

 

Figure 12:  Choosing name of object corresponding to the action 
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Then, in the testing session, if the inferred name of the target object based on the 

shape and the function matches, the program tells the user the answer; on the other hand, 

if it does not match, the program tells the user the uncertainty of the answer by saying  

"Maybe the object is [answer based on the shape].  But the object may be a 

[answer based on the action] because you used the object for [the name of 

action]".   

If the shape is quite different from the one in the memory, the program will answer that  

"I think the object is [answer based on the action] because you used the object for 

[name of action].  But it might be a [answer based on the shape] based on the 

shape."   

A demo can be seen at:  http://www.youtube.com/watch?v=4ia76fzxm68. 
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4.  METHODOLOGY, RESULTS AND ANALYSIS 

4.1  Methodology 

To test the accuracy of the model, the system was tested with two objects that 

look similar but have a different use (a can of antiperspirant and a can of insecticide), and 

two other objects that look different but have the same name and function (a conventional 

chair and an oddly shape of a chair).  The model was then tested based on three different 

bases.  One was object recognition based on a shape; the second used activity recognition 

based on the body joint movement; and finally, an object recognition based on both the 

shape and the function.  The tests worked most of the time; however, there were several 

constraints needed to be addressed.   

4.2  Results 

4.1.1  Object Recognition based on Shape 

First, the program learned the shape of an insecticide can, a chair, and an 

antiperspirant can.   

 



 

 24 

 

 

Figure 13:  Shape learning of insecticide, chair, and antiperspirant 

During testing, the program successfully recognized the chair all of the time, but 

it sometimes confused the insecticide and the antiperspirant because the shape is quite 

similar.  Without training and when asked to name the strangely shaped chair (see figure 

14) and asked the name of the object, the program failed by answering the object is 

antiperspirant because the program knows neither the shape of this type of object nor the 

use, which is to sit.   
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Figure 14:  Different shape of a chair 

4.2.2  Object Recognition based on Function 

During activity learning, each action of sitting, killing bugs, and deodorizing is 

associated with a chair, a can of insecticide, and a can of antiperspirant respectively as 

shown in Figures 15-17.   
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Figure 15:  Sitting on a chair 

 

Figure 16:  Killing bugs with insecticide 
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Figure 17:  Deodorizing with an antiperspirant 

Then, in the testing session, the program successfully identified all of those 

actions.  Additionally, even though the action sitting was learned with an unconventional 

shape of chair, the program successfully answered sitting for the sitting action on a 

different shape of a chair as shown in Figure 18. 

 

Figure 18:  Testing the action sitting on a different chair 
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4.2.3  Object Recognition based on both Shape and Function 

In the final tests, the program uses both the shape and the function to infer the 

target objects.  In section 4.2.1, with the object recognition based only on the shape, an 

antiperspirant and an insecticide were sometimes confused; however, with this object 

recognition method, for the antiperspirant, it either correctly answered or said that  

"Maybe the object is insecticide.  But the object may be antiperspirant because 

you used the object for deodorizing".   

Also, for the insecticide, it either correctly answered or said that  

"Maybe the object is antiperspirant.  But the object may be insecticide because 

you used the object for killing bugs". 

Similarly, with the previous model, the different shape of chair cannot be properly 

recognized, but by showing the use of the object, sitting, the program answered that  

"I think the object is a chair because you used the object for sitting.  But it might 

be a antiperspirant based on the shape."  

4.3  Analysis 

Although the object recognition model worked as expected to properly identify 

the objects learned by shape or function, there were several constraints in the current 

model.  First, because of the use of simple K-nearest neighbor algorithm on the 240 × 

360 depth grid map, the object has to be set at the exact same position every time to be 

recognized as the same.  This is similarly true for the activity learning.  If the action 

associated with the object does not involve a lot of movement, like sitting, the program 

works well; however, if the action involves movement like walking, the shifting of timing 
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can be a problem.  Figure 19 describes the problem of this model by the shift in position 

and the timing of input data.  

 

Figure 19:  Case where the object or action cannot be recognized properly 
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5.  CONCLUSIONS 

5.1  Summary  

This thesis proposes a new way of designing a computational object recognition 

model by introducing knowledge from developmental psychology.  Whereas most past 

object recognition models use the shape of objects for the recognition, the model 

discussed in this thesis also uses the function of the target object for more accurate 

recognition.  The powerful features of the Kinect sensor like depth map retrieval and 

human body joint recognition made the development of this proposing model easier to 

construct and also much less expensive.  Results of testing showed that the model works 

as expected but also identified possible improvements for a future model. 

5.2  Potential Impact 

This research indicates that knowing the variety of shapes of common objects 

(like a chair) is important but knowing the functional use of the object also plays a role 

on object recognition.  The thesis benefitted from its interdisciplinary use of results from 

psychology about how children learn to associate words with things that informed the 

computational model of object recognition.   

If computers can learn to recognize everyday objects, many new applications will 

be enabled.  If computers can monitor and recognize sequences of activities, many 

additional applications will be enabled.  For only a few examples, paring both recognition 

capabilities may help computers including robots or even other objects recognize objects 

in a room or on an assembly line or activities helpful in driving a car or watching, 

recording and providing advice during heart operations. 



 

 31 

5.3  Future Work 

The machine learning technique used for this model can be improved by dealing 

with the constraints of the current model or by replacing the algorithm with a more 

advanced one.  The name teaching part could be implemented with speech recognition 

technology so that the teacher does not have to manually type the words.   

Improving the accuracy of object recognition would accelerate the idea of 

building a semantic world with smart objects.  Instead of labeling objects with RFID tags 

as discussed in a previous paper [11], the object recognition technique can be used for 

identifying any object which then identifies an associated API so we can communicate 

with the object. Also, the accuracy of the recognition can be even improved by 

combining the idea with ontology field of study to narrow down the search space of 

objects that are mostly likely to exist in a certain environment like a kitchen where we 

most likely find a sink, a refrigerator, cabinets, plates, and so on [12].   

Also, the activity recognition feature can be improved by parsing or recognizing 

the logs of trace data observations and workflow rules to identify higher level named 

activities.  For instance, we might be able to understand that someone is packing a truck 

(a higher level workflow) by observing a sequence of lower level workflow like, <go to 

object, pick up, move object into truck> triples.  In order to accomplish this work, the 

ideas from formal language (grammars, terminals, rules) might be useful to recognize real 

world activities from trace observations. 
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