
University of Arkansas, Fayetteville
ScholarWorks@UARK
Computer Science and Computer Engineering
Undergraduate Honors Theses Computer Science and Computer Engineering

5-2012

Virtual "University of Arkansas" Campus
Seth Williams
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/csceuht

Part of the Software Engineering Commons

This Thesis is brought to you for free and open access by the Computer Science and Computer Engineering at ScholarWorks@UARK. It has been
accepted for inclusion in Computer Science and Computer Engineering Undergraduate Honors Theses by an authorized administrator of
ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.

Recommended Citation
Williams, Seth, "Virtual "University of Arkansas" Campus" (2012). Computer Science and Computer Engineering Undergraduate Honors
Theses. 27.
http://scholarworks.uark.edu/csceuht/27

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UARK

https://core.ac.uk/display/72841408?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fcsceuht%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csce?utm_source=scholarworks.uark.edu%2Fcsceuht%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.uark.edu%2Fcsceuht%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csceuht/27?utm_source=scholarworks.uark.edu%2Fcsceuht%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20ccmiddle@uark.edu

VIRTUAL ‘UNIVERSITY OF ARKANSAS’ CAMPUS

VIRTUAL ‘UNIVERSITY OF ARKANSAS’ CAMPUS

A thesis submitted in partial

fulfillment of the requirements for the degree of

Bachelor of Science in Computer Science

By

Seth Williams

April 2012

University of Arkansas

ABSTRACT

The aim of the Virtual Campus project is to develop a way to automate building 3D

virtual worlds using map and other data from the real world. A demonstration presented in this

BS honors thesis uses automated tools to build the University of Arkansas campus from data

supplied by the UA Center for Advanced Spatial Technology (CAST). At present, in virtual

worlds like Second Life and Unity, terraforming of terrain is a manual process, and it can take

days to weeks to build a landscape. But by using existing map data, we are now able to automate

that process. Working with my Andrew Tackett and Jonathan Holt in our senior design project,

we created a script (program) which will take height map data in .raw format and texture data

in photographic format and which uses this data, along with functions built into the Unity API, to

create a terrain with the proper heights and textures. A second script that I developed for this

thesis allows a user to identify certain colored regions as buildings. The script then populates the

regions defined as buildings with “sugar cube” buildings (white blocks), which the user can

keep, remove, or replace at their discretion. The end result is a 3D landscape that avatars can

visit. The design enables users to further populate the virtual campus by replacing the “sugar

cube” buildings with their own more detailed 3D building models, created using outside

programs. Using such an environment, students can go to a virtual class or meet together at a

virtual union. At present, many virtual campuses exist in Second Life, but none that we know of

accurately reflect the geography of their campus.

This thesis is approved for recommendation

to the Honors College

Thesis Director:

Craig Thompson

Thesis Committee:

David Frederick

Russell Deaton

THESIS DUPLICATION RELEASE

I hereby authorize the University of Arkansas Libraries to duplicate this thesis when needed for

research and/or scholarship.

Agreed __

 Seth Williams

Refused __

ACKNOWLEDGEMENTS

I wish to thank all individuals who made this thesis possible. To my thesis advisor, Dr.

Craig Thompson, thank you for providing me with an interesting and engaging idea to research,

as well as your instruction and encouragement throughout this process. To Dr. David Fredrick,

thank you for allowing me the use of the Game Design Lab and for showing a high level of

enthusiasm for the completion of this project. I hope that you will find use for the programs that

were created. To Andrew Tackett and Jonathon Holt, thank you for all of the hard work you put

into this project to help create the Terrain Automation script. I thank Angie Payne and Snow

Winters for providing me with the height map and texture for the development of these scripts.

Finally, I thank my family, my friends, and my fiancée, Courtney May, for their love, support,

and prayers while I worked on this project. Without the amazing support I received from this

group of people, none of this would have been possible.

TABLE OF CONTENTS

1. Introduction ...1

1.1 Problem .. 1

1.2 Objective .. 3

1.3 Organization of this Thesis .. 3

2. Background ...4

3. Design, Implementation, and Results ..9

3.1 Adding Real-World Terrain and Ground Use Textures to a Virtual World 9

3.2 Adding Buildings ... 25

4. Conclusions ..32

4.1 Summary .. 32

4.2 Future Work ... 32

4.3 Potential Impact ... 36

References ...37

LIST OF FIGURES

Figure 1: Intel Labs’ Yellowstone Park Simulation .. 5

Figure 2: Create Terrain Function.. 11

Figure 3: Blank Terrain in Scene View ... 11

Figure 4: Selecting the Height Map ... 12

Figure 5: Manual Import of Height Map ... 13

Figure 6: Terrain After Height Map Import ... 14

Figure 7: Terrain Object’s Inspector .. 15

Figure 8: Manual Texture Addition ... 16

Figure 9: Terrain After Adding Texture .. 16

Figure 10: Terrain After Manual Texture Addition ... 17

Figure 11: Terrain Inspector with Terrain Automation Script ... 18

Figure 12: Input for Terrain Automation Demonstration .. 21

Figure 13: Terrain After Using Terrain Automation Script ... 22

Figure 14: Adding a Directional Light... 23

Figure 15: First Person View of Automated Terrain ... 24

Figure 16: Stylized University of Arkansas Map .. 26

Figure 17: Default Building Definer Values .. 27

Figure 18: Input Data for Building Definer Demonstration .. 29

Figure 19: First Person View of “Bud Walton Arena” Cube... 30

Figure 20: View of UA Campus after Adding Several “Sugar Cube” Buildings and One Custom

Building (Old Main) ... 30

Figure 21: First Person View of Old Main ... 31

1

1. INTRODUCTION

1.1 Problem

Game design and virtual world development have both become large industries in recent

years. 3D virtual worlds like Second Life are multi-player social worlds where humans in the

form of “avatars” meet with one another, use voice or chat to communicate, and can own virtual

land, build virtual buildings and script objects. Millions of people have downloaded the free

Second Life client (like a browser). Currently, surprisingly, the only way to create a 3D virtual

model of a real-world region is to do so manually. This involves hours-to-weeks of elevating

terrain “by hand,” sculpting and placing roads and buildings, and filling terrain locations with

vegetation. The result is either a fantasy world or else a surrogate for a real world area that is so

inaccurate that we are unaware of anyone succeeding in developing an accurate 3D virtual world

model of their surroundings (with the exception that accurate military 3D simulations do exist).

Real world 3D elevation and land use maps are available. Today’s satellite imagery is

very detailed, and has led to many developments in the field of global, interactive maps. It is

difficult for us now to remember what life was like before Google Maps and other GPS

navigational applications and machines took away the need to carry paper maps in order to travel

to places that we had never been before. However, at present, there are no established methods

to import such map data into a game engine or a virtual world to create an accurately terraformed

terrain. In addition, there is no current method to use a script to parametrically populate an urban

region with vegetation, roads, and buildings. If an automated means of building 3D worlds from

map and land use data could be developed, it would expedite the process of building 3D games –

but more than that, it would find application in so-called “serious games” in architecture,

archaeology, military strategy, geology, and many other fields.

2

Even with the availability of 3D maps, 3D virtual worlds and gaming, there is a striking

disconnect between these three different communities. Though it could be argued that the virtual

worlds community is ultimately derivative from the game design community, we see that even

the most detailed virtual worlds simply do not live up to the graphical standards now expected

from today’s PC-based games. These games are often on the cutting-edge of graphical quality,

where virtual worlds like Second Life have fallen behind. Likewise, there seems to be a chasm

between the mapping community, the game design and the virtual world communities. Video

games have used real-world locations before: Spider-Man used developer-generated iterations

of New York City; Assassin’s Creed used historic representations of cities across Europe and the

Middle East; and Grand Theft Auto use parodical versions of cities across America. None of

these games, however, used true topographical data. To my knowledge, only one very recent

game has used real topographical data to create its levels: SSX, a snowboarding game published

by Electronic Arts used satellite data from NASA to create iconic mountainsides like Mount

Everest and peaks from the Himalayas for their players to traverse [1]. But this is just one game

out of thousands.

Part of this disconnect exists because the mapping community itself is a fractured entity.

There is not a standard geographic information file type. The most commonly seen types are

GeoTIFF, ArcGIS, and DEM (provided by the United States Geological Survey). Unfortunately,

all of these file types are incompatible with the Unity game engine. Most, as it stands now, are

not even compatible with the same programs that would be capable of reading another one of the

file types. In a similar way, both the 3D virtual world and gaming communities are fragmented

without common standard architectures or representations. Instead, most virtual worlds and

games are built from the ground up.

3

1.2 Objective

The goal of this project is to begin to bring these three separate communities together by

creating an automated way to aggregate the data collected by the mapping community with a 3D

virtual world game engine used by game developers and virtual world enthusiasts. This project’s

main objective is to create a series of scripts for the Unity game engine that will automate

terraforming and populating a region in a 3D virtual world with real world map data. The

resulting 3D virtual worlds then can form the basis for 3D gaming environments for both

recreational and serious gaming applications.

1.3 Organization of this Thesis

Chapter 2 covers background on the thesis. Chapter 3 describes the design,

implementation, and results. Chapter 4 summarizes the thesis and describes future work.

4

2. BACKGROUND

This section describes how and why I became interested in automating the process of

creating 3D virtual worlds.

At the University of Arkansas in the fall semester 2010, I took a course from Dr. David

Fredrick in the Classics Department in which the class modeled portions of ancient Pompeii

using a 3D game engine called Unity. This powerful game design tool is available in two forms:

the free Unity Basic and Unity Pro. We used Unity Pro in the class, and I was stunned by the

amount of realistic detail that could be put into user-created games, for instance, detailed mosiacs

and wall paintings.

However, I was not skilled at using the array of terrain brushes, which enabled users to

add textures, change elevations, and add details like trees or grass. These tools were not very

easy to learn or to master. In part, this is because most game developers use third-party software

like Vue, Sketchup, or Maya to create their terrains because of the ease of use of these programs’

modeling features so Unity developers had little cause to create sophisticated tools because their

user base was already familiar with this third-party software. Even so, the process of building

objects and terrains was still a manual and very time consuming process that often did not match

a real world location.

This led me to wonder how developers could more efficiently make games that drew

from real-world locations at multiple levels of detail. Reflecting on games I had played and

reviewing others led me to the conclusion that, while many games depict the most iconic

portions of real world locations, they rarely, if ever, use actual map data available for the entire

area. The results are games where large portions of a city rests on flat ground, where it is known

that these areas are not flat at all in the real world. Though not bothersome enough to break the

5

concentration of players whipping around the New York City skyline as Spider-Man, this lack of

detail is disappointing especially given that it would not tax gamers’ machine resources of today

(or even of five or more years ago) if the settings were more realistic.

While I was taking Dr. Frederick’s course, I was also taking Dr. Craig Thompson’s

Virtual Worlds course. He proposed a challenge problem of using Open Simulator to create a

large-scale “Virtual Earth” or a “Virtual Mars” based on map data from the Center for Advanced

Spatial Technologies, which would involve identifying and removing roadblocks on a path to

this goal. I began to consider how to do the project in Unity, though my knowledge concerning

that game engine was still limited at the time.

The Unity engine already supports a type of elevation data known as a grayscale map.

Using this data type, Unity will terraform a region at the proper points to form a 3D terrain.

However, Unity currently does not support the use of a .DEM file, a widely used format in real-

world mapping community. Users would need to convert the .DEM files into grayscale maps by

via a translator similar to the SimpleDEMviewer [2]. Researchers from Intel had explored this

problem using Open Simulator in a virtual world grid known as ScienceSim. There, they created

the terrain of Yellowstone National Park, complete with proper elevations and textured land use

(see screenshots below) [3, 4]. This experiment did not include any flora or fauna, but did

provide a glimpse the future of virtual worlds leading towards a 3D virtual earth!

Figure 1: Intel Labs’ Yellowstone Park Simulation

6

I chose to use the Unity game engine over Open Simulator because it has an online

application programming interface (API) that I was familiar with. Also, while the functions that

the API provides are not well-documented, there is a dedicated base of Unity users who can

provide help since they have used several of the functions in the API to create their own games,

some of which have been published by video game companies. The functions included with the

Unity system provide their users the ability to script any object that can be created by the engine

or brought into the engine from outside sources. For this project, the functions of interest were

those that allow users to alter the terrain.

Previous work on Unity terrain alteration proved useful to the development of the scripts

developed in this project. The Terrain Toolkit, designed by Sandor Moldan [5], enables a user to

alter terrains in a variety of ways and to create new terrains randomly. The terrain creation tools

use popular patterns, such as Voronoi diagrams or fractals, to create terrains with landmarks, like

mountains. The Terrain Toolkit includes procedures for blending textures according to heights

and the sharpness of angles present in the terrain. It also provides functions which simulate the

effects of erosion on a landscape to make a region more realistic and “playable.” For this

project, the most useful function was a smoothing function. That function dynamically checked

the height values at all points on the map and used an averaging algorithm which creates a new

height map that is completely smooth. This was useful because the height maps that the Unity

engine can use are all in .raw format. This means that, for each pixel in the height map, there is

a given integer value, from 0 to 255 (for an 8-bit-per-pixel depth) which determines the height of

that particular point. 0, or black, is the minimum height, while 255, or white, is the maximum

height. Using these height maps in Unity with no smoothing results in a stepped landscape,

which is far from realistic. While an artificially smoothed level is also not entirely realistic, it is

7

more realistic than a stepped terrain and also easier for players in the world to traverse. The

Terrain Automation script, developed by this project, uses Moldan’s smoothing function to

automatically smooth imported terrains.

The Terrain Toolkit was also useful in helping my group figure out how to create editor

scripts, which are scripts that function on objects in a Unity environment outside of play mode.

However, the Terrain Toolkit only functioned as a random map generator. Even to date, there is

no research I could identify in the area of creating true-to-life representations of real-world

regions programmatically in Unity.

However, if realistic regions do come into being, the Unity community has done

extensive research in the area of creating virtual world connectivity in Unity. ReactionGrid, the

developers of Open Simulator, has made a free-to-use virtual world based on the Unity game

engine called Jibe. The significance of this is that anybody can create their own regions inside

this virtual world, or even make their own separate virtual world based on real-life locations,

should they choose to do so. Virtual meeting spaces have been created in Second Life and in

Open Simulator, but none of them are based on real-world locations. The ability to dynamically

create the earth in a virtual format playable through a simple web browser would give people this

ability in a way that they never had before.

Even if we do learn how to build virtual worlds on today’s real world, we should not be

confined to mapping out present locations. There is extensive data about the geography and

layout of ancient cities and landmarks that would provide users a glimpse into the past and,

perhaps, would provide a valuable teaching tool for professors of antiquities and archaeology.

Dr. Fredrick is tapping into this potential by recreating ancient Pompeii, and by having his

students recreate scenes from ancient literature as video game levels. Often, myths and stories

8

were set in real locations, with certain fictional landmarks added to the region to give the stories

a sense that they happened in close proximity to the people who heard them. Some of the

geographical information about these regions has been lost over time. But, some has been

preserved or recreated by the mapping community. I can think of no better way to preserve

ancient (as well as present) geography, archaeology, history, and literature than to create

interactive reserves of this information so that users may one day be able to engage in a 3D

world that they may have only been able to read about previously.

A virtual real world could truly be at our fingertips. That is the motivation for this

project.

9

3. DESIGN, IMPLEMENTATION, AND RESULTS

3.1 Adding Real-World Terrain and Ground Use Textures to a Virtual World

At the beginning of this project, the goal of automating the building of 3D virtual worlds

from existing map data looked immediately attainable. I knew that map data existed in many

formats with free access to the general public. I also knew that high resolution map data was

available for a cost, like the USGS maps. The surprise came in the Virtual World course when I

discovered that none of this map data played well with 3D virtual worlds, including the Second

Life, Open Simulator, or Unity system.

For my Capstone project, I decided to work on this problem and recruited two other

students, Jonathan Holt and Andrew Tackett. We met with two CAST employees, Snow Winters

and Angie Payne, who provided us with a satellite image of the University of Arkansas campus

and the surrounding area, as well as a height map of the area in .raw format. Payne worked with

the Unity engine for a separate project and informed us that the Digital Elevation Maps (.dem

file format) that we were originally planning to use were not compatible with the Unity system,

and that only height maps in .raw format would work for our purposes. Winters and Payne

suggested that we learn how to use Vue and Sketchup because both are popular tools for creating

terrains for use in the Unity engine. We decided that this was outside of the scope of our project,

and that we would only use .raw height maps because they were the only ones we could use to

automate terrain generation in Unity.

The original way that we approached the Capstone project was an online search for any

projects that had done something similar to what we were trying to accomplish. This led us to

the aforementioned Terrain Toolkit as well as one other script which we found on the Unify

10

Wiki, which is a collection of knowledge and programs contributed to by Unity users. This

script was called the Terrain Importer [6]. It required that users input a series of data entries into

a .txt file and then place that file into the Assets folder of the Unity project in which they

were working. However, it provided no graphical user interface (GUI) for the user, which meant

that if the user did not correctly input some piece of data, they would have to go back to the text

file and check each line to determine where in the file the mistake had been made. Additionally,

the code itself was opaque. We analyzed the code for two weeks before determining that if we

could not understand its functions, then it would be prohibitively difficult to add further

functionality to that code. So, we abandoned that script.

In considering requirements and goals for our project, we determined that we wanted to

ensure that the user should have a simple, straightforward user interface for specifying

parameters they wanted to use to create the terrain. We also wanted the user to use a script in the

editor (which runs at game development time) to reduce the overhead of creating terrain at the

beginning of play mode.

This meant needing to learn how to create Unity editor scripts, which are scripts that act

on the objects present in a game scene before the user launches into play mode. The Terrain

Toolkit provided a way to learn how to script a user interface that would be visible from the

inspector of the terrain object to which our script would be attached. The toolkit was coded in

C#, a familiar language. The remaining task involved figuring out exactly what parameters the

user should specify in order to create all aspects of a given terrain.

To gain this knowledge, we decided to first use a manual process which involved using

Unity’s built-in functionality to create a terrain, applying a height map, and then adding a texture

to the terrain.

11

The first step in that process is creating a blank terrain. To do this, a Unity user goes to

the Terrain tab and selects Create Terrain, as shown in Figure 2 below.

Figure 2: Create Terrain Function

Figure 3: Blank Terrain in Scene View

This creates a blank terrain in the scene view as shown in Figure 3 above. The user then

returns to the Terrain tab and selects Import Heightmap – Raw…. This takes the user

to a file dialog box where they select a file in .raw format as shown in Figure 4 below.

12

Figure 4: Selecting the Height Map

The height map that CAST provided is in the campus_extents folder in the figure.

Next, the user inputs the dimensions of the height map. They input the byte order of the height

map, which we discovered was “big endian” for a Mac machine and “little endian” for a

Windows machine!
1
 The user also inputs the depth of the height map, which equates to the

number of bits per pixel for the image of the height map. Finally, the user inputs the dimensions

of the terrain that they wish to create. The x- and z-values for the terrain should match the

dimensions of the height map to ensure that the height map and the terrain will match up

1
 Big endian means the first byte is the most significant; little endian means the last byte is the

most significant.

13

perfectly. The y-value is the maximum height of the terrain in “world units.” Unity suggests

that each world unit is equivalent to one meter, which maps only granularly to the real world.

Figure 5: Manual Import of Height Map

The height map that we received from CAST had dimensions of 1025x1025, because

Unity requires height maps to be in a “power of two plus one” format for each dimension in

order to display properly in the system. Therefore, our terrain’s width and length dimensions

were 1025x1025. We estimated the maximum difference in height from the lowest point to the

highest point of the region to be approximately 70 meters. The result after this step is a bumpy

white terrain, as evidenced in the picture below.

14

Figure 6: Terrain After Height Map Import

As shown in Figure 6, there was some artifact with the .raw file that we imported that

affected the entire left edge of the terrain pictured. It read that edge of the height map as all

white values, leading to a “wall” on the terrain map. We never discovered what caused this

issue, though we suspect it occurred when we cropped the height map in Photoshop to fit the

“power of two plus one” constraint.

The next major step for a user wishing to create a realistic looking terrain is to add the

texture on to the terrain. This is done by highlighting the terrain in the Scene Hierarchy,

which opens up the terrain’s Inspector view. All of the Terrain Inspector’s tools are visible

in the screenshot shown in Figure 7 below. There are a multitude of brushes, from circular

shapes to obscurely used star shapes, which can be used to paint the terrain with textures, or to

elevate or compress the terrain heights down to user input levels. Users can even add vegetation

15

to the terrain in the form of grass and trees using these brushes. From this screen, the user must

switch to the textures tab in the terrain editor.

Figure 7: Terrain Object’s Inspector

16

Clicking on the Edit Textures button prompts the user to add a texture to begin the

process. Users then select the texture they wish to use through the following menu.

Figure 8: Manual Texture Addition

When the user selects the texture, also known as a splat map, they also input the tile size

of the texture. If the tile size is less than the size of the terrain that it is being applied to, Unity

will copy the texture to fill the terrain’s surface. After inputting this data, the texture is applied

to the terrain automatically.

Figure 9: Terrain After Adding Texture

17

The eagle’s eye view originally provided by the scene view does not provide an accurate

depiction of just how bumpy the terrain still is. So the next step for the user is to create a

directional light and a character controller. After doing this, they will be able to click the play

button for the scene, enter into play mode, and be able to move around in the world that they

have created. However, it is not a “pretty” place because the landscape is stepped, nor is this

stepped landscape easy to traverse.

Figure 10: Terrain After Manual Texture Addition

The user can, after exiting play mode, attach the Terrain Toolkit to the terrain object in

the scene view and run the smoothing algorithm provided therein to create a smoother landscape.

This is the process that we wished to automate with our Terrain Automation script. We

wanted to give the user one location, easily accessible through a terrain object’s Inspector, to

input all of the data necessary to create the terrain of their choosing. To recap, for this action, a

user would need the ability to alter the terrain object’s dimensions, choose the height map they

18

wanted to use for the terrain, input the height map’s dimensions, choose the texture they wanted

to “paint” the terrain with, and choose the tile size of that texture.

We used examples given by the Terrain Toolkit to create our GUI, which consists of

several labels and text fields where users could input the data pertinent to the terrain. This script

originally contained three buttons: two were used to open Unity-supported file dialog boxes (and

the button labels were appended with “…” to indicate the need for a user to select files), and one

was used to alter the terrain data of the terrain to which the script was attached and apply the

changes of the terrain data in the scene view. The result is pictured in Figure 11below.

Figure 11: Terrain Inspector with Terrain Automation Script

19

The button used for selecting the height map brings up a file dialog box which restricts

users to selecting only .raw formatted files, just like Unity’s built-in Import Heightmap –

RAW menu option. The button used for selecting the texture allows a user to select any file type

they desire, simply because of the sheer number of file types that Unity recognizes for images. If

the user selects a non-image file type, humorously, the texture of the terrain becomes a white

background with a large red question mark in the middle of the blank field. Whenever a user

chooses a file, the label to the left of the corresponding button changes to show the user the

complete file path of the file they have chosen. This serves as a warning to the user, in case they

have selected the wrong file and wish to change it before running the program.

Each of the text fields, which allow users to input all of the terrain, height map, and

texture dimensions, have a default value of 1, and require users to input integer values in order to

continue. If they do not, they receive an error message to input an integer value and the text

field is reset to 1.

When the user hits the Go button, the program changes the three-dimensional vector for

the terrain’s size to the three dimensional vector containing the user-input width, length, and

height of the terrain, accessible from the use of the writable value TerrainData.Size. It

also accesses the Terrain.heightmapWidth and Terrain.heightmapHeight and

sets those values equal to the corresponding user inputs. The script contains a 1-entry array for

the terrain data’s splatPrototypes array. We discovered that we were required to restrict

the array to one entry (else the program throws a null reference exception and fails to update the

terrain). In C#, arrays must be created with fixed lengths. But, for the purpose of this project,

we never wanted the user to be able to leave a portion of that array empty due to the

aforementioned null reference issue. So, for our script, the user must select a texture in order for

20

the rest of the script to run. The inputs they make for Texture Tile X and Texture

Tile Y are then applied to the TerrainData.splatPrototypes[0].tileSize two-

dimensional vector.

The user is further restricted when selecting their texture. In order to use a given asset if

the project is run as standalone, console, or web player build, it is required that the texture file

that the user chooses reside in the Assets folder of the project that the user is working in. We

discovered that this was necessary because we were originally using a different kind of file

transfer class supported by Unity, called WWW. This class allows the user to select any file

from either their own computer (with the phrase “file://” prepended to the file path given by

the user) or over the Internet (with the full Internet path beginning with “http://” given by

the user) to use for the texture of the terrain. Under this protocol, the terrain receives the correct

texture while in the scene view. However, whenever the user launches into play mode, the Unity

system assumes that the texture is a part of the project that is being launched. Because it is not,

the user is left with the terrain, height map intact and smoothed as expected, but with no texture.

So, we instead used the function call, AssetDatabase.ImportAsset, with the texture

stored inside the Assets folder of the project, to ensure that when the user entered play mode,

the texture would be there. The file path that is passed to this function call is the same file path

that is displayed to the left of the button which opens the file dialog box to select the texture

itself.

21

Figure 12: Input for Terrain Automation Demonstration

As mentioned previously, the height map we chose to use for this project was 1025x1025,

and the maximum height of our terrain was estimated to be 70 meters. So, after setting all of the

values accordingly as show in Figure 12 above, the user achieves the result pictured in Figure 13

below.

22

Figure 13: Terrain After Using Terrain Automation Script

The terrain generated by this function does not have a light source or a first person

controller yet. These are elements of the world that the user must still create, so the process to

create a playable world is not yet completely automated, but the steps for adding these elements

to the world is simple. To begin, the user opens Unity’s GameObject tab, and selects Create

Other. This brings up a variety of options for the user to select, but the light options are the

ones that are pertinent to this step.

23

Figure 14: Adding a Directional Light

Directional Light is the most commonly used light for lighting terrains, as it

emulates the effects of the sun on a terrain’s light and shadow nicely. After selecting, the user

can rotate it to whatever angle they please, so as to more accurately reflect a specific time of day.

24

For example, keeping the light pointed at a perpendicular angle to the terrain would simulate

noon.

After creating a light source, the user can add a character controller that will enable them

to move around the 3-D environment. To do this, the user can open the Assets folder of their

Unity Project, if they imported the Unity Standard Assets Package when creating

the project. Inside the Assets folder, there is another folder labeled Character

Controllers. From here, the user can select a first- or third-person controller. Since we

didn’t create an avatar, we chose to use the first person controller for our scene.

Now, when we enter play mode, we can move around the scene freely and see the difference

between the terrain that was not smoothed and the terrain we created using the Terrain

Automation script we developed, which is automatically smoothed.

Figure 15: First Person View of Automated Terrain

25

The difference is extraordinary. The terrain is no longer “stepped” and the only

troublesome locations for a user to traverse are where there are any extremely steep slopes. This,

still does not perfectly reflect the real world terrain, but is more realistic and gives the user the

ability to move around. From our experience, we believe the user will not notice minor

discrepancies between the real world’s terrain and the virtual terrain.

3.2 Adding Buildings

With the landmass created, the next step was to enable the user to add 3D building

models.

The already textured surface provided information on land use from an aerial view but,

like most satellite data, was not high resolution enough to be believable for an avatar walking

over the region. Farther portions of the terrain look very good, but the portions of the terrain

which were close to the first person controller are blurry, indistinct, and distorted.

Two approaches to adding buildings were tried: an automatic approach based on

recognizing buildings in texture maps did not succeed so a manual approach to placing buildings

was added instead. Both approaches are described.

In the first approach, a stylized map of the University of Arkansas was selected (see

Figure 19) because it was far simpler than the earlier land use textures and clearly showed

buildings, pathways, and green areas of campus.

26

Figure 16: Stylized University of Arkansas Map

The intention was for a user to provide a similarly simple color-coded map to the system,

which could then be presented to the users in RGBA format. The user would tell the system

what RGBA values would correspond with given textures (e.g., green pixels would represent

lanscaping, tan textures might represent concrete pathways). However, even the very basic

campus map selected for this project contained well over 6,000 different RGBA values, despite

the fact that the map appeared to have under ten colors. Most pixels at the edge of regions, when

viewed up close, were mixtures of two or more different colors. 6,000 color values, while far too

large for this project’s purpose, is really only a small percentage of the 16,777,216 possible

RGBA values. Still, although I could have manually smoothed the colors for the particular map

selected, this was not a workable approach for a simple script that is meant to expedite the

27

arduous process of building creation. An image smoothing process would have been needed to

simplify the map, followed by a region detection process.

So, instead, a second method was provided to add buildings into the 3D regions. Instead

of being automated, this method was manual and involved deloping a Building Definer

script. The code for the GUI was copied from the Terrain Automation script.

Figure 17: Default Building Definer Values

In this new script, there is no button to open a file dialog box. The user will be

responsible for making sure that they have a default object in the Resources folder inside of

the Assets folder of the Unity project. Any actual building models that they have will also go

into this folder. The code then calls the Resources.Load function, looking for a file in this

folder with the user-input Building Name. If the values present at default are unchanged

when a user presses the Go button, then a cube of size 1x1x1 (in Unity world units) is placed in

the world. The user is prompted for two values to determine where the building model or cube

will go. The Transform X and Transform Z values determine the pixel on the terrain

where the center of mass of the object will reside. Then, the code finds the y-value, or height of

the terrain, at that point, and raises the object to that point.

28

The user is also asked for the building’s width, length, and height. However, this is

somewhat of a misnomer. Due to a limitation in Unity, it is not possible to physically change the

size of an object in Unity without creating a complicated structure of meshes of vertices, and

moving those vertices. Instead, what the user is really inputting is the scale by which the chosen

object will be resized in each dimension. This is explained in the documentation of the code, and

will also be included in the README for the program.

An original aim for building model placement was to use CAST-generated building

models of UA campus buildings, which were created by utilizing LIDAR laser scans, which

would have included both the exteriors and interiors of the buildings. However, there were some

problems with using these models. First, the models were not in a file type which could be used

by Unity. They were in the Initial Graphics Exchange Specification (IGES) file format. This

file type did not export as .obj or .fbx files, which are easily usable by Unity. Second, they

were very high resolution models, each containing hundreds of thousands of polygons, which

Unity could not handle in play mode. Finally, these building models would not have included

any texturing, so they would have been the same plain gray color that a new terrain is when it is

created in the system, though they would have been the correct shape.

Due to this lack of useful models, another idea was to create buildings as “sugar cubes.”

The user is responsible for either creating textures for the “sugar cubes” and forsaking the

interiors of buildings, or will have to build their own models in some modeling software like

Cinema4D, Blender, Maya, Vue, or Sketchup. This process was beyond the automation

capabilities implicit in Unity.

The user is also required to estimate the x-y location at which they want to place the

center of their building, and the approximate scaling factors for their building. I experimented

29

with this process with acceptable results. For instance, to place a cube at the spot where Bud

Walton Arena is on our texturemap, I created a 1x1x1 cube, and placed it inside my

Resources folder, naming it Cube. I input the following data to specify the X-Y location:

Figure 18: Input Data for Building Definer Demonstration

When I clicked the Go button, the script found the file named Cube in my Resources

folder and placed the cube into the virtual world as shown in Figure 18 below. Bud Walton

Arena, like most buildings, is not perfectly square, so there some parts of the aerial view stick

out of the sides but the sugar cube provides dimensionality and a first approximation to real

buildings.

30

Figure 19: First Person View of “Bud Walton Arena” Cube

To demonstrate the process works, several sugar cube buildings were added to one area

of campus. This took 20 minutes to add 10 buildings, indicating that it is not hard to add

buildings. The user will have to rotate their building models or “sugar cubes” if they are not

oriented properly, but this is easily done. Initially, the user may have difficulty determining the

location and scale of the buildings as defined by the Building Editor, but this task becomes easier

with practice. The result of adding the sugar cube buildings is shown in Figure 20 below.

Figure 20: View of UA Campus after Adding Several “Sugar Cube” Buildings and One

Custom Building (Old Main)

The result of adding Old Main is shown in Figure 21 below. This building model was

taken from Google Warehouse and is available to anyone who wishes to use it. It is important to

note that the textures for the model must be imported into Unity before the model is imported.

They need to be in a folder named Textures, which should be located in the same folder as the

31

model. If these two conditions are not met, then the model, when it is brought into the scene,

will be bright pink.

Figure 21: First Person View of Old Main

While the result is not aesthetically exciting and the current effort means the user still

will need to put in considerable work to build realistic buildings, the current approach provides a

reasonably realistic elevation model, textures that define land use and that can be used as a guide

for placing buildings, roads, paths, and landscaping, and a first approximation of 3D buildings

which can be refined manually by a user.

32

4. CONCLUSIONS

4.1 Summary

This thesis builds on my senior capstone project. In the capstone project, the problem

faced involved automating the process of using real world elevation data of an area (in this case,

the University of Arkansas campus) and transforming it to a format for importing into the Unity

game engine so that it could terraform a region to automate the building of land areas in a 3D

virtual world. Also, aerial data from Google maps was overlaid to “texture” or paint land use

onto the 3D terrain. In this BS thesis, an additional capability was added to place “sugar cube”

buildings into the map to provide a basic skyline. It would still be a manual process for virtual

world designers to either texture the sugar cube buildings or replace the sugar cubes with more

realistic 3D buildings (as demonstrated). Thus, our capstone project coupled with this project

together automates some of the steps that are needed to automate the building of 3D virtual

world regions that represents real world places.

4.2 Future Work

A long term goal of the research would be to scale virtual worlds to represent an

augmented reality Earth and automate the process of building and maintaining the model always

up to date. The project reported herein represents some first steps but there are other steps that

will be needed.

 Currently, the Google map texture overlay or more stylized graphic campus maps provide

information a human can use to judge land use – roads, paths, buildings, and vegetation.

A human can use this information to manually place objects at these locations. A better

solution would be to use image understanding to identify some or all of these land use

33

features; then place objects at those locations. This would require figuring out the puzzle

of dynamically texturing color-coded maps. This might involve identifying regions of

nearly the same color to groups point together, then create meshes of the regions to build

objects.

 In these color-coded maps, buildings are often clearly defined. Currently the elevation

map we received from CAST does not yield flat areas where buildings should be, either

at ground level or building height level. Other height maps may account for building

locations. However, for the purposes of the examples provided in this project, it would

be useful if an algorithm were developed to flatten areas where user-defined building

definitions were to reside. This would add another dimension of realism to the world, by

diminishing the effect of the generated terrain on the buildings in the world.

 One way to create more realistic buildings semi-authomatically would be to develop a

script in Maya, one of the few modeling applications that have extended support for

scripting, that could take images of building floor plans or blueprints, along with other

pertinent information like heights of individual floors, and create 3D building models, to

be exported in either .obj or .fbx formats. These building models would then be

placed into the Resources folder of a Unity project by the user, who could then place the

buildings into their scenes. An alternative would be to use LIDAR data and a

LIDAR2model mapping (currently non-existant) to create buildings. The UA Facilities

organization has LIDAR data for many of the buildings on campus but no way to map the

data to a 3D model.

 After providing the world with buildings, it would also be useful to populate the areas

covered by vegetation including trees. Unfortunately, tree locations are not typically kept

34

in color-coded maps, or in any other sets of information about given locations.

Automating this step with models and locations of actual trees might prove challenging

for years to come but it seems possible in the near term to add a function to the

Terrain Automation script, along with corresponding text fields, that would enable

a user to define a irregularly shaped region (as opposed to restricting them to circles or

odd shapes given by the vegetation brush tools provided by the Unity system), and input

the density of randomly placed trees in the region. It would be necessary for users to

place individual trees for the creation of landscaped areas. But, the placement of trees for

more rural or wooded areas may be significantly less important, and could be automated

to aid in the creation of 3D virtual worlds covering these regions.

 It would also be interesting to add avatars representing their humans into 3D virtual

worlds representing real places automatically. Since many humans carry smart phones

and their cell phones can monitor their location, these avatars could be placed

approximately onto a terrain and their movements could be monitored and updated.

 Finally, it would be interesting if man-made objects could be automatically placed into

scenes. This could eventually be done as follows: first assume that future manufacturers

provided 3D models using a standard CAD format and that these models were available

in repositories like Google 3D warehouse. Then assume that all future retail objects had

RFID tags and smart phones were extended with tag readers. Then, as a person walks

around (and their locations are already tracked), their smart phone (augmented with an

RFID reader) registers the approximate location of tagged objects that could then be

automatically placed near or at their real world locations. Crowdsourcing this capability

35

with many humans could result in models that remained fairly up to date even when

object locations change.

A second direction still needed for building 3D virtual world terrain data from map data

is to build a web service that attaches to Unity to enable a user to select map data from a mapping

archive. This would make it very easy for any Unity user to create realisticly contoured virtual

spaces corresponding to real world spaces on Earth (or Mars).

A third direction (being pursued in a separate project by Andrew Tackett) would be to

enable an avatar to walk in any direction and to demand load regions as they approached those

regions. This would virtualize virtual worlds. This cabability is not available yet in 3D virtual

worlds even though it would be beneficial – at any given time, no avatars are visiting many

Second Life, Unity, or Open Sim regions but the regions are still “hydrated” and accessible on

their servers, leading to server farms with thousands of servers even though many of their

regions are idle.

A final direction for future research is the creation of games and activities using virtual

world platforms. Dr. Fredrick in the UA Classics Department is beginning development of a

game set in the Greek Theatre on the UA campus. The team involved will be modeling the

monument, scripting the game functionality, and providing textures for “sugar cubes” to add an

element of realism to each level of the game. Additionally, it will use the scripts that have been

created through my project to create and texture the terrain, and to provide functionality to place

the surrounding buildings in their proper locations. This game is an exciting application of my

project, and it is my hope that it can continue to be used by the Unity community as a model for

creating additional games and real-world simulations of industrial purposes of land usage, like

building planning.

36

4.3 Potential Impact

The ultimate goal of this ongoing project is to allow users to interact with the real world

via an augmented reality medium. I believe that we, as an educational community, are closer to

that intended goal as a result of this project. I also believe this project points the way for how

the GIS mapping community data can be useful in automating the creation of 3D virtual worlds

that can then be used for gaming including serious games, and that we will see this fusion of

communities in the near future.

37

REFERENCES

[1] T. Munroe, “SSX Developer Blog -- Owning the Planet,” posted: June 16, 2011

[Online]. Available: http://www.ea.com/ssx/blog/ssx-developer-blog-owning-the-planet.

[2] “Real Satellite Image to High Definition Terrain in Unity3d,” Unity Forums, posted: May

19, 2010 [Online]. Available: http://forum.Unity3d.com/threads/40870-Real-satelite-image-to-

High-defenition-terrain-in-Unity3d?p=262122#post262122.

[3] “How Virtual Yellowstone National Park in ScienceSim Was Made,” Fashion Research

Institute, posted: January 16, 2010. [Online]. Available: http://shenlei.com/2010/01/26/how-

virtual-yellowstone-national-park-in-sciencesim-was-made.

[4] “A Glimpse of the Future of OpenSim: Virtual Yellowstone National Park in

ScienceSim,” Fashion Research Institute, posted: January 24, 2010 [Online]. Available:

http://shenlei.com/2010/01/24/a-glimpse-of-the-future-virtual-yellowstone-national-park-in-

sciencesim.

[5] Terrain Toolkit, Unity 3D, 2012 [Online]. Available:

http://Unity3d.com/support/resources/Unity-extensions/terrain-toolkit.html.

[6] D. Deeds, “Jibe/Unity School Quick Start Guide -- First Edition,” Scribd.com, February

2012 [Online]. Available: http://www.scribd.com/doc/81798024/Jibe-Unity-School-Quick-

Start-Guide.

	University of Arkansas, Fayetteville
	ScholarWorks@UARK
	5-2012

	Virtual "University of Arkansas" Campus
	Seth Williams
	Recommended Citation

	ABSTRACT

