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ABSTRACT 

 

Steganography is the process of hiding a secret message within another message 

such that it is difficult to detect the presence of the secret message.  In other words, the 

existence of the secret message is hidden.  A covert channel refers to the actual medium 

that is used to communicate the information such as a message, image, or file.  This 

honors thesis uses steganography within the source address fields of Internet Protocol 

Version 6 (IPv6) packets to create a covert channel through which clandestine messages 

are passed from one party to another.  A fully functional computer program was designed 

and written that transparently embeds messages into the source address fields of packets 

and decodes embedded messages from these packets across IPv6 networks.  This 

demonstrates the possibility of a covert channel within a protocol that will eventually be 

the default Internet protocol.  This channel could be used for a malicious purpose such as 

stealing encryption keys, passwords, or other secrets from remote hosts in a manner not 

easily detectable, but it could also be used for a noble cause such as passing messages 

secretly under the watchful eyes of an oppressive regime.  The demonstration of the 

covert channel in itself increases the overall information security of society by bringing 

awareness to the existence of such a steganographic medium.  
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1.  INTRODUCTION 

1.1  Problem 

In an increasingly connected world, more and more devices are being networked 

together than ever before.  This trend will continue with not only more laptop and 

desktop computers needing to be able to talk to one another around the world, but 

handheld PDAs, cell phones, cars, and, eventually, even toasters, refrigerators, and other 

household items.  Most networked devices today are connected through Internet Protocol 

version 4 (IPv4), a layer three protocol of the International Standard Organization's Open 

System Interconnect (ISO/OSI) model.  IPv4 provides for a theoretical possibility of two 

raised to the thirty-second power or a little over 4 billion possible addresses, but for 

practical reasons of off-limits address ranges, the actual number of IPv4 addresses 

available for use to the world is about 3.7 billion, and these are rapidly running out.  

Internet Protocol Version 6 (IPv6) is the “next generation” Internet protocol that 

is set to slowly merge with and ultimately replace IPv4.  According to a recent article [1] 

from Ars Technica, if the world continues at its current rate of adding 170 million IP 

addresses per year for new hosts that are connected to the Internet, people will exhaust 

the current address space allowed for by IPv4 in 7.5 years.  This is the main driving force 

behind the push to switch to IPv6.  IPv6 allows for astronomically1 more addresses than 

people could possibly ever use, which shows that the Internet Engineering Task Force, 

the group that guides the development of protocols that run the Internet, does not want to 

run into the “limited address space” problem again in the future.  Switching to IPv6 is 

                                                 

1 2128 = 3.4 x 1038 possible addresses.   
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necessary and inevitable.  However, society must also be aware of the risks and otherwise 

unintended possibilities that accompany the adoption of any new protocol or technology, 

and IPv6 carries at least one significant unintended possibility of allowing for a covert 

channel to be created and exploited using the built-in mechanism of the source address of 

the header. 

1.2  Objective 

The objective of this thesis is to demonstrate the existence of a covert channel 

inherent in the IPv6 protocol that provides the ability to steganographically transmit 

secret messages between parties.  

Contributions of this research include: 

• Exposure of a vulnerability in the Internet Protocol version 6 (IPv6).  The 

protocol IPv6 will become the standard protocol for the Internet in the future. 

• Demonstration that the vulnerability can be exploited. 

• Implementation of both the transmitting and receiving programs to create a 

covert channel over IPv6. 

• Discussion of possible ways to mitigate this threat. 

1.3  Approach 

As pointed out in [2], the IPv6 specification [3] along with the privacy extensions 

for the stateless address autoconfiguration feature of IPv6 [4] introduce the possibility of 

embedding a significant amount of secret data into the source address field of an IPv6 

packet header that will likely be undetectable to an uninformed observer.  The source 

address is a 128-bit field, which is intended to contain the universally unique Internet 
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address of the originator of the packet.  The privacy extensions proposed for IPv6 rely on 

the random generation of a 64-bit portion of the 128-bit source address, and it is the 

expectation that the built-in randomness will create a shield of entropy, which should 

effectively hide any enclosed message. 

The approach taken in this thesis was to demonstrate this vulnerability by writing 

a program that used the interface id portion of the source address fields of IPv6 packets as 

a covert channel in which to transmit secret data.  This program can both transmit and 

receive secret data in the source addresses of IPv6 packets in two different and important 

ways.   

The first way the program can be configured to work is to embed the message by 

changing the MAC address of the originating host to the secret message.  With this 

configuration, the secret message will simply be embedded into all packets that would 

leave the originating host during normal network use as long as the MAC address of the 

network interface that contains the secret message is used to connect to an IPv6 network.  

This works because of the default way IPv6 source addresses are derived from the MAC 

address of the network interface device used by the host.  

The second way the program can embed messages is by explicitly creating IPv6 

packets containing the message in the source address field, which are then injected into 

the network.  The packets transmitted in this manner would not be transmitted as part of 

the normal networking activities of the host and is, therefore, slightly less stealthy, but 

can, in some cases, be more practical.  
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The way the software decodes the received messages depends upon the way in 

which the message was transmitted.  All parties involved in sending and receiving the 

secret message ahead of time must know the method of transporting the message.  

1.4  Potential Impact 

The immediately apparent potential impact of this thesis is that the application 

developed in conjunction with the thesis could be used for noble or malicious purposes.  

One malicious way in which it could be used is to steal information such as passwords, 

encryption keys, or other sensitive data from a remote host in a way not easily detectable 

to the victim.  In nobler applications, it could also be used by a covert agent behind 

enemy lines that needs to get sensitive information out to the headquarters secretly, or by 

political dissidents of an oppressive regime that need to operate secretly.  

The far-reaching impact is that the awareness of the possibility of this covert 

channel increases the overall information security of society as well as the general 

knowledge of the workings of the protocol that will become the default for the Internet.  

1.5  Organization of this Thesis 

Chapter 2 covers the essential background knowledge required for a full 

understanding of the work presented in this thesis including IPv6 and steganography.  

Chapter 3 describes in detail the approach and methods used to complete this thesis.  

Chapter 4 details the specific implementation of the encoding and decoding program.  

Chapter 5 presents tangible results of the system in the form of screenshots of the 

program sending and receiving data, and packet captures from sending and receiving 

hosts on an IPv6 network.  Chapter 6 summarizes the conclusions of this work and 
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describes possible future work and extensions of this project.  The Appendix contains a 

full list of options and details of how to use the program provided with this thesis.  
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2.  BACKGROUND 

2.1  Key Concepts 

In order to get a full understanding of the scope of this thesis and how the 

implementation functions, one must first understand some of the background concepts.  

The first concept to understand is the architecture of the IPv6 packet as a whole and the 

format of the address fields of the IPv6 packet.  It is also important to understand the 

ways in which this address can be obtained or calculated by hosts on an IPv6 network.  

The second concept is the area of sending secret messages, called steganography, and 

covert channels. 

 

2.1.1  The Architecture of an IPv6 Packet 

 An IPv6 Packet Header consists of the fields shown below in Figure 1: IPv6 

packet.  The exact use of all the different fields is unimportant for a full understanding of 

this thesis, but it is useful for the reader to be able to visualize the packet header. 

Important fields are the destination and source address fields, which allows routers to 

direct the packet to its destination and provide a return address to that destination.  In 

addition, there is a version field indicating IPv4 or IPv6 and the next-header field, which 

specifies the layer above the current IP layer, such as TCP or UDP. 
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From http://upload.wikimedia.org/wikipedia/commons/thumb/3/32/IPv6_header_rv1.svg/410px-IPv6_header_rv1.svg.png 

Figure 1: IPv6 packet 

 

2.1.2  IPv6 Addresses 

IPv6 Addresses are 128-bit long fields in the packet header.  It is useful for 

humans to represent binary IPv6 addresses with text that is easier to comprehend than the 

underlying ones and zeros, and this method is detailed in Section 2.1.2.1.  These 

addresses are broken down into different classes each with its own purpose defined in 

Section 2.1.2.2.  The specification for the IPv6 addressing architecture [5] makes a 

distinction between a node and an interface in that a node may have multiple interfaces 

each with a different address, and this specification states that any interface can be used 

as an identifier for the node.  The addressing architecture specification [5] also mandates 

that each interface have at least a single Link-Local unicast address, which is defined 

below, but it also allows single interfaces to have multiple addresses of all types defined 

below.  
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2.1.2.1  Text Representation 

IPv6 addresses are represented in a meaningful way to humans by eight 

quadruples of hexadecimal (hex) digits separated by colons for a total of 32 hex digits 

representing 128 bits.  For example, an IPv6 address can be written as 

fe80:0000:0000:0000:021a:70ff:fe14:8ac0.  For addresses such as this that contain a 

string of consecutive zeros, they can be written in a shorthand notation as 

fe80::21a:70ff:fe14:8ac0.  In other words, all zeros in the chain can be omitted from the 

address with two colons in their place.  This can be done for one and only one chain of 

consecutive zeros within a single address.  It is therefore incorrect to write an address 

such as the following (in longhand notation) fe80:0000:0000:0000:021a:7000:0000:00c0 

as the shorthand fe80::21a:7::c0.  Only one of the two strings of consecutive zeros may 

be chosen to leave out in the shorthand representation.  

2.1.2.2  Types of Addresses and Their Scope 

In IPv6 there are three main classes of addresses.  The first class is called Unicast, 

which means that this type of address represents the unique (within a subnet prefix) 

address of a single interface on a network.  There are two important subtypes of unicast 

addresses defined in [5] and they are: Global Unicast defined by all prefixes not 

designated for the other unicast address subtypes and Link-Local unicast defined by the 

prefix fe80::/10 [5].  

The second class of addresses is multicast addresses, and these are designed to 

replace the notion of a broadcast address familiar from IPv4.  Packets sent to a multicast 

address are delivered to all interfaces that are part of the multicast group, and a router 

will refuse to forward any packets addressed to a multicast group to which the router has 
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no route.  This mitigates denial of service type attacks and networks being flooded with 

broadcast packets [6].  A multicast address of particular importance is the Link Local 

Multicast Address, FF02::1, which must be queried in order to discover other hosts on a 

link-local connection before they can be addressed specifically.  

The third class of addresses is anycast.  A packet sent to an anycast address is 

forwarded to any of a defined group of addresses that the router deems to be closest 

according to the routing protocol in use.  In other words, a packet sent to an anycast 

address is guaranteed to be delivered to one in a group.   

Other important addresses are the localhost or loopback address (denoted by ::1), 

which just a self-reference address, and the unspecified address of all zeros (denoted by 

two colons ::), which is used by interfaces that do not already have an address to indicate 

the absence of an address.  Addresses representing the all-routers multicast groups are 

FF01:0:0:0:0:0:0:2, FF02:0:0:0:0:0:0:2, and FF05:0:0:0:0:0:0:2, where 1 indicates 

interface-local scope, 2 is link-local scope, and 5 is site-local scope.  

 

2.2  Related Work 

This section covers the topics of steganography and IPv6 as they relate to this 

thesis.  Specifically, steganography in TCP/IP will be discussed along with 

steganography in images and sound files.  Two pieces of the IPv6 protocol, Stateless 

Address Autoconfiguration (SAA) and the privacy extensions to SAA, are crucial to the 

work done in this thesis, and they are discussed here as well.  
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2.2.1  Stegonography 

Steganography literally means “covered writing” in Greek, and there are many 

ways of performing steganography, which may or may not involve the use of a computer.  

For example, a commonly known form of steganography is performed with lemon juice 

and paper.  A pen dipped in lemon juice is capable of writing an invisible message that 

can only be made visible again with the application of heat to the paper.  The existence of 

a secret message written in such a fashion would have to be known to the intended 

recipient ahead of time, and the purpose of this secrecy is to protect the participating 

trusted parties against any third party that may intercept the message in transit.  With the 

message secretly embedded into the cover medium, the participating parties can be 

reasonably secure in the knowledge that any third party is unlikely to discover the hidden 

message.  In the case of the lemon juice on paper, the secret message might be written in 

between lines of a message written in normal ink that is meant to be seen.  The ink 

message could be innocent or deliberately wrong information designed to lead an enemy 

down a false path of disinformation.   

Another analog steganographic scheme would be the one in [7] that discusses 

Greek historian Herodotus’s account of King Darius of Susa writing a message on the 

shaved head of a courier and allowing the hair to grow back.  Once enough hair grows 

back to hide the message, the courier could be sent on a cover mission with an outwardly 

visible purpose concealing the true secret one.  

Just as computers have come a long way in helping humans create more secure 

cryptographic methods, so too have computers enhanced the ability of humans to create 

increasingly harder to detect steganographic schemes.  Often, modern digital 
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steganography is completely undetectable to humans without the aid of a computer even 

for the intended recipient of a message.  Steganography can also be combined with 

cryptography for an extra layer of security in the case that the existence of the secret 

becomes known to a third party.  Sometimes, steganography is desirable in place of or on 

top of cryptography for the simple fact that cryptography itself arouses suspicion.  The 

assumption is made that if data is encrypted, it must be something worth hiding and 

therefore, valuable.  This could draw unwanted and unjustified attention.  In addition, in 

[7] Dunbar asserts that “many governments have created laws that either limit the 

strength of cryptosystems or prohibit them completely.”  So, steganography could be 

used in place of cryptography or to conceal cryptography in such situations.   

The following methods are modern steganographic techniques that deal with 

digital data in various ways.  At the most basic level, these techniques rely on “redundant 

data or noise” [7] contained within the data that is being manipulated.  

2.2.1.1  Steganography in Images and Sound Files 

Many current steganographic methods rely on the weakness of primary human 

information sensors such as ears or eyes.  Data representing an image or sound file can be 

modified in subtle ways that cause the resulting file, which is actually different from the 

original, to appear or sound identical to the original as far as the unaided senses can tell.    

Images have plenty of redundant data to work with.  Depending on image format, 

the image can have more of less “bandwidth” for embedding the secret message.  Images 

use numerical values to represent types of light that appear at each pixel, and different 

image formats allow different ranges of values for each pixel.  The more values that are 

allowed, the more bandwidth that image has, and the easier it is to change a value without 
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the change being detectable to the human eye.  For example, if there are 15 shades of 

green that can be used, then the contrast or difference between two shades will be much 

more easily detectable than if the same progression of change in colors were spread 

across 150 shades.  This is what provides the redundant data needed for the covert 

channel.   

The same concept exists for digital sound files, which are also lists of data values 

that represent samples taken from an analog sound wave over time.  The more digital 

samples that are taken from the analog wave, the more accurately the digital map 

represents the actual sound, and the more bandwidth that exists for the secret message.  

As [7] notes, the human auditor system is very good at detecting subtle differences in 

power and frequency of sound, but the weakness of the human ear comes in its inability 

to accurately distinguish different sounds that occur simultaneously.   

A common method for embedding secret data into both of these mediums is least 

significant bit (LSB) encoding, which embeds a bit of secret data into the LSBs of 

“blocks” of data.  How many bits a “block” consists of is arbitrary (it depends on the 

medium), but the more bits or information per block, the least likely that modifying the 

least significant bit of that block will change it’s meaning.  In other words, that LSB in a 

longer block has less weight.  Sometimes several LSBs are used [7].  The number of 

blocks that a file contains multiplied by the bits used per block is the capacity in bits of 

the covert channel.   

Methods such as these of hiding secret data in images and sound files are not ideal 

for two reasons.  One reason is that these types of files have a somewhat predictable 

pattern of the “noise and redundant data”.  Through the aid of computers, statistical 
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analysis can be performed to detect the presence of steganography in the medium, thus 

defeating the purpose.  The second, and probably more practical, reason is that images 

and sound files are often run through compression algorithms as they are transferred 

around different locations and users, and these compression algorithms are designed to 

alter or eliminate the redundant and noisy data that is being used as a covert channel.  If 

the channel is destroyed, the message is not transmitted.  

2.2.1.2  Steganography in TCP/IP 

Various schemes exist for embedding secret messages into the TCP/IP stack.  A 

few discussed here involve IPv4 and TCP and not IPv6, although some exist [8].  In [8], 

the authors identify all of the practical places within TCP/IP headers wherein secret data 

can be hidden.  In the IP header, the identified fields are the Type of Service (ToS), IP 

Identification (IP ID), IP Flags of Do Not Fragment (DF) and More Fragments (MF), IP 

Fragment Offset, and IP Options fields.  In the TCP header [8] there is the TCP Sequence 

Number (primarily the Initial Sequence Number or ISN) and the TCP Timestamp fields.  

A program called Covert-TCP identified in [8] and an extension of it called Nushu are 

capable of embedding secret data into TCP ISNs and IP IDs.   

The previous work suffers from one or more basic flaws as far as the use for 

steganography is concerned.  First, the normal values of the fields are well-known, 

meaning that anything other than this default value is likely to arouse suspicion. 

Secondly, the fields exhibit predictable characteristics on the network which a 

steganographic scheme would destroy.  Finally, some of the above fields are extremely 

limited in bandwidth.  For example, IP packets rarely contain anything in the IP Options 

field, so any data in there would be suspect.  Similarly, the Type of Service field is not 
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even used except in modified versions of IPv4, and therefore, anything other than a zero 

in this field would be an anomaly.   

The work in [8] discusses TCP ISNs, which are used in the Covert-TCP program 

as a secret channel that the program simply fills with the secret data.  However, as [8] 

also shows, this field exhibits predictable characteristics because plaintext patterns are 

easily predictable and would cause the sequence numbers to appear out of the ordinary.  

Nushu builds upon Covert-TCP by encrypting the data that it embeds into the ISN field, 

but as [8] notes, even the encrypted data looks out of the ordinary, because ISNs, 

although meant to be unpredictable, adhere closely enough to a pattern that anything 

anomalous can be noticed.  The main reason for this is that the ISNs are not random.  

They also claim that there is a flaw in the DES encryption performed by Nushu that adds 

to the problem [8].   

2.2.1.3  Contrast of Current Schemes to This Scheme 

In [7] the author quotes Fabien A.P. Petitcolas as saying “in a perfect system, a 

normal cover should not be distinguishable from a stego-object, neither by a human nor 

by a computer looking for statistical patterns.”  Even though the steganography discussed 

in Section 2.2.1.1 and Section 2.2.1.2 cannot be detected by the unaided human, often it 

can be detected by statistical analysis and pattern searching with the aid of a computer.  

One thing Petitcolas failed to mention, more than likely as an implicitly understood fact, 

is that in a perfect steganographic system, the covert medium should also be such that it 

is not easily destructible.  The TCP/IP steganography discussed above, for the most part, 

possesses this trait insofar as it uses fields that remain unmodified in transit, but the same 
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confidence cannot be given to the steganographic techniques involving image and sound 

files.    

In contrast to the methods above, it is conjectured that the method of 

steganography implemented in this thesis, when used with encryption, will create stego-

objects that are indistinguishable from unmodified cover objects, because the unmodified 

objects, by meticulous design, should not conform to any predictable pattern according to 

the IPv6 standard.  In addition to this benefit, IPv6 source addresses will never be 

intentionally modified in transit from sender to receiver by any node that is behaving as 

designed to according to the IPv6 protocol, thus preserving the covert channel.   

2.2.2  IPv6 

IPv6 has been gaining ground recently as IPv4 addresses move increasingly closer 

to exhaustion.  For example, China, driven by the increasing industrialization of their 

enormous population, has been moving most quickly in their adoption of IPv6 as the 

primary internet infrastructure.  The protocol has been designed, with the problem of 

address shortage in mind, to incorporate addresses of 128-bits, which allows for 

340,282,366,920,938,463,463,374,607,431,768,211,456 possible addresses.  Only the 

relevant pieces of information pertaining to IPv6 are detailed in this thesis.  For a 

complete description, see the IPv6 specification [3].  

2.2.2.1  Stateless Address Autoconfiguration 

Stateless Address Autoconfiguration, defined in [4], is one of the processes by 

which interfaces on an IPv6 network automatically generate their addresses without the 

need for manual configuration.  This process of address acquisition by nodes on a 
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network is performed when complete control over addresses on a network is not desired. 

The only constraint that this mechanism imposes on addresses is that they be unique on 

the subnet and are not any of the reserved addresses or in any of the reserved ranges of 

addresses.  This process involves calculation done by the node on which the interface 

resides as well as information received from a router on the network.  The two pieces of 

information combine to form a complete address for the interface.   

The portion of the source address generated by the node that houses the interface 

is the interface identifier portion of the address, and this will usually be the lower 64 bits 

derived from a link layer address such as the media access control (MAC) address of an 

Ethernet card using Modified EUI-64 format.  The higher leftmost bits of the address 

(usually 64) comprise the subnet prefix, also referred to as the network identifier, subnet 

identifier, network portion, or subnet portion of the address.  The router that the interface 

is connected to supplies the network identifier portion of the address through Router 

Advertisements, which the router broadcasts on a regular interval.  All nodes connected 

to a link on a network are required to generate a link local address that provides point-to-

point connectivity whether or not any router is present.  This address is generated 

automatically as soon as a node is connected to a live link with another node by 

generating the interface identifier portion of the address and combining it with the 

constant link-local prefix FE80::/10.   

One way the interface identifier portion of an address can be constructed for 

Stateless Address Autoconfiguration is by creating an IEEE EUI-64 identifier from an 

IEEE 48-bit MAC address detailed in [5].  In this method, the MAC address is split in 

half with the 24 bits of the company id on the left and the 24 bits of the vendor supplied 
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id on the right.  The hexadecimal value of 0xFFFE is then inserted between the two 

halves to form a 64-bit identifier.  For example, a MAC address of 11:22:30:AA:BB:CC 

would be split up into the company id of 11:22:30 and the vendor id of AA:BB:CC, and  

the value FFFE would be inserted in between these to form an interface id that looks like 

the following in hex: 1122:30FF:FEAA:BBCC.  In addition to the insertion of 0xFFFE, 

the second least significant bit is inverted, so the above would become 

1322:30FF:FEAA:BBCC (the second hex digit changed from 1 to 3).  To make this 

clearer, the figures below show the process taken directly from [5].  Figure 2: Standard 

MAC Address shows a standard MAC address with the company bits defined by the 

letter ‘c’ and the vendor specific bits defined by the letter ‘m’.  The ‘0’ character 

indicates global scope and is known as the universal/local bit, while the ‘g’ indicates the 

individual/group bit [5].  Each letter represents a single bit.  

 

|0              1|1              3|3              4| 
|0              5|6              1|2              7| 
+----------------+----------------+----------------+ 
|cccccc0gcccccccc|ccccccccmmmmmmmm|mmmmmmmmmmmmmmmm| 
+----------------+----------------+----------------+ 

 

Figure 2: Standard MAC Address 

 
Figure 3: EUI-64 Identifier below shows what the interface identifier derived from the 

above MAC looks like when the FF FE (or binary 11111111 11111110) value is inserted 

in the middle transforming the identifier in Modified EUI-64 format.  Note that the 

universal/local bit is inverted as part of the process to indicate universal scope, but could 

also be set to a ‘0’ to indicate local scope.  This bit is to allow development of future 

protocols that can take advantage of the universal scoped interface identifiers, according 
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to [5], but nodes are not required to verify that an identifier with this bit set is actually 

unique.  

 

|0              1|1              3|3              4|4              6| 
|0              5|6              1|2              7|8              3| 
+----------------+----------------+----------------+----------------+ 
|cccccc1gcccccccc|cccccccc11111111|11111110mmmmmmmm|mmmmmmmmmmmmmmmm| 
+----------------+----------------+----------------+----------------+ 

 

Figure 3: EUI-64 Identifier 

The top of Figure 4: Stateless Address Autoconfiguration Process below shows 

the process graphically.  The bottom half of the figure shows the random number method 

used for the privacy extensions discussed in Section 2.2.2.2.   

 

 

From http://media.arstechnica.com/articles/paedia/IPv6.media/autoconfig.png 

Figure 4: Stateless Address Autoconfiguration Process 

The steps of the Autoconfiguration process are as follows: 

1) A host generates its link-local address.   

2) The host then attempts to verify if any other host on the link is using the generated 

address in a process called Duplicate Address Detection by sending Neighbor 
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Solicitation packets to the generated address.  If another host is using the address, 

it will respond to the query of the asking host with a Neighbor Advertisement 

message.  The time that a node waits for a Neighbor Advertisement response and 

the number of retransmissions of Neighbor Solicitations is configurable by 

network administrators.   

3) If the address is not unique, then Autoconfiguration cannot continue.   

4) If the address is unique, then it is assigned to the generating host.  

 After the above steps are performed, the next part of the process involved with 

generating addresses with scope other than link-local are specific to end hosts and do not 

apply to routers.  Hosts will look for Router Advertisements that contain the network 

prefix to use when generating a global address along with the lifetime values of the 

address.  Lifetime values specify how long an address is valid or preferred before 

becoming invalid or deprecated, respectively.  The different lifetime values are defined 

with greater detail in [4].  Alternatively, hosts do not have to wait around for a Router 

Advertisement to be broadcast.  They have the option to send out Router Solicitation 

packets to the all-routers multicast group, as mentioned in Section 2.1.2.2 above, 

indicating that they want a Router Advertisement to be broadcast by the router.  The host 

subsequently performs Duplicate Address Detection in the same manner as described 

above after it generates the global address using the same interface identifier as in the 

above process with the subnet prefix supplied in the Router Advertisement.  
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2.2.2.2  Privacy Extensions to Stateless Address Autoconfiguration 

The Privacy Extensions to Stateless Address Autoconfiguration came out of a 

legitimate concern for privacy of the individuals using hosts connected to IPv6 networks. 

Specifically, the prospect of tracking user activity across the network over time is a very 

real possibility when a universally unique identifier such as a MAC address is used by 

Stateless Address Autoconfiguration to derive the interface identifier portion of a node’s 

address.  If a portion of the address of an interface is always the same and is universally 

unique, then activities of the user using the interface can be tracked and correlated no 

matter where the user is geographically, whether the user connects to different subnets, or 

the time span between consecutive uses of the network.  In [9], T. Narten et al. were 

concerned with this problem pertaining to user’s privacy on the network and proposed a 

mechanism to get around it.  This new mechanism is to allow nodes generating addresses 

for their interfaces to use a random number instead of converting a MAC address to an 

EUI-64 formatted identifier.  The process is illustrated in contrast to the MAC derived 

process in Figure 4: Stateless Address Autoconfiguration Process above.  All other 

aspects of Stateless Address Autoconfiguration remain the same, except for the process 

by which nodes generate the interface identifier portion of their address.  In addition, for 

nodes using this random identifier portion, a temporary preferred lifetime (or temp-

prefered-lft as found in the system file) specific to these temporary addresses is specified 

by the administrator of the node using the privacy extensions.  The temporary preferred 

lifetime specifies when the address for the node is to be changed to the next random 

number generated by the node.  This value defaults to 86400 seconds or 24 hours, but can 

be changed by the system administrator.  The exact process by which this occurs is 
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unimportant for this thesis, but can be found in [9].  It is, however, relevant to the time 

interval that the program for this Thesis uses to send out messages on as described in 

Section 4.2.1. 

The privacy extensions solve the privacy and activity correlation problem, but 

they also introduce the possibility of the covert channel within source addresses of IPv6 

packets by allowing the interface identifier to be generated with a random number. 

Because the interface identifier can be expected to be random, it cannot be expected to 

conform to any predictable value or statistical sequence.  In other words, if a third party 

inspects the source address field of a packet, it cannot easily be said to appear out of the 

ordinary, because any value is fair game.  This is key to the work in this thesis. 
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3.  APPROACH 

3.1  High Level Design 

The approach taken by this thesis to embed messages into IPv6 sources address 

uses two methods, each of which has its advantages and its disadvantages depending on 

the application.  The first way that messages are embedded into the source address fields 

of packets is through the media access control (MAC) address, which is detailed in 

Section 3.2.  The MAC address is like a serial number for a network interface.  The 

second method is to directly create packets using a native Perl framework built for that 

purpose, and this method is described in Section 3.3.  The program written for this thesis 

is able to decode messages from packets that have been encoded using either of the 

described methods, and, in fact, the decoding process depends upon the method of 

encoding used.  

For both methods of embedding the message, the bits of the ASCII characters that 

make up the message are used as the input to the steganographic medium, henceforth 

referred to as “entity,” which means either a MAC address or the interface identifier of an 

IPv6 address.  For example, the bits for the message ‘invade normandy tomorrow. dawn’ 

are represented in hexadecimal notation as:  

696e76616465206e6f726d616e647920746f6d6f72726f772e206461776e  

In this representation, each two hex characters represent a byte of the message for a total 

of 30 bytes.  This format of the message represents the raw bytes that underlie the human 

readable ASCII characters, and these bytes are used to create either entity specified as the 
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steganographic medium, because both of these entities can be represented by hex digits2.  

One can see this correspondence quite easily by looking up 0x69 and 0x6e on an ASCII 

chart and noticing that these two numbers represent the letters ‘i’ and ‘n’, respectively.  

For the purpose of decoding the messages encoded using one of two different schemes 

(see Section 3.3 below), the length of the original message in bytes is calculated and 

appended to the beginning of the message between ‘<’ and ‘>’ characters before it is 

actually encoded to the interface identifiers.  So with the byte length information 

appended, the above 30-byte message actually becomes:  

<30>invade normandy tomorrow. dawn 

For MAC encoding, the process is slightly different.  The string ‘<eNd>’ is appended to 

the end of the message creating the string below: 

invade normandy tomorrow. dawn<eNd> 

This message is then either encrypted with the Blowfish block cipher algorithm, or the 

original text is used directly to create the series of entities that will hold the message.  In 

either case the hex representation of the text or cipher text is used to create the list of the 

entities specified, whether they are MAC addresses or interface identifiers.  

 If the number of bytes available in the message cannot be divided evenly into the 

desired medium as six bytes each for a normal MAC address (five bytes for the short 

version) or eight bytes each for IPv6 interface identifiers, random bytes of data are 

created and concatenated to the remaining message bytes in order to create another 

                                                 

2 Of course, this hex representation is just a way of making things more readable on the human level.  What 

is really going on is that the binary digits that represent the characters in the message are being directly 

used to create either MAC addresses or IPv6 source addresses. 
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complete entity.  At most, five random bytes are created for normal MAC encoding (four 

bytes for short encoding) and seven bytes are created for interface identifiers in the worst 

cases, because in all these cases, there is one leftover byte for the message that will not fit 

into the previous entity.  In the case of the above message, there are 34 total bytes when 

the ‘<30>’ byte-length information string is appended to the original message.  When 

divided by eight for IPv6 interface identifier encoding, there are two bytes left over, so 

six random bytes must be created to build an additional eight-byte interface identifier.  

However, for MAC addresses, the message ends up containing 35 total bytes with the 

‘<eNd>’ string included.  For long MAC encoding, 6 bytes per MAC are used, and this 

divides into five full MACs with five bytes leftover.  One extra random byte must be 

generated to complete the last MAC.  However, when divided by five for the alternative 

short MAC encoding, there are no bytes left over, so no random bytes must be created to 

tack on to the end of the message. 

3.2  Encoding Messages through MAC Addresses (Passive Injection) 

MAC addresses are composed of 48 bits (six 8-bit bytes) and can be represented 

by six octets (two hex digits each) separated by colons such as in the following: 

AA:BB:CC:11:22:33 

Using the MAC address method, a list of MAC addresses is created from the bytes in the 

original message.  However, MAC addresses have the constraint that the least significant 

bit of the first octet in the address be zero unless it is a multicast MAC address.  In other 

words, it must be even for normal MAC addresses belonging to a single interface.  This 

produces difficulty if one wishes to be able to encode an arbitrary message into the 

medium, because the message may have to be changed to create a legal MAC address.  
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The solution taken in this thesis is to allow the encoding into MAC addresses in two 

different ways.  The first way is described in Section 3.2.1, while the second is described 

in Section 3.2.2.  In both cases, the method of sending out the message is call passive 

injection because of the passive manner in which it works.  As described above, when a 

network host has not elected to use the privacy extensions of IPv6, the interface identifier 

portion of IPv6 addresses is created using the MAC address of the interface on the IPv6 

network.  For this reason, when the MAC address of an interface is changed, the interface 

identifier portion of the interface’s IPv6 address is automatically changed.  As long as the 

MAC is set to one of the entities representing a piece of the secret message, this piece of 

the message will be embedded implicitly into the interface identifier portion of the source 

address of all packets leaving the interface of the host on the network.  This happens 

regardless of the details, such as source and destination ports and destination addresses, 

that the application or higher level protocol uses as long as the interface containing the 

piece of the message as its MAC address is used.  

3.2.1  Long MAC Encoding  

The first way is to encode the message into all eight octets of the MAC and 

change the least significant bit of the first octet to a zero, if it is a one.  The problem with 

this approach is that the receiver of the message has no way of knowing whether this bit 

was changed and that the message was altered as a result.  This is different from the EUI-

64 conversion process described in Section 2.2.2.1 that simply inverts the seventh bit of 

the first octet regardless of whether it is a one or a zero, and decoding based on the EUI-

64 bit process is just a matter of always flipping that seventh bit back.  If this MAC 

encoding method is used, the receiver must decode two messages for every one IPv6 
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address they receive that is part of the message stream.  It is then solely up to the 

discretion of the user to decide which decoding is correct.  In some cases, such as simple 

text messages it is easy to tell which is the correct decoding, but in some cases, it is not 

so easy.  An example of legal MAC addresses encoded from the message ‘invade 

normandy tomorrow. dawn<eNd>’ using this method is below.  Note that the actual bytes 

of this message in hex (divided into 6-byte pieces for clarity) are:  

696e76616465  

206e6f726d61  

6e647920746f  

6d6f72726f77 

2e206461776e 

3c654e643e    

These bytes turn into the MAC addresses: 

68:6e:76:61:64:65 

20:6e:6f:72:6d:61 

6e:64:79:20:74:6f 

6d:6f:72:72:6f:77 

2e:20:64:61:77:6e 

3c:65:4e:64:3e:9b 

As can be seen, it takes six MAC addresses to fully encapsulate the 35-byte message, 

with the appended <eNd> string.  It is important to note that because no encryption was 

used, each octet of each MAC address represents an ASCII character of the message, not 

including the ending ‘9b’ byte on the end of the last MAC, which is just random data 

created to make a full six-byte MAC address.  In addition, it can be seen that the first byte 

of the message 0x69 was changed to 0x68 to be compatible with standard MAC address 

form.  If it had stayed 0x69 it would have resulted in a multicast MAC address, which 
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would be invalid.  The first octets of the other MACs were already even, and they remain 

unchanged.  

 After this list of MAC address is created from the message, the interface specified 

by the user will have its MAC changed to each of these new MACs on a time interval 

also specified by the user.  When the MAC address of an interface connected to an IPv6 

network is changed, and the node that the interface is connected to has not elected to use 

the privacy extensions of IPv6, the interface identifier portion of that interface’s IPv6 

address is then changed automatically by the operating system.  This is done in the 

Modified EUI-64 format as described in Section 2.2.2.1.  Because of this process, the 

message embedded into the MAC address is embedded into the interface identifier of the 

IPv6 source address.  The figure below depicts this process. 
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Figure 5: Long MAC Encoding Process 
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3.2.2  Short MAC Encoding 

 An alternative method of encoding the secret message to MAC addresses 

is to do so using only the lower five bytes of the MAC, thus avoiding the problem of 

having to force the first octet to be even.  Obviously, this method more often than not 

requires more MAC addresses to be created to contain the entire message.  Accordingly, 

this method has less bandwidth than the previous one, but it is more straightforward and 

easier decode.  

 For this method, a clean octet, which is defined as an octet whose least 

significant bit is zero, is created for the first octet of every MAC that contains a piece of 

the message.  For the same message “invade normandy tomorrow, dawn<eNd>” the 

bytes in hex remain the same as above, but this time the bytes are presented in 5-byte 

blocks for clarity: 

696e766164 

65206e6f72 

6d616e6479 

20746f6d6f 

72726f772e 

206461776e 

3c654e643e    

The list of MAC addresses encoded using this method is below: 

be:69:6e:76:61:64 

9a:65:20:6e:6f:72 

7a:6d:61:6e:64:79 

c6:20:74:6f:6d:6f 

04:72:72:6f:77:2e 
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fe:20:64:61:77:6e 

e2:3c:65:4e:64:3e 

The first octet of each MAC is just a randomly generated number.  It is notable that 

using this scheme requires one more MAC address to be created than the normal six-octet 

encoding in order to encapsulate the entire message.  This can be significant depending 

on the time interval between MAC changes that one uses to send out messages.  The 

choice of MAC encodings is up to the user of the supplementary program and depends on 

their specific circumstances, namely whether it is more important to have an easier 

decoding process, or whether it is more important to get a message out quickly.  

After the list of MACs has been generated, the target network interface has its MAC 

changed to be each of these on the predefined time interval set up by the user.  In the 

same manner as in the Long MAC Encoding, the IPv6 source address is derived 

automatically by the operating system as the Modified EUI-64 format of the MAC.  

Figure 6 below provides a more detailed look. 
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Figure 6: Short MAC Encoding Process 



 32

3.3  Encoding Messages through Packet Creation (Active Injection) 

Another method used to send messages in the source-address covert channel of 

IPv6 is called Active Injection.  This method is referred to as active because packets with 

spoofed source addresses containing the secret message are created by the program and 

injected into the network solely for the purpose of sending the secret message, whereas in 

the passive mode, no packets are actually created by the program at all.  However, in the 

passive mode, packets are created by other applications that simply use the IPv6 source 

addresses with the embedded message set by the stego program for an interface.  In active 

mode, the actual address of the interface connected to the network never changes at all.  

IPv6 packets are constructed by the program in pieces from the link-layer to the 

application layer, with most properties of these packets configurable by the user, and 

injected into the network on a time interval set by the user.  An example of a property not 

directly configurable by the user in these packets is the IP source address, which will 

obviously be set to a piece of the secret message specified by the user.  Other properties, 

however, such as source and destination port, destination address, data for the layer-seven 

data portion, and much more can be specified by the user in many different 

configurations that can help to make the packet look more legitimate on the network the 

user is connected to.   

Using this method, instead of creating a series of MAC addresses to embed the 

messages into and then setting the target interface’s MAC address to these new MACs in 

series, the supplemental program will encode the message (or cipher-text if encryption is 

used) directly into a series of IPv6 interface identifiers.  These interface identifiers, as 

discussed in Section 2.2.2.1, are 64 bits long as opposed to the 48 bits of MAC addresses, 
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so it will on average take less of the entity, into which pieces of the message are 

embedded, to send out the full message.  The network portion of the address (the first 64-

bits), also discussed in Section 2.2.2.1, can be derived from pre-existing prefixes of 

interfaces on the node that are connected to the IPv6 network.  

It is important to note, though obvious, that if a reply such as a TCP 

acknowledgement is sent out by the receiver of these packets with spoofed source 

addresses, routers on the network will attempt to route the reply from the receiver to the 

spoofed source address, or they will drop the reply if they have no route to the spoofed 

address.  In any case, it will be impossible for the sender of the secret message to receive 

any reply from the receiver unless the receiver ahead of time knows the sender’s true 

address.  

As an example, the message ‘<30>invade normandy tomorrow. dawn’ with length 

information appended to the front is represented by the following hex divided into 8-byte 

chunks for clarity: 

3c33303e696e7661 

6465206e6f726d61 

6e647920746f6d6f 

72726f772e206461 

776e 

This information becomes the following interface IDs: 

3c33:303e:696e:7661 

6465:206e:6f72:6d61 

6e64:7920:746f:6d6f 

7272:6f77:2e20:6461 

776e:1627:c77d:834c 
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A diagram of this process is presented below in Figure 7: Direct Encoding Process. 

 

Figure 7: Direct Encoding Process 

3.4  The Decoding Process 

A receiver can be configured to sniff a local interface and look for packets with 

certain properties.  These properties can be set up ahead of time by the two parties to 

make it easier to sniff only relevant packets that contain the secret message.  For 

example, one might look only for packets with a predetermined source port or source 

MAC address. The receiver can also choose to sniff indefinitely, or to sniff only until a 
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complete single message has been received. When relevant packets are received, the 

program will attempt to decode them based on how it is told that the packets are encoded.  

The decoding process depends heavily on the type of encoding used. If the 

encoding process used is Long MAC Encoding, described in Section 3.2.1, then the 

receiving program will extract the interface ID portion of the address and eliminate the 

middle octets with hexadecimal values 0xFF and 0xFE.  These values would have been 

inserted during the process of the originating node constructing the IPv6 interface ID in 

Modified EUI-64 Format, which is described in Section 2.2.2.1.  The seventh bit would 

also need to be flipped.  Then, two possibilities for the decoded message must be created 

by decoding the bits resulting from removing the 0xFF and 0xFE directly and flipping the 

seventh bit, and again by flipping the least significant (or eighth) bit of the first octet to 

its opposite and decoding that combination.  For example, if the first octet after reversing 

the EUI-64 process is 0x72, represented in binary as 0111 0010, this would decode to an 

‘r’ character.  However, because the binary 0 in the eighth place could have been set that 

way to create a valid MAC, the original message could have actually been 0111 0011 in 

binary or 0x73 in hex, which would subsequently decode to an ‘s’ character in ASCII.  It 

is impossible for the program to tell which of these two decoded results is correct, 

because it will not know if the original message had a value of one in the eighth position, 

or if it was flipped to a one to create a valid MAC address.  As pieces of the message are 

generated, an increasingly complex tree of possible paths for the actual message is 

generated, and it is left up to the user to decide which is correct.  If encryption is used, 

then the program will attempt to decrypt the two possibilities leaving an obvious 
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incorrect decryption that would probably appear as gibberish.  Therefore, encryption is 

recommended for this encoding and decoding method.  

The next possible encoding is Short MAC Encoding.  This process is more 

straightforward than decoding the Long MAC Encoded messages, because it does not 

bother with the first octet of the extracted message strings.  By ignoring this first octet, it 

is unnecessary to create a tree of possible message paths, and the message can be decoded 

directly after removing the 0xFF and 0xFE bits from the middle of the string, if no 

encryption was used.  If the message is encrypted, there will be the extra step of 

decrypting the cipher-text into plaintext between removing the 0xFF and 0xFE bits and 

subsequently decoding the hexadecimal digits into ASCII.  

The final way that a message is decoded is the simplest.  If active injection mode 

is used, then the messages will be embedded straight into the lower 64 bits of the source 

addresses of the relevant sniffed packets.  There is no need to extract the 0xFF and 0xFE 

strings as in the other two decoding methods, because messages sent using active 

injection are not based on the MAC addresses, and, therefore, these messages never  

undergo Modified EUI-64 format encoding.  Rather, these messages were embedded 

directly into the interface ID portion of the source addresses.  If the message is encrypted, 

then there is one extra step of decrypting the cipher-text after pulling it from the source 

address.  After recovering the plaintext, the program decodes the hexadecimal 

representation of the ASCII into actual characters.  
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4.  IMPLEMENTATION 

4.1  Platform and Environment 

The program written for this thesis was implemented in the Perl programming 

language version 5.8.8 and tested on the Slackware 12, Backtrack 2 (a derivation of 

Slackware), and Ubuntu 8.04 distributions of the Linux operating system.  Some of the 

system calls that the program uses are Linux specific.  No testing was performed on the 

Microsoft Windows operating system.  The Net::Packet, Crypt::CBC (Chain Block 

Cipher), and Crypt::Blowfish Perl modules, as well as the dependencies for these 

modules must be installed for the program to run correctly with full functionality.  The 

Net::Packet module is a library that allows for the arbitrary creation and manipulation of 

network packets from the Ethernet layer through the network layer (including IPv4 and 

IPv6) and transport layer to the application layer, according to the OSI Model.  The 

Crypt::CBC and Crypt::Blowfish modules work in conjunction to allow for encryption of 

the message using the Blowfish encryption algorithm.   

The Ubuntu and Backtrack 2 distributions were run from a Dell Laptop with an 

Intel Centrino dual-core processor at 1.66GHz per core and 1GB of RAM in a dual-boot 

configuration.  The Slackware 12 operating system was run on two lab desktop servers 

with 512 MB of RAM each, one with a 2.8 GHz Pentium 4 and the other running a 1.5 

GHz Pentium 4.  Slackware 12 was also run on one home desktop server with 512 MB of 

RAM and dual 800 MHz Pentium 3 processors.  Logical point-to-point tests using link-

local IPv6 addresses (prefix fe80) for connectivity were used in all testing scenarios.  On 

the link-layer, hosts were connected directly with either ad-hoc wireless connections or 

direct Ethernet cord connections, or they were connected via Ethernet over a Nortel 
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460/470 series Ethernet switch that passively moved information between connected 

interfaces.  No intermediate nodes functioning as routers were set up for testing.  Figure 

8: Physical Connection Topologies shows some of the physical network topologies that 

were used during testing.  

 

Figure 8: Physical Connection Topologies 

4.2  Running the Program 

The program, named ‘m2a.pl’ (for Message To Address), is run from the 

command line of a Linux console, and all user configurable options are specified either in 

a configuration file or via command line arguments.  A complete list of all configurable 
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options with a description of each is included in the appendix for quick reference.  The 

default path for the configuration file is the ‘/etc/m2a.conf’.  The simplest way of running 

the program is to specify command line arguments, but when a given configuration is 

expected to be used many times, the configuration file can save considerable time.  The 

following sections discuss different ways that the program functions and give an 

overview of a few setups that are anticipated to be the most common configurations. 

The two primary operating modes for the program are Message Mode and Decode 

Mode.  Message mode is used by the sender of the message, while decode mode is used 

by the receiver.  Depending on which primary operating mode is selected, the user can 

specify a multitude of sub-options that control the operation of the m2a.pl program, and 

these are useful in different circumstances depending on exactly what the user is trying to 

accomplish and the specific constraints of different scenarios.   

Both primary operation modes require the user to specify a network interface 

either to send message out on, or to sniff packets from.  If no interface is specified, then 

m2a.pl will attempt to pull an interface out of the /proc/net/if_inet6 file, but this is not 

recommended.  Because encryption of the message is an option, both of the primary 

modes require the user to specify whether encryption is to be used, and, if so, to specify a 

file containing the 56-byte (448-bit) encryption key and the 8-byte (64-bit) initialization 

vector to be used.  A supplementary program to generate encryption keys and 

initialization vectors is included named ‘genKey.pl’.  

The encryption module used by the program, Crypt::CBC, requires that blocks of 

8 bytes (the size of the initialization vector) be encrypted at a time, and this has some 

serious implications for the implementation of the MAC Encode methods.  For the 
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Interface ID encoding mode, each unique piece of the message is 8 bytes (64 bits) long, 

because it occupies the full 64-bit interface identifier portion of the IP address.  These 

fragments of the message can be decrypted, piece-by-piece, as it they are received with 

no extra work involved.  However, for MAC Encoding mode, each individual piece of 

the message that the receiver obtains is only either 5 bytes (40 bits) or 6 bytes (48 bits) 

long depending on whether Short or Long encoding is used, respectively.  A buffer, 

therefore, is established that only attempts to decrypt a piece of the message after 8 bytes 

of the message are received.  In the case of either type of MAC encoding, this requires at 

least two changes of MAC address on the part of the sender before enough information is 

gathered in the buffer for a piece to be decrypted.   

4.2.1  Message Mode 

Message mode is the primary mode for the sender of the message.  It is further 

divided into Short and Long MAC Encode modes (both forms of Passive Injection) and 

Interface ID Encode Mode (Active Injection).  The basics of these different modes are 

described in Section 3.  Both passive and active modes will send out unique pieces of the 

message on an interval specified by the user.  If no interval is specified, then the 

temporary preferred lifetime (tmp_prefered_lifetime) value for the interface  found in the 

file /proc/sys/net/ipv6/conf/[interface]/tmp_prefered_lifetime is used for the time interval 

to send a new message piece out on.  If encryption is specified, then the file containing 

the key and initialization vector must be supplied, and the message will be encrypted 

after being concatenated with a certain type of metadata to facilitate decoding.  The type 

of metadata added to the original message depends on the type of encoding used as is 

explained below in Sections 4.2.1.1 and 4.2.1.2.  Figure 9: Message Mode Process Flow 
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at the end of this section shows a high-level visual diagram of the encoding process 

performed by the sender of the message. 

 

Figure 9: Message Mode Process Flow 
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4.2.1.1  MAC Encoding 

If Long or Short MAC Encode Mode is used, the program will not explicitly send 

out any packets.  It is assumed that the user will be using applications that will use the 

IPv6 layer to communicate across the network, and if this occurs, the message will be 

sent out as part of the packet stream that the application uses for its purposes, whatever 

those may be.  Individual pieces of the message in this mode will likely be sent out 

multiple times, so the Decode mode must compensate for this by recognizing repeats.  

Before the message is encrypted (if specified) and encoded into the MAC 

addresses, the string ‘<eNd>’ is appended to the end of the original message to facilitate 

decoding by signaling when the last piece of the message has been received.  It is thought 

to be highly unlikely for the exact string ‘<eNd>’ to occur in a message naturally, but the 

user should be aware that if this string exists within the actual message, it would cause a 

premature end to the decoding of the message.  

For Long MAC encoding, the MAC addresses created from the message are run 

through a cleanup routine that makes sure the first octet of each MAC is even (i.e. the 

least significant bit is set to zero).  This has the potential to alter the message and the 

decoding process must account for this as explained below.  

For Short MAC encoding, the message is embedded into the lower five bytes of a 

MAC address, and a random even byte is generated for the first octet of each prospective 

MAC address.  This method, as noted in Section 3.2.2 will potentially require more MAC 

addresses to be created, and more intervals will be required to get the entire message out, 

but it avoids the problem of having to alter the actual message being transmitted. 
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Different network setups for each end user across multiple physical locations will 

likely vary greatly.  For example, default gateways will be different, and nodes wishing 

to connect to wireless networks will have different access point ESSIDs along with their 

associated wireless security protocols and keys for WEP, WPA, or lack thereof.  When 

MAC encoding is used, the network interface must be brought down and disconnected 

from the network in order to change the MAC address.  Because of this process, the user 

will have to reconnect to the network every time the MAC address of the specified 

interface is changed by the program.  To help automate this manual process, there is an 

option to provide a connect script for the program to use to reconnect to the network each 

time a MAC address for an interface is changed.  This can be any script that is capable of 

being run on the host system, as the m2a.pl program makes an external call to the 

specified connect-script.  For example, the external connect-script supplied with the 

documentation is a bash script.  

4.2.1.2 Direct Encoding 

If Interface ID Encode Mode, or Direct Encoding, is used, then the program will 

explicitly create packets and send out one and only one packet for each piece of the 

message on the interval as set by the user.  The user also has complete control over 

attributes of the packets.  For example, through the configuration file or command line 

arguments, the user can specify source and destination MAC addresses, as well as source 

and destination ports.  Additionally, the user can prescribe a transport protocol to use 

(currently TCP or UDP) and data to stuff into the application layer portion of the packet. 

If the user elects to use TCP as the transport layer protocol, then TCP header options can 

also be supplied as a hexadecimal string.  TCP is used by default, if no transport layer 
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protocol is signaled.  Similarly, if no source MAC address is specified, then the MAC of 

the interface used to send the messages is used for the source MAC field of the packets.  

The user must specify a destination IPv6 address as well as a destination port, since this 

is an active process.  No outside applications will actually use any of the properties 

specified to the program. 

In a manner similar to the MAC encode method, before the message is encrypted 

(if the user has so determined) and embedded into the series of interface identifiers, 

metadata is appended to the message for decoding purposes.  In this case, the length of 

the original message in bytes is calculated and appended to the beginning of the message 

as described in Section 3.1.  

4.2.2  Decode Mode 

The decoding process can be operated in either Live Mode or Offline Mode.  The 

Live Mode will monitor network traffic on a specified interface in real-time as traffic 

flows along.  In Offline Mode, the user must specify a file containing previously captured 

packets in the ‘tcpdump’ tool’s format, otherwise known as a ‘pcap’ file.   

It will greatly benefit the sending and receiving parties of the message to set up a 

filter ahead of time to sniff packets by.  Only packets matching the given filter will be 

sniffed from the live traffic or pcap file and decoded, which will greatly reduce the 

number of packets that will have to be looked at.  For instance, users could decide to only 

sniff packets destined for MAC address 10:10:10:10:10:10 with destination port 4444, or 

many other combinations. This is particularly useful for the Direct Encoding method 

where these values can be specified directly. For MAC Encoding, a little more thought 

must be given to the type of upper layers such as transport and application layers that will 
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be used by the sender in order for the receiver to know what to filter on.  The filter string 

is also specified by the user in the ‘tcpdump’ tool’s syntax. For example to filter on 

destination MAC address 10:10:10:10:10:10 and destination port 4444, the filter string 

would b e ‘ether dst 10:10:10:10:10:10 and dst port 4444’.  More information on 

constructing filter strings can be found in the tcpdump man page [10].  

If Live Mode is selected, then the receiver may also choose to sniff the network only until 

a single complete message is received, or to sniff indefinitely for an arbitrary number of 

separate messages in Continuous Mode.  Separate messages, after decoding, are output to 

separate files in the directory that the program is run from in the format msg-

dd_mmm_yyyy-hh.mm.ss.  For example, a message for which the last piece was received 

on October 21, 2008 at 5:55 PM on the dot, would be written to a file named msg-

21_Oct_21008-17.55.0, and would exist in the directory the program was run from. 

Figure 10 at the end of this section gives a high-level overview of the decoding process 

performed by the receiver. 
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Figure 10: Decode Mode Process Flow 

4.2.2.1 MAC Decoding 

 MAC decoding involves more overhead that Direct Decoding.  The basic process  

of decoding the address to ASCII characters is explained in Section 3.4, and a full step-
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by-step example is provided in Section 5.1.  The process is finished when the program 

reads the string ‘<eNd>’ anywhere in a message.  The reason that the program cannot 

only look at the tail end of the message is that, if the original message could not be 

divided evenly into 5-byte chunks, then the leftover pieces would have been padded out 

with random bytes to create a complete MAC address.  Additionally, if encryption was 

used in the encoding process, there could be additional garbage at the end of the message. 

The encryption module requires complete blocks of eight bytes to be encrypted at a time, 

and if the original message was not evenly divisible by eight, then the leftover pieces 

would have been padded with spaces out to 8 bytes.  Any messages received after the 

first one that contains the string ‘<eNd>’ are ignored. 

 Another important implementation detail, which concerns how the program 

compares two messages that have been received to decide whether they are the same, 

only applies in MAC encode mode, because only in this mode are the same pieces of the 

message sent more than once.  The program does not compare the messages after they 

have been extracted and decoded.  It compares the two interface IDs of the current and 

previously received packets.  This is important in the case of messages containing an 

intentional repeat. For example, if a user where to send a message such as 

‘ABCDEABCDE’ it would broken into 5-byte pieces to be embedded into the lower five 

bytes of a MAC address.  If the messages themselves were compared, then the program 

would treat them as the same and not two distinct pieces.  However, because the interface 

IDs are compared before being decoded instead of the messages, the random byte created 

by the encoding process to be the first octet of the MAC address before it is encoded into 

an interface ID is likely to distinguish the two distinct pieces.  
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 Though Long MAC encoding has been implemented, the decoding process has 

not been implemented as of this release of the m2a.pl program.  The reason for this is 

largely presentational.  Within the program, a tree structure whose branch paths represent 

possible messages is fairly straightforward to build, however, displaying this in a useful 

way in a command-line based program is more difficult.  

 

4.2.2.2  Direct Decoding 

 Direct decoding is a simpler task than MAC decoding.  The process for decoding 

from an interface ID is explained in section 3.4, and an example is provided in Section 

5.2.  In this process, the beginning of the message contains the length of the actual 

message intended by the user in bytes.  For example, a 31-byte message that the user 

wishes to send will have the string ‘<31>’ appended to the beginning.  After this length 

value is read, the program buffers the message until all of the bytes have been captured, 

and subsequently writes the message to a file in the format described in Section 4.2.2.  

In some cases of extremely long messages, the metadata string that specifies the 

length of the message will not arrive in a single packet, but will take several.  For 

example, if a message is greater than 999999 bytes, then the byte-length metadata is nine 

bytes (with the ‘<’ and ‘>’ characters) and therefore, requires more than one interface ID 

to fit it all in.  The program handles this by simply buffering the pieces of the metadata 

until the whole string specifying the length is received.  The use of the m2a.pl program 

for messages of such large size is not recommended or expected, but it should still 

function correctly. 



 49

5.  RESULTS 

5.1  Scenario A: The MAC Encoding and Decoding Process in Action 

On the sending side, User A wants to send the message ‘invade normandy 

tomorrow. dawn’ that is contained in the file /etc/m2aMessage to User B.  User A would 

like the message to be encrypted and would also like to use the Short MAC encoding 

method of sending the message.  Ahead of time, User A and User B have traded the 

encryption key and initialization vector that will be used to encrypt and decrypt the 

message.  User A has also informed User B that he will be using the ‘ssh’ program, 

which uses port 2222 in this case, over IPv6 to connect to a host C.  This could be a host 

that User B has control over, or User B himself.  The only necessity is that User B be able 

to see all traffic in transit from User A to host C.  With this information, User B has 

something to filter on in order to pull only the relevant packets when sniffing the 

network, namely the specific destination port and address to look for in the packets.   

User A wants to get the message out quickly without generating too much 

suspicion on the network, so he specifies 120 seconds as his time interval that the 

program will wait before sending each new piece of the message.  User B has set up the 

program on his end to sniff the network waiting for packets that match his filter, and to 

terminate when a complete message has been received.   

Figure 11: MAC Encoding: User A (Sender) - Step 1a below shows what happens 

when User A, the sender, initially runs the program.  The picture points out the message 

that is being sent and what the underlying bytes of the message looks like before it is 

encrypted, as well as the setting of the first MAC address in the list for the interface 

specified.  The figure also shows the bytes after encryption, and it is important to note 
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that the encryption process added five more bytes, which causes eight MACs to be 

created to contain the entire message.  The reason for this is that the original message 

consisted of 35-bytes with the ‘<eNd>’ string appended, and the encryption block cipher 

can only work with blocks of eight bytes.  Five bytes are appended to make the message 

40 bytes, so it can be evenly divided into five blocks of eight bytes each.  Figure 11: 

MAC Encoding: User A (Sender) - Step 1a also points out the fact that because the User 

A has elected to use MAC encoding as the method to send the message by, a third party 

application that uses the IP layer must be used in order to cause packets containing the 

secret message to be sent out.  In this case, the application used is secure shell (ssh) over 

IPv6.   

 

Figure 11: MAC Encoding: User A (Sender) - Step 1a 
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The next figure below simply shows the output of the ‘ifconfig’ command that 

lists details for network interfaces.  Figure 12: MAC Encoding: User A - Step 1b points 

out that the MAC address for the ‘wlan0’ interface has been set to the MAC containing 

the first part of the message, and that the link-local IPv6 address for that interface has 

been changed as a result.   

 

Figure 12: MAC Encoding: User A - Step 1b 

After the program has changed the MAC address of the wlan0 interface to the first 

part of the message, it then brings the interface back up and connects it to the network 

with the connect script specified by the user.  Upon connecting to the network, Stateless 

Address Autoconfiguration is performed by the interface and an IPv6 source address 

containing the message is set for the interface.  Then, User A calls the ssh program to 

connect over IPv6 to User B causing packets to be sent to User B that contain the secret 

message.    

Figure 13: MAC Encoding: User B (Receiver) - Step 1 below shows what 

happens on the receiver side for User B.  The image depicts a Wireshark packet capture 

to make clear what the program is doing internally.  The figure also shows some output 

from the program in decode or receiver mode.  User B knows that User A will be sending 

packets to destination port 2222 and that the packets will be IPv6 (Wireshark and the 
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program’s internal sniffer can sniff IPv4 packets as well), so the user has specified these 

properties in the filter.  Figure 13: MAC Encoding: User B (Receiver) - Step 1 shows the 

link-local source address containing the message, and points out the interface ID portion 

of the address.  It also shows the bytes of the message after the EUI-64 process has been 

reversed by removing the 0xFFFE bits and removing the first byte of the message.  The 

resulting hex digits shown are the encrypted first five bytes of the message, but the 

program cannot perform decryption until it has at least eight bytes, so it must wait.  It is 

important to notice here that the program is receiving many packets that contain the same 

piece of the message.  It recognizes this and ignores the repeats.   
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Figure 13: MAC Encoding: User B (Receiver) - Step 1 

The next image, Figure 14: MAC Encoding: User A - Step 2a shows User A’s 

side sending out the second piece of the message.  This looks similar to Figure 11: MAC 

Encoding: User A (Sender) - Step 1a, and also shows that the MAC is changed and that 

the user must again use the third party ssh program that will in turn use the IPv6 network 

layer to communicate. 
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Figure 14: MAC Encoding: User A - Step 2a 

Figure 15: MAC Encoding: User A - Step 2b is similar to Figure 12: MAC 

Encoding: User A - Step 1b and shows that the MAC address for wlan0 has been changed 

to the second piece of the message as claimed by Figure 14: MAC Encoding: User A - 

Step 2a above.  Again, the message is embedded into the Source address as well.   

 

Figure 15: MAC Encoding: User A - Step 2b 

Figure 16: MAC Encoding: User B - Step 2 shows step two for the receiver, User 

B.  This figure is similar to Step 1 for User B depicted in Figure 13: MAC Encoding: 
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User B (Receiver) - Step 1 above, in that it shows the link-local source address containing 

the message, the interface ID, and the reversal of the EUI-64 process to retrieve the bytes 

of the message.  However, this Figure is important because now that the receiver has 

received at least eight bytes of actual message (they have received 10 bytes), the first 

piece of the message can be decrypted.  This is shown below, as the first piece of the 

message ‘invade n’ appears in plaintext.   

 

Figure 16: MAC Encoding: User B - Step 2 

The above process is repeated for however many steps it takes to send the entire 

message out.  In this case, there are eight steps because there are eight pieces of the 

message to be sent and received.  With an interval of 120 seconds or two minutes 

between each successive message, the entire process takes about 14 minutes.  Figure 17: 

MAC Encoding: User B - Final Steps below shows the end of the process on the receiver 

side after each piece of the message has been received and the string ‘<eNd>’ has been 



 56

found.  Because User B has chosen to terminate the program after a complete message 

has been received instead of sniffing indefinitely, the program quits after a single 

message.   

 

Figure 17: MAC Encoding: User B - Final Steps 

After an entire message has been received by the program in decode mode, a file 

is created containing the entire message with a timestamp as part of the name as 

explained in Section 4.2.2.  Figure 18: MAC Encoding: Resulting Message File and 

Contents shows the resulting file and it’s contents created on the decoding side.   
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Figure 18: MAC Encoding: Resulting Message File and Contents 

5.2  Scenario B: The Direct Encoding and Decoding Process in Action 

For Scenario B, it is supposed that User A wants to send the same message 

‘invade normandy tomorrow. dawn’ to User B, but does not want to have to actually 

change the MAC address in order to do it.  There could be many reasons for wanting to 

use this method over the MAC method.  One reason to use this method is that there is 

more bandwidth per message container (or cover message) resulting in less total cover 

messages having to be sent out.  It also avoids the overhead of having to reconnect to the 

network every time the MAC address is changed.  User A accepts the fact that only one 

of piece of the message will be sent out, and that there is no way for any reply to be sent 

unless User B knows the true address of User A ahead of time.  Furthermore, User A 

wants to send the message out quickly, so he specifies a delay interval of 25 seconds. 
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User A wants also to send the message to the destination link-local IPv6 address 

fe80::21a:70ff:fe14:8ac0, the same as in Scenario A.  User A has a lot more freedom over 

the properties of packets being sent out in this mode.  He chooses to specify the 

destination MAC address as 10:10:10:10:10:10, which does not have to be, and in this 

case is not, the real destination MAC of the receiver.  The destination MAC address 

above could be useful as a filter value for the receiver to pull relevant packets, if the two 

parties are operating on a LAN where link-layer information is not stripped from packets.  

User A and B have agreed ahead of time that the message will be sent in TCP packets 

with a destination port of 4444 to facilitate filtering, and User A specifies this 

accordingly.  The users also want to use encryption as was the case for Scenario A, so a 

file containing an encryption key and initialization vector are specified.    In addition, 

because this scenario is operating on a LAN, User A specifies ‘link’ as the scope to use, 

so the program knows to use whatever prefix is currently associated with link-local for 

the interface specified.  The scope could also be global, site, or local, in which case the 

program will pull whatever prefix is currently used by the interface for that scope to 

append to the interface identifiers containing the message.  User A has also elected to 

specify a file containing text that will be used for the layer seven data portion of all 

packets sent out.  This is the cover message, and in this case, the information contained in 

the text is intentionally designed to be disinformation that would be false or misleading to 

any third party that might happen to intercept the message.   

Finally, User A has not bothered to specify values for the Source Port, the Source 

MAC, or the TCP-Options string, so default values for all of these will be used.  The 

Source MAC for the packets sent out will be the true MAC address for the interface 
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specified, while the source port will be whatever is randomly generated by the TCP layer 

of the network stack.   

Figure 19: Direct Encoding: User A (Sender) – Program Output below shows the 

output of the program for User A, the sender.  This figure shows the time after the 

program has sent out all packets on the 25-second interval.  In this case, as in Scenario A, 

the encryption block cipher only works with 8-byte blocks, so some information is added 

to the end of the message in order to pad the last piece out to eight bytes.  In this case, the 

message with metadata is 34 bytes long, which divides into four complete blocks of eight 

bytes with two leftover bytes.  The encryption automatically tacks on six bytes to make 

another complete block, but this does not cause any more interface ID’s to be created in 

order to send out the message than would be created if encryption were not used.  It is a 

useful coincidence for this reason and for the decryption process that the block cipher 

works with eight bytes at a time, and the interface IDs are exactly eight bytes long.  If 

encryption is not used, and the bytes of the message and metadata are not evenly divisible 

by eight, then the leftover bytes must be padded out to eight with random data anyway to 

create another whole interface ID.  This is not so convenient for short and long MAC 

encoding, which use five and six bytes, respectively for the medium, while the block 

cipher requires eight bytes.  Because of this, using encryption will often cause more 

MAC addresses be created than would be if encryption were not used.  This is not an 

issue with direct encoding into the interface ID.   
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Figure 19: Direct Encoding: User A (Sender) – Program Output 

Figure 20: Direct Encoding: User A - Packet Capture below shows a Wireshark 

capture of the packets created by the program and sent out over the IPv6 network.  It can 

be seen that a single packet for each piece of the message is sent out, in contrast to the 

many per piece of message sent out in Scenario A.  The figure also shows the cover 

message in the data portion of the packet, as well as the destination port of 4444 that is 

used to filter only packets of interest.  Figure 20: Direct Encoding: User A - Packet 

Capture also shows the True MAC address of the interface used to inject packets, 

demonstrating that it is not changed to a piece of the message as in MAC Encoding 

mode.  What is not shown in the picture, but is important to remember, is the fact that the 

true IPv6 source address of the interface is not actually changed either.  These packets 

contain spoofed source addresses with the embedded message.   
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Figure 20: Direct Encoding: User A - Packet Capture 

Figure 21: Direct Encoding: User B (Receiver) – Program Output shows the 

output of the program in decode mode on the receiver side.  The image shows the filter 

used for sniffing packets, and each piece of the message received in turn, as well as the 

interface ID that contained the piece of the message.  It is notable that each piece of the 

message can be decrypted as soon as it is received.  Again, this is a result of the useful 

coincidence of the block cipher working with eight bytes at a time, and the interface IDs 

containing exactly eight bytes.  The decoder does not have to wait before decrypting each 

piece.  Once the program has read 30 bytes (not including the metadata length 

information itself), it prints the message to a file and terminates as in Scenario A, because 
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User B did not specify to capture indefinitely.  The file and its contents are shown in 

Figure 23: Direct Encoding: Resulting Message File and Contents.   

 

Figure 21: Direct Encoding: User B (Receiver) – Program Output 

The next screenshot, Figure 22: Direct Encoding: User B – Packet Capture, shows 

the packets captured on the receiver side.  This is the same information shown in Figure 

20: Direct Encoding: User A - Packet Capture above for the User A, because the same 

filters are used to capture packets.   
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Figure 22: Direct Encoding: User B – Packet Capture 
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Figure 23: Direct Encoding: Resulting Message File and Contents 

As part of the testing for the Direct Encoding process, the entire 287056-byte e-

book text file for The Hitchhiker’s Guide to the Galaxy by Douglas Adams was sent out 

on a 1-second interval.  The whole process took approximately 10 hours; however, the 

resulting file contents exactly matched the original. 
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6.  CONCLUSIONS 

6.1  Summary 

As a result of the research and work done for this thesis, the possibility of a covert 

channel within the IPv6 protocol has been made reality, and debate around the issue can 

be discussed in the realm of the actual instead of the theoretical.  The implementation of 

exploiting the covert channel inherent in IPv6 shown in this thesis is one way of many 

ways possible.  Practical end uses for such an exploit will only be determined by the end 

user and their intentions, but the importance of the awareness of this possibility cannot be 

overstated.  It is crucial for users of technology to understand different uses that the 

technology makes possible, whether the designers of the technology intended a given use 

or not.   If the world wishes to responsibly implement a system on such a wide scale as 

IPv6 that will affect the lives of over one billion users [11] whether they are aware of it or 

not, then it is the duty of the implementers and maintainers of such a system to fully 

understand it.  Full understanding is not hard to come by in an open system such as the 

Internet Protocol version 6, where anyone from the community that has a desire may 

closely inspect the inner workings.  This thesis demonstrates the community acting 

responsibly to increase awareness and understanding of protocol that will soon be used 

by billions.  

6.2  Risk Mitigation and Countermeasures 

One way that this type of exploit could be partially prevented is by having all 

routers connected to end nodes use DHCPv6 instead of Stateless Address 

Autoconfiguration.  When DHCPv6 is used, the person in control of the subnet has 
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complete control over addresses assigned to end nodes on that subnet including the 

interface identifier portion of the addresses.  This would prevent the MAC encoding 

method, because the message embedded into the MAC address would no longer be 

encoded into the interface identifier automatically by the operating system.  This would 

not necessarily prevent the direct encoding (Active Injection) method from working, 

however.  Because the direct encoding process spoofs the source address of packets it 

creates, independent of the actual source address of the interface, it is more difficult to 

prevent.  One way to prevent this method of transmitting messages would be to configure 

all, or at the very least end routers, to check the source addresses of all packets being 

routed off of the subnet to make sure that the source addresses actually correspond to 

physical nodes on the network.  This could be accomplished by a lookup in the routing 

table, perhaps, but the overhead involved is likely undesirable for most.  

Another way to mitigate this risk would be to put in place an “active warden” at 

the edge of the network controlled by the entity wishing to prevent steganographic 

messages from leaving that network.  This would be something similar to a network 

address translation (NAT) router or firewall that actually does not allow internal nodes to 

interface directly with nodes outside the network.  In other words, nodes outside the 

network could not see the true addresses of any of the internal nodes, and could only 

communicate with the border node.  The border router would have to keep state and 

perform lookups to correctly route information.  This is similar to how a NAT would 

handle the translation of addresses from different internal ones to a common external one, 

and this process could cause unwanted delays from the overhead involved.  Moreover, 
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one of the goals of IPv6 is to eliminate the NAT to make the network layer more “pure” 

among other reasons.  

6.3  Contributions 

This thesis contributes to the information security field in several ways.  

Experience is the most important form of human knowledge, if not the only form, and 

things are most believable when they can be seen.  As a result of the demonstration of a 

covert channel within IPv6, steps can be taken by the development community or by end 

users to mitigate this risk using a variety of methods, some of which are discussed above 

in Section 6.2.  An awareness of the problem and a demonstration of how the process 

could work gives considerable power to those who wish to stop this type of activity, 

because stopping something becomes much easier if those wanting to do the stopping 

have a fuller understanding of that which would be stopped.  At the very least, if no 

preventative measures are taken, then reactive measures can be, if a security incident 

involving secret messages steganographically embedded into IPv6 addresses is detected 

or suspected.  Those monitoring a network, whether it be school officials, counterterrorist 

organizations, or corporate network administrators, will be one step closer to solving their 

security breach by being aware of the possibility of such an attack.   

On the other side, people all over the world who are oppressed, censored, or 

persecuted by their government could find a tool such as the one designed for this thesis 

invaluable for communication.  In places where standard communication channels are 

closely scrutinized and spied on by ruling regimes, people who publicly speak out against 

the status quo or the government are persecuted as is reportedly happening in China today 

[12].  In situations such as these, a secret and non-standard communication channel 
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becomes all the more important for those who value freedom, privacy, and individual 

rights.  In an information age, those with complete control of information become sole 

arbiters of truth.   

6.4  Future Work 

This thesis builds on the ideas of Jane Lindqvist to make the possibility of a 

covert channel that he foresaw in IPv6 into a reality [2].  While this thesis implements the 

basic framework for encoding and decoding messages across an IPv6 network as a proof 

of concept, more work could be done in the way of making the associated program more 

efficient, robust, or easy to use, or in implementing countermeasures for this kind of 

process.  A few possible extensions are listed below. 

• Add support for transmission and decoding of Binary Files 

• Implement a log cleanup option that will erase any log history the program 

creates. 

• Allow sending user to specify any arbitrary prefix to use for packets.  This 

would be trivial to implement.  

• Implement for IPv4.  IPv6 is not the only way to embed secret messages into 

network metadata.  MAC Encoding mode will embed into IPv4 just as easily 

for local area networks, because network layer packets wrap the lower layers 

including the link layer containing the MAC address.  If deep packet 

information is extracted by a node instead of it just looking at the network 

layer information, then messages can be sent over IPv4 as well, though not in 

the network layer (at least, not as easily using the method already 
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implemented for this thesis).  The underlying packet creation Perl framework 

Net::Packet allows for easy creation of IPv4 packets as well as IPv6.  Since all 

packet properties may be specified, the message could be embedded in any 

field of any layer desired, and could easily go out over an IPv4 network.  

• Implement Long MAC decoding.  The main hindrance to this is 

presentational, and stems from the fact that there was no immediately clear 

solution for printing out a large tree representing the possible message.  The 

display could be performed with a little effort or searching around for a library 

or module capable of printing tree data structures in some intuitive way. 

• Another related interest to this project would be to perform statistical analysis 

on the covert channel of packets flowing across an IPv6 network to determine 

whether it is possible to detect when a secret message is being passed.  This 

would probably work well for unencrypted messages because plaintext has 

predictable patterns such as letters that are used more than others. 
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A.  APPENDIX CONFIGURATION OPTIONS 

The table below shows options that can be used when running the program.  

These options can be specified by either command line or in a configuration file 

‘/etc/m2a.conf’.   

Command 
Line 

Config File 
Value 

Description 

-i interval Interval in seconds to send messages out on. If left 0, then the default 
preferred lifetime of IPv6 temporary addresses is used 

-f msgfile Input File Name 

-if interface Link layer interface to use 

-clean txfast Specifies wither to use the faster transmit method with a more complicated 
decode, or the slower transmit method with a clean decode. On the 
decoding side, it tells the decode which mode to assume the message was 
transmitted as.  Only applicaple when encoding with macencode set to 1 or 
decoding with macdecode set to 1. 

-cs cnctscript User may specify a connect script to connect to the internet 

-mac macencode  User may specify to encode message into the Mac address in which case it 
will go out over IPv4 as well 

-m mode Specifies mode to use: either msg, inject, testFormat, or decode. If msg the 
behavior is to embed a message into the source address field of packets in 
one of two main ways - either though manipulation of the mac address or 
through direct insertion into the interface ID portion of the source address 
field of a packet. If injection mode is used, no message is inserted and the 
user may  set the source address field (among others) to whatever value 
desired. 

-s srcAddr Specifies the value for the source address field (only used in injection 
mode) 

-d dstAddr Specifies the destination address field's value (only used in direct msg 
mode or in injection mode) 

-sp srcPort Specifies the source port value for a frame (only used in direct msg mode, 
or in injection mode) 

-dp dstPort Specifies the destination port value for a frame (only used in direct message 
mode, or in injection mode) 

-t transport Specifies the transport layer protocol to use only either UPD ('udp') or TCP 
('tcp') currently. 

-sm srcMAC Specifies the source MAC address to use. If none is specified, then the 
MAC for the specified interface is used. LSB of the first octet cannot be 1. 
Used only in direct message mode or in injection mode. 

-dm dstMAC Specifies the destination MAC address to use. If none is specified, then a 
random one is generated. LSB of first octet cannot be 1.  Used only in 
direct message mode or in injection mode. 



 72

-scope scope The scope of the prefix to use. i.e. link, site, global,or local. If none is 
specified, then link local (fe80) will be used. 

-tcpOpts tcpOpts The TCP options to use as a hex string. 

-dataFile dataFile A file that contains data to be used for the application layer object. It is 
assumed that if a data file is specified, then it will be inserted into the 
packet(s). 

-e encrypt Flag to signal if the user wishes to encrypt the message before embedding it 
into the medium. The Blowfish encryption algorithm will be used. 

-k keyFile The keyfile containing the key and initialization vector that will be used to 
encrypt and decrypt the data. This file is required for decryption.   

-fs filterString Filter string that will be used by the sniffer to selectively grab packets.   

-c capture Mode to capture from. Used by the dump object to know whether to 
capture from a live network device or a pcap file (pcap file must be 
specified if offline capture.  Choices: 'live' or 'offline' 

-pc pcap the pcap file to open and use by the dump object to search for a message.  

-md macDecode Tells program to assume macencode mode was used. This attribute only 
applies to decode mode. 

-cd continuousDu
mp 

If set, then in decode mode, the program will run indefinitely searching for 
messages. Otherwise it will quit after the first message ending with a 
newline followed by the string 'end'. 

-dbug dbug Specifies whether to go into debug mode and print very verbosely what is 
going on in the program. 
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