
University of Arkansas, Fayetteville
ScholarWorks@UARK
Computer Science and Computer Engineering
Undergraduate Honors Theses Computer Science and Computer Engineering

5-2011

An introductory educational board game for use in
early computer science education
Tyler Moore
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/csceuht

Part of the Other Computer Sciences Commons

This Thesis is brought to you for free and open access by the Computer Science and Computer Engineering at ScholarWorks@UARK. It has been
accepted for inclusion in Computer Science and Computer Engineering Undergraduate Honors Theses by an authorized administrator of
ScholarWorks@UARK. For more information, please contact scholar@uark.edu.

Recommended Citation
Moore, Tyler, "An introductory educational board game for use in early computer science education" (2011). Computer Science and
Computer Engineering Undergraduate Honors Theses. 7.
http://scholarworks.uark.edu/csceuht/7

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fcsceuht%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csce?utm_source=scholarworks.uark.edu%2Fcsceuht%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.uark.edu%2Fcsceuht%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csceuht/7?utm_source=scholarworks.uark.edu%2Fcsceuht%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu

An Introductory Educational Board Game
for Use in Early Computer Science Education

An Honors Thesis submitted in partial fulfillment of the
requirements of Honors Studies in Computer Science

By

Tyler Moore

2011
Computer Science

College of Engineering
The University of Arkansas

Table of Contents

I. Introduction

II. Previous Work

III. The Game

IV. Discussion

V. Conclusion

VI. Future Work

List of Illustrations

1. A game board just after set-up

2. A game board during play

3. A basic flow of gameplay

4. A mock-up of future materials to be included in the base

game

Abstract

Early computer science education should be necessary in high school

curricula, but often it becomes inextricably linked to the act of programming

instead of the study of the principles of computation. In order to divest computer

science from programming a new teaching medium is needed, and early

research into games as teaching tools shows some positive results when used

properly. In order to find a better way to teach early computer science concepts I

have designed and implemented a board game which illustrates and defines a

few necessary computer science terms and mechanics. I had reasonable

success in the classroom, with mixed results from two completely different

groups of students. The game seems effective, but my methods of teaching and

lesson plan surrounding the game weakened the gains I recorded. I plan on

reworking the base rules and developing new expansions which would increase

the playability of the game and simplify the methods for delivery of the computer

science material covered during a game session.

I Introduction

Outside of the classroom, games play an important social and cultural role

in the lives of adolescents because games can effectively gain and hold the

attention of their target audience for extended periods of time. As a user spends

more time with the game he or she becomes more familiar with the structure and

nature of the game, and this familiarity engenders a greater desire to explore the

game. This feedback loop, if tapped effectively, can be used to present useful

and educational material to the user in a positively biased way. Unfortunately, this

loop is rarely tapped effectively and exploration into games as teaching tools

seems to be very modest. Therefore, I endeavor to present a game designed for

table-top play which can be used inside and outside the classroom to impart

educational materials to audiences ranging from adolescent to young adult in a

fun and engaging way.

It is patently clear that it has become necessary to involve young children

in computer science education. Educators have already noticed a need to

increase exposure to computers in general schooling as computing becomes

more pervasive. Greater steps are necessary, though, to engender students with

cross-disciplinary problem-solving and logical thinking skills, skills which can be

developed through the study of the principles of computation. Unfortunately,

much of computer science can be difficult to grasp without a significant

background in math, logic, and language studies. In the case of the young

student, simply introducing rules-based games which encourage one to refine a

game-playing strategy can be an easy stepping stone into a discussion of

computation. Marking successful exposure could be as easy as placing the child

in a situation where the child presents himself or herself the question: "How

would a computer think about this problem?" For the older audience that has at

least some knowledge of math and language studies, using a game which

explores integral computer science concepts while demonstrating them at their

most basic level can ease the transition. Often, non-technical students shy away

from introductory courses in computer science because they force the student to

learn a skill which he or she feels is unnecessary, i.e. programming. This

hypothesis has been examined to good result at Carnegie Mellon. Instead of

using traditional introductory methods, researchers used Raptor, a flowchart

simulation tool, to steer the course away from hard programming and towards the

more ephemeral study of computation principles. [1] It is very interesting to note

that Carnegie Mellon researchers noticed a marked increase in enrollment in this

course due mainly to word-of-mouth advertising. [1] Non-traditional teaching

methods clearly have a place in the early curricula.

By framing the study of computation in the form of a game, the student

can aggregate a similar foundation skill set without the presence of a demotivator

like the study of programming. Students will respond more positively to the game

than the traditional coursework because the game is far more accessible a

medium than C-based programming languages. Also, students are more likely to

have prior experience with board games and digital games, especially non-

technical students, than with Pascal or Java. Also, games use universal rewards

as motivators and administer them on a short timescale which generates more

interest for the material in the context of the game than if the context were a

programming language. Because a game is more accessible, has wider appeal,

and has a more gentle learning curve than traditional teaching methods in early

computer science courses, I chose to design a board game which could be used

in the classroom to introduce basic and intermediate computer science concepts

to students interested in exploring principles of computation.

I have chosen to design a board game because board games are novel

and accessible, requiring little set-up to deploy in a traditional classroom setting.

A physical board game can be used in the classroom to generate initial interest in

the material with little expenditure of class time and teaching effort. The novelty

of the board game serves to draw in non-technical players as well as ingratiating

players which would otherwise be demotivated by the presence of a computer.

The game draws heavily from the game-like computer science concept of

a busy beaver developed by Tibor Rado. [5] Stated simply, a busy beaver is a

Turing machine with n+1 states, where one state is a Halt state and n is a

positive integer, that writes the greatest number of ones when compared to busy

beavers with an equivalent number of states to its tape before halting. In the

game I have designed each player operates a read/write head on a pseudo-

infinite tape, that is a simple closed loop around the game board's edge, and

endeavors to write the most number of ones to the tape by the end of the game.

Each player is given a number of resources which he expends slowly during

gameplay and which he may sometimes recover depending on the actions he

takes. The first player to exhaust the arbitrarily selected number of his resources

has entered his Halt state and ends the game. A player's turn consists of writing

some symbol to the tape, either a zero or a one, then a transition consisting of

moving the read/write head one, two, or three spaces, and then reading from the

tape. Depending on what symbol is read, some action is performed by the player

and then the next player's turn begins. At it's simplest level, the game plays like

Parcheesi, perennially a favorite board game among children. If the player

wishes, he may delve deeper into the nature of computability and the Turing

machine by using a more complex rules set. The game touches on other

computer science concepts like looping and algorithm design and

implementation, and very lightly on conditional statements as well.

II Previous Work

The use of games in education is a topic currently under exploration. Many

understand the gains a child can receive in the classroom when the material is

presented in an innovative fashion, particularly when it is structured as a

competitive game. There are a few elements which have been found to promote

student involvement when adopted: a well-defined system of rules, clear but

challenging goals, the attachment of fantasy to the student activity, progressive

difficulty levels, interaction with a high degree of student control, uncertain

outcomes, and immediate and constructive feedback. [3] When these axioms

were followed in a non-violent and non-gender-specific game designed to

educate, students proved to be more attentive during the instruction time and

scored better on tests designed to evaluate how well a student has learned the

material. [2] Also, both boys and girls perform equally well in an educational

environment focused on learning through games, even when the material covers

concepts which are traditionally gender biased, such as math or computers. [2]

This is an unexpected benefit. It is also interesting to note that students involved

in education through games report more positive views on the learning

experience than those which were exposed to the material in a more traditional

manner. It seems the only pitfall is that students expect the same striking

qualities from educational games as are exhibited in games played for fun on

their own time, i.e. rich visual environments, well-developed plot, etc. I believe

that the scope of the game can inhibit this final perceived flaw in educational

games. If the game is designed to be used as an introduction to a course, a

supplemental piece of the whole, then the stress to produce a rich, interactive

experience can be lessened without diminishing the gains in motivation and

gender equality which game environments provide.

Some attempts have been made to introduce course environments which

negate the overhead that the C family of languages carries. Currently, early

computer science courses tend to focus on language study paired with the study

of basic data structures and algorithms. The student first learns a programming

language, and then learns how to express fundamental ideas of computer

science in that language. There are some who believe that this overhead is

detrimental to the student and the school environment in terms of retention and

motivation. Students outside of the traditional computer science programs often

find the thought of programming distasteful, so they shy away from computer

science introductory courses. Professors at Carnegie Mellon University have

tried to eliminate this most distasteful part of the introductory course by focusing

on the computer science and excising the language study. Carnegie Mellon's

notable attempt to introduce computer science in a palatable manner for non-

majors focused on the principles of computation through a program called

Raptor. [1]

Raptor's objective seems to be solely to enhance the material, not to take

class time away from the goal of the course just to learn the syntax and

semantics of a full-featured programming language. The researchers note that

little additional time was spent learning the tool after a comparatively brief

tutorial. Another attempt at Carnegie Mellon includes the adoption of Alice in

early computer science courses, a language which abstracts much of the

obfuscating syntax and simply allows a user to semantically define a "program"

using logical animations and on-screen tools. [4] I believe these alternate

avenues of early computer science education succeed because the language of

the course, the basic educational units, so to speak, is designed to enhance the

material, not to detract from it or to confuse the student as it seems full-featured

programming languages often do.

III The Game

The design of the game focuses on a number of computer science

concepts. Players become familiar with basic algorithm design as they are

exposed to the game. Each player must focus on a strategy and implement that

strategy during play in order to win. This decision-making process is tied closely

to basic algorithm design and selection. Through playing the game, students will

naturally begin to ask the question: is it more efficacious to execute one series of

instructions or another? Players also encounter basic data structures like stacks

and queues. More advanced students can look past the playing of the game and

examine the concepts behind its build, concepts like the Turing machine and the

existence of the Busy Beaver class of Turing machines. This examination

culminates in the addressing of basic concepts of computability and some basic

questions of computer science, like "What makes a computer a computer?"

These concepts are implemented purposefully throughout the game, some

bluntly teaching students about computer science, and some obliquely

introducing the concepts. Because the goal is very clearly defined, students have

to use critical thinking skills to examine the current position of the board relative

to the position of the board in the case of winning play. They must make the

board more and more like their winning case using a very strict turn structure and

order. This critical thinking and strategy very closely approximates the computer

scientist's early struggle to solve a problem. Given a small set of tools and a

particular set of known quantities, evaluate the initial position and design a path

to an acceptable final position which will render the desired solution. During

gameplay, players organize cards on the board using basic data structures like

stacks and queues. Cards placed in a stack fashion are readily available to the

next player that visits that stack, but cards placed in a queue fashion may not be

available for some time. This physical arrangement can help early students more

readily visualize these basic data structures when applications are called for in

the future. Because each player controls the read/write head of a Turing

machine, it is an easy step to show the student the function of a transition table,

the function which they provide in the game. Each turn, the player must decide

what transition to make and what symbol to write, essentially creating a transition

table on-the-fly for their Turing machine. More advanced players could even write

down a few transitions at the beginning of the game and simply follow their tables

instead of making the decision as the game develops.

Here is a complete transcription of the rules set at the time of the public

playtesting session:

How to win: Be the player with the most ones pawns on the board when the

game ends.

How to end the game: Exhausting your ones pawns, or attempting to read a

zero card from a space without zero cards gives each other player one more turn

before the game ends.

How to start the game:

1. Deal a number of zero cards to each space based on the length of

the game desired, reserving a minimum of 12 cards.

2. Deal three zero cards to each player from the reserve, face down.

3. Randomly determine which player is the starting player.

4. Each player chooses a starting vertex, beginning with the first

player.

5. The first player begins his first turn and play proceeds clockwise.

Diagram of a player's turn:

• Phase 1, the Write phase: Write output to the tape

• Phase 2, the Transition phase: Transition on the tape

• Phase 3, the Read phase: Read input from the tape

Writing:

• If the player wishes to write a one, he must replace the pawn, if

any, currently on the space with one of his own color.

• If the player wishes to write a zero, she must remove the pawn

currently on the space, if any, and then that player executes the text

of a zero card in her hand. Finally, the player places the chosen

zero card from her hand onto the space. She will place it on top of

or underneath the pile on the space depending on the text of the

card.

• If the player wishes to write a blank, he places nothing on the space

and may change his direction on the tape.

Reading:

• If the input read is a one, draw and execute a chance card.

• If the input read is a zero, draw the top zero card from the pile on

your current space.

Transitioning:

• On a player's turn he may choose to move 1, 2, or 3 spaces in his

current direction.

Zero Cards:

Zero cards, in general, employ innocuous individual effects which may or

may not be helpful in a given situation. A couple of typical cards might look like:

• "Move 10 spaces in your current direction."

• "Read the top zero card from your current space."

• "Place a pawn of your color on your current space."

Zero cards may help you end the game more quickly by exhausting

resources, or may help you extend the game by conserving your available

resources. These effects are varied among the designed zero cards.

Chance Cards:

Chance cards, in general, fall into 1 of 5 categories: Global Positive,

Global Negative, Individual Positive, Individual Negative, and Neutral. Chance

cards affect a larger portion of the game and are generally stronger in effect than

zero cards. Global Positive effects generally assist all players in a positive

manner, by either giving them a choice of effects or by giving a universally good

effect. A Global Positive chance card could look like the following:

• "All players may place a pawn of their color on their current space,

or a space adjacent to their current space."

• "All players may write a zero card from their hand. If a player

chooses not to, he may read a zero card from his current space

instead."

Global Negative cards will generally foul players' plans by forcing the return of

resources or by unexpectedly shifting the state of the board. A Global Negative

chance card could look like the following.

• "All players must recover a pawn of their color from the board."

• "All players must place a zero card from their hand in stack fashion

onto their current space. Any player with no zero cards in their hand

must read a zero card from their current space."

Individual Positive cards will generally either foul an opposing player's plans or

help the current player expend or regain resources. An Individual Positive card

could look like the following:

• "Place a pawn of your color on your current space, or force an

opponent to remove a pawn of their color from play."

• "Read the top zero card from the pile on your current space, then

you may write a zero card to your current space (executing the text

as usual)."

Individual Negative cards will generally help an opposing player or foul your

current board position. An Individual Negative card could look like the following:

• "Select an opponent with the least number of pawns in play. That

opponent may place a pawn on their current space."

• "Recover a pawn of your color from play. Select a zero card from

your hand and write it to your current space."

Neutral cards will generally perform actions which are neither overtly positive or

negative, but affect all players equally. A Neutral card could look like the

following:

• "Move each Read/Write head 5 spaces in its current direction."

• "Starting with the active player, each player reads a zero card from

their current space and then writes a zero card to their current

space."

Illustration 1: A game board after set-up

Illustration 2: A game board during play

Illustration 3: A basic flow of gameplay

IV Discussion

The goal of any educational effort is to engage its target audience and to

produce a real and measurable difference in that audience. Traditional education

methods are effective, but succumb to known pitfalls again and again. Students

aren't motivated to learn the material or the structure of the course of learning

isn't intriguing and fails to capture the imagination of the student. These two

problems stand out among a countless sea of others. Research into using games

as teaching tools has revealed that games close the gap between the genders,

even in hard science and math courses, courses traditionally dominated by

males, and that games motivate students to consistently improve, tying them

more closely to the material by sparking their interest and setting their

imaginations alight.[3] Leveraging powerful tools like competition to grab students

and motivate them to truly internalize the material is the key to improving

education efforts across the board.

From playtesting various iterations of the rules with players that have

notable experience with board games I can say that a game with 3 or 4 players

typically lasts 30 minutes or less. A game would most often end with the

attempted reading of a zero card, and slightly less often with the exhaustion of a

resource. There seemed to be a very slight advantage in the favor of the first

player because he or she is likely to have one more turn than the other players.

This advantage is usually negligible, and is offset by the simplicity of the board

game. Often, one extra turn won’t change the state of the game drastically.

V Analysis

I was able to bring the game into two high school classrooms. Group A

consisted of fourteen students, mostly upperclassmen. I presented the game,

allowed them to play a game to completion, and gave the pre- and post-test in a

total of forty minutes. Group B consisted of twenty students, mostly freshmen,

and I had ninety minutes to present the game, allow them to play the game, and

to finally assess their learning. In order to determine if any learning had occurred

I devised a very simple pre- and post-test for the students to answer to the best

of the ability. I asked a small number of questions to establish a baseline for their

knowledge of the field, and then asked them to self-report how knowledgeable

they were about computers and computer science. After seeing the students'

responses, I believe that the content of the test definitely displays my neophyte

status in conducting a knowledge survey. The seven questions I asked were:

• What is computer science?

• Define the term: Algorithm

• Give an example of an algorithm.

• Define the term: Data Structure

• Give an example of a data structure.

• On a scale from 1 to 10, how familiar are you with computers?

• On a scale from 1 to 10, how familiar are you with computer

science?

Group A gave the following number of satisfactory answers to the questions 1

through 5 on the pre-test:

• 1 of 14 gave a satisfactory answer

• 1 of 14 gave a satisfactory answer

• 2 of 14 gave satisfactory answers

• 4 of 14 gave satisfactory answers

• 2 of 14 gave satisfactory answers

The average responses to questions 6 and 7 were 6.5 and 2.2 respectively.

Group B gave the following number of satisfactory answers to the questions 1

through 5 on the pre-test:

• 1 of 20 gave a satisfactory answer

• 1 of 20 gave a satisfactory answer

• 1 of 20 gave a satisfactory answer

• 1 of 20 gave a satisfactory answer

• 1 of 20 gave a satisfactory answer

The average responses to questions 6 and 7 were 5.7 and 1.2 respectively.

I think that Group B’s inexperience contributed greatly to the disparity

between the two playtest groups. It is interesting to note that although some

students in both groups couldn’t define what an algorithm was or what a data

structure was, they could sometimes give a valid example of one, and vice versa.

Also, no student in either group successfully answered all of the questions on the

pre-test satisfactorily.

After giving the pre-test I began to teach the groups about how to play the

game. Teaching went smoothly with Group A. Few questions were asked and few

mistakes in gameplay were made. They seemed to pick the game up fairly

quickly and appeared to be fairly well entertained by it. One of the four active

games was dominated with students refusing to play the game by the rules,

instead they ignored the reference sheet provided and only through gentle

nudging by both me and their regular teacher were they convinced to restart and

play the game as outlined in the rules. The three other games ran smoothly with

few incidents. Teaching with Group B was more rocky. With 6 additional students

I was teaching 5 active games instead of 4, and they were spread more uniformly

across the room, making it difficult to engage with more than one or two games

at a time. After the first few minutes of gameplay I began to circulate through the

room to observe individual games more closely, correcting play mistakes and

rules misinterpretations, something which was unnecessary with the first group

for the most part. Group A tended to self-report play errors and be more forward

in asking questions about proper gameplay. Group B tended to talk amongst

themselves about personal goings-on if there was confusion about gameplay

instead of gaining my attention and asking me the proper course of action. This

forced me to be much more proactive in my teaching style, moving physically

from active game to active game in order to maintain discipline and insure the

students were staying on task. I believe the tendency of Group B to get

sidetracked was caused by their younger age, their increased number, and their

distribution in the classroom. I also believe that the lengthened time period to test

the students and teach and play the game is a product of the same. It is

important to note that Group A did not, for the most part, choose their own

seating, while Group B did.

After the games were finished (or nearly finished in the case of one active

game in Group B), I had the students complete the post-test consisting of the

exact same 7 questions. Here are Group A’s compiled results on the second test:

• 1 of 14 gave a satisfactory answer (No change)

• 5 of 14 gave a satisfactory answer (4 more satisfactory

answers)

• 6 of 14 gave a satisfactory answer (4 more satisfactory

answers)

• 5 of 14 gave a satisfactory answer (1 more satisfactory answer)

• 4 of 14 gave a satisfactory answer (2 more satisfactory

answers)

The average responses to questions 6 and 7 were 5.7 and 2.6 respectively. This

is a decrease of .8 units in question 6 and an increase of .2 units in question 7.

Group B’s compiled results on the second test:

• 1 of 20 gave a satisfactory answer (No change)

• 14 of 20 gave a satisfactory answer (13 more satisfactory

answers)

• 15 of 20 gave a satisfactory answer (14 more satisfactory

answers)

• 3 of 20 gave a satisfactory answer (2 more satisfactory

answers)

• 5 of 20 gave a satisfactory answer (4 more satisfactory

answers)

The average responses to questions 6 and 7 were 5.6 and 1.5 respectively. This

is a decrease of .1 units in question 6 and an increase of .3 units in question 7.

The majority of satisfactory answers were regurgitated from my briefing, a

specific example being that I used a recipe as an example of an algorithm and 10

of the 14 satisfactory answers from Group B gave a recipe as their example of an

algorithm. There were a number of students that were able to give a different

example, citing the phases of the game as an algorithm, something which I think

is very intuitive. It is interesting to note that the self-reported computers

knowledge actually dropped in both cases, which could be an example of random

reporting based on the students, but which could also be a direct result of

learning during the game. The students learn a little about the game, find it

slightly daunting, if a little entertaining, and it exposes a wealth of things that they

may not have been aware of previously. This could negatively influence the self-

reported numbers as shown, though it is purely speculation on my part. There

was a slight increase in both cases of self-reported computer science knowledge,

which, because of the meekness of the increase, is probably just for my benefit.

In addition to asking them to answer questions on the quiz, I also asked

for written and verbal feedback about the game and the experience. The two

most often received comments from these anonymous surveys were that the

game was entertaining and that the rules were too dense. I think that a lot of the

perceived density comes from the fact that I tried to include both the computer

science concepts and the game rules in a single briefing at the beginning of my

time with the students. This perceived density probably results from a conscious

decision I made to establish and remain faithful to the domain of computer

science in the game rules and player reference sheet language. Instead of calling

the player-tokens pawns or pieces, I only refer to them as Read/Write heads.

Similarly, the plastic markers were only referred to as ones and the cards were

only referred to as zeroes. I believe that this context switch from their normal

denotations of these words presented a huge and wholly unnecessary barrier to

understanding. After discussing and playing the game with a colleague that has a

minor in education I’ve drawn up a plan of action regarding how to teach the

game and the science in the same small time period. The primary suggestion

was to separate the two learning hurdles, loading the learning of the game into

the beginning of the period, and loading the computer science concepts and

language into a debriefing period after the game. The debriefing period is the key

to experiential learning, it is the time when the student reflects on his experiences

and internalizes the learned material. For the instructor, it is the time to draw

connections between what the student has been presented and what the student

was expected to learn. Implicit learning occurs during the playing of the game,

explicit learning occurs during the debriefing. The critical bridging of the concepts

learned during the game and then learned during the debriefing will reinforce for

the student any learning that may have occurred. In this way, I hope to improve

any playtesting sessions I run in the future. Also, in future visits to the classroom I

would eliminate the first question of my pre- and post-test altogether. Even those

students that gave a satisfactory answer, two out of a total of thirty four tested,

were still quite unsure of themselves. I didn’t address the question directly in

either my briefing or during the play of the actual game itself, so it was a

nonstarter and only served to confuse or dishearten most students. I would

instead add questions regarding the student’s exposure to other board games,

asking when the student last played a board game, what that game was, and

how often they play board games would have helped me analyze what presented

the greatest barrier to learning more about computer science, the rules of the

game, or the complexity of the presented material. In regards to the morale of the

students, the general reaction among them during the learning process and while

playing the game was positive. The students seemed, for the most part, attentive

and excited to play the game. There were a small number of students that did not

enjoy the exercise, neither the briefing nor the act of playing the game itself. In

regards to the game itself, I noticed a number of issues with the current rules

concerning mass-teaching and also complexity of play. The large number of piles

and cards and tokens floating around the board confused some players, and

slowed the games down quite a bit. It might take a few seconds for a player to

straighten a pile after every turn, just to insure it didn’t become confused with any

other adjacent piles. This can be corrected easily without changing much of the

core rules, but will require additional development time to correct balance issues

before it could be playtested in a public setting again.

V Conclusion

I believe the future of education lies in games. They motivate, educate,

and ease traditional learning biases in a way that current educational methods

have failed to prevent or reduce. I hope to use these fundamental attributes to

explore the applications of games in the classroom and in the home to initiate

learning. Even abstract games with pasted-on themes could be useful in teaching

younger children about particular concepts. Essentially, my game is such.

VI Future Work

I believe the next step is to revise the rules as follows for future playtesting

sessions. Instead of dealing the zero cards to the edge of the board, there is a

central pile from which zeroes are read and to which zeroes are written. This

accomplishes a number of things. It reduces the number of components the

players must keep track of, it ties the game closer to Tibor Rado’s Busy Beaver

because the tape will begin the game blank, and it decreases set-up and tear-

down time. Also, Instead of using the zero cards to track whether a space

currently has a zero or a one written to it, there will be a small token which will

mark the space with the appropriate symbol. A player’s one marker will be able to

occupy the new token by resting in a central hole. If there is no token on the

space, then it is blank. One side will be black with a white hole in the middle, this

is the zero side. The other side will be red with small black writing at the top and

bottom that reads “One”. The red side will have a white hole in the middle into

which the player's ones marker is placed. This, too, accomplishes a number of

things. It continues to reduce the set-up time, it simplifies the substance of the

game, and it acts as a simple and elegant visual marker which can quickly be

used by a player to appraise the current state of a particular space on the board.

It also eliminates a particular prickly part of the rules concerning what is read

when a player encounters a space. I intended there to be a precedence, first try

to read a one, if there is no one, try to read a zero, if there is no zero, then end

the game. During playtesting, this provided no educational value and served only

to confuse the players when I attempted to explain it. Perhaps a modular

expansion to the game can introduce conditionals like this.

 It also will change how the game will end, perhaps lengthening the game since

an end condition will be entirely nullified. This could be positive, but more likely it

will be negative. I have not yet come up with another end condition for the game

to replace the exhaustion of zero cards condition.

In addition to these rules changes, I would implement those changes to

the curriculum I listed above, principally the stripping of the reference sheet of

computer science domain terms and the separation of the teaching of the game

from the teaching of computer science through a briefing/debriefing model. The

largest body of work before me is the construction of additional supplemental

expansions to the base game that would increase the complexity of the game

itself (without hindering it's educational value) and also introduce more complex

Illustration 4: A mock-up of the Zero/One token.

computer science material (without hindering it's entertainment value.) Some

features which I have considered implementing in such an expansion or

expansions include the design of a set of states by the players (in order to more

closely mimic a Turing Machine) before the game, and the inclusion of new cards

which would allow players to edit their transition function during the game.

Another feature which I do not touch on directly in the base game is the notion of

looping and of basic conditionals. Although these two things are inherent in the

structure of the game, really in the structure of any game, they do not have good

conceptual parallels during play and could be too difficult to address during a

debriefing after the basic game with new players. It would be interesting to

include a loop module which would allow players to manipulate the central data

structure using a loop concept, or perhaps implement another supplementary

board which would act as an optional “side-game” while the other players

continue to interact with the main board. Simple conditionals can easily be slotted

into the existing game through more complex zero cards and chance cards.

These cards might read as simply as this: “If X, then Y, else Z.” Boolean logic, a

topic of study necessary when addressing more complex conditional statements,

would be a much more complex addition, though, and might be outside of the

scope of even an expansion of the base game.

References

[1] T. Cortina, “An introduction to computer science for non-majors using

principles of computation,” SIGCSE Bulletin, pp. 218–222, May 2007.

[2] M. Kebritchi, A. Hirumi, and H. Bai. “The effects of modern mathematics

computer games on mathematics achievement and class motivation,”

Computers and Education vol. 55, pp. 427–443, 2010.

[3] M. Papastergiou, “Digital game-based learning in high school computer

science education: Impact on educational effectiveness and student

motivation,” Computers and Education vol. 52, pp. 1–12, 2009.

[4] W. Dann, and S. Cooper, “Education Alice 3: Concrete to Abstract,”

Communications of the ACM, vol. 52, no. 8, pp. 27-29, Aug. 2009.

[5] A. Perrone, and G. Ferraris. "Intelligent Versus Random Beavers—an Agent-

Based Approach in Facing the Busy Beaver Problem," Metroeconomica,

vol. 55, no. 2/3, pp. 332-344, May/Sep. 2004.

	University of Arkansas, Fayetteville
	ScholarWorks@UARK
	5-2011

	An introductory educational board game for use in early computer science education
	Tyler Moore
	Recommended Citation

	tmp.1441052285.pdf.dPEfT

