
University of Arkansas, Fayetteville
ScholarWorks@UARK
Computer Science and Computer Engineering
Undergraduate Honors Theses Computer Science and Computer Engineering

5-2015

Using Genetic Learning in Weight-Based Game AI
Dylan Anthony Kordsmeier
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/csceuht

Part of the Artificial Intelligence and Robotics Commons

This Thesis is brought to you for free and open access by the Computer Science and Computer Engineering at ScholarWorks@UARK. It has been
accepted for inclusion in Computer Science and Computer Engineering Undergraduate Honors Theses by an authorized administrator of
ScholarWorks@UARK. For more information, please contact scholar@uark.edu.

Recommended Citation
Kordsmeier, Dylan Anthony, "Using Genetic Learning in Weight-Based Game AI" (2015). Computer Science and Computer Engineering
Undergraduate Honors Theses. 32.
http://scholarworks.uark.edu/csceuht/32

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UARK

https://core.ac.uk/display/72841392?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fcsceuht%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csce?utm_source=scholarworks.uark.edu%2Fcsceuht%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.uark.edu%2Fcsceuht%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/csceuht/32?utm_source=scholarworks.uark.edu%2Fcsceuht%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu


 

Using Genetic Learning with Weight-Based Game AI 

 

 

 

 

 

An Undergraduate Honors College Thesis 

in the 

 

Department of Computer Science 

College of Engineering 

University of Arkansas 

Fayetteville, AR 

 

 

by 

 

 

Dylan A. Kordsmeier  



2 
 

Table of Contents 

1. Introduction…………………………………………………………………………………...3 

 1.1 The Evolution of Computer Game Artificial Intelligence…………………………...4 

 1.2 Problem Statement and Research Question………………………………………….5 

2. Background and Related Work………………………………………………………………..6 

 2.1 Weight-Based Artificial Intelligence in Games……………………………………...6 

 2.2 Machine Learning in Games…………………………………………………………7 

3. System Design and Implementation…………………………………………………………..8 

 3.1 The Connect 4 Game Implementation……………………………………………….8 

 3.2 Genetic Algorithm for Learning……………………………………………………..11 

 3.3 Evaluation Framework……………………………………………………………….12 

4. Evaluation……………………………………………………………………………………..13 

 4.1 Brute Force Experiments…………………………………………………………….13 

 4.2 Single Population Training…………………………………………………………..15 

 4.3 Dual Population Training…………………………………………………………….18 

5. Conclusions and Future Work………………………………………………………………...20 

 

 

 

 

 

 

 



3 
 

Abstract 

 Human beings have been playing games for centuries, and over time, mankind has 

learned how to excel at these fun competitions. With the ever-growing interest in the field of 

Machine Learning and Artificial Intelligence (AI), developers have been finding ways to let the 

game compete against the player much like another human would. While there are many 

approaches to humanlike learning in machines, this article will focus on using Evolutionary 

Optimization as a method to develop an AI to effectively play the Connect Four game.  

 

1. Introduction 

 In the modern era, games are becoming a pervasive part of society at large. As games are 

studied by many more institutions, research has proven that better artificial intelligence agents in 

a game will allow for more re-playability (Du, 2009). The solution that some researchers have 

found is to have a Machine Learning algorithm create a dynamic intelligence. One algorithm in 

the Machine Learning field is Evolutionary Optimization, or Genetic Learning. This consists of 

initializing a population within the confines of the problem, using a selection technique to 

advance the population in a positive trend, and promoting diversity in the population to cover a 

wider range of potential solutions (Gashler, 2014). However, does a complex algorithm really 

beat a simple brute-force algorithm, such as depth-first search? For one, these algorithms are 

expensive in runtime. A depth-first search can take much too long for the average game player to 

wait between moves. What happens when predicting its opponent’s next move is too unrealistic 

for an algorithm? This paper will attempt to prove a game program using Machine Learning can 

find the most competitive game strategy using a set of weights that control the artificial 

intelligence where an exhaustive breadth-first search is not applicable. I will test this hypothesis 



4 
 

by comparing the results of several different tests from a Machine Learning standpoint and 

different sets of weights that have proven themselves against competitors.  

1.1 The Evolution of Computer Game Artificial Intelligence 

 While games have been around for as long as man can remember, they were only for 

human beings to play. It would have been hard for the people to imagine having some other 

entity that can pretend to be a human to play against. Though the idea of some level of artificial 

intelligence had been around from Greek mythology and into the Middle Ages (McCorduck, 

2004), it was not deemed a reality until technology advanced quite a bit further. It was at the 

Dartmouth conference of 1956, that the idea of an "Artificial Intelligence” was born (Crevier, 

1993). This was after Alan Turing’s paper that speculated about the possibility of machines that 

think (McCorduck, 2004). This paper set the groundwork for the conference that brought 

together the main players in the field of Artificial Intelligence’s future. In as little as fifteen 

years, this lead to the development of programs that could speak English, solve mathematical 

word problems, or prove geometric theorems (Russell, 2003). This excited many investors who 

would pour large amounts of money into the booming field. However, results started to slow as 

the new terrain had become ventured. This led to a sort of funding drought in the AI field, 

because investors needed new, sufficient answers. Because of limited computer power, frame 

and qualification problems, and the inability to reflect commonsense knowledge and reasoning, 

AI was mostly shut off commercially (NRC, 1999). Then, the rise of expert systems came about 

in 1980, and started another Artificial Intelligence boom. With it, came the first attempt to 

conquer the commonsense knowledge problem directly. Douglas Lenat, the head of the project 

called Cyc, states, “The only way for machines to know the meaning of human concepts is to 

teach them, one concept at a time, by hand” (Lenat, 1989). This meant he would create an 



5 
 

expansive database that covers all information a person knows. A version of this database called 

ResearchCyc was released in 2006 for AI researchers (Ramachandran, 2005). This dedication is 

what kept the field of Artificial Intelligence alive. 

The specific type of learning I am focusing on is called genetic learning. This field’s 

genetic algorithms were conceived in the 1960s by John Holland. His intent was to study 

adaptation in nature and figure out how to implement that same phenomenon in computer 

systems. He had many chromosomes that were made up of multiple genes which were made up 

of multiple alleles. These chromosomes were pitted against each other with a method that 

determines fitness, and then they would reproduce. The chromosomes with the highest fitness 

score would reproduce more offspring than the worse chromosomes. The end goal was to use a 

natural selection style learning to create the most fit chromosome. This main idea is still carried 

out today along with his methods of altering the population. He first implemented the ideas of 

crossover, inversion, and mutation into a learning algorithm (Mitchell, 1999).  

Today, a large amount of research for artificial intelligence and genetic learning is done 

for games of all kinds. As games are studied by many more institutions, research has proven that 

better artificial intelligence agents in a game will allow for more re-playability and an overall 

better gaming experience (Du, 2009). 

1.2 Problem Statement and Research Question 

There are many different ways to approach artificial intelligence in a game. A designer 

can use brute force look-ahead to pick the best move out of all possible combinations, or they 

can simply write some rules that can mimic humanlike behavior. Say for chess, the first rule 

would be never move into check. These different approaches allow for certain flexibility in 

learning style. Each approach will offer better results to some problem and worse results that are 



6 
 

not necessarily bad to others. The brute force look-ahead will give the most optimal results, but 

all calculations will be performed during the actual run of the game. This adds a high-cost to the 

run and can slow the entire system down. A rule-based algorithm takes a knowledge database 

that gives a system “real human knowledge” to play a game. This will make the game more 

lifelike but predictable after several plays. The weight-based game will allow for an easy to write 

and very computationally fast system, but it will also become predictable.  

I picked the weight-based artificial intelligence for my research, because play selection in 

Connect Four can be controlled by seven weights. These weights are used to determine the 

relative value of different moves based on the number of tokens the player and the computer 

have placed in a sequence of four board positions. This approach will hopefully prove whether or 

not there is a weight-based artificial intelligence system that can effectively play a game of 

Connect Four with a user. 

 

2. Background and Related Work 

2.1 Weight-Based Artificial Intelligence in Games 

Weight-based artificial intelligence is similar to rule-based, except it focuses on scoring 

moves instead of replicating human actions. For example, in a game of Checkers the 

implementation could have a weight for jumping the opponent’s piece, avoiding a jump, setting 

up for a jump, etc. In Checkers it is perfectly acceptable to base a move on the score alone 

because the objective is more straightforward. Take the game Reversi as a counterexample. The 

object of the game is to have more tokens of your color than your opponents; however, the best 

strategy involves having fewer tokens until the middle of the game. Because weights would 

cause a general trend of gaining tokens, a weight-based artificial intelligence would not be as 



7 
 

effective (Millington, 2009). Checkers on the other hand can be implemented very successfully 

with weight-based gaming. While a majority of the time the weights will be set by hand for a 

certain competition, these weights can also be automatically set. This is the approach the team 

behind Anaconda Checkers used as well. They also used a genetic learning algorithm to update a 

set of weights, and they were successful in the commercial checkers world. “The result was a 

Checkers player that beat a commercially available Checkers program 6-0” (Jones, 2009).  

2.2 Machine Learning in Games 

This idea of having an artificial intelligence agent figure out how a game should be 

played by itself was not always the case. It has been more of a recent understanding that this can 

greatly enhance the game. 1986 was the year that the Machine Learning journal saw its first 

issues, after the field started to grow outside of artificial intelligence (Langley, 2011). Machine 

Learning works in many ways now that significant research has been completed. It works from 

teaching a chess game every nuance of strategy to generating a strategy catered directly to a 

player. The ability to recognize the strategy of an opposing player is called opponent modeling. 

The strategy is usually the general play style of the opponent. This categorization allows the 

machine to figure out the type of strategy being played and its counter (Schadd, 2007). A more 

mainstream version of this kind of learning is in development. This game called Nevermind uses 

biofeedback from the user to manipulate the game environment. That is, it learns what makes the 

user biologically afraid or stressed and pits it against them on the screen 

(www.nevermindgame.com). This kind of technology is much more involved than the utilization 

of weights. 

Relying on weights to understand strategy has already been explained, but how does the 

developer know what weights to manipulate? The checkers’ artificial intelligence called 



8 
 

Anaconda chose to manipulate the weights and biases of a neural net. A neural network is a lot 

more involved than just a standard weighting system, but it has the same general idea. It will use 

these weights to essentially choose a strategy. In Anaconda’s case, the strategy was an eight 

move look-ahead. However, this was not the only factor the neural net produced, because when 

tested against a program that chooses moves based only on the number of checkers each player 

possesses also with an eight move look-ahead, Anaconda won eight out of ten times. This means 

the results for training the weights provided an extra burst to give Anaconda an expert-level 

ranking (Chellapilla, 2001).  

 

3. System Design and Implementation 

3.1 The Connect 4 Game Implementation 

 The system we created for this study was designed around a Connect Four game coded 

by Dr. John Gauch.  The goal of Connect Four is to place four pieces of the same color in a 

single row, column or diagonal on the board before your opponent completes four in a row. The 

board has seven columns and six rows, and players are only allowed to place their pieces in the 

first open location at the top of each column.  Hence, at each move a player must choose which 

of the seven columns to add their piece to attempt to complete four in a row.  

Consider the game in progress illustrated below.  Each player has placed four pieces, and 

it is now time for the computer to decide where to place their next red piece. In this case, the 

computer must look at all possible sequence of four board positions that include the seven 

potential move positions.  For each potential move position we count the number of red pieces, 

and the number of blue pieces.  Then we use pre-programmed weights to determine the value of 

placing the red piece in that location.   



9 
 

 

For example, if the computer places their red piece in column four in the board below, it 

would block a sequence of two blue pieces on one diagonal, create a sequence of two red pieces 

on the other diagonal, and create a sequence of three red pieces in a column.  Intuitively, this 

looks like a good move because it creates several opportunities for red to win, while also 

blocking a sequence where blue could potentially win. 

 

 



10 
 

On the other hand, if the computer places a red piece in column one in the board below, it 

would create a sequence of one red piece in a column, and another sequence of one red piece on 

a diagonal. This move also adds one red piece to a row that is already “blocked” because it 

already has one blue piece and two red pieces.  Intuitively, this move has less value than the 

column four move above.  

 

To quantify the relative values of different moves, we use a two-dimensional array of 

weights.  The row index is used to indicate the number of red pieces in the sequence.  The 

column index is used to indicate the number of blue pieces in the sequence.  Thus array location 

weight[row][column] contains the value of placing the computer piece in a row that already has 

“row” red pieces, and “column” blue pieces.  Looking at the full four by four weight array, it was 

determined that only seven weights have any value to the AI agent because placing a red piece in 

a sequence that is already “blocked” does not directly increase your chances of winning. 

The initial version of our Connect Four game would play against itself using those 

weights and print out the board after every play. The AI agent would run through every possible 

sequence of four board locations and count the number of pieces the player currently had in that 



11 
 

possible winning slot and the pieces the computer had. It would then use the fetch a value from 

the weights matrix associated with those numbers to give that potential move location a score. To 

make the AI slightly less predictable, a small random weight is added to each potential move. 

After scoring every possible slot, the AI would pick the best possible option in which a token 

could be played.  

3.2 Genetic Algorithm for Learning 

 The algorithm I used to aid the artificial intelligence was a version of genetic learning. 

While I did not use inversion for my genetic algorithm, my implementation of this evolutionary 

optimization held close to the original design, and because the implementation of the Connect 

Four game I am researching was made to be weight-based, it was clear what would be my 

“chromosomes.” I used a population of weights to be optimized through crossover or 

interpolation and mutation. Interpolation is just finding a number between the two parents. This 

allows the population to explore new territory that crossover may not reach.  

The general idea of optimization is displayed on Graph 1 below. Each red dot represents 

a member of the population, and the line represents how fit a certain position is. The dots should 

climb upward to the optimum of each curve, and then shift slightly or produce other members at 

the top until the optimum is converged upon. By interpolating new members or mutating existing 

points, we can avoid falling into the trap of local optima by shifting results off a hill or creating a 

new point between hills. This will allow the population to continue bettering itself until it finds 

the global optimum.  



12 
 

 

Graph 1: Population climbing hill to optima. 

3.3 Evaluation Framework 

 The question becomes how do we know what the global optimum is? In our game AI we 

are using seven floating point values for the weights to control move selection.  Hence it is not 

possible to perform a brute-force search to locate the global optimum. So, our task is to find a 

reasonable answer that achieves good numbers but mainly makes the user experience challenging 

and enjoyable. To do this, I created a plan for evaluation that could cover a wide range within the 

space. The idea was to start with the brute force evaluations over a certain space to find a good 

starting position for the genetic algorithm. Then, I play sequences of games to rank each 

collection of weights based on their win/loss ratio playing all other sets of weights.  Then, I will 

apply genetic algorithm to “learn” new weights. I hope this will allow the weights to greatly 

surpass the benchmark tests found by picking numbers in a small space. My final experiment 

will be designed to create the most formidable opponents. I will have two populations play each 

other, while both are learning the optimal weights for going first and the optimal weights for 

going second. This way, the offense increasing will increase the defense and so forth. 

 

 

 



13 
 

4. Evaluation 

4.1 Brute Force Experiments 

 To start the evaluation of the system, I started by creating a baseline or benchmark of 

weights determined to be the best by a brute force testing algorithm. I had four different sets of 

predetermined weights that worked on a linear scale (0,1,2,3,4), a ten times scale 

(0,10,20,30,40), an exponential base 2 scale (1,2,4,8,16), and an exponential base 10 

scale(1,10,100,1000,10000). These weights were each separated into their own four pools, which 

led to there being 78,125 (57) different combinations of weights in each pool, and tested with 

every possible combination inside each of them. This way, I could find the best of each pool to 

use as benchmarks for my genetic learning algorithms.  

 Each dataset had the same general pattern with a different range of values. The pattern 

would increase slightly as the iterations increase defense. Then, it would drop when the defense 

went back down to zero, but increase faster as offense increased. The middle section of Graph 2 

shows the trend that the middle is better. This means a better defense and a more mild offense, 

such as only attacking when there are three in a row. Graph 2 shows an average graph for the 

four different sets with the exponential base 10 data set. The graph shows the most wins in the 

set as each weight changes. The data pool that produced the overall best results was the times 10 

scale.  



14 
 

 

Graph 2: Exponential Base 10 results 

 The overall trend for the data was a bit better than expected. Because the test weights 

were only playing a set of contained weights, I expected Graph 3 to have around 50% of the data 

points above the middle value and 50% below. That is to have weights win and lose to the same 

set of weights. This was proven false; however, because there are 78,125 different combinations 

of weights, which would leave the middle point to be 39,062.5. The average number of wins in 

the linear data pool, which scored the worst overall, was 44,724. Because all of these weights 

were only being scored by playing first, this led me to hypothesize that having the first move is a 

very large advantage. 



15 
 

 

Graph 3: Linear Data Pool, sorted in decreasing order of wins 

4.2) Single Population Training 

Now that I realized the game would need a different strategy for having the first or 

second move, the experiment was changed to include a new genetic algorithm. I split this part of 

the experiment into two sections. The first I will discuss is the original idea of genetic learning. 

The setup starts with a population of one hundred sets of random weights. These weights were 

then tested against all of the best weights produced by the brute force tests and given a 

preliminary score.  Then randomness led the rest of the experiment. The algorithm would 

randomly pick two contestants, check their scores to determine a winner, remove the loser, 

replace it with a new set of weights, and then recalculate wins of each population member. To 

replace the weights, the algorithm had a couple of options. It would perform either crossover 

between the winner and a random member of the population, which picks a random point in the 

middle of the weights and retrieves the first numbers from the winner and the last numbers from 

the random member, or interpolation, which loops through all of the member and winner’s 



16 
 

values and randomly picks a point between them. Then, in addition to the new member, the 

algorithm also randomly chooses between either mutating a single member of the population and 

the entire population slightly. This will help the algorithm avoid any local optima to find the 

global maximum. These different alterations to the population would happen with a 

predetermined set of percentages. There is a 50% chance it interpolates or crosses over. Then, 

there was a 95% chance a single member was mutated and a 5% chance it would mutate all. 

These numbers were set for consistency in experimentation, but other numbers may have 

produced better results. 

The weights actually learned in an odd way, but I believe it to prove that the genetic 

algorithm will remove itself from local optima. The results at the beginning of the experiment 

started off strong with random weights winning 53,110 matches out of a possible 54,959. This 

definitely makes a point that having numbers that can vary and include floating point numbers 

makes a large difference over a smaller sample space; however, the test data was only proven 

when tasked with making the first move. Due to a lot of power being given to the first mover, it 

could have been moving second that punished the best results of the brute force search over a 

sample space. Nevertheless, as the experiment continued the number of wins of the best member 

of the learning population actually decreased. There are two drastic drops (as evidenced in Graph 

4) that make this experiment seem like a flop, until a very sudden massive jump puts the best 

member at 53,894. This means the best of this population beat 98.06% of the benchmark results 

in wins. Even at the worst point in this test, however, the best member could still beat 45,072 

(82.01%) of the test subjects with the advantage of playing first. The overall best member 

appeared 9,030 iterations into the learning and lasted 280 iterations in first until it was mutated 

slightly. This member won 53,928 (98.12%) games. 



17 
 

 

Graph 4: Wins over iterations for the learning vs. benchmark tests 

The main question these results produced is why would this learning algorithm settle for 

worse options and hover there? It started with the best population member being mutated away 

from its high winning percentage which led to another member being in charge. I believe this 

member was stuck in a local optimum. This is because of the jitter found after the first major 

drop. If the line was horizontal, then it would just be one population member. This member was 

being mutated and bringing new members into the local optimum. But just as before, sets of 

weights were moving slightly closer to another, even worse, local optimum. After all of the 

points had successfully been removed from the old due to a mass mutation, they found 

themselves onto a hill with a much lower win percentage. It only took one interpolation to move 

a point back to the high standards seen at the beginning of the experiment, which were then 

maintained throughout the duration of learning. The graph does not do the best job of illustrating 

the very slight jitter around the winning results towards the end. This was not just the doing of 



18 
 

one population point; there were at least a few different sets of weights. The best set of weights 

overall was:  

108.243 23.7753 105.331 119.609 14.6388 52.6764 83.0098 

 

The high numbers happen to fall on attacking first your own lines of 2 or 3, then attack a spot 

that is open to all pieces, and finally defend on the opponent’s lines of 3 and 2. Having 1 token in 

a slot does not mean as much, and the artificial intelligence treats it as such. As for these 

numbers, the overall theme is very clear: offense wins. This caused me to believe that in 

combination moving first and playing a more aggressive game work together as moving second 

and catering to a defensive strategy. This will be highlighted more in my next experiment. 

4.3) Dual Population Training 

The second experiment for the genetic algorithm was an attempt to fix this problem that 

certain weights perform better when going first but worse when moving second. This 

implementation utilizes two different populations that will both be optimized by the same genetic 

learning algorithm as the single learning population. That is, there will be one population that 

plays against a second population to get their scores while the second population keeps track of 

any wins they accumulate. One pass through each combination will score the entire system. 

Then, the genetic learning algorithm will go through the “move-first” population one hundred 

times while accurately keeping track of their wins. Every hundred iterations the algorithm will 

switch between training the “move-first” and “move-second” populations. This should advance 

both populations further together and give the user the strongest opponents whether the user goes 

first or second. 

 The results of the experiment must be separated into two different sections: the “going 

first” section, which I will call the fast approach, and the “going second” which I will call the 



19 
 

slow approach. The fast approach is so called, because it has a tendency to attack its own 

sequences with no regard for the user’s. Therefore, the games tend to end quickly one way or the 

other. Graph 5 shows the wins of the best fast approach sets throughout each generation. The 

chart starts off very strong (100 is the max) but tapers off towards the end.  

 

Graph 5: First-mover’s wins in the dual learning experiment 

 The slow approach offers the inverse results as expected, because as the defense grows 

stronger the offense will slow down, and this is evidenced by Graph 6. The overall results for 

this slow approach did favor a more defensive strategy. The set of weights produced at ten 

thousand generations was: 

3.48917 17.4376 46.0233 66.7117 10.6567 90.4317 87.6678 

 

This set of weights won 88 games going second, which was determined to be a difficult task. 



20 
 

 

Graph 6: Second movers wins in the dual learning experiment 

 While the results were unexpected because the second-movers somehow overtook the 

first-movers, there was a more shocking reality behind it all. The game was still dumb compared 

to even a novice player. While the weights were proving themselves against each other, they did 

not have real-life human instinct to see more than just simplistic patterns. By thinking further 

ahead than the machine, a user can easily beat the system at play. The results in the world of 

academia were decent. The idea behind having two systems learn with each other is a good one, 

but it leads the result to only compliment the one type of strategy the other population deemed 

most fit. The learning algorithm needs more variety to help it account for more subtleties of the 

game.  

 

5. Conclusions and Future Work 

 Can a weight-based artificial intelligence system effectively play against a user in 

Connect Four? I believe the answer is yes. The most simplistic version that I have presented here 

has a slight knowledge of the game. It will play in the middle of the board a majority of the time, 



21 
 

which is the best strategy for getting the pieces in the position that the system needs; however, it 

will not sense any tactics the user uses to open up moves. This can be solved by adding some 

weights for look-ahead (as shown by the training of weights and biases on the neural net in the 

Anaconda Checkers system). Allowing the artificial intelligence to have a glimpse into the future 

would create more opportunity for humanlike behavior. This kind of behavior is definitely 

needed to succeed in the artificial intelligence world. 

 There are many more experiments needed to make this system the best it could possibly 

be other than the look-ahead. One experiment would be having weights tuned by a human to 

match a strategy in real life as a test instead of computer generated searches. This would allow a 

slight human aspect and more randomness to be inserted into the experimentation. Another 

experiment should have a larger number of sets of weights in each population of the dual 

learning test. I believe this would scatter out some weights to incorporate more strategies that 

both populations would need to face. It seems as though the good weights come in different 

clusters, and I believe each cluster could be seen as a different strategy. With more time and 

work, this system can be improved to be a novice Connect Four Player. There are more fancy 

tricks to be used to create a grandmaster level nemesis. 

 



22 
 

Works Cited 

Chellapilla, Kumar and David Fogel. "Evolving an expert checkers playing program without 

using human expertise." IEEE Transactions on Evolutionary Computation, vol.5, no.4, 

p.422-428 (August 2001).  

Crevier, Daniel (1993), AI: The Tumultuous Search for Artificial Intelligence, New York, NY: 

BasicBooks, ISBN 0-465-02997-3 

Du, Yanzhu et al. (2009). Applying Machine Learning in Game AI Design Method 1 : MDP.  

Gashler, Michael S. (2014). Machine Learning: Keeping it Simple. University of Arkansas 

Jones, M. Tim (2009). Artificial Intelligence: A Systems Approach. Sudbury, Massachusetts: 

Jones and Bartlett Publishers. ISBN 978-0-7637-7337-3. 

Langley, Pat (2011). "The Changing Science of Machine Learning". Machine Learning 82 (3): 

275–279. 

Lenat, Douglas; Guha, R. V. (1989), Building Large Knowledge-Based Systems, Addison-

Wesley, ISBN 0-201-51752-3, OCLC 19981533. 

McCorduck, Pamela (2004), Machines Who Think (2nd ed.), Natick, MA: A. K. Peters, 

Ltd., ISBN 1-56881-205-1, OCLC 52197627 

Millington, Ian; Funge, John (2009). Artificial Intelligence for Games. Boca Raton, Florida: 

CRC Press. ISBN  978-0-08-088503-2. 

Mitchell, Melanie (1996). An Introduction to Genetic Algorithms. Cambridge, MA: MIT 

Press. ISBN 9780585030944. 

NRC (1999), "Developments in Artificial Intelligence", Funding a Revolution: Government 

Support for Computing Research, National Academy Press, ISBN 0-309-06278-

0, OCLC 246584055. 



23 
 

Popperipopp, 2008, http://en.wikipedia.org/wiki/Connect_Four. 

Ramachandran, Deepak, 2005. "First-Orderized Research Cyc: Expressiveness and Efficiency in 

a Common Sense Knowledge Base". Retrieved 02 March 2015. 

Russell, Stuart J.; Norvig, Peter (2003), Artificial Intelligence: A Modern Approach (2nd ed.), 

Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2. 

Schadd, F.; Bakkes, S.; and Spronck, P. 2007. Opponent modeling in real-time strategy games. 

In GAMEON, 61–70. 

www.nevermindgame.com/biofeedback/ 

  



24 
 

 

 

 


	University of Arkansas, Fayetteville
	ScholarWorks@UARK
	5-2015

	Using Genetic Learning in Weight-Based Game AI
	Dylan Anthony Kordsmeier
	Recommended Citation


	tmp.1444682168.pdf.Qf_IP

