
University of Arkansas, Fayetteville
ScholarWorks@UARK
Computer Science and Computer Engineering
Undergraduate Honors Theses Computer Science and Computer Engineering

12-2008

Steganography in IPV6
Barret Miller
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/csceuht

Part of the Computer Engineering Commons, and the Software Engineering Commons

This Thesis is brought to you for free and open access by the Computer Science and Computer Engineering at ScholarWorks@UARK. It has been
accepted for inclusion in Computer Science and Computer Engineering Undergraduate Honors Theses by an authorized administrator of
ScholarWorks@UARK. For more information, please contact scholar@uark.edu.

Recommended Citation
Miller, Barret, "Steganography in IPV6" (2008). Computer Science and Computer Engineering Undergraduate Honors Theses. 22.
http://scholarworks.uark.edu/csceuht/22

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarWorks@UARK

https://core.ac.uk/display/72841396?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fcsceuht%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csce?utm_source=scholarworks.uark.edu%2Fcsceuht%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarworks.uark.edu%2Fcsceuht%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.uark.edu%2Fcsceuht%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csceuht/22?utm_source=scholarworks.uark.edu%2Fcsceuht%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu

Steganography in IPv6

Steganography in IPv6

A thesis submitted in partial
fulfillment of the requirements for the degree of

Bachelors of Science in Computer Science

By

Barret Miller

December 2008
University of Arkansas

ABSTRACT

Steganography is the process of hiding a secret message within another message

such that it is difficult to detect the presence of the secret message. In other words, the

existence of the secret message is hidden. A covert channel refers to the actual medium

that is used to communicate the information such as a message, image, or file. This

honors thesis uses steganography within the source address fields of Internet Protocol

Version 6 (IPv6) packets to create a covert channel through which clandestine messages

are passed from one party to another. A fully functional computer program was designed

and written that transparently embeds messages into the source address fields of packets

and decodes embedded messages from these packets across IPv6 networks. This

demonstrates the possibility of a covert channel within a protocol that will eventually be

the default Internet protocol. This channel could be used for a malicious purpose such as

stealing encryption keys, passwords, or other secrets from remote hosts in a manner not

easily detectable, but it could also be used for a noble cause such as passing messages

secretly under the watchful eyes of an oppressive regime. The demonstration of the

covert channel in itself increases the overall information security of society by bringing

awareness to the existence of such a steganographic medium.

 v

ACKNOWLEDGEMENTS

The research and work for this thesis was supported by a grant from the Honors

College at the University of Arkansas in the form of the Honors College Research Grant.

I thank Dr. Dale R. Thompson for all of his help and knowledgeable encouragement and

for the use of equipment and space in the Security, Network, Analysis, and Privacy

(SNAP) Lab throughout my work on this thesis. I also would like to thank Dr. Craig W.

Thompson and Dr. Russell Deaton for serving on my committee and all of my professors

at the University of Arkansas without whom I would have never have had the foundation

on which to stand in order to reach this far. Additionally, I would like to thank Janne

Lindqvist for his presentation at the DefCon 2007 conference that gave me the idea for

this thesis.

Finally, I want to thank my family for encouraging me to work hard in order to

achieve my dreams.

 vi

TABLE OF CONTENTS

ABSTRACT .. iv

1. Introduction .. 1

1.1 Problem .. 1

1.2 Objective .. 2

1.3 Approach .. 2

1.4 Potential Impact ... 4

1.5 Organization of this Thesis .. 4

2. Background .. 6

2.1 Key Concepts ... 6

2.1.1 The Architecture of an IPv6 Packet .. 6

2.1.2 IPv6 Addresses.. 7

2.2 Related Work ... 9

2.2.1 Stegonography .. 10

2.2.2 IPv6 ... 15

3. Approach .. 22

3.1 High Level Design ... 22

3.2 Encoding Messages through MAC Addresses (Passive Injection) 24

3.2.1 Long MAC Encoding .. 25

3.2.2 Short MAC Encoding ... 29

3.3 Encoding Messages through Packet Creation (Active Injection) 32

3.4 The Decoding Process ... 34

 vii

4. Implementation .. 37

4.1 Platform and Environment ... 37

4.2 Running the Program ... 38

4.2.1 Message Mode .. 40

4.2.2 Decode Mode .. 44

5. Results ... 49

5.1 Scenario A: The MAC Encoding and Decoding Process in Action 49

5.2 Scenario B: The Direct Encoding and Decoding Process in Action 57

6. Conclusions ... 65

6.1 Summary .. 65

6.2 Risk Mitigation and Countermeasures ... 65

6.3 Contributions ... 67

6.4 Future Work ... 68

References .. 70

A. Appendix Configuration Options .. 71

 viii

LIST OF FIGURES

Figure 1: IPv6 packet .. 7

Figure 2: Standard MAC Address ... 17

Figure 3: EUI-64 Identifier ... 18

Figure 4: Stateless Address Autoconfiguration Process ... 18

Figure 5: Long MAC Encoding Process ... 28

Figure 6: Short MAC Encoding Process ... 31

Figure 7: Direct Encoding Process ... 34

Figure 8: Physical Connection Topologies ... 38

Figure 9: Message Mode Process Flow .. 41

Figure 10: Decode Mode Process Flow .. 46

Figure 11: MAC Encoding: User A (Sender) - Step 1a .. 50

Figure 12: MAC Encoding: User A - Step 1b... 51

Figure 13: MAC Encoding: User B (Receiver) - Step 1 ... 53

Figure 14: MAC Encoding: User A - Step 2a ... 54

Figure 15: MAC Encoding: User A - Step 2b... 54

Figure 16: MAC Encoding: User B - Step 2 ... 55

Figure 17: MAC Encoding: User B - Final Steps ... 56

Figure 18: MAC Encoding: Resulting Message File and Contents 57

Figure 19: Direct Encoding: User A (Sender) – Program Output 60

Figure 20: Direct Encoding: User A - Packet Capture ... 61

Figure 21: Direct Encoding: User B (Receiver) – Program Output 62

 ix

Figure 22: Direct Encoding: User B – Packet Capture ... 63

Figure 23: Direct Encoding: Resulting Message File and Contents 64

1. INTRODUCTION

1.1 Problem

In an increasingly connected world, more and more devices are being networked

together than ever before. This trend will continue with not only more laptop and

desktop computers needing to be able to talk to one another around the world, but

handheld PDAs, cell phones, cars, and, eventually, even toasters, refrigerators, and other

household items. Most networked devices today are connected through Internet Protocol

version 4 (IPv4), a layer three protocol of the International Standard Organization's Open

System Interconnect (ISO/OSI) model. IPv4 provides for a theoretical possibility of two

raised to the thirty-second power or a little over 4 billion possible addresses, but for

practical reasons of off-limits address ranges, the actual number of IPv4 addresses

available for use to the world is about 3.7 billion, and these are rapidly running out.

Internet Protocol Version 6 (IPv6) is the “next generation” Internet protocol that

is set to slowly merge with and ultimately replace IPv4. According to a recent article [1]

from Ars Technica, if the world continues at its current rate of adding 170 million IP

addresses per year for new hosts that are connected to the Internet, people will exhaust

the current address space allowed for by IPv4 in 7.5 years. This is the main driving force

behind the push to switch to IPv6. IPv6 allows for astronomically1 more addresses than

people could possibly ever use, which shows that the Internet Engineering Task Force,

the group that guides the development of protocols that run the Internet, does not want to

run into the “limited address space” problem again in the future. Switching to IPv6 is

1 2128 = 3.4 x 1038 possible addresses.

 2

necessary and inevitable. However, society must also be aware of the risks and otherwise

unintended possibilities that accompany the adoption of any new protocol or technology,

and IPv6 carries at least one significant unintended possibility of allowing for a covert

channel to be created and exploited using the built-in mechanism of the source address of

the header.

1.2 Objective

The objective of this thesis is to demonstrate the existence of a covert channel

inherent in the IPv6 protocol that provides the ability to steganographically transmit

secret messages between parties.

Contributions of this research include:

• Exposure of a vulnerability in the Internet Protocol version 6 (IPv6). The

protocol IPv6 will become the standard protocol for the Internet in the future.

• Demonstration that the vulnerability can be exploited.

• Implementation of both the transmitting and receiving programs to create a

covert channel over IPv6.

• Discussion of possible ways to mitigate this threat.

1.3 Approach

As pointed out in [2], the IPv6 specification [3] along with the privacy extensions

for the stateless address autoconfiguration feature of IPv6 [4] introduce the possibility of

embedding a significant amount of secret data into the source address field of an IPv6

packet header that will likely be undetectable to an uninformed observer. The source

address is a 128-bit field, which is intended to contain the universally unique Internet

 3

address of the originator of the packet. The privacy extensions proposed for IPv6 rely on

the random generation of a 64-bit portion of the 128-bit source address, and it is the

expectation that the built-in randomness will create a shield of entropy, which should

effectively hide any enclosed message.

The approach taken in this thesis was to demonstrate this vulnerability by writing

a program that used the interface id portion of the source address fields of IPv6 packets as

a covert channel in which to transmit secret data. This program can both transmit and

receive secret data in the source addresses of IPv6 packets in two different and important

ways.

The first way the program can be configured to work is to embed the message by

changing the MAC address of the originating host to the secret message. With this

configuration, the secret message will simply be embedded into all packets that would

leave the originating host during normal network use as long as the MAC address of the

network interface that contains the secret message is used to connect to an IPv6 network.

This works because of the default way IPv6 source addresses are derived from the MAC

address of the network interface device used by the host.

The second way the program can embed messages is by explicitly creating IPv6

packets containing the message in the source address field, which are then injected into

the network. The packets transmitted in this manner would not be transmitted as part of

the normal networking activities of the host and is, therefore, slightly less stealthy, but

can, in some cases, be more practical.

 4

The way the software decodes the received messages depends upon the way in

which the message was transmitted. All parties involved in sending and receiving the

secret message ahead of time must know the method of transporting the message.

1.4 Potential Impact

The immediately apparent potential impact of this thesis is that the application

developed in conjunction with the thesis could be used for noble or malicious purposes.

One malicious way in which it could be used is to steal information such as passwords,

encryption keys, or other sensitive data from a remote host in a way not easily detectable

to the victim. In nobler applications, it could also be used by a covert agent behind

enemy lines that needs to get sensitive information out to the headquarters secretly, or by

political dissidents of an oppressive regime that need to operate secretly.

The far-reaching impact is that the awareness of the possibility of this covert

channel increases the overall information security of society as well as the general

knowledge of the workings of the protocol that will become the default for the Internet.

1.5 Organization of this Thesis

Chapter 2 covers the essential background knowledge required for a full

understanding of the work presented in this thesis including IPv6 and steganography.

Chapter 3 describes in detail the approach and methods used to complete this thesis.

Chapter 4 details the specific implementation of the encoding and decoding program.

Chapter 5 presents tangible results of the system in the form of screenshots of the

program sending and receiving data, and packet captures from sending and receiving

hosts on an IPv6 network. Chapter 6 summarizes the conclusions of this work and

 5

describes possible future work and extensions of this project. The Appendix contains a

full list of options and details of how to use the program provided with this thesis.

 6

2. BACKGROUND

2.1 Key Concepts

In order to get a full understanding of the scope of this thesis and how the

implementation functions, one must first understand some of the background concepts.

The first concept to understand is the architecture of the IPv6 packet as a whole and the

format of the address fields of the IPv6 packet. It is also important to understand the

ways in which this address can be obtained or calculated by hosts on an IPv6 network.

The second concept is the area of sending secret messages, called steganography, and

covert channels.

2.1.1 The Architecture of an IPv6 Packet

 An IPv6 Packet Header consists of the fields shown below in Figure 1: IPv6

packet. The exact use of all the different fields is unimportant for a full understanding of

this thesis, but it is useful for the reader to be able to visualize the packet header.

Important fields are the destination and source address fields, which allows routers to

direct the packet to its destination and provide a return address to that destination. In

addition, there is a version field indicating IPv4 or IPv6 and the next-header field, which

specifies the layer above the current IP layer, such as TCP or UDP.

 7

From http://upload.wikimedia.org/wikipedia/commons/thumb/3/32/IPv6_header_rv1.svg/410px-IPv6_header_rv1.svg.png

Figure 1: IPv6 packet

2.1.2 IPv6 Addresses

IPv6 Addresses are 128-bit long fields in the packet header. It is useful for

humans to represent binary IPv6 addresses with text that is easier to comprehend than the

underlying ones and zeros, and this method is detailed in Section 2.1.2.1. These

addresses are broken down into different classes each with its own purpose defined in

Section 2.1.2.2. The specification for the IPv6 addressing architecture [5] makes a

distinction between a node and an interface in that a node may have multiple interfaces

each with a different address, and this specification states that any interface can be used

as an identifier for the node. The addressing architecture specification [5] also mandates

that each interface have at least a single Link-Local unicast address, which is defined

below, but it also allows single interfaces to have multiple addresses of all types defined

below.

 8

2.1.2.1 Text Representation

IPv6 addresses are represented in a meaningful way to humans by eight

quadruples of hexadecimal (hex) digits separated by colons for a total of 32 hex digits

representing 128 bits. For example, an IPv6 address can be written as

fe80:0000:0000:0000:021a:70ff:fe14:8ac0. For addresses such as this that contain a

string of consecutive zeros, they can be written in a shorthand notation as

fe80::21a:70ff:fe14:8ac0. In other words, all zeros in the chain can be omitted from the

address with two colons in their place. This can be done for one and only one chain of

consecutive zeros within a single address. It is therefore incorrect to write an address

such as the following (in longhand notation) fe80:0000:0000:0000:021a:7000:0000:00c0

as the shorthand fe80::21a:7::c0. Only one of the two strings of consecutive zeros may

be chosen to leave out in the shorthand representation.

2.1.2.2 Types of Addresses and Their Scope

In IPv6 there are three main classes of addresses. The first class is called Unicast,

which means that this type of address represents the unique (within a subnet prefix)

address of a single interface on a network. There are two important subtypes of unicast

addresses defined in [5] and they are: Global Unicast defined by all prefixes not

designated for the other unicast address subtypes and Link-Local unicast defined by the

prefix fe80::/10 [5].

The second class of addresses is multicast addresses, and these are designed to

replace the notion of a broadcast address familiar from IPv4. Packets sent to a multicast

address are delivered to all interfaces that are part of the multicast group, and a router

will refuse to forward any packets addressed to a multicast group to which the router has

 9

no route. This mitigates denial of service type attacks and networks being flooded with

broadcast packets [6]. A multicast address of particular importance is the Link Local

Multicast Address, FF02::1, which must be queried in order to discover other hosts on a

link-local connection before they can be addressed specifically.

The third class of addresses is anycast. A packet sent to an anycast address is

forwarded to any of a defined group of addresses that the router deems to be closest

according to the routing protocol in use. In other words, a packet sent to an anycast

address is guaranteed to be delivered to one in a group.

Other important addresses are the localhost or loopback address (denoted by ::1),

which just a self-reference address, and the unspecified address of all zeros (denoted by

two colons ::), which is used by interfaces that do not already have an address to indicate

the absence of an address. Addresses representing the all-routers multicast groups are

FF01:0:0:0:0:0:0:2, FF02:0:0:0:0:0:0:2, and FF05:0:0:0:0:0:0:2, where 1 indicates

interface-local scope, 2 is link-local scope, and 5 is site-local scope.

2.2 Related Work

This section covers the topics of steganography and IPv6 as they relate to this

thesis. Specifically, steganography in TCP/IP will be discussed along with

steganography in images and sound files. Two pieces of the IPv6 protocol, Stateless

Address Autoconfiguration (SAA) and the privacy extensions to SAA, are crucial to the

work done in this thesis, and they are discussed here as well.

 10

2.2.1 Stegonography

Steganography literally means “covered writing” in Greek, and there are many

ways of performing steganography, which may or may not involve the use of a computer.

For example, a commonly known form of steganography is performed with lemon juice

and paper. A pen dipped in lemon juice is capable of writing an invisible message that

can only be made visible again with the application of heat to the paper. The existence of

a secret message written in such a fashion would have to be known to the intended

recipient ahead of time, and the purpose of this secrecy is to protect the participating

trusted parties against any third party that may intercept the message in transit. With the

message secretly embedded into the cover medium, the participating parties can be

reasonably secure in the knowledge that any third party is unlikely to discover the hidden

message. In the case of the lemon juice on paper, the secret message might be written in

between lines of a message written in normal ink that is meant to be seen. The ink

message could be innocent or deliberately wrong information designed to lead an enemy

down a false path of disinformation.

Another analog steganographic scheme would be the one in [7] that discusses

Greek historian Herodotus’s account of King Darius of Susa writing a message on the

shaved head of a courier and allowing the hair to grow back. Once enough hair grows

back to hide the message, the courier could be sent on a cover mission with an outwardly

visible purpose concealing the true secret one.

Just as computers have come a long way in helping humans create more secure

cryptographic methods, so too have computers enhanced the ability of humans to create

increasingly harder to detect steganographic schemes. Often, modern digital

 11

steganography is completely undetectable to humans without the aid of a computer even

for the intended recipient of a message. Steganography can also be combined with

cryptography for an extra layer of security in the case that the existence of the secret

becomes known to a third party. Sometimes, steganography is desirable in place of or on

top of cryptography for the simple fact that cryptography itself arouses suspicion. The

assumption is made that if data is encrypted, it must be something worth hiding and

therefore, valuable. This could draw unwanted and unjustified attention. In addition, in

[7] Dunbar asserts that “many governments have created laws that either limit the

strength of cryptosystems or prohibit them completely.” So, steganography could be

used in place of cryptography or to conceal cryptography in such situations.

The following methods are modern steganographic techniques that deal with

digital data in various ways. At the most basic level, these techniques rely on “redundant

data or noise” [7] contained within the data that is being manipulated.

2.2.1.1 Steganography in Images and Sound Files

Many current steganographic methods rely on the weakness of primary human

information sensors such as ears or eyes. Data representing an image or sound file can be

modified in subtle ways that cause the resulting file, which is actually different from the

original, to appear or sound identical to the original as far as the unaided senses can tell.

Images have plenty of redundant data to work with. Depending on image format,

the image can have more of less “bandwidth” for embedding the secret message. Images

use numerical values to represent types of light that appear at each pixel, and different

image formats allow different ranges of values for each pixel. The more values that are

allowed, the more bandwidth that image has, and the easier it is to change a value without

 12

the change being detectable to the human eye. For example, if there are 15 shades of

green that can be used, then the contrast or difference between two shades will be much

more easily detectable than if the same progression of change in colors were spread

across 150 shades. This is what provides the redundant data needed for the covert

channel.

The same concept exists for digital sound files, which are also lists of data values

that represent samples taken from an analog sound wave over time. The more digital

samples that are taken from the analog wave, the more accurately the digital map

represents the actual sound, and the more bandwidth that exists for the secret message.

As [7] notes, the human auditor system is very good at detecting subtle differences in

power and frequency of sound, but the weakness of the human ear comes in its inability

to accurately distinguish different sounds that occur simultaneously.

A common method for embedding secret data into both of these mediums is least

significant bit (LSB) encoding, which embeds a bit of secret data into the LSBs of

“blocks” of data. How many bits a “block” consists of is arbitrary (it depends on the

medium), but the more bits or information per block, the least likely that modifying the

least significant bit of that block will change it’s meaning. In other words, that LSB in a

longer block has less weight. Sometimes several LSBs are used [7]. The number of

blocks that a file contains multiplied by the bits used per block is the capacity in bits of

the covert channel.

Methods such as these of hiding secret data in images and sound files are not ideal

for two reasons. One reason is that these types of files have a somewhat predictable

pattern of the “noise and redundant data”. Through the aid of computers, statistical

 13

analysis can be performed to detect the presence of steganography in the medium, thus

defeating the purpose. The second, and probably more practical, reason is that images

and sound files are often run through compression algorithms as they are transferred

around different locations and users, and these compression algorithms are designed to

alter or eliminate the redundant and noisy data that is being used as a covert channel. If

the channel is destroyed, the message is not transmitted.

2.2.1.2 Steganography in TCP/IP

Various schemes exist for embedding secret messages into the TCP/IP stack. A

few discussed here involve IPv4 and TCP and not IPv6, although some exist [8]. In [8],

the authors identify all of the practical places within TCP/IP headers wherein secret data

can be hidden. In the IP header, the identified fields are the Type of Service (ToS), IP

Identification (IP ID), IP Flags of Do Not Fragment (DF) and More Fragments (MF), IP

Fragment Offset, and IP Options fields. In the TCP header [8] there is the TCP Sequence

Number (primarily the Initial Sequence Number or ISN) and the TCP Timestamp fields.

A program called Covert-TCP identified in [8] and an extension of it called Nushu are

capable of embedding secret data into TCP ISNs and IP IDs.

The previous work suffers from one or more basic flaws as far as the use for

steganography is concerned. First, the normal values of the fields are well-known,

meaning that anything other than this default value is likely to arouse suspicion.

Secondly, the fields exhibit predictable characteristics on the network which a

steganographic scheme would destroy. Finally, some of the above fields are extremely

limited in bandwidth. For example, IP packets rarely contain anything in the IP Options

field, so any data in there would be suspect. Similarly, the Type of Service field is not

 14

even used except in modified versions of IPv4, and therefore, anything other than a zero

in this field would be an anomaly.

The work in [8] discusses TCP ISNs, which are used in the Covert-TCP program

as a secret channel that the program simply fills with the secret data. However, as [8]

also shows, this field exhibits predictable characteristics because plaintext patterns are

easily predictable and would cause the sequence numbers to appear out of the ordinary.

Nushu builds upon Covert-TCP by encrypting the data that it embeds into the ISN field,

but as [8] notes, even the encrypted data looks out of the ordinary, because ISNs,

although meant to be unpredictable, adhere closely enough to a pattern that anything

anomalous can be noticed. The main reason for this is that the ISNs are not random.

They also claim that there is a flaw in the DES encryption performed by Nushu that adds

to the problem [8].

2.2.1.3 Contrast of Current Schemes to This Scheme

In [7] the author quotes Fabien A.P. Petitcolas as saying “in a perfect system, a

normal cover should not be distinguishable from a stego-object, neither by a human nor

by a computer looking for statistical patterns.” Even though the steganography discussed

in Section 2.2.1.1 and Section 2.2.1.2 cannot be detected by the unaided human, often it

can be detected by statistical analysis and pattern searching with the aid of a computer.

One thing Petitcolas failed to mention, more than likely as an implicitly understood fact,

is that in a perfect steganographic system, the covert medium should also be such that it

is not easily destructible. The TCP/IP steganography discussed above, for the most part,

possesses this trait insofar as it uses fields that remain unmodified in transit, but the same

 15

confidence cannot be given to the steganographic techniques involving image and sound

files.

In contrast to the methods above, it is conjectured that the method of

steganography implemented in this thesis, when used with encryption, will create stego-

objects that are indistinguishable from unmodified cover objects, because the unmodified

objects, by meticulous design, should not conform to any predictable pattern according to

the IPv6 standard. In addition to this benefit, IPv6 source addresses will never be

intentionally modified in transit from sender to receiver by any node that is behaving as

designed to according to the IPv6 protocol, thus preserving the covert channel.

2.2.2 IPv6

IPv6 has been gaining ground recently as IPv4 addresses move increasingly closer

to exhaustion. For example, China, driven by the increasing industrialization of their

enormous population, has been moving most quickly in their adoption of IPv6 as the

primary internet infrastructure. The protocol has been designed, with the problem of

address shortage in mind, to incorporate addresses of 128-bits, which allows for

340,282,366,920,938,463,463,374,607,431,768,211,456 possible addresses. Only the

relevant pieces of information pertaining to IPv6 are detailed in this thesis. For a

complete description, see the IPv6 specification [3].

2.2.2.1 Stateless Address Autoconfiguration

Stateless Address Autoconfiguration, defined in [4], is one of the processes by

which interfaces on an IPv6 network automatically generate their addresses without the

need for manual configuration. This process of address acquisition by nodes on a

 16

network is performed when complete control over addresses on a network is not desired.

The only constraint that this mechanism imposes on addresses is that they be unique on

the subnet and are not any of the reserved addresses or in any of the reserved ranges of

addresses. This process involves calculation done by the node on which the interface

resides as well as information received from a router on the network. The two pieces of

information combine to form a complete address for the interface.

The portion of the source address generated by the node that houses the interface

is the interface identifier portion of the address, and this will usually be the lower 64 bits

derived from a link layer address such as the media access control (MAC) address of an

Ethernet card using Modified EUI-64 format. The higher leftmost bits of the address

(usually 64) comprise the subnet prefix, also referred to as the network identifier, subnet

identifier, network portion, or subnet portion of the address. The router that the interface

is connected to supplies the network identifier portion of the address through Router

Advertisements, which the router broadcasts on a regular interval. All nodes connected

to a link on a network are required to generate a link local address that provides point-to-

point connectivity whether or not any router is present. This address is generated

automatically as soon as a node is connected to a live link with another node by

generating the interface identifier portion of the address and combining it with the

constant link-local prefix FE80::/10.

One way the interface identifier portion of an address can be constructed for

Stateless Address Autoconfiguration is by creating an IEEE EUI-64 identifier from an

IEEE 48-bit MAC address detailed in [5]. In this method, the MAC address is split in

half with the 24 bits of the company id on the left and the 24 bits of the vendor supplied

 17

id on the right. The hexadecimal value of 0xFFFE is then inserted between the two

halves to form a 64-bit identifier. For example, a MAC address of 11:22:30:AA:BB:CC

would be split up into the company id of 11:22:30 and the vendor id of AA:BB:CC, and

the value FFFE would be inserted in between these to form an interface id that looks like

the following in hex: 1122:30FF:FEAA:BBCC. In addition to the insertion of 0xFFFE,

the second least significant bit is inverted, so the above would become

1322:30FF:FEAA:BBCC (the second hex digit changed from 1 to 3). To make this

clearer, the figures below show the process taken directly from [5]. Figure 2: Standard

MAC Address shows a standard MAC address with the company bits defined by the

letter ‘c’ and the vendor specific bits defined by the letter ‘m’. The ‘0’ character

indicates global scope and is known as the universal/local bit, while the ‘g’ indicates the

individual/group bit [5]. Each letter represents a single bit.

|0 1|1 3|3 4|
|0 5|6 1|2 7|
+----------------+----------------+----------------+
|cccccc0gcccccccc|ccccccccmmmmmmmm|mmmmmmmmmmmmmmmm|
+----------------+----------------+----------------+

Figure 2: Standard MAC Address

Figure 3: EUI-64 Identifier below shows what the interface identifier derived from the

above MAC looks like when the FF FE (or binary 11111111 11111110) value is inserted

in the middle transforming the identifier in Modified EUI-64 format. Note that the

universal/local bit is inverted as part of the process to indicate universal scope, but could

also be set to a ‘0’ to indicate local scope. This bit is to allow development of future

protocols that can take advantage of the universal scoped interface identifiers, according

 18

to [5], but nodes are not required to verify that an identifier with this bit set is actually

unique.

|0 1|1 3|3 4|4 6|
|0 5|6 1|2 7|8 3|
+----------------+----------------+----------------+----------------+
|cccccc1gcccccccc|cccccccc11111111|11111110mmmmmmmm|mmmmmmmmmmmmmmmm|
+----------------+----------------+----------------+----------------+

Figure 3: EUI-64 Identifier

The top of Figure 4: Stateless Address Autoconfiguration Process below shows

the process graphically. The bottom half of the figure shows the random number method

used for the privacy extensions discussed in Section 2.2.2.2.

From http://media.arstechnica.com/articles/paedia/IPv6.media/autoconfig.png

Figure 4: Stateless Address Autoconfiguration Process

The steps of the Autoconfiguration process are as follows:

1) A host generates its link-local address.

2) The host then attempts to verify if any other host on the link is using the generated

address in a process called Duplicate Address Detection by sending Neighbor

 19

Solicitation packets to the generated address. If another host is using the address,

it will respond to the query of the asking host with a Neighbor Advertisement

message. The time that a node waits for a Neighbor Advertisement response and

the number of retransmissions of Neighbor Solicitations is configurable by

network administrators.

3) If the address is not unique, then Autoconfiguration cannot continue.

4) If the address is unique, then it is assigned to the generating host.

 After the above steps are performed, the next part of the process involved with

generating addresses with scope other than link-local are specific to end hosts and do not

apply to routers. Hosts will look for Router Advertisements that contain the network

prefix to use when generating a global address along with the lifetime values of the

address. Lifetime values specify how long an address is valid or preferred before

becoming invalid or deprecated, respectively. The different lifetime values are defined

with greater detail in [4]. Alternatively, hosts do not have to wait around for a Router

Advertisement to be broadcast. They have the option to send out Router Solicitation

packets to the all-routers multicast group, as mentioned in Section 2.1.2.2 above,

indicating that they want a Router Advertisement to be broadcast by the router. The host

subsequently performs Duplicate Address Detection in the same manner as described

above after it generates the global address using the same interface identifier as in the

above process with the subnet prefix supplied in the Router Advertisement.

 20

2.2.2.2 Privacy Extensions to Stateless Address Autoconfiguration

The Privacy Extensions to Stateless Address Autoconfiguration came out of a

legitimate concern for privacy of the individuals using hosts connected to IPv6 networks.

Specifically, the prospect of tracking user activity across the network over time is a very

real possibility when a universally unique identifier such as a MAC address is used by

Stateless Address Autoconfiguration to derive the interface identifier portion of a node’s

address. If a portion of the address of an interface is always the same and is universally

unique, then activities of the user using the interface can be tracked and correlated no

matter where the user is geographically, whether the user connects to different subnets, or

the time span between consecutive uses of the network. In [9], T. Narten et al. were

concerned with this problem pertaining to user’s privacy on the network and proposed a

mechanism to get around it. This new mechanism is to allow nodes generating addresses

for their interfaces to use a random number instead of converting a MAC address to an

EUI-64 formatted identifier. The process is illustrated in contrast to the MAC derived

process in Figure 4: Stateless Address Autoconfiguration Process above. All other

aspects of Stateless Address Autoconfiguration remain the same, except for the process

by which nodes generate the interface identifier portion of their address. In addition, for

nodes using this random identifier portion, a temporary preferred lifetime (or temp-

prefered-lft as found in the system file) specific to these temporary addresses is specified

by the administrator of the node using the privacy extensions. The temporary preferred

lifetime specifies when the address for the node is to be changed to the next random

number generated by the node. This value defaults to 86400 seconds or 24 hours, but can

be changed by the system administrator. The exact process by which this occurs is

 21

unimportant for this thesis, but can be found in [9]. It is, however, relevant to the time

interval that the program for this Thesis uses to send out messages on as described in

Section 4.2.1.

The privacy extensions solve the privacy and activity correlation problem, but

they also introduce the possibility of the covert channel within source addresses of IPv6

packets by allowing the interface identifier to be generated with a random number.

Because the interface identifier can be expected to be random, it cannot be expected to

conform to any predictable value or statistical sequence. In other words, if a third party

inspects the source address field of a packet, it cannot easily be said to appear out of the

ordinary, because any value is fair game. This is key to the work in this thesis.

 22

3. APPROACH

3.1 High Level Design

The approach taken by this thesis to embed messages into IPv6 sources address

uses two methods, each of which has its advantages and its disadvantages depending on

the application. The first way that messages are embedded into the source address fields

of packets is through the media access control (MAC) address, which is detailed in

Section 3.2. The MAC address is like a serial number for a network interface. The

second method is to directly create packets using a native Perl framework built for that

purpose, and this method is described in Section 3.3. The program written for this thesis

is able to decode messages from packets that have been encoded using either of the

described methods, and, in fact, the decoding process depends upon the method of

encoding used.

For both methods of embedding the message, the bits of the ASCII characters that

make up the message are used as the input to the steganographic medium, henceforth

referred to as “entity,” which means either a MAC address or the interface identifier of an

IPv6 address. For example, the bits for the message ‘invade normandy tomorrow. dawn’

are represented in hexadecimal notation as:

696e76616465206e6f726d616e647920746f6d6f72726f772e206461776e

In this representation, each two hex characters represent a byte of the message for a total

of 30 bytes. This format of the message represents the raw bytes that underlie the human

readable ASCII characters, and these bytes are used to create either entity specified as the

 23

steganographic medium, because both of these entities can be represented by hex digits2.

One can see this correspondence quite easily by looking up 0x69 and 0x6e on an ASCII

chart and noticing that these two numbers represent the letters ‘i’ and ‘n’, respectively.

For the purpose of decoding the messages encoded using one of two different schemes

(see Section 3.3 below), the length of the original message in bytes is calculated and

appended to the beginning of the message between ‘<’ and ‘>’ characters before it is

actually encoded to the interface identifiers. So with the byte length information

appended, the above 30-byte message actually becomes:

<30>invade normandy tomorrow. dawn

For MAC encoding, the process is slightly different. The string ‘<eNd>’ is appended to

the end of the message creating the string below:

invade normandy tomorrow. dawn<eNd>

This message is then either encrypted with the Blowfish block cipher algorithm, or the

original text is used directly to create the series of entities that will hold the message. In

either case the hex representation of the text or cipher text is used to create the list of the

entities specified, whether they are MAC addresses or interface identifiers.

 If the number of bytes available in the message cannot be divided evenly into the

desired medium as six bytes each for a normal MAC address (five bytes for the short

version) or eight bytes each for IPv6 interface identifiers, random bytes of data are

created and concatenated to the remaining message bytes in order to create another

2 Of course, this hex representation is just a way of making things more readable on the human level. What

is really going on is that the binary digits that represent the characters in the message are being directly

used to create either MAC addresses or IPv6 source addresses.

 24

complete entity. At most, five random bytes are created for normal MAC encoding (four

bytes for short encoding) and seven bytes are created for interface identifiers in the worst

cases, because in all these cases, there is one leftover byte for the message that will not fit

into the previous entity. In the case of the above message, there are 34 total bytes when

the ‘<30>’ byte-length information string is appended to the original message. When

divided by eight for IPv6 interface identifier encoding, there are two bytes left over, so

six random bytes must be created to build an additional eight-byte interface identifier.

However, for MAC addresses, the message ends up containing 35 total bytes with the

‘<eNd>’ string included. For long MAC encoding, 6 bytes per MAC are used, and this

divides into five full MACs with five bytes leftover. One extra random byte must be

generated to complete the last MAC. However, when divided by five for the alternative

short MAC encoding, there are no bytes left over, so no random bytes must be created to

tack on to the end of the message.

3.2 Encoding Messages through MAC Addresses (Passive Injection)

MAC addresses are composed of 48 bits (six 8-bit bytes) and can be represented

by six octets (two hex digits each) separated by colons such as in the following:

AA:BB:CC:11:22:33

Using the MAC address method, a list of MAC addresses is created from the bytes in the

original message. However, MAC addresses have the constraint that the least significant

bit of the first octet in the address be zero unless it is a multicast MAC address. In other

words, it must be even for normal MAC addresses belonging to a single interface. This

produces difficulty if one wishes to be able to encode an arbitrary message into the

medium, because the message may have to be changed to create a legal MAC address.

 25

The solution taken in this thesis is to allow the encoding into MAC addresses in two

different ways. The first way is described in Section 3.2.1, while the second is described

in Section 3.2.2. In both cases, the method of sending out the message is call passive

injection because of the passive manner in which it works. As described above, when a

network host has not elected to use the privacy extensions of IPv6, the interface identifier

portion of IPv6 addresses is created using the MAC address of the interface on the IPv6

network. For this reason, when the MAC address of an interface is changed, the interface

identifier portion of the interface’s IPv6 address is automatically changed. As long as the

MAC is set to one of the entities representing a piece of the secret message, this piece of

the message will be embedded implicitly into the interface identifier portion of the source

address of all packets leaving the interface of the host on the network. This happens

regardless of the details, such as source and destination ports and destination addresses,

that the application or higher level protocol uses as long as the interface containing the

piece of the message as its MAC address is used.

3.2.1 Long MAC Encoding

The first way is to encode the message into all eight octets of the MAC and

change the least significant bit of the first octet to a zero, if it is a one. The problem with

this approach is that the receiver of the message has no way of knowing whether this bit

was changed and that the message was altered as a result. This is different from the EUI-

64 conversion process described in Section 2.2.2.1 that simply inverts the seventh bit of

the first octet regardless of whether it is a one or a zero, and decoding based on the EUI-

64 bit process is just a matter of always flipping that seventh bit back. If this MAC

encoding method is used, the receiver must decode two messages for every one IPv6

 26

address they receive that is part of the message stream. It is then solely up to the

discretion of the user to decide which decoding is correct. In some cases, such as simple

text messages it is easy to tell which is the correct decoding, but in some cases, it is not

so easy. An example of legal MAC addresses encoded from the message ‘invade

normandy tomorrow. dawn<eNd>’ using this method is below. Note that the actual bytes

of this message in hex (divided into 6-byte pieces for clarity) are:

696e76616465

206e6f726d61

6e647920746f

6d6f72726f77

2e206461776e

3c654e643e

These bytes turn into the MAC addresses:

68:6e:76:61:64:65

20:6e:6f:72:6d:61

6e:64:79:20:74:6f

6d:6f:72:72:6f:77

2e:20:64:61:77:6e

3c:65:4e:64:3e:9b

As can be seen, it takes six MAC addresses to fully encapsulate the 35-byte message,

with the appended <eNd> string. It is important to note that because no encryption was

used, each octet of each MAC address represents an ASCII character of the message, not

including the ending ‘9b’ byte on the end of the last MAC, which is just random data

created to make a full six-byte MAC address. In addition, it can be seen that the first byte

of the message 0x69 was changed to 0x68 to be compatible with standard MAC address

form. If it had stayed 0x69 it would have resulted in a multicast MAC address, which

 27

would be invalid. The first octets of the other MACs were already even, and they remain

unchanged.

 After this list of MAC address is created from the message, the interface specified

by the user will have its MAC changed to each of these new MACs on a time interval

also specified by the user. When the MAC address of an interface connected to an IPv6

network is changed, and the node that the interface is connected to has not elected to use

the privacy extensions of IPv6, the interface identifier portion of that interface’s IPv6

address is then changed automatically by the operating system. This is done in the

Modified EUI-64 format as described in Section 2.2.2.1. Because of this process, the

message embedded into the MAC address is embedded into the interface identifier of the

IPv6 source address. The figure below depicts this process.

 28

Figure 5: Long MAC Encoding Process

 29

3.2.2 Short MAC Encoding

 An alternative method of encoding the secret message to MAC addresses

is to do so using only the lower five bytes of the MAC, thus avoiding the problem of

having to force the first octet to be even. Obviously, this method more often than not

requires more MAC addresses to be created to contain the entire message. Accordingly,

this method has less bandwidth than the previous one, but it is more straightforward and

easier decode.

 For this method, a clean octet, which is defined as an octet whose least

significant bit is zero, is created for the first octet of every MAC that contains a piece of

the message. For the same message “invade normandy tomorrow, dawn<eNd>” the

bytes in hex remain the same as above, but this time the bytes are presented in 5-byte

blocks for clarity:

696e766164

65206e6f72

6d616e6479

20746f6d6f

72726f772e

206461776e

3c654e643e

The list of MAC addresses encoded using this method is below:

be:69:6e:76:61:64

9a:65:20:6e:6f:72

7a:6d:61:6e:64:79

c6:20:74:6f:6d:6f

04:72:72:6f:77:2e

 30

fe:20:64:61:77:6e

e2:3c:65:4e:64:3e

The first octet of each MAC is just a randomly generated number. It is notable that

using this scheme requires one more MAC address to be created than the normal six-octet

encoding in order to encapsulate the entire message. This can be significant depending

on the time interval between MAC changes that one uses to send out messages. The

choice of MAC encodings is up to the user of the supplementary program and depends on

their specific circumstances, namely whether it is more important to have an easier

decoding process, or whether it is more important to get a message out quickly.

After the list of MACs has been generated, the target network interface has its MAC

changed to be each of these on the predefined time interval set up by the user. In the

same manner as in the Long MAC Encoding, the IPv6 source address is derived

automatically by the operating system as the Modified EUI-64 format of the MAC.

Figure 6 below provides a more detailed look.

 31

Figure 6: Short MAC Encoding Process

 32

3.3 Encoding Messages through Packet Creation (Active Injection)

Another method used to send messages in the source-address covert channel of

IPv6 is called Active Injection. This method is referred to as active because packets with

spoofed source addresses containing the secret message are created by the program and

injected into the network solely for the purpose of sending the secret message, whereas in

the passive mode, no packets are actually created by the program at all. However, in the

passive mode, packets are created by other applications that simply use the IPv6 source

addresses with the embedded message set by the stego program for an interface. In active

mode, the actual address of the interface connected to the network never changes at all.

IPv6 packets are constructed by the program in pieces from the link-layer to the

application layer, with most properties of these packets configurable by the user, and

injected into the network on a time interval set by the user. An example of a property not

directly configurable by the user in these packets is the IP source address, which will

obviously be set to a piece of the secret message specified by the user. Other properties,

however, such as source and destination port, destination address, data for the layer-seven

data portion, and much more can be specified by the user in many different

configurations that can help to make the packet look more legitimate on the network the

user is connected to.

Using this method, instead of creating a series of MAC addresses to embed the

messages into and then setting the target interface’s MAC address to these new MACs in

series, the supplemental program will encode the message (or cipher-text if encryption is

used) directly into a series of IPv6 interface identifiers. These interface identifiers, as

discussed in Section 2.2.2.1, are 64 bits long as opposed to the 48 bits of MAC addresses,

 33

so it will on average take less of the entity, into which pieces of the message are

embedded, to send out the full message. The network portion of the address (the first 64-

bits), also discussed in Section 2.2.2.1, can be derived from pre-existing prefixes of

interfaces on the node that are connected to the IPv6 network.

It is important to note, though obvious, that if a reply such as a TCP

acknowledgement is sent out by the receiver of these packets with spoofed source

addresses, routers on the network will attempt to route the reply from the receiver to the

spoofed source address, or they will drop the reply if they have no route to the spoofed

address. In any case, it will be impossible for the sender of the secret message to receive

any reply from the receiver unless the receiver ahead of time knows the sender’s true

address.

As an example, the message ‘<30>invade normandy tomorrow. dawn’ with length

information appended to the front is represented by the following hex divided into 8-byte

chunks for clarity:

3c33303e696e7661

6465206e6f726d61

6e647920746f6d6f

72726f772e206461

776e

This information becomes the following interface IDs:

3c33:303e:696e:7661

6465:206e:6f72:6d61

6e64:7920:746f:6d6f

7272:6f77:2e20:6461

776e:1627:c77d:834c

 34

A diagram of this process is presented below in Figure 7: Direct Encoding Process.

Figure 7: Direct Encoding Process

3.4 The Decoding Process

A receiver can be configured to sniff a local interface and look for packets with

certain properties. These properties can be set up ahead of time by the two parties to

make it easier to sniff only relevant packets that contain the secret message. For

example, one might look only for packets with a predetermined source port or source

MAC address. The receiver can also choose to sniff indefinitely, or to sniff only until a

 35

complete single message has been received. When relevant packets are received, the

program will attempt to decode them based on how it is told that the packets are encoded.

The decoding process depends heavily on the type of encoding used. If the

encoding process used is Long MAC Encoding, described in Section 3.2.1, then the

receiving program will extract the interface ID portion of the address and eliminate the

middle octets with hexadecimal values 0xFF and 0xFE. These values would have been

inserted during the process of the originating node constructing the IPv6 interface ID in

Modified EUI-64 Format, which is described in Section 2.2.2.1. The seventh bit would

also need to be flipped. Then, two possibilities for the decoded message must be created

by decoding the bits resulting from removing the 0xFF and 0xFE directly and flipping the

seventh bit, and again by flipping the least significant (or eighth) bit of the first octet to

its opposite and decoding that combination. For example, if the first octet after reversing

the EUI-64 process is 0x72, represented in binary as 0111 0010, this would decode to an

‘r’ character. However, because the binary 0 in the eighth place could have been set that

way to create a valid MAC, the original message could have actually been 0111 0011 in

binary or 0x73 in hex, which would subsequently decode to an ‘s’ character in ASCII. It

is impossible for the program to tell which of these two decoded results is correct,

because it will not know if the original message had a value of one in the eighth position,

or if it was flipped to a one to create a valid MAC address. As pieces of the message are

generated, an increasingly complex tree of possible paths for the actual message is

generated, and it is left up to the user to decide which is correct. If encryption is used,

then the program will attempt to decrypt the two possibilities leaving an obvious

 36

incorrect decryption that would probably appear as gibberish. Therefore, encryption is

recommended for this encoding and decoding method.

The next possible encoding is Short MAC Encoding. This process is more

straightforward than decoding the Long MAC Encoded messages, because it does not

bother with the first octet of the extracted message strings. By ignoring this first octet, it

is unnecessary to create a tree of possible message paths, and the message can be decoded

directly after removing the 0xFF and 0xFE bits from the middle of the string, if no

encryption was used. If the message is encrypted, there will be the extra step of

decrypting the cipher-text into plaintext between removing the 0xFF and 0xFE bits and

subsequently decoding the hexadecimal digits into ASCII.

The final way that a message is decoded is the simplest. If active injection mode

is used, then the messages will be embedded straight into the lower 64 bits of the source

addresses of the relevant sniffed packets. There is no need to extract the 0xFF and 0xFE

strings as in the other two decoding methods, because messages sent using active

injection are not based on the MAC addresses, and, therefore, these messages never

undergo Modified EUI-64 format encoding. Rather, these messages were embedded

directly into the interface ID portion of the source addresses. If the message is encrypted,

then there is one extra step of decrypting the cipher-text after pulling it from the source

address. After recovering the plaintext, the program decodes the hexadecimal

representation of the ASCII into actual characters.

 37

4. IMPLEMENTATION

4.1 Platform and Environment

The program written for this thesis was implemented in the Perl programming

language version 5.8.8 and tested on the Slackware 12, Backtrack 2 (a derivation of

Slackware), and Ubuntu 8.04 distributions of the Linux operating system. Some of the

system calls that the program uses are Linux specific. No testing was performed on the

Microsoft Windows operating system. The Net::Packet, Crypt::CBC (Chain Block

Cipher), and Crypt::Blowfish Perl modules, as well as the dependencies for these

modules must be installed for the program to run correctly with full functionality. The

Net::Packet module is a library that allows for the arbitrary creation and manipulation of

network packets from the Ethernet layer through the network layer (including IPv4 and

IPv6) and transport layer to the application layer, according to the OSI Model. The

Crypt::CBC and Crypt::Blowfish modules work in conjunction to allow for encryption of

the message using the Blowfish encryption algorithm.

The Ubuntu and Backtrack 2 distributions were run from a Dell Laptop with an

Intel Centrino dual-core processor at 1.66GHz per core and 1GB of RAM in a dual-boot

configuration. The Slackware 12 operating system was run on two lab desktop servers

with 512 MB of RAM each, one with a 2.8 GHz Pentium 4 and the other running a 1.5

GHz Pentium 4. Slackware 12 was also run on one home desktop server with 512 MB of

RAM and dual 800 MHz Pentium 3 processors. Logical point-to-point tests using link-

local IPv6 addresses (prefix fe80) for connectivity were used in all testing scenarios. On

the link-layer, hosts were connected directly with either ad-hoc wireless connections or

direct Ethernet cord connections, or they were connected via Ethernet over a Nortel

 38

460/470 series Ethernet switch that passively moved information between connected

interfaces. No intermediate nodes functioning as routers were set up for testing. Figure

8: Physical Connection Topologies shows some of the physical network topologies that

were used during testing.

Figure 8: Physical Connection Topologies

4.2 Running the Program

The program, named ‘m2a.pl’ (for Message To Address), is run from the

command line of a Linux console, and all user configurable options are specified either in

a configuration file or via command line arguments. A complete list of all configurable

 39

options with a description of each is included in the appendix for quick reference. The

default path for the configuration file is the ‘/etc/m2a.conf’. The simplest way of running

the program is to specify command line arguments, but when a given configuration is

expected to be used many times, the configuration file can save considerable time. The

following sections discuss different ways that the program functions and give an

overview of a few setups that are anticipated to be the most common configurations.

The two primary operating modes for the program are Message Mode and Decode

Mode. Message mode is used by the sender of the message, while decode mode is used

by the receiver. Depending on which primary operating mode is selected, the user can

specify a multitude of sub-options that control the operation of the m2a.pl program, and

these are useful in different circumstances depending on exactly what the user is trying to

accomplish and the specific constraints of different scenarios.

Both primary operation modes require the user to specify a network interface

either to send message out on, or to sniff packets from. If no interface is specified, then

m2a.pl will attempt to pull an interface out of the /proc/net/if_inet6 file, but this is not

recommended. Because encryption of the message is an option, both of the primary

modes require the user to specify whether encryption is to be used, and, if so, to specify a

file containing the 56-byte (448-bit) encryption key and the 8-byte (64-bit) initialization

vector to be used. A supplementary program to generate encryption keys and

initialization vectors is included named ‘genKey.pl’.

The encryption module used by the program, Crypt::CBC, requires that blocks of

8 bytes (the size of the initialization vector) be encrypted at a time, and this has some

serious implications for the implementation of the MAC Encode methods. For the

 40

Interface ID encoding mode, each unique piece of the message is 8 bytes (64 bits) long,

because it occupies the full 64-bit interface identifier portion of the IP address. These

fragments of the message can be decrypted, piece-by-piece, as it they are received with

no extra work involved. However, for MAC Encoding mode, each individual piece of

the message that the receiver obtains is only either 5 bytes (40 bits) or 6 bytes (48 bits)

long depending on whether Short or Long encoding is used, respectively. A buffer,

therefore, is established that only attempts to decrypt a piece of the message after 8 bytes

of the message are received. In the case of either type of MAC encoding, this requires at

least two changes of MAC address on the part of the sender before enough information is

gathered in the buffer for a piece to be decrypted.

4.2.1 Message Mode

Message mode is the primary mode for the sender of the message. It is further

divided into Short and Long MAC Encode modes (both forms of Passive Injection) and

Interface ID Encode Mode (Active Injection). The basics of these different modes are

described in Section 3. Both passive and active modes will send out unique pieces of the

message on an interval specified by the user. If no interval is specified, then the

temporary preferred lifetime (tmp_prefered_lifetime) value for the interface found in the

file /proc/sys/net/ipv6/conf/[interface]/tmp_prefered_lifetime is used for the time interval

to send a new message piece out on. If encryption is specified, then the file containing

the key and initialization vector must be supplied, and the message will be encrypted

after being concatenated with a certain type of metadata to facilitate decoding. The type

of metadata added to the original message depends on the type of encoding used as is

explained below in Sections 4.2.1.1 and 4.2.1.2. Figure 9: Message Mode Process Flow

 41

at the end of this section shows a high-level visual diagram of the encoding process

performed by the sender of the message.

Figure 9: Message Mode Process Flow

 42

4.2.1.1 MAC Encoding

If Long or Short MAC Encode Mode is used, the program will not explicitly send

out any packets. It is assumed that the user will be using applications that will use the

IPv6 layer to communicate across the network, and if this occurs, the message will be

sent out as part of the packet stream that the application uses for its purposes, whatever

those may be. Individual pieces of the message in this mode will likely be sent out

multiple times, so the Decode mode must compensate for this by recognizing repeats.

Before the message is encrypted (if specified) and encoded into the MAC

addresses, the string ‘<eNd>’ is appended to the end of the original message to facilitate

decoding by signaling when the last piece of the message has been received. It is thought

to be highly unlikely for the exact string ‘<eNd>’ to occur in a message naturally, but the

user should be aware that if this string exists within the actual message, it would cause a

premature end to the decoding of the message.

For Long MAC encoding, the MAC addresses created from the message are run

through a cleanup routine that makes sure the first octet of each MAC is even (i.e. the

least significant bit is set to zero). This has the potential to alter the message and the

decoding process must account for this as explained below.

For Short MAC encoding, the message is embedded into the lower five bytes of a

MAC address, and a random even byte is generated for the first octet of each prospective

MAC address. This method, as noted in Section 3.2.2 will potentially require more MAC

addresses to be created, and more intervals will be required to get the entire message out,

but it avoids the problem of having to alter the actual message being transmitted.

 43

Different network setups for each end user across multiple physical locations will

likely vary greatly. For example, default gateways will be different, and nodes wishing

to connect to wireless networks will have different access point ESSIDs along with their

associated wireless security protocols and keys for WEP, WPA, or lack thereof. When

MAC encoding is used, the network interface must be brought down and disconnected

from the network in order to change the MAC address. Because of this process, the user

will have to reconnect to the network every time the MAC address of the specified

interface is changed by the program. To help automate this manual process, there is an

option to provide a connect script for the program to use to reconnect to the network each

time a MAC address for an interface is changed. This can be any script that is capable of

being run on the host system, as the m2a.pl program makes an external call to the

specified connect-script. For example, the external connect-script supplied with the

documentation is a bash script.

4.2.1.2 Direct Encoding

If Interface ID Encode Mode, or Direct Encoding, is used, then the program will

explicitly create packets and send out one and only one packet for each piece of the

message on the interval as set by the user. The user also has complete control over

attributes of the packets. For example, through the configuration file or command line

arguments, the user can specify source and destination MAC addresses, as well as source

and destination ports. Additionally, the user can prescribe a transport protocol to use

(currently TCP or UDP) and data to stuff into the application layer portion of the packet.

If the user elects to use TCP as the transport layer protocol, then TCP header options can

also be supplied as a hexadecimal string. TCP is used by default, if no transport layer

 44

protocol is signaled. Similarly, if no source MAC address is specified, then the MAC of

the interface used to send the messages is used for the source MAC field of the packets.

The user must specify a destination IPv6 address as well as a destination port, since this

is an active process. No outside applications will actually use any of the properties

specified to the program.

In a manner similar to the MAC encode method, before the message is encrypted

(if the user has so determined) and embedded into the series of interface identifiers,

metadata is appended to the message for decoding purposes. In this case, the length of

the original message in bytes is calculated and appended to the beginning of the message

as described in Section 3.1.

4.2.2 Decode Mode

The decoding process can be operated in either Live Mode or Offline Mode. The

Live Mode will monitor network traffic on a specified interface in real-time as traffic

flows along. In Offline Mode, the user must specify a file containing previously captured

packets in the ‘tcpdump’ tool’s format, otherwise known as a ‘pcap’ file.

It will greatly benefit the sending and receiving parties of the message to set up a

filter ahead of time to sniff packets by. Only packets matching the given filter will be

sniffed from the live traffic or pcap file and decoded, which will greatly reduce the

number of packets that will have to be looked at. For instance, users could decide to only

sniff packets destined for MAC address 10:10:10:10:10:10 with destination port 4444, or

many other combinations. This is particularly useful for the Direct Encoding method

where these values can be specified directly. For MAC Encoding, a little more thought

must be given to the type of upper layers such as transport and application layers that will

 45

be used by the sender in order for the receiver to know what to filter on. The filter string

is also specified by the user in the ‘tcpdump’ tool’s syntax. For example to filter on

destination MAC address 10:10:10:10:10:10 and destination port 4444, the filter string

would b e ‘ether dst 10:10:10:10:10:10 and dst port 4444’. More information on

constructing filter strings can be found in the tcpdump man page [10].

If Live Mode is selected, then the receiver may also choose to sniff the network only until

a single complete message is received, or to sniff indefinitely for an arbitrary number of

separate messages in Continuous Mode. Separate messages, after decoding, are output to

separate files in the directory that the program is run from in the format msg-

dd_mmm_yyyy-hh.mm.ss. For example, a message for which the last piece was received

on October 21, 2008 at 5:55 PM on the dot, would be written to a file named msg-

21_Oct_21008-17.55.0, and would exist in the directory the program was run from.

Figure 10 at the end of this section gives a high-level overview of the decoding process

performed by the receiver.

 46

Figure 10: Decode Mode Process Flow

4.2.2.1 MAC Decoding

 MAC decoding involves more overhead that Direct Decoding. The basic process

of decoding the address to ASCII characters is explained in Section 3.4, and a full step-

 47

by-step example is provided in Section 5.1. The process is finished when the program

reads the string ‘<eNd>’ anywhere in a message. The reason that the program cannot

only look at the tail end of the message is that, if the original message could not be

divided evenly into 5-byte chunks, then the leftover pieces would have been padded out

with random bytes to create a complete MAC address. Additionally, if encryption was

used in the encoding process, there could be additional garbage at the end of the message.

The encryption module requires complete blocks of eight bytes to be encrypted at a time,

and if the original message was not evenly divisible by eight, then the leftover pieces

would have been padded with spaces out to 8 bytes. Any messages received after the

first one that contains the string ‘<eNd>’ are ignored.

 Another important implementation detail, which concerns how the program

compares two messages that have been received to decide whether they are the same,

only applies in MAC encode mode, because only in this mode are the same pieces of the

message sent more than once. The program does not compare the messages after they

have been extracted and decoded. It compares the two interface IDs of the current and

previously received packets. This is important in the case of messages containing an

intentional repeat. For example, if a user where to send a message such as

‘ABCDEABCDE’ it would broken into 5-byte pieces to be embedded into the lower five

bytes of a MAC address. If the messages themselves were compared, then the program

would treat them as the same and not two distinct pieces. However, because the interface

IDs are compared before being decoded instead of the messages, the random byte created

by the encoding process to be the first octet of the MAC address before it is encoded into

an interface ID is likely to distinguish the two distinct pieces.

 48

 Though Long MAC encoding has been implemented, the decoding process has

not been implemented as of this release of the m2a.pl program. The reason for this is

largely presentational. Within the program, a tree structure whose branch paths represent

possible messages is fairly straightforward to build, however, displaying this in a useful

way in a command-line based program is more difficult.

4.2.2.2 Direct Decoding

 Direct decoding is a simpler task than MAC decoding. The process for decoding

from an interface ID is explained in section 3.4, and an example is provided in Section

5.2. In this process, the beginning of the message contains the length of the actual

message intended by the user in bytes. For example, a 31-byte message that the user

wishes to send will have the string ‘<31>’ appended to the beginning. After this length

value is read, the program buffers the message until all of the bytes have been captured,

and subsequently writes the message to a file in the format described in Section 4.2.2.

In some cases of extremely long messages, the metadata string that specifies the

length of the message will not arrive in a single packet, but will take several. For

example, if a message is greater than 999999 bytes, then the byte-length metadata is nine

bytes (with the ‘<’ and ‘>’ characters) and therefore, requires more than one interface ID

to fit it all in. The program handles this by simply buffering the pieces of the metadata

until the whole string specifying the length is received. The use of the m2a.pl program

for messages of such large size is not recommended or expected, but it should still

function correctly.

 49

5. RESULTS

5.1 Scenario A: The MAC Encoding and Decoding Process in Action

On the sending side, User A wants to send the message ‘invade normandy

tomorrow. dawn’ that is contained in the file /etc/m2aMessage to User B. User A would

like the message to be encrypted and would also like to use the Short MAC encoding

method of sending the message. Ahead of time, User A and User B have traded the

encryption key and initialization vector that will be used to encrypt and decrypt the

message. User A has also informed User B that he will be using the ‘ssh’ program,

which uses port 2222 in this case, over IPv6 to connect to a host C. This could be a host

that User B has control over, or User B himself. The only necessity is that User B be able

to see all traffic in transit from User A to host C. With this information, User B has

something to filter on in order to pull only the relevant packets when sniffing the

network, namely the specific destination port and address to look for in the packets.

User A wants to get the message out quickly without generating too much

suspicion on the network, so he specifies 120 seconds as his time interval that the

program will wait before sending each new piece of the message. User B has set up the

program on his end to sniff the network waiting for packets that match his filter, and to

terminate when a complete message has been received.

Figure 11: MAC Encoding: User A (Sender) - Step 1a below shows what happens

when User A, the sender, initially runs the program. The picture points out the message

that is being sent and what the underlying bytes of the message looks like before it is

encrypted, as well as the setting of the first MAC address in the list for the interface

specified. The figure also shows the bytes after encryption, and it is important to note

 50

that the encryption process added five more bytes, which causes eight MACs to be

created to contain the entire message. The reason for this is that the original message

consisted of 35-bytes with the ‘<eNd>’ string appended, and the encryption block cipher

can only work with blocks of eight bytes. Five bytes are appended to make the message

40 bytes, so it can be evenly divided into five blocks of eight bytes each. Figure 11:

MAC Encoding: User A (Sender) - Step 1a also points out the fact that because the User

A has elected to use MAC encoding as the method to send the message by, a third party

application that uses the IP layer must be used in order to cause packets containing the

secret message to be sent out. In this case, the application used is secure shell (ssh) over

IPv6.

Figure 11: MAC Encoding: User A (Sender) - Step 1a

 51

The next figure below simply shows the output of the ‘ifconfig’ command that

lists details for network interfaces. Figure 12: MAC Encoding: User A - Step 1b points

out that the MAC address for the ‘wlan0’ interface has been set to the MAC containing

the first part of the message, and that the link-local IPv6 address for that interface has

been changed as a result.

Figure 12: MAC Encoding: User A - Step 1b

After the program has changed the MAC address of the wlan0 interface to the first

part of the message, it then brings the interface back up and connects it to the network

with the connect script specified by the user. Upon connecting to the network, Stateless

Address Autoconfiguration is performed by the interface and an IPv6 source address

containing the message is set for the interface. Then, User A calls the ssh program to

connect over IPv6 to User B causing packets to be sent to User B that contain the secret

message.

Figure 13: MAC Encoding: User B (Receiver) - Step 1 below shows what

happens on the receiver side for User B. The image depicts a Wireshark packet capture

to make clear what the program is doing internally. The figure also shows some output

from the program in decode or receiver mode. User B knows that User A will be sending

packets to destination port 2222 and that the packets will be IPv6 (Wireshark and the

 52

program’s internal sniffer can sniff IPv4 packets as well), so the user has specified these

properties in the filter. Figure 13: MAC Encoding: User B (Receiver) - Step 1 shows the

link-local source address containing the message, and points out the interface ID portion

of the address. It also shows the bytes of the message after the EUI-64 process has been

reversed by removing the 0xFFFE bits and removing the first byte of the message. The

resulting hex digits shown are the encrypted first five bytes of the message, but the

program cannot perform decryption until it has at least eight bytes, so it must wait. It is

important to notice here that the program is receiving many packets that contain the same

piece of the message. It recognizes this and ignores the repeats.

 53

Figure 13: MAC Encoding: User B (Receiver) - Step 1

The next image, Figure 14: MAC Encoding: User A - Step 2a shows User A’s

side sending out the second piece of the message. This looks similar to Figure 11: MAC

Encoding: User A (Sender) - Step 1a, and also shows that the MAC is changed and that

the user must again use the third party ssh program that will in turn use the IPv6 network

layer to communicate.

 54

Figure 14: MAC Encoding: User A - Step 2a

Figure 15: MAC Encoding: User A - Step 2b is similar to Figure 12: MAC

Encoding: User A - Step 1b and shows that the MAC address for wlan0 has been changed

to the second piece of the message as claimed by Figure 14: MAC Encoding: User A -

Step 2a above. Again, the message is embedded into the Source address as well.

Figure 15: MAC Encoding: User A - Step 2b

Figure 16: MAC Encoding: User B - Step 2 shows step two for the receiver, User

B. This figure is similar to Step 1 for User B depicted in Figure 13: MAC Encoding:

 55

User B (Receiver) - Step 1 above, in that it shows the link-local source address containing

the message, the interface ID, and the reversal of the EUI-64 process to retrieve the bytes

of the message. However, this Figure is important because now that the receiver has

received at least eight bytes of actual message (they have received 10 bytes), the first

piece of the message can be decrypted. This is shown below, as the first piece of the

message ‘invade n’ appears in plaintext.

Figure 16: MAC Encoding: User B - Step 2

The above process is repeated for however many steps it takes to send the entire

message out. In this case, there are eight steps because there are eight pieces of the

message to be sent and received. With an interval of 120 seconds or two minutes

between each successive message, the entire process takes about 14 minutes. Figure 17:

MAC Encoding: User B - Final Steps below shows the end of the process on the receiver

side after each piece of the message has been received and the string ‘<eNd>’ has been

 56

found. Because User B has chosen to terminate the program after a complete message

has been received instead of sniffing indefinitely, the program quits after a single

message.

Figure 17: MAC Encoding: User B - Final Steps

After an entire message has been received by the program in decode mode, a file

is created containing the entire message with a timestamp as part of the name as

explained in Section 4.2.2. Figure 18: MAC Encoding: Resulting Message File and

Contents shows the resulting file and it’s contents created on the decoding side.

 57

Figure 18: MAC Encoding: Resulting Message File and Contents

5.2 Scenario B: The Direct Encoding and Decoding Process in Action

For Scenario B, it is supposed that User A wants to send the same message

‘invade normandy tomorrow. dawn’ to User B, but does not want to have to actually

change the MAC address in order to do it. There could be many reasons for wanting to

use this method over the MAC method. One reason to use this method is that there is

more bandwidth per message container (or cover message) resulting in less total cover

messages having to be sent out. It also avoids the overhead of having to reconnect to the

network every time the MAC address is changed. User A accepts the fact that only one

of piece of the message will be sent out, and that there is no way for any reply to be sent

unless User B knows the true address of User A ahead of time. Furthermore, User A

wants to send the message out quickly, so he specifies a delay interval of 25 seconds.

 58

User A wants also to send the message to the destination link-local IPv6 address

fe80::21a:70ff:fe14:8ac0, the same as in Scenario A. User A has a lot more freedom over

the properties of packets being sent out in this mode. He chooses to specify the

destination MAC address as 10:10:10:10:10:10, which does not have to be, and in this

case is not, the real destination MAC of the receiver. The destination MAC address

above could be useful as a filter value for the receiver to pull relevant packets, if the two

parties are operating on a LAN where link-layer information is not stripped from packets.

User A and B have agreed ahead of time that the message will be sent in TCP packets

with a destination port of 4444 to facilitate filtering, and User A specifies this

accordingly. The users also want to use encryption as was the case for Scenario A, so a

file containing an encryption key and initialization vector are specified. In addition,

because this scenario is operating on a LAN, User A specifies ‘link’ as the scope to use,

so the program knows to use whatever prefix is currently associated with link-local for

the interface specified. The scope could also be global, site, or local, in which case the

program will pull whatever prefix is currently used by the interface for that scope to

append to the interface identifiers containing the message. User A has also elected to

specify a file containing text that will be used for the layer seven data portion of all

packets sent out. This is the cover message, and in this case, the information contained in

the text is intentionally designed to be disinformation that would be false or misleading to

any third party that might happen to intercept the message.

Finally, User A has not bothered to specify values for the Source Port, the Source

MAC, or the TCP-Options string, so default values for all of these will be used. The

Source MAC for the packets sent out will be the true MAC address for the interface

 59

specified, while the source port will be whatever is randomly generated by the TCP layer

of the network stack.

Figure 19: Direct Encoding: User A (Sender) – Program Output below shows the

output of the program for User A, the sender. This figure shows the time after the

program has sent out all packets on the 25-second interval. In this case, as in Scenario A,

the encryption block cipher only works with 8-byte blocks, so some information is added

to the end of the message in order to pad the last piece out to eight bytes. In this case, the

message with metadata is 34 bytes long, which divides into four complete blocks of eight

bytes with two leftover bytes. The encryption automatically tacks on six bytes to make

another complete block, but this does not cause any more interface ID’s to be created in

order to send out the message than would be created if encryption were not used. It is a

useful coincidence for this reason and for the decryption process that the block cipher

works with eight bytes at a time, and the interface IDs are exactly eight bytes long. If

encryption is not used, and the bytes of the message and metadata are not evenly divisible

by eight, then the leftover bytes must be padded out to eight with random data anyway to

create another whole interface ID. This is not so convenient for short and long MAC

encoding, which use five and six bytes, respectively for the medium, while the block

cipher requires eight bytes. Because of this, using encryption will often cause more

MAC addresses be created than would be if encryption were not used. This is not an

issue with direct encoding into the interface ID.

 60

Figure 19: Direct Encoding: User A (Sender) – Program Output

Figure 20: Direct Encoding: User A - Packet Capture below shows a Wireshark

capture of the packets created by the program and sent out over the IPv6 network. It can

be seen that a single packet for each piece of the message is sent out, in contrast to the

many per piece of message sent out in Scenario A. The figure also shows the cover

message in the data portion of the packet, as well as the destination port of 4444 that is

used to filter only packets of interest. Figure 20: Direct Encoding: User A - Packet

Capture also shows the True MAC address of the interface used to inject packets,

demonstrating that it is not changed to a piece of the message as in MAC Encoding

mode. What is not shown in the picture, but is important to remember, is the fact that the

true IPv6 source address of the interface is not actually changed either. These packets

contain spoofed source addresses with the embedded message.

 61

Figure 20: Direct Encoding: User A - Packet Capture

Figure 21: Direct Encoding: User B (Receiver) – Program Output shows the

output of the program in decode mode on the receiver side. The image shows the filter

used for sniffing packets, and each piece of the message received in turn, as well as the

interface ID that contained the piece of the message. It is notable that each piece of the

message can be decrypted as soon as it is received. Again, this is a result of the useful

coincidence of the block cipher working with eight bytes at a time, and the interface IDs

containing exactly eight bytes. The decoder does not have to wait before decrypting each

piece. Once the program has read 30 bytes (not including the metadata length

information itself), it prints the message to a file and terminates as in Scenario A, because

 62

User B did not specify to capture indefinitely. The file and its contents are shown in

Figure 23: Direct Encoding: Resulting Message File and Contents.

Figure 21: Direct Encoding: User B (Receiver) – Program Output

The next screenshot, Figure 22: Direct Encoding: User B – Packet Capture, shows

the packets captured on the receiver side. This is the same information shown in Figure

20: Direct Encoding: User A - Packet Capture above for the User A, because the same

filters are used to capture packets.

 63

Figure 22: Direct Encoding: User B – Packet Capture

 64

Figure 23: Direct Encoding: Resulting Message File and Contents

As part of the testing for the Direct Encoding process, the entire 287056-byte e-

book text file for The Hitchhiker’s Guide to the Galaxy by Douglas Adams was sent out

on a 1-second interval. The whole process took approximately 10 hours; however, the

resulting file contents exactly matched the original.

 65

6. CONCLUSIONS

6.1 Summary

As a result of the research and work done for this thesis, the possibility of a covert

channel within the IPv6 protocol has been made reality, and debate around the issue can

be discussed in the realm of the actual instead of the theoretical. The implementation of

exploiting the covert channel inherent in IPv6 shown in this thesis is one way of many

ways possible. Practical end uses for such an exploit will only be determined by the end

user and their intentions, but the importance of the awareness of this possibility cannot be

overstated. It is crucial for users of technology to understand different uses that the

technology makes possible, whether the designers of the technology intended a given use

or not. If the world wishes to responsibly implement a system on such a wide scale as

IPv6 that will affect the lives of over one billion users [11] whether they are aware of it or

not, then it is the duty of the implementers and maintainers of such a system to fully

understand it. Full understanding is not hard to come by in an open system such as the

Internet Protocol version 6, where anyone from the community that has a desire may

closely inspect the inner workings. This thesis demonstrates the community acting

responsibly to increase awareness and understanding of protocol that will soon be used

by billions.

6.2 Risk Mitigation and Countermeasures

One way that this type of exploit could be partially prevented is by having all

routers connected to end nodes use DHCPv6 instead of Stateless Address

Autoconfiguration. When DHCPv6 is used, the person in control of the subnet has

 66

complete control over addresses assigned to end nodes on that subnet including the

interface identifier portion of the addresses. This would prevent the MAC encoding

method, because the message embedded into the MAC address would no longer be

encoded into the interface identifier automatically by the operating system. This would

not necessarily prevent the direct encoding (Active Injection) method from working,

however. Because the direct encoding process spoofs the source address of packets it

creates, independent of the actual source address of the interface, it is more difficult to

prevent. One way to prevent this method of transmitting messages would be to configure

all, or at the very least end routers, to check the source addresses of all packets being

routed off of the subnet to make sure that the source addresses actually correspond to

physical nodes on the network. This could be accomplished by a lookup in the routing

table, perhaps, but the overhead involved is likely undesirable for most.

Another way to mitigate this risk would be to put in place an “active warden” at

the edge of the network controlled by the entity wishing to prevent steganographic

messages from leaving that network. This would be something similar to a network

address translation (NAT) router or firewall that actually does not allow internal nodes to

interface directly with nodes outside the network. In other words, nodes outside the

network could not see the true addresses of any of the internal nodes, and could only

communicate with the border node. The border router would have to keep state and

perform lookups to correctly route information. This is similar to how a NAT would

handle the translation of addresses from different internal ones to a common external one,

and this process could cause unwanted delays from the overhead involved. Moreover,

 67

one of the goals of IPv6 is to eliminate the NAT to make the network layer more “pure”

among other reasons.

6.3 Contributions

This thesis contributes to the information security field in several ways.

Experience is the most important form of human knowledge, if not the only form, and

things are most believable when they can be seen. As a result of the demonstration of a

covert channel within IPv6, steps can be taken by the development community or by end

users to mitigate this risk using a variety of methods, some of which are discussed above

in Section 6.2. An awareness of the problem and a demonstration of how the process

could work gives considerable power to those who wish to stop this type of activity,

because stopping something becomes much easier if those wanting to do the stopping

have a fuller understanding of that which would be stopped. At the very least, if no

preventative measures are taken, then reactive measures can be, if a security incident

involving secret messages steganographically embedded into IPv6 addresses is detected

or suspected. Those monitoring a network, whether it be school officials, counterterrorist

organizations, or corporate network administrators, will be one step closer to solving their

security breach by being aware of the possibility of such an attack.

On the other side, people all over the world who are oppressed, censored, or

persecuted by their government could find a tool such as the one designed for this thesis

invaluable for communication. In places where standard communication channels are

closely scrutinized and spied on by ruling regimes, people who publicly speak out against

the status quo or the government are persecuted as is reportedly happening in China today

[12]. In situations such as these, a secret and non-standard communication channel

 68

becomes all the more important for those who value freedom, privacy, and individual

rights. In an information age, those with complete control of information become sole

arbiters of truth.

6.4 Future Work

This thesis builds on the ideas of Jane Lindqvist to make the possibility of a

covert channel that he foresaw in IPv6 into a reality [2]. While this thesis implements the

basic framework for encoding and decoding messages across an IPv6 network as a proof

of concept, more work could be done in the way of making the associated program more

efficient, robust, or easy to use, or in implementing countermeasures for this kind of

process. A few possible extensions are listed below.

• Add support for transmission and decoding of Binary Files

• Implement a log cleanup option that will erase any log history the program

creates.

• Allow sending user to specify any arbitrary prefix to use for packets. This

would be trivial to implement.

• Implement for IPv4. IPv6 is not the only way to embed secret messages into

network metadata. MAC Encoding mode will embed into IPv4 just as easily

for local area networks, because network layer packets wrap the lower layers

including the link layer containing the MAC address. If deep packet

information is extracted by a node instead of it just looking at the network

layer information, then messages can be sent over IPv4 as well, though not in

the network layer (at least, not as easily using the method already

 69

implemented for this thesis). The underlying packet creation Perl framework

Net::Packet allows for easy creation of IPv4 packets as well as IPv6. Since all

packet properties may be specified, the message could be embedded in any

field of any layer desired, and could easily go out over an IPv4 network.

• Implement Long MAC decoding. The main hindrance to this is

presentational, and stems from the fact that there was no immediately clear

solution for printing out a large tree representing the possible message. The

display could be performed with a little effort or searching around for a library

or module capable of printing tree data structures in some intuitive way.

• Another related interest to this project would be to perform statistical analysis

on the covert channel of packets flowing across an IPv6 network to determine

whether it is possible to detect when a secret message is being passed. This

would probably work well for unencrypted messages because plaintext has

predictable patterns such as letters that are used more than others.

 70

REFERENCES

[1] I. van Beijnum, “Everything You Need to Know about IPv6.” Ars Technica, [Online
Document], pp 2, (2007 Mar), [cited 2008 Nov 3] Available:
http://arstechnica.com/articles/paedia/IPv6.ars/2

[2] J. Lindqvist. “IPv6 is Bad for Your Privacy,” presented at Defcon 15, Las Vegas,
NV. 2007. [Online]. Available:http://www.defcon.org/images/defcon-15/dc15-
presentations/Lindqvist/Whitepaper/dc-15-lindqvist-WP.pdf

[3] S. Deering and R. Hinden, “RFC 2460: Internet Protocol, Version 6 (IPv6)
Specification,” Dec. 1998, Available:
http://www.ietf.org/rfc/rfc2460.txt?number=2460

[4] S. Thompson, T. Narten, and T. Jinmei, RFC 4862: “IPv6 Stateless Address
Autoconfiguration,” Sep. 2007, Available:
http://www.ietf.org/rfc/rfc4862.txt?number=4862

[5] S. Deering and R. Hinden, RFC 4291: “IP Version 6 Addressing Architecture,” Feb.
2006, Available: http://www.ietf.org/rfc/rfc4291.txt?number=4291

[6] C. Schroder, “Getting Acquainted with IPv6,” in Linux Networking Cookbook, 1st
Edition. Sebastopol, CA: O’Reilly Media, Inc., 2008, ch. 15, pp. 437-451

[7] B. Dunbar, “A Detailed Look at Steganographic Techniques and their use in an
Open Systems Environment,” SANS Institute, Jan. 2002

[8] S.J. Murdoch, S. Lewis, “Embedding Covert Channels into TCP/IP”, Information
Hiding Workshop, July 2005.

[9] T. Narten and R. Draves, RFC 3041: “Privacy Extensions for Stateless Address
Autoconfiguration in IPv6,” Jan. 2001, Available:
http://www.ietf.org/rfc/rfc3041.txt?number=3041

[10] V. Jacobson, C. Leres and S. McCanne, et al, “Tcpdump – Linux Man Page,”
unpublished, Available: http://linux.die.net/man/8/tcpdump

[11] Miniwatts Marketing Group, “Internet Usage Statistics,” [Online Document],
[cited 2008 Nov 3], Available: http://www.internetworldstats.com/stats.htm

[12] Amnesty International USA. (2004, Jan.). Peoples Republic of China Controls
tighten as Internet Activism grows. [Online]. Available:
http://www.amnestyusa.org/document.php?id=6219A12C7651806380256DFE0058
1835&lang=e

 71

A. APPENDIX CONFIGURATION OPTIONS

The table below shows options that can be used when running the program.

These options can be specified by either command line or in a configuration file

‘/etc/m2a.conf’.

Command
Line

Config File
Value

Description

-i interval Interval in seconds to send messages out on. If left 0, then the default
preferred lifetime of IPv6 temporary addresses is used

-f msgfile Input File Name

-if interface Link layer interface to use

-clean txfast Specifies wither to use the faster transmit method with a more complicated
decode, or the slower transmit method with a clean decode. On the
decoding side, it tells the decode which mode to assume the message was
transmitted as. Only applicaple when encoding with macencode set to 1 or
decoding with macdecode set to 1.

-cs cnctscript User may specify a connect script to connect to the internet

-mac macencode User may specify to encode message into the Mac address in which case it
will go out over IPv4 as well

-m mode Specifies mode to use: either msg, inject, testFormat, or decode. If msg the
behavior is to embed a message into the source address field of packets in
one of two main ways - either though manipulation of the mac address or
through direct insertion into the interface ID portion of the source address
field of a packet. If injection mode is used, no message is inserted and the
user may set the source address field (among others) to whatever value
desired.

-s srcAddr Specifies the value for the source address field (only used in injection
mode)

-d dstAddr Specifies the destination address field's value (only used in direct msg
mode or in injection mode)

-sp srcPort Specifies the source port value for a frame (only used in direct msg mode,
or in injection mode)

-dp dstPort Specifies the destination port value for a frame (only used in direct message
mode, or in injection mode)

-t transport Specifies the transport layer protocol to use only either UPD ('udp') or TCP
('tcp') currently.

-sm srcMAC Specifies the source MAC address to use. If none is specified, then the
MAC for the specified interface is used. LSB of the first octet cannot be 1.
Used only in direct message mode or in injection mode.

-dm dstMAC Specifies the destination MAC address to use. If none is specified, then a
random one is generated. LSB of first octet cannot be 1. Used only in
direct message mode or in injection mode.

 72

-scope scope The scope of the prefix to use. i.e. link, site, global,or local. If none is
specified, then link local (fe80) will be used.

-tcpOpts tcpOpts The TCP options to use as a hex string.

-dataFile dataFile A file that contains data to be used for the application layer object. It is
assumed that if a data file is specified, then it will be inserted into the
packet(s).

-e encrypt Flag to signal if the user wishes to encrypt the message before embedding it
into the medium. The Blowfish encryption algorithm will be used.

-k keyFile The keyfile containing the key and initialization vector that will be used to
encrypt and decrypt the data. This file is required for decryption.

-fs filterString Filter string that will be used by the sniffer to selectively grab packets.

-c capture Mode to capture from. Used by the dump object to know whether to
capture from a live network device or a pcap file (pcap file must be
specified if offline capture. Choices: 'live' or 'offline'

-pc pcap the pcap file to open and use by the dump object to search for a message.

-md macDecode Tells program to assume macencode mode was used. This attribute only
applies to decode mode.

-cd continuousDu
mp

If set, then in decode mode, the program will run indefinitely searching for
messages. Otherwise it will quit after the first message ending with a
newline followed by the string 'end'.

-dbug dbug Specifies whether to go into debug mode and print very verbosely what is
going on in the program.

 73

	University of Arkansas, Fayetteville
	ScholarWorks@UARK
	12-2008

	Steganography in IPV6
	Barret Miller
	Recommended Citation

	Microsoft Word - BARRET_MILLER_Honors-Thesis-Final-drt081123.doc

