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ABSTRACT 

Listeria monocytogenes continues to be a major foodborne pathogen that causes food 

poisoning and sometimes death in immunosuppressed people and abortion in pregnant 

women. Nanoparticles have recently drawn attentions for use in immunomagnetic 

separation techniques due to their greater surface area/volume ratio and better stability 

against sedimentation in the absence of a magnetic field. Interdigitated microelectrodes 

and microfluidics make material transfer more efficient and biological/chemical 

interaction between the surface and solution phase much quicker. Magnetic nanoparticles 

(Fe3O4) with a 30 nm diameter were functionalized with rabbit anti–L. monocytogenes 

antibodies via biotin–streptavidin bonds and then amalgamated with target bacterial cells 

to capture them during a 2 h immunoreaction. A magnetic field was applied to capture the 

nanoparticle–L. monocytogenes complexes and the supernatant was removed. After a 

washing step, L. monocytogenes was separated from a food sample and could be ready 

for detection by a microfluidics and interdigitated microelectrode based impedance 

biosensor. Capture and separation efficiency of 75% was obtained with the magnetic 

nanoparticles for L. monocytogenes in phosphate buffered saline (PBS) solution. When 

combined with the microfluidics and interdigitated microelectrode, the lower detection 

limits of L. monocytogenes in pure culture and food matrices were 103 and 104 CFU/ml, 

respectively, which were equivalent to several bacterial cells in 34.6 nl volume of a 

sample injected into the microfluidic chamber.  A linear correlation was found between 

the impedance change and target bacteria in a range of 103–107 CFU/ml. Equivalent 

circuit analysis indicated that the impedance change was mainly due to the decrease in 

medium resistance when L. monocytogenes cells attached to the magnetic nanoparticle–



 

 

antibody conjugates in mannitol solution. The separation and detection of L. 

monocytogenes were not affected by presence of other foodborne bacteria. A specific, 

sensitive, and reproducible method using the microfluidics and interdigitated 

microelectrode based impedance immunosensor in couple with antibody conjugated 

magnetic nanoparticles was able to detect L. monocytogenes as low as 103 CFU/ml in 3 h. 
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Chapter 1 INTRODUCTION 



 

 
 

2 

1.1 Global Challenge of Foodborne Pathogens and Diseases  

Foodborne diseases caused by the ingestion of foods contaminated with bacterial 

pathogens, viruses, chemicals or parasites have a great impact on public health and 

economy worldwide. The onset of foodborne diseases is not limited to a geographical 

area or nation’s financial level, although most of them materialize in needy 

circumstances. According to the Centers for Disease Control and Prevention (CDC), 76 

million illnesses occur due to the consumption of tainted food products that result in 

325,000 hospitalizations and 5000 deaths in the US annually (Mead et al., 1999), 

resulting in medical expenses and productivity losses. Due to the increasing rate of 

international trade, migration, and tourism, the prospect of distribution of harmful 

foodborne pathogens and contaminants is getting higher across the world, which in its 

turn raises our vulnerability. In accordance with one recent estimate, about 30% of 

infectious diseases have emerged due to the presence and spread of pathogens through 

food for the past 60 years (Jones et al., 2008). Therefore, contaminated food products can 

be dangerous and have a severe impact on health of people in different countries in one 

fell swoop. Identification and detection of only one contaminated food product or 

ingredient may result in a recall of tons of food products, influencing substantial 

economic losses. For the past ten years, food safety in the US has been reinforced with 

more microbiological and diagnostic tests than ever before (Tauxe et al., 2009). 

Moreover, the US Department of Health and Human Services has been launching the 

“Healthy People” program every decade since 1979 to monitor national health needs and 

measure the impact of prevention activities. One of the primary focus areas of the project 

incorporates improving food safety in the US and a reduction of contamination of meat 
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and poultry products by foodborne pathogens such as Escherichia coli O157:H7, L. mo-

nocytogenes, and Salmonella (www.healthypeople.gov/HP2020/objectives/TopicArea. 

aspx?id=22&TopicArea=Food+Safety). Results of the food safety challenges have been 

listed in the preliminary FoodNet data for 2004 that showed an overall decline in the case 

of infections triggered by foodborne pathogens such as Campylobacter, Yersinia, 

Salmonella, and Listeria (Anonymous, 2005). Nevertheless, it is essential to know that 

many of the foodborne diseases may not be included as one piece of an outbreak due to 

their sporadic occurrences (Gandhi and Chikindas, 2007).  

Although Salmonella contaminations of poultry and meat products have decreased, 

little progress has been made toward reducing the incidence of human salmonellosis 

during the past decade. Campylobacter illnesses most of the time result from 

undercooked poultry and remain persistent after a decline in the late 1990’s (Gandhi and 

Chikindas, 2007).  Both of these foodborne pathogens are most frequently reported in the 

US. Although L. monocytogenes is as well reported as a pathogen as the latter two, it has 

an ability and a potential to survive and grow in various environmental conditions such as 

refrigeration temperatures (2-4 oC), acidic foods, high salt foods, and within the host 

immune system and to be a promoter of listeriosis, a severe disease with a high rate of 

hospitalization and death (Mead et al., 1999; Rocourt and Cossart, 1997). Given this fact, 

Listeria cells have been involved in contamination of different kinds of food matrices 

such as raw, processed, dairy, meat products and fresh produce (Greig and Ravel, 2009). 

There were some outbreaks where contamination of soft cheeses, hot dogs, and seafood 

with L. monocytogenes triggered human listeriosis (Rocourt and Cossart, 1997).  

http://www.healthypeople.gov/HP2020/objectives/TopicArea.%20aspx?id=22&TopicArea=Food+Safety�
http://www.healthypeople.gov/HP2020/objectives/TopicArea.%20aspx?id=22&TopicArea=Food+Safety�
http://www.healthypeople.gov/HP2020/objectives/TopicArea.%20aspx?id=22&TopicArea=Food+Safety�
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A 36% decline was reported in the incidence of listeriosis from 1996 to 2006. In 

2002, consumption of contaminated turkey meat caused 54 illnesses, 8 deaths, and 3 fetal 

deaths in nine states of the US (http://www.cdc.gov/nczved/divisions/dfbmd/diseases/ 

listeriosis/technical.html#top, 2009). Even though official numbers show that Listeria 

outbreaks have dropped, contamination and recalls keep emerging 

(www.cdc.gov/ncidod/dbmd/diseaseinfo/listeriosis_t.htm, 2005). Different kinds of 

factors have an effect on contamination of foods with Listeria and cause listeriosis. Due 

to the progress in the field of medicine, the human population has been experiencing a 

vigorous growth by increasing the average lifespan of people and survival of 

immunocompromised and elderly individuals. Furthermore, it is predicted that during the 

next 50 years, major demographic vicissitudes will take place as the world’s elderly 

population grows (Doyle and Erickson, 2006).  By 2050, there will be three times more 

elderly individuals (age ≥ 65 years) than in 2002, encompassi ng 17% of the worldwide 

population (Bureau, 2004). Other vulnerable groups of population, immunodeficient 

individuals and pregnant women, are also at increased risk of foodborne illnesses. In the 

US immunodeficient people comprise 3.6% of the population, and the percentage rises up 

to about 20% when pregnant women and elderly are counted (Gerba et al., 1996). This 

group of people is very susceptible to infections and has a high potential for getting more 

severe illnesses if infected, including death (Neill, 2005).  

The US Food and Drug Administration (FDA) implemented a zero-tolerance policy 

for the presence of L. monocytogenes in ready-to-eat foods. Therefore, detection of any L. 

monocytogenes cells in foods makes them tainted. In order to control and prevent survival  

http://www.cdc.gov/nczved/divisions/dfbmd/diseases/%20listeriosis/technical.html#top�
http://www.cdc.gov/nczved/divisions/dfbmd/diseases/%20listeriosis/technical.html#top�
http://www.cdc.gov/nczved/divisions/dfbmd/diseases/%20listeriosis/technical.html#top�
http://www.cdc.gov/ncidod/dbmd/diseaseinfo/listeriosis_t.htm�
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and growth of this foodborne pathogen in foods and food processing facilities, some 

effort and research have been made by the scientific community, government agencies, 

the food industry, academia, and the public. Efforts to provide better food safety include 

monitoring and declaring foodborne illnesses by government agencies, regular food 

sampling and testing, implementing Hazard Analysis Critical Control Point (HACCP), 

and training of food workers (Bryan, 2002; Fabrizio and Cutter, 2005).  

 

1.2 Detection Techniques of Foodborne Pathogens 

There is a widespread need for analytical methods for the detection of microbial 

contamination of food, wastewater, and human and animal populations. Even though 

conventional plating methods have been a standard practice for the detection and 

identification of microorganisms for nearly one century and continue to be a reliable 

standard for ensuring food safety, they are labor intensive and time consuming, which 

may prevent detection of contamination before consumption of the food. Numerous rapid 

methods have been developed for the detection of pathogens in a variety of areas, for 

instance, enzyme linked immunosorbent assay (ELISA) and polymerase chain reaction 

(PCR) methods. Nonetheless, these two methods are still time consuming (12-24 h) or 

susceptible to artifacts. Furthermore, they cannot distinguish dead cells and living cells, 

and are thus not robust enough to serve as independent procedures. Most of the time, 

further confirmation is required (Fig. 1.1)  

The method that we are looking for should be rapid (so product processing could be 

rapidly regulated), sensitive (even trace contamination could be detected before the 
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pathogen multiplies during transport or storage), and specific (presence of other microbial 

contaminants does not interfere with the pathogen detection). Immunoanalytical methods 

 

 

Fig. 1.1 Illustration of the foodborne pathogen detection methods. A thick arrow 
indicates an actual step for biosensor application; a scattered arrow represents a 
desirable step. IMS = immunomagnetic separation; PCR = polymerase chain 
reaction; ELISA = enzyme linked immunosorbent assay. 

 
 
using antibodies specific to antigens associated with pathogen, such as various 

immunoassays, immunoaffinity chromatography, flow injection immunoalanlysis, and 

immunosensors can be used for pathogen detection. As a rule, most immunosensors are 

able to detect 10 - 10 000 colony forming units (CFU)/ml and are time preserving. An 
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immunosensor is defined as a compact analytical device containing a biological or 

biologically derived sensing element either integrated with or in intimate contact with a 

physicochemical transducer which converts the biological event into a response that can 

be further processed (Turner et al., 1989). 

Furthermore, biosensors utilizing immunological methods are particularly attractive 

for the detection of pathogens since they do not necessitate significant sample volumes or 

toxic solvents for analysis. In addition, they should need minimal sample preparation, 

their intake of reagents needs to be low, they need high specificity in complex matrices, 

and to have an aptitude for miniaturization, portability, and automation (Hall, 2002). 

Biosensors attain their specificity from biological binding reaction which originates from 

any of a wide range of interactions, specificity, and affinities, including antigen – 

antibody, enzyme-substrate-cofactor or nucleic acid hybridization. 

However, some aspects of the biosensor methods still need to be improved. 

Nanotechnology comprises a group of promising methods from physics, chemistry, 

engineering, and biology (Rodriguez-Mozaz et al., 2005), which facilitates a number of 

remarkable physiochemical phenomena such as pronounced changes in thermal and 

optical properties (Rieth et al., 2000; Polman and Atwater, 2005), faster electron/ion 

transport (Kim et al., 2009), and novel quantum mechanical properties (Loss, 2009). 

Current trends suggest that integration of interdisciplinary knowledge with biosensor 

techniques has a great potential for rapid and sensitive detection of bacteria. 

 

 

 



 

 
 

8 

1.3 Objectives and Structure of the Dissertation 

The overall goal of this dissertation was to develop and evaluate new methods for the 

rapid, specific, and sensitive detection of low numbers of L. monocytogenes cells in foods 

using an impedance biosensor integrated with nanotechnology. The specific objectives to 

reach the goal of this dissertation were:  

• Employ immunomagnetic iron oxide nanoparticles for efficient capture and 

separation of target L. monocytogenes cells from the mixture of bacteria and food 

matrices; 

• Concentrate separated L. monocytogenes cells into a small volume and active 

surface of a microfluidics and interdigitated microelectrode; 

• Promote the impedance measurement system using the microfluidics and 

interdigitated microelectrode as an impedance sensor for the detection of L. 

monocytogenes;   

• Perform equivalent circuit analysis for better understanding of each impedance 

component in the microfluidics and interdigitated microelectrode based 

impedance immunosensor; and 

• Evaluate the detection method of L. monocytogenes in food matrices.  

 

This dissertation comprises five chapters. The first has been an introduction that gives 

an overview of foodborne pathogens and diseases, with a comparison of current detection 

methods.  
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In Chapter 2, a detailed review of characteristics of the target microorganism, 

L.monocytogenes, principles and application of different types of biosensors, and 

nanomaterials for separation and detection of foodborne pathogens will be provided.  

Chapter 3 will give an insight into the immunomagnetic separation concept using iron 

oxide magnetic nanoparticles in 30 nm diameter for high separation and concentration of 

L. monocytogenes. The capture efficiency can be greatly improved with the application of 

nanotechnology.  

Further in Chapter 4, immunomagnetic separation technique will be integrated with a 

biosensor for the sensitive detection of bacteria. A microfluidics and interdigitated 

microelectrode based impedance biosensor was developed for the detection of L. 

monocytogenes in food samples.  

Chapter 5 will briefly provide a summary of the conclusions of this research, and the 

suggestions for future research. 
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2.1 Characteristics of L. monocytogenes 

L. monocytogenes was first appropriately described during the outbreak of the disease 

among laboratory rabbits in Cambridge University (Murray et al. 1926; Rocourt, 1999). 

They isolated the suspected organism from the blood of infected rabbits and injected it 

into healthy animals in order to prove the pathogenicity of the organism. Since they 

experimentally observed mononucleosis–like illness, they named the identified organism 

as Bacterium monocytogenes. The next year, Pirie observed (1927) a similar outbreak in 

South Africa which was related to liver disease, and the causative agent was Listerella 

hepatolytica. The genus Listerella was given in honor of the surgeon Lord Lister. Later, 

these two organisms were identified as identical and their names switched to Listeria 

monocytogenes in 1940. By 1935, in the USA L. monocytogenes was recognized as a 

motivator of meningitis and perinatal septicemia. However, in the mid 1980s this 

organism started causing outbreaks exceptionally predominant in foods (Ryser and 

Donnelly, 2001). 

Listeria monocytogenes is a Gram positive rod that is typically 0.5–2 μm in length. It 

is non-spore forming and non-encapsulated and in older cultures may change to coccoidal 

or filamental forms.  L. monocytogenes cells are located singly, in short chains and 

palisades. They can grow at a temperature range of 4-37 oC and are able to replicate at 

refrigerated temperatures. Therefore, they are considered as a psychrotrophic foodborn 

pathogen, which first needs to recover in a cold enrichment. However, they do not 

survive heating at 60 oC for 30 min.  They form flagella, other antigens, and become 

motile at 20–25 oC, whereas at 37 oC they are not. A suitable environment for this rod is 

microaerophilic, although it grows both in aerobic and anaerobic conditions. This 
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organism is acid tolerant and remains alive in foods of similar acidity for days or weeks, 

although in testifying media it will grow in a pH range of 4.4 to 9.6. However, the 

optimal pH growth condition is neutral.  

Surface proteins and pili of bacteria are responsible for attachment and colonization 

of host tissues so that they provide specific receptor–ligand interactions and set up 

successful infections (Wu and Fives-Taylor, 2001). Gram-negative bacteria assemble 

their surface proteins in the outer membrane, whereas Gram-positive bacteria primarily 

use their cell wall (peptidoglycan) for attachment and display of adhesive molecules. A 

cell wall, which is also referred to as “peptidoglycan” or “murein”, functions as a 

physical impediment that shields bacteria from the environment and protects from 

bacterial rupture in low osmolar conditions, for example, host tissues (Schleifer and 

Kandler, 1972). The peptidoglycan structure differs from one species to another of Gram-

positive bacteria, but the main structural or functional elements are the same. As shown 

in Fig. 2.1, the peptidoglycan structure of Gram-positive bacteria consists of glycan 

strands that contain repeating disaccharide units, N-acetylglucosamine-(β1-4)-N-

acetylmuramic acid (GlcNAc-MurNAc).  Glycan chains are linked to peptide moieties, 

which in their turn generate a three-dimensional molecular network that possesses a 

completeness of the Gram-positive bacterium. Peptidoglycan chains are linked to each 

other via a cross bridge (CB) whose structure fluctuates depending on the bacterium. 

Gram-negatives show different chemical and structural variability of the peptidoglycan 

layer, which consists only of a monolayer compared to the multilayered peptidoglycan of 

Gram-positives. The variability of the cross-bridge linkage may be limited in a 

monolayer peptidoglycan, which makes Gram-negative bacteria have decreased vitality 
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and competitiveness in comparison to Gram-positives. There are currently two known 

mechanisms of protein anchoring to envelop of L. monocytogenes: (i) attachment of 

surface proteins to lipoteichoic acids (Jonquieres et al., 1999), and (ii)   insertion of 

surface proteins into the plasma membrane with the use of an alpha-helical membrane 

anchor structure (Kocks et al., 1992).  

 

 

Fig. 2.1 A comparison of the cell walls of gram positive and gram negative bacteria. 
 

The genus Listeria comprises six species: L. monocytogenes, L. innocua, L. ivanovii, 

L. welshimeri, L. seeligeri and L. grayi. Among all Listeria species, L. monocytogenes is 
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studied most in depth, and only L. monocytogenes causes disease in humans. However, L. 

ivanovii stimulates disease in ruminants. 

L. monocytogenes is a ubiquitous organism and can be isolated from a variety of 

sources including soil (Weis and Seeliger, 1975; Welshimer and Donker-Voet, 1971), 

decaying plants (Welshimer, 1968), mud (Weis and Seeliger, 1975; Welshimer and 

Donker-Voet, 1971), water, sewage (Al-Ghazali and Al-Azawi, 1986; Watkins and 

Sleath, 1981), feces (Gronstol, 1979; Hofer, 1983) and silage (Fenlon, 1986). However, 

the primary source, where the organism can get a saprophytic existence and serves as a 

carrier of infections from animal to human, is soil and vegetation. 

Since its first detection L. monocytogenes has been regarded as a significant 

foodborne pathogen and was the major source of many recent publicized outbreaks. A 

number of foodborne related outbreaks have been associated with an intake of food 

products tainted with L. monocytogenes.             

In the Boston, MA area around 23 patients were identified as having listeriosis (Ho et. 

al, 1986). The onset of the outbreak was a tainted hospital food. Isolates of serotype 4b 

were recognized in 20 out of 23 cases. Bacteremia and meningitis were the most common 

symptoms of affected patients. The most prone for this infection were 

immunocompromised people who had cancer, chemotherapy treatment, or steroid 

treatment. It was also noticed that patients, who were treated with antacids or cimetidine 

and disposed to gastric acid neutralization, were more likely to pick up a hospital-

acquired infection initiated by L. monocytogenes.  
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2.2 Detection of Foodborne Bacterial Pathogens 

The science-based pathogen detection tests can be segregated into two broad groups: 

conventional and rapid (Taylor et al., 2006). The current criteria for the detection of the 

bacterial pathogens are conventional plating using selective media, biochemical methods, 

and serological methods. Culture and colony count methods provide conclusive and 

unambiguous results, but are time consuming. Usually, it takes at least 3 to 7 days to get 

presumptive results (Alocilja and Radke, 2003; USDA/FSIS, 1998). In order to detect a 

particular pathogen by using these methods, different kinds of selective media would be 

in use. These media may contain inhibitors or substrates on which the microorganism 

being tested can degrade or growing colonies change to a particular color. Obviously, it is 

inconvenient for implementation in industry, especially in food. 

On the other hand, rapid tests are based on immunochemical or nucleic acid methods, 

such as PCR and ELISA, and the pathogen detection time has been diminished to 8 – 48 

h (Alocilja and Radke, 2003). PCR has been well developed in the mid 1980s and applied 

in bacteria detection. The main working mechanism is based on the isolation, 

amplification and quantification of a short DNA sequence and the genetic material of the 

target bacteria (Lazka et al., 2007). Several types of PCR have been developed such as 

real–time PCR (Rodriguez-Lazaro et al., 2005), multiplex PCR (Jofre et al., 2005) and 

reverse transcriptase PCR (RT-PCR) (Deisingh and Thompson, 2004). The PCR methods 

also can be used in conjunction with surface acoustic sensors (SAW) (Deisingh and 

Thompson, 2004) and evanescent wave biosensors (Simpson and Lim, 2005). The PCR 

methods, without counting pre-enrichment steps, take at least 5 to 24 h to detect 

pathogens. However, they are considered as less-time consuming in comparison to other 
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techniques such as plating and culturing. The biggest disadvantage of the PCR methods is 

that these techniques amplify dead cells in addition to viable cells because DNA is 

always present whether the cell is dead or alive. Therefore, the RT-PCR technique was 

developed to depict only viable cells (Yaron and Matthews, 2002). As a rule, viability of 

bacterial cells can be detected by the presence of RNA, which provides information about 

the specific RNA that is present only in viable cells and degraded quickly upon cell 

death. Only RT-PCR is able to be sensitive enough without any kind of pre-enrichment 

steps. 

However, one thing which needs to be considered is that these screening tests are 

regarded as presumptive by the USDA, and an isolated organism needs to be proved as a 

source of contamination. Any commercial rapid detection tests require maintaining two 

major features: sensitivity and speed. In comparison to ELISA and PCR, biosensors can 

present faster detection while maintaining high sensitivity and specificity. Sensitivity is 

related to the concentration of bacteria in a sample that needs to be detected by a 

biosensor. As a rule, most biosensors are able to detect 10-10.000 colony forming units 

(CFU)/ml and are time preserving. Therefore, culture based tests are not as fast as 

biosensors, where time is a critical factor in the risk for exposure. 

Nowadays, numbers of biosensors have found their application in detection of 

microorganisms, and they come with promises of equally reliable results in much shorter 

time. Currently, this gives them an advantage over traditional ELISA based methods 

(Lazcka et al., 2007). Furthermore, in the future, biosensors will diminish the need for the 

estimated 60,000 US based food processors to run lengthy microbial tests and expensive 

immunoassays (Alocilja and Radke, 2003).                                                                                                                                                     
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2.3 Biosensors 

Biosensors are analytical devices incorporating a biological material (tissue, 

microorganism, cell receptors, enzymes, antibodies, natural products, etc.) or a 

biologically derived material (recombinant antibodies, engineered proteins, etc.) that are 

intimately associated with a transducer and able to detect biological and chemical agents 

(Turner et al., 1989; Datta, 1990; Coulet, 1991; Wangner and Guibault, 1994). 

Biosensors have been studied for the past forty years and represent a new and unique 

technology with a great potential to meet the need for rapid, sensitive, and versatile real 

time detection of biological and chemical agents.  

The history of biosensors started when Clark and Lyons (1962) used an enzyme-

electrode in their research. Basically, the method that they used was a sandwich, which 

involved oxido-reductase enzyme held by the platinum electrode. In this system, the 

primary target was glucose, and the working principle of the biosensor was applying the 

voltage between the platinum and silver electrodes to reduce the oxygen concentration 

and electrical current and then to measure them. This equipment led for a production of 

other types of biosensors which were called enzyme electrode or bioelectrode.   

The first application of biosensors was dedicated to clinical diagnosis since they were 

focused on measuring glucose. Today, biosensors have found their application in 

multidisciplinary areas, including chemistry and biochemistry, physics, biology, and 

computer science to employ biological sensing elements such as enzymes, antibodies, 

receptors, organelles, and microorganisms as well as animal and plant cells or tissues for 

detection of the target analyte. 
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Biosensors comprise a biosensing material, a transducer, and immobilization 

methods. Biosensing material directly binds to a transducer to form a label-free biosensor 

and to produce detectable signals which require a computing unit to reflect them. 

Therefore, biosensors have several types of classification based on either biosensing 

material or transducer. The classification of biosensors based on transducer technologies 

includes electrochemical, optical, piezoelectric, calorimetric, and magnetic. In addition, 

based on transducing methods, biosensors may be divided into two broad groups: direct 

detection of the target analyte (or label–free biosensors) and indirect biosensors (or 

labeled biosensors). Direct sensors are constructed in such a way that in real time 

biospecific reaction is directly determined by measuring the physical changes induced by 

the formation of the complex and use any kind of transducers, mostly enzyme electrodes, 

impedance, optical fiber, surface plasmon resonance (SPR), surface acoustic waveguide 

(SAW), quartz crystal microbalance (QCM) transducers. Label–based biosensors are 

those in which biochemical reaction induces the products of that reaction to be detected 

by a biosensor and this type of biosensors uses different kinds of transducers such as 

electrochemical, impedance, optical, and field-effect. In general, the same biosensor can 

use one of these two types of transducers. In the following subsections, several examples 

of biosensors and their applications will be covered in detail. 

 

2.3.1 Electrochemical Biosensor 

The electrochemical biosensors are one of the oldest and most developed types of 

biosensors. The working principle is based on the production of ions or electrons by 

chemical reactions, which causes changes in electrical properties of the solution that can 
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be used as measuring parameters. One of the advantages of the electrochemical 

biosensors is that they can operate in turbid media and at the same time are able to 

perform with high sensitivity. The latest electroanalytical techniques possess very low 

detection limits (typically 10-9 M) that can be achieved using small volumes (1-20 µl) of 

samples.    

These instruments are generally based on observation of current or potential changes 

due to interactions occurring at the sensor-sample matrix interface. Based on 

electrochemical characteristics of biosensors, they can be divided into conductimetric 

impedance, potentiometric, and amperometric types.  

The conductimetric electrochemical biosensors measure a variety of changes of 

electrical field of a solution. The conductivity of the solution depends on the amount of 

ions or electrons produced as a result of electrochemical reaction. In impedance type, 

cyclic function of small amplitude and variable frequency is applied to a transducer and 

the resulting current is used to calculate the impedance at each frequency probed 

(Barsoukov and Macdonald, 2005). Measuring impedance has two components: a real 

and an imaginary, which make its mathematical treatment considerably difficult and 

complicated. The induced signal may include a range of frequencies and amplitudes; 

therefore, results can be explained in two ways. The first route is the strictest approach 

and involves a system of partial differential equations governing the system (Gabrielli, 

1990). The most preferable approach is the second because of the simplicity of the 

method, which comprises the interpretation of the data in terms of equivalent circuits 

(Gabrielli, 1990; Katz and Willner, 2003; Yang et al., 2004). Subsequently, the latter 

method is accepted over a wide area and extreme care is needed to assure that the 
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obtained equivalent circuit makes physical sense. Moreover, the same impedance data 

may well be fit by several different circuits and at different frequencies the impedance is 

very useful to determine several parameters (Gabrielli, 1990; Barsoukov and Macdonald, 

2005). The incipient application of the impedance sensors was to quantify a total biomass 

in the sample (Grimnes and Martinsen, 2000) and to use it in DNA-probe or antibody 

modified electrodes, which represents a breakthrough in selectivity (Mirsky et al., 1997). 

As reported by Ong et al. (2001), impedance measurements enable remote sensing. The 

advantage of this type of sensor is that they simultaneously monitor temperature, 

permittivity, conductivity, or pressure changes non-invasively, which make them show 

rapid and automated quality controls in the food industry.   

The amperometric or voltametric methods are probably the most widespread types of 

the electrochemical biosensors and can be characterized by their current–potential 

relationship with the electrochemical system (Lazcka et al., 2007). Basically, the 

amperometric biosensors measure the current through the electrochemical electrode, 

which is coated with biologically active material. A transducer of the biosensor can be 

linked with any of the biosensing materials such as enzymes, antibodies, DNA-probes, 

cells, and tissues. A bienzyme electrochemical biosensor coupled with immunomagnetic 

separation, which was used for the rapid detection of E. coli O157:H7 in food samples 

(Ruan et al., 2002), can be an example. In their study, samples artificially contaminated 

with E. coli O157:H7 were mixed instantaneously with magnetic beads coupled with 

anti- E. coli antibodies and alkaline phosphatase labeled anti- E. coli (APLAE) antibodies 

for formation of beads-E. coli-APLAE conjugates by antibody–antigen reaction. After 

separation of conjugates with a magnetic field, they were incubated with phenyl 
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phosphate to produce phenol. Detection of phenol in a flow injection system of the 

amperometric tyrosinase-horseradish peroxidase biosensor was proportional to the cell 

number of E. coli O157:H7.  

The potentiometric biosensors are the least common of all electrochemical 

biosensors. The working principle of the biosensors possesses a non-faradic electrode 

process which has no net current flow and is based on accumulation of the charge density 

at an electrode surface. Usually, the potentiometric method measures action of the 

product or reactant in the electrochemical reaction and monitors changes in electrical 

potential, which are brought on by causing an ion and ionophore to stick together. There 

are different types of enzymes that can be used in potentiometric electrodes for analytical 

purposes. Bergveld (1970) put forward a field-effect transistor (FET), and this transistor 

is very suitable for demonstrating an unlabelled immunoassay. The FET has four types 

which are used for biosensing purposes: ion-selective FETs (ISFETs), enzyme FETs 

(ENFETs), immuno-FETs (IMFETs), and suspended-gate FETs (SGFETs). The ISFETs 

react with ions in solution, whereas the ENFETs measure enzyme substrates that are 

linked to an enzyme reaction. The IMFETs produce charge separation through antibody-

antigen interaction, and the SGFETs, the last transistor of all transistors, are based on the 

changes in work function and dipole orientation resulting from the interaction of the 

biosensing material with different gases.  

 

2.3.2 Optical Biosensor 

Optical biosensors are the most suitable and popular type of biosensors for measuring 

biological and chemical analytes due to their selectivity and sensitivity. A light source 
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and a number of optical components produce a light beam with specific characteristics, 

and a modulating agent regulates this light, whereas a modifying sensing head and 

photodetector form a typical optical biosensor. Optical biosensors have been developed 

for rapid detection of contaminants (Willardson et al., 1998; Tschmelak et al., 2004), 

toxins or drugs (Bae et al., 2004), and pathogenic bacteria (Baeumner et al., 2003). 

Optical biosensors can also be classified as direct and indirect based on the type of the 

detection of the target analyte. In the direct biosensors, the optical properties of a 

waveguide, such as evanescent waves or surface plasmon resonance (SPR), are directly 

influenced by the analyte. In contrast, in the indirect format, the optical labels such as 

fluorescence, metal particles, or nanoparticles are used to produce optical signals 

proportional to the target analyte. SPR, fluorescence, luminescence, absorption, and 

reflection are the types of the optical biosensors, and they are very popular in application 

due to their sensitivity.  

Fluorescence occurs in peculiar particles including fluorescent dyes, fluorophores, 

and fluorochromes, during the external light application. As a result, a valence electron is 

excited from its ground state to an excited state. During the reverse process, it emits a 

photon at a lower energy. Specificity of the biosensors is provided by the combination of 

biosensing materials with an evanescent wave at a surface. A valuable characteristic of 

the fluorescence biosensors is that little thermal loss and rapid (<10 ns) light emission 

take place after absorption. In contrast to the SPR biosensor, fluorescence detection also 

can be used in combination with well established techniques including PCR and ELISA. 

Moreover, fluorescence biosensors are able to detect surface-specific binding events in 

real time. Higgins et al. (2003) developed a hand-held real-time thermal cycler, which 
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measures fluorescence at 490 and 525 nm and is able to detect more than one 

microorganism simultaneously. In 2004, Li et al. reported that antibodies have an ability 

to conjugate with fluorescent compounds, the most common of which is fluorescein 

isothiocyanate (FITC).  

SPR biosensors are one of the optical biosensors which study an interaction of soluble 

analytes with immobilized ligands. Moreover, they can be distinguished as a label-free 

and real time sensor for biomedical researches.  The crucial thing about these biosensors 

is that they measure small changes in the optical refractive index (RI) which is caused by 

structural alterations in the surrounding area of a thin film metal surface (Glaser, 2000). 

The operational system of the SPR biosensors is based on the glass plate which is 

covered by a thin gold film and illuminated from the backside by p-polarized light (from 

a laser) through a hemispherical prism. The reflectivity is measured as a function of the 

angle of incidence. The SPR based biosensors show characteristics that work better with 

small particles when a resonance angle is sensitive to changes in RI and dielectric 

constant has a distance up to 800 nm from the actual index interface (Glaser, 2000).  The 

SPR biosensors are able to measure RI changes based on the adhesion in extremely thin 

layers of a material to the surface of the sensor from a fluid or gas phase (Liedberg et al., 

1983). The RI is located near the interface that has approximately proportional change to 

the mass of the molecules, which enter the interfacial layer. An interaction of large 

molecules with immobilized ligands can be label–free measured due to the latter process 

(Karlsson et al., 1991). The changes can be detected in real time, and rate data collection 

can possibly have limitations, which appear when molecules enter and leave the interface. 

Nowadays, the SPR biosensors have a high diversity of commercially available 
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instruments. BIAcore is representative of the SPR biosensors that was developed in 1990 

by Pharmacia Biosensor AB (Uppsala, Sweden). This sensor was a huge achievement in 

biomedical research, and its application is based on real-time and label-free 

measurement. The instrument is controlled by computer and results can be monitored on-

line. The first application of this sensor was concentrated on protein engineering; 

however, later the BIAcore instrument was also applied in genetic engineering to 

manipulate DNA (Nilsson et al., 1995), investigation of the function of heat-shock 

proteins GroEL/GroES (Hayer-Hartl et al., 1995), determination of oligosaccharide 

composition of a glycoprotein (Hutchinson, 1994), and detection of chemotherapeutics in 

food (Sternesjo et al., 1995). 

 

2.3.3 Piezoelectric Biosensor 

The first theoretical approach of using the piezoelectricity was suggested by L. 

Raleigh in 1885. However, the first application was found by Jacques and Pierre Curie in 

1880 (O’Sullivan and Guilbalt, 2000). The construction of the piezoelectric biosensors is 

based on quartz crystal microbalance (QCM), which is commercially available and 

comprises a thin quartz disk with electrodes plated on it. Main advantages of the 

piezoelectric biosensor are high sensitivity, simplicity, low cost, and versatility.  An 

oscillating electric frequency is applied across the device and it causes production of the 

acoustic wave, which transmits throughout the crystal. This crystal can be activated by 

immobilization of a proper immunoglobulin (antibody) on the surface, which is then 

capable of binding specifically to the target analyte.  
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There are two main types of piezoelectric biosensors available: surface acoustic wave 

(SAW) and quartz crystal microbalance (QCM). The SAW biosensor is able to work at 

frequencies of at least 100 MHz and mass sensitivity is directly related to frequency. 

Therefore, this device is more sensitive in comparison with a QCM device and is better to 

use in detection of peptides, DNA sequences, and pathogens.  

The QCM immunosensor has a low 9–16 MHz frequency range. The first practical 

use of the QCM device was described by King (1964). The main area of the application 

of this device is the surface modification of the piezoelectric crystal and subsequent 

detection of the antibody of interest. Nevertheless, the early application was limited, and 

it served as a detector in gas chromatography (Guilbault et al., 1988; Alder and Callum, 

1983; Guilbault and Ngeh-Ngwainbi, 1988a, b).  

The important characteristic of the piezoelectric biosensors is that they have high 

specificity, versatility and antibody–antigen affinity reaction among the other most 

promising biosensors. The working principle of the QCM biosensor is based on the 

application of a single- or multiple binding to the crystal surface and direct or indirect 

measurement of the analyte. A single step measures the binding of one component to the 

modified crystal surface, whereas a multistep method is based on sequential binding of 

two or more components. The direct measurement of analyte depends on interaction of 

the analyte with the modified crystal surface, and the resonating frequency goes down 

with increasing amount of the analyte. Indirect measurement relies on the interaction of 

the analyte with other components in solution. When it comes to a competitive assay, an 

antigen is immobilized on the crystal surface, and the analyte present in a solution 

competes for the binding sites of the antibody with the antigen immobilized.  
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The antigen coating on piezoelectric biosensors was first pioneered by Shons et al. 

(1972). They attached a layer of antigens onto the surface of 9–16 MHz in order to detect 

the amount of antibodies in a liquid sample. Since that time, numbers of piezoelectric 

biosensors have been constructed for the detection of the different sized analytes in 

solutions.  

The major applications of QCM immunosensors are food, environmental, and clinical 

analysis. Piezoelectric biosensors are also known in detection of foodborne pathogens 

(Muramatsu et al., 1989a, 1989b; Prusak – Sochaczewski and Luong, 1990; Carter et al., 

1995; Jacobs et al., 1995; Wong et al., 1996; Ye et al., 1997). The antibody–antigen 

coated crystal mechanism of piezoelectric immunosensors proposes a great potential in 

those areas. However, QCM biosensors have their limitations, such as detection limits 

and reusability of electrodes.  

 

2.4 Immobilization of Biosensing Materials in Biosensors 

The crucial aspect of a biosensor is that the biosensing materials and the transducer 

should be in close contact. Therefore, the construction of microbial biosensors demands 

immobilization on transducers within close proximity. The immobilization process plays 

a very valuable role, and choosing the right immobilization technique is vital. There are 

two known ways to immobilize microorganisms on transducers: chemical and physical 

(Lei et al., 2006).  

Chemical approaches for immobilization comprise two forces: covalent binding and 

cross-linking (Turner et al., 1987; Mulchandani and Rogers, 1998; Tran, 1993; 

Mikkelsen and Corton, 2004; Blum and Coulet, 1991; Nikolelis et al., 1998). Covalent 
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binding methods form covalent bonds between functional groups of the microorganism’s 

cell wall components such as amine, carboxylic or sulfhydryl and the transducer 

including amine, carboxylic, epoxy or tosyl. This reaction can be performed when 

chemicals affect cells, which subsequently leads to harmful conditions, damaging the cell 

membrane, and decreasing the biological activity.  According to sources, this approach is 

not good for immobilization of viable microbial cells (Lei et al., 2006).  

Cross-linking is widely accepted because of the simplicity and speed. In order to 

attain this method, this method needs to construct a bridge between functional groups of 

the outer membrane of the cells and multifunctional reagents such as glutaraldehyde and 

cyanuric chloride. There are several advantages of this method, and one of them is that a 

cell can directly bind onto the transducer surface or on the removable membrane which 

then connects to the transducer (Lei et al., 2006). Moreover, cross-linking has a broad 

range of applications in stabilization of enzymes (Tyagi et al., 1999), cellular organelles 

to osmotic shock (D’Souza, 1983), prevention of lysis of extremely halophilic cells in 

low salt or salt free environments (D’Souza et al., 1992), and the prevention of lysis of 

microbial cells by lytic enzymes present in processing streams (D’Souza and Marolia, 

1999). Therefore, it is proper to use the cross-linking method to construct the microbial 

biosensors, where the cell viability plays an insignificant role and the intracellular 

enzymes are involved in the detection instead of the viable cell (D’Souza, 2001).  

The physical method also comprises two widely used approaches: adsorption and 

entrapment. These two techniques are used to detect viable microorganisms and are 

considered as simple methods. Basically, the working principle of the physical adsorption 

consists of several simple steps. Usually, microbe culture incubates on the electrode 
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surface or immobilization matrix (alumina or glass bead) which needs then to be washed 

away in order to remove unabsorbed cells from the surface. The retained cells have 

adsorptive interactions like ionic, polar, hydrogen bonding, and hydrophobic interaction. 

The limitation of the use of adsorption is that this technique alone leads to poor long –

term stability due to desorption of microbes (Lei et al., 2006).  

The second physical approach is entrapment, which is based on retention of the cells 

in close distance to the transducer surface using membranes such as a dialysis membrane. 

The outer membrane of the surface should be chemically and mechanically stable, and 

nuclear pore trace membranes made of polycarbonate or polyphthalate can be used 

suitably (Riedel, 1998). The major limitation of the entrapment technique is that the 

additional diffusional barrier given by entrapment materials can be shrunken by 

increasing the porosity of the matrix using open pore entrapment techniques (SivaRaman 

et al., 1982; Miranda and D’Souza, 1988).  This can be reflected in lower sensitivity and 

detection limit.  

 

2.5 Impedance Measurement 

The detection method that is going to be applied and discussed in Chapter 4 will be 

based on the measurement of the impedance difference produced by an electrochemical 

impedance immunosensor. Electrical resistance is defined as a circuit or circuit element 

which has an ability to resist the flow of the direct current (DC). In contrast, impedance 

measures the opposition of a sinusoidal electric current. The main idea of electrical 

impedance generalizes the ability of a circuit or circuit element to resist the flow of the 

alternating current (AC). Moreover, electrical impedance is a complex variable since the 
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essence of capacitance and inductance can be changed with the frequency of the current 

crossing through the circuit. Therefore, impedance considers as a function of frequency. 

Oliver Heaviside (1886) was a founder of this term.  

 

Table 2.1 Impedance properties of common electrical elements. 

Element Impedance Phase angle shift 

Resistor (R) Z=R 0 o 

Capacitor (C) Z=1/jwC=XC -90 o 

Inductor (L) Z=jwL=XL 90 o 

ω=2πf is an angular frequency and f is the frequency (Hz) of the AC sinusoidal wave 
applied to circuit; j=√-1, is an imaginary unit is the angle between phase angles of the 
current with respect to voltage. 

 

As shown in Table 2.1, resistance (R), capacitance (C), inductance (L), and angular 

frequency (ω) constitute the value of the impedance (Z), which consists of a real part, 

resistance (R), and an imaginary part, reactance (X). The latter part is frequency 

dependent, and the first part is independent of frequency. In an electrochemical analysis 

system, the resistance does not depend on frequency since there is a real component. The 

current through a resistor is always in phase with the voltage. On the other hand, the 

impedance of a capacitor has only an imaginary part, and it can increase as frequency 

decreases. Therefore, the current through the capacitance is phase shifted to -90o with 

respect to the voltage. The last one is the impedance due to inductance, and it increases 

when frequency increases. The inductor impedance has only an imaginary part, and the 

current through an inductor is phase shifted to 90o with respect to voltage. However, in an 

electrochemical analysis system the inductance can be ignored (Yang, 2003).  
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In order to analyze the impedance data, it needs to be fitted to an equivalent electrical 

circuit. This circuit comprises several electric elements in serial, parallel or both 

combined. Typically, the elements in an equivalent circuit need to have principle 

components in the physical electrochemistry of the system. In equivalent circuit, for 

example, the double layer capacitance is characterized by a capacitor, and a resistor is 

used to represent the solution resistance. The impedance (Z) of the system that is 

considered as a series of combinations of a resistor and a capacitor is a function of its 

resistance (R), capacitance (C) and frequency (f): 

 

                                      Z = √R2 + (1/2πfC)2                                         (2.1 ) 

 

Classically, the equivalent circuit of a standard three electrode electrochemical 

system comprises a solution resistor (Rsol), a double coated capacitor (Cdl) and a Faradaic 

impedance (Zf). As a rule, the Faradaic impedance is represented in two approaches. The 

first way is to consider it as a series of resistance-capacitance combination containing 

resistance Rs and pseudocapacitance Cs. The second way is to divide it into an electron-

transfer resistance Ret and Warburg impedance Zw. This process should be caused from 

the diffusion of ions to the electrode interface from the bulk of the electrode (Bard and 

Faulkner, 1980).  

The interpretation of the impedance value can be done in two ways: Nyquist plot and 

Bode plot. The real part of the Nyquist plot is schemed on the X axis, and the imaginary 

part on the Y axis. The latter one is negative, and, on the Nyquist plot, each point 

represents impedance meanings at one frequency. Furthermore, the impedance on the 
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Nyquist plot can be considered as a vector of length /Z/ and the angle between this vector 

and the X axis is φ. However, the limitation of the Nyquist plot is expressed in the 

complexity to figure out the frequency at which measurement has been performed. The 

second widely used method is the Bode plot. On the X axis, the impedance is plotted with 

the log frequency. On the Y axis, the absolute value of the impedance /Z/ and phase-shift 

φ is represented. In contrast to the Nyquist plot, the Bode plot clearly presents frequency 

facts. Moreover, in the direct detection of the bacterial cells, it is better to use the Bode 

plot because it is appropriate in studying the direct relationship of impedance with 

frequency (Varshney, 2006).  

 

2.6 Applications of Nanobiotechnology 

Nanotechnology (“nano” derived from the Greek, meaning “dwarf”) is a field of 

study that deals with structures of the size 100 nm or smaller in at least one characteristic 

dimension and encompasses creating materials, devices, and systems within that scale 

(Jain, 2006). The onset of this study began to emerge some 20 years ago (Hodes, 2007). 

Mostly, all nanostructures are engineered, and they come in an unlimited number of 

compositions, sizes, shapes, and functionality. Moreover, to be classified in the 

“nanoclub”, structures have to be artificially made. Excluding increased miniaturization, 

nanomaterials exhibit a number of unusual physicochemical phenomena such as 

enhanced plasticity (Koch et al., 1999), pronounced changes in thermal (Reith et al., 

2000) and optical properties (Polman and Atwater, 2005), enhanced reactivity and 

catalytic activity (Bell, 2003), faster electron/ion transport (Kim et al., 2009), and novel 

quantum mechanical properties (Loss, 2009). These characteristics have been extensively 
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shown in various types of nanomaterials like magnetic nanoparticles, 

nanowires/nanotubes, quantum dots, and metal nanoparticles.  

There are some dilemmas and issues when it comes to choosing nanostructured 

materials for biomedical applications. Nanomaterials are in use all around the globe and 

have a huge potential to create new materials and devices that can be applied in biology 

and medicine requiring them to enter cells. The cell membrane, which comprises a 

nanometer – thin lipid bilayer with attached proteins, is a major barrier that nanomaterials 

have to traverse in order to get inside of the cell. There are several known ways for the 

entrance of nanomaterials into the cell: (a) nonspecific endocytosis, resulting in 

accumulation of nanomaterials in endocytic compartments; (b) direct microinjection of a 

nanoliter volume of nanomaterials into selected cells due to the tedious procedure; (c) 

physically “pushing” nanomaterials across the membrane via charges of electroporation; 

and (d)  using biological interactions or promoters for the mediated/targeted uptake based 

on the surface functionalization of nanomaterials (Medintz et al., 2005). Nanomaterials 

have to have a well-matched surface to interact with the cell before implementing their 

own tasks, and the last of the discussed options offers the greatest promises with 

convenient flexibilities. Biological compatibility and water solubility are the main 

requirements that nanomaterials need to possess. This is why a surface coating is in 

imminent use for conferring stated characteristics and desired functions of nanomaterials 

(Gao and Xu, 2009). Therefore, it is important to study and monitor toxic effects of 

nanomaterials on the environment and living systems. For instance, the Center for 

Biological and Environmental Nanotechnology (CBEN) and the International Council on 

Nanotechnology (ICON) of Rice University are pursuing the establishment of a database 
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for nanomaterials (http://cben.rice.edu; http://icon.rice.edu). The National Cancer 

Institute has recently launched a separate organization called the Nanotechnology 

Characterization Laboratory (NCL), which is mainly focused on examination of 

nanomaterials that are below 100 nm for grant proposal submission and approval basis 

(http://ncl.cancer.gov/). In the next several sections, applications of different kinds of 

nanomaterials, such as magnetic nanoparticles, nanowires and nanotubes, for cell 

separation and detection will be covered.  

 

2.6.1 Use of Magnetic Nanoparticles for Cell Separation 

Magnetism has been known as an interesting and major impelling cause to separate 

magnetic from non-magnetic materials of the sample for a long time. Over the last 

decade, the use of magnetic separation in cell separation has found its resurgence after 

being restricted and limited up to the 1970s. This has been due to the development of new 

magnetic particles with improved qualities for various cell separation techniques (Safarik 

and Safarikova, 1999).  

 Magnetic separation is a rapid, technically simple, specific, and efficient method to 

isolate target cells directly from original samples without any need for centrifugation or 

filtration, which gives an advantage over other techniques used for the same purpose. 

Moreover, magnetic separation generates minimal sheer forces associated with binding 

and elution in comparison with centrifugation and filtration, which in its turn increases 

the yield of active cells. The stationary magnetic field applied for tracking down 

magnetic particles attached to target cells does not cause a blockage in the movement of 

ions and charged solutes in aqueous solutions (at low flow rates) as does the electric field. 

http://cben.rice.edu/�
http://icon.rice.edu/�
http://ncl.cancer.gov/�
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It also makes it easy to handle procedures such as change of buffer conditions and 

continuous washing steps. In contrast to conventional flow cytometry methods, the 

amount of target cells can easily be increased if there is a need for getting large quantities 

of cells. Most of the time, cells isolated by magnetic separation methods possess such 

vital characteristics as pureness, viability, and staying unaltered.  

Two types of magnetic separation are known to work with cells. In the first group, 

cells that possess intrinsic magnetic moment can be separated without any modification. 

Only two types of such cells exist in nature, in particular red blood cells also known as 

erythrocytes and magnetotactic bacteria. A high level of paramagnetic haemoglobin of 

erythrocytes and small magnetic particles within magnetotactic bacterial cells make them 

intrinsically magnetized. The second type requires having one or more non-magnetic 

(diamagnetic) compounds that are conjugated with magnetic labels in order to pursue the 

required contrast in magnetic susceptibility between the cell and the medium. Affinity 

ligands of a different character facilitate the attachment of magnetic labels and can 

interact with the target structures on the cell surface. Employing antibodies against 

specific cell surface epitopes and other specific ligands are used for capturing target cells 

by magnetic particles. Then, formed target cell – magnetic particle complexes can be 

manipulated by applying a magnetic force (Safarik and Safarikova, 1999).  

Three steps need to be completed in order to achieve a separation of target cells using 

magnetic labels and magnetic separators. The first step is the amalgamation of target cells 

with magnetic labels. Incubation time is usually no longer than 30-120 min in laboratory 

scale. A magnetic field is applied to separate target cell-magnetic label complexes and the 

supernatant is disposed or can be used for another application. Second, washing separated 
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magnetic complexes several times is a necessary step for removing unwanted 

contaminants. Further, separated target cells with magnetic labels can be directly used for 

cultivation in microbiological experiments. At this stage, the cells can also be disrupted, 

and different kinds of methods such as chromatography, electrophoresis or PCR can be 

used to analyze the cell content. In some applications, the third step requires removing 

magnetic labels from the separated cells, which can be done using a variety of 

detachment methods. Next, cells free of magnetic labels are ready to be further used for 

analyses using a variety of methods.  

 

2.6.2 Magnetic Labels 

Choosing proper magnetic labels and magnetic fields is the key for successful and 

efficient cell separation. Target cells have to be magnetically labeled in order to be 

susceptible to applied magnetic field excluding magnetotactic bacteria and erythrocytes. 

The nature of the target cells is a crucial factor in choosing a proper method. Magnetic 

and superparamagnetic particles, magnetic colloids, magnetoliposomes, and molecular 

magnetic labels participate in performing magnetic labeling. Predominantly, small 

particles of magnetite (Fe3O4) and maghemite (γ-Fe2O3) are sources of magnetic 

properties of the labels, or, rarely, ferrite particles and chromium dioxide particles can be 

used for the same purpose (Widjojoatmodjo et al., 1993).  

Physical behavior is totally correlated with the particle size, and particular kinds of 

manipulations are possible to occur only with a particular particle. There have been 

numerous discussions about the application of large (1 µm and more in diameter) and 

small (50-200 nm) magnetic particles for the cell separation. Depending on the area of 
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applications, one type of magnetic label is preferred though both types of magnetic labels 

have been effectively exploited for many years. Since colloidal labels (ferrofluids) react 

more quickly and necessitate no mixing of the sample, they are obviously better in terms 

of the kinetics of labeling cells. When large particles are in use, positively selected cells 

(cells of interest are removed for subsequent use) get confined with particles, and most of 

the time, they need to be detached from the cell surface. Moreover, large and dense 

particles have a tendency to go to the bottom, and that is why vortexing is in immense use 

in this kind of situation. In contrast, when cells get isolated with colloidal or molecular 

labels, different kinds of manipulations can be carried out right away following isolation. 

Mixing is not necessary for attaining their affinity reactions, and diffusion and Brownian 

motion facilitate distribution of the magnetic solution homogeneously throughout the cell 

suspension without agitation. A simple and inexpensive separator can be used for the 

magnetic separation of cells tagged with larger particles; however, a low capture 

efficiency of target cells might be a drawback. High gradient magnetic separators are 

usually used for selective separation of cells tagged with colloidal or molecular labels, 

which are more expensive in comparison to the low gradient magnetic separators. The 

major advantage of using particles smaller than 100 nm in magnetic separation is that 

they possess higher effective surface regions which allow ligands to attach easily, show 

lower sedimentation rates which define their high stability, and magnetic dipole-dipole 

interactions are considerably decreased because they scale as r6 (r = radius of a particle) 

(Gupta and Gupta, 2005).   
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2.6.3 Magnetic and Superparamagnetic Particles 

Until recently, micrometer scale magnetic particles have been used for cell 

separations since they are on the order of a cell diameter (Safarik and Safarikova, 1999). 

However, in the last decade, there have been number of investigations with several types 

of nanoscale iron oxides (Gupta and Gupta, 2005). Among all types of iron oxide 

particles, magnetite (Fe3O4) is a very favorable candidate due to its biocompatibility 

(Schwertmann and Cornell, 1991) and interactive functions at the surface (Gupta and 

Gupta, 2005). Physical and chemical properties of nanosized particles are neither atom 

nor the bulk counterparts (Babes et al., 1999). Quantum size effects and large surface 

area of magnetic nanoparticles noticeably alter magnetic properties and exhibit 

superparamagnetic phenomena that can be only performed in the presence of the external 

magnetic field (Goya et al., 2003). Since superparamagnetic particles do not retain any 

magnetism after removal of the magnetic field and do not get attracted to one another, 

they can be effortlessly homogenized (Tartaj et al., 2003). The surface chemistry of these 

particles can be modified by creating a thin layer of organic polymer or inorganic 

metallic (e.g. gold) or oxide surfaces (e.g. silica or alumina) in order to provide further 

linkage using various bioactive molecules (Berry and Curtis, 2003).  

Iron oxide magnetic particles of different sizes behave differently in a magnetic field. 

In particular, sudden changes in magnetic properties occur when the size decreases from 

micrometer to nanometer scale (Lefebure et al., 1998).  When the magnetic particles are 

small enough (i.e. 6-15 nm), they produce superparamagnetic behavior, whereas in a 

micrometer range, they tend to have more of ferromagnetic behavior. It was proven that 

the blocking temperature of the particles defines the magnetic behavior (Sharma et al., 
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2008). Blocking temperature is directly proportional to the size of the particles and can be 

defined as a transitional temperature between the ferromagnetic and superparamagnetic 

state (Chatterjee et al., 2003). Lower blocking temperature has an effect on making 

particles with superparamagnetic properties, whereas the higher blocking temperature 

influences production of ferromagnetic particles.  

It has been a critical problem for science and technology to synthesize magnetic 

particles of a custom-built size and shape. Some physical methods, such as gas phase 

deposition and electron beam lithography, are complex techniques that cannot control the 

size of particles in a nanometer scale (Stolnik et al., 1995; Rishton et al., 1997; Kodas 

and Hampden-Smith, 1999; Lee et al., 2001). The wet chemical methods have a potential 

to provide simpler, easier to control, and more efficient magnetic nanoparticles that have 

ability to control size, composition, and more importantly the shape of nanoparticles 

(Charles, 1992; Gupta and Wells, 2004; Gupta and Curtis, 2004). Type of salts (e.g. 

chlorides, sulphates, nitrates, perchlorates, etc), Fe2+ and Fe3+ ratio, and pH and ionic 

strength of the media determine and control size, shape, and composition of nanoparticles 

(Hadjipanayis and Siegel, 1993; Sjogren et al., 1994). Moreover, the synthesis of Fe3O4 

particles needs to be done in an oxygen free environment by passing N2 gas so that they 

can be prevented from possible oxidation as well as from agglomeration. Bubbling 

nitrogen gas also helps to reduce the particle size in comparison to methods without 

removing the oxygen (Kim et al., 2001; Gupta and Curtis, 2004).  

 A ferrofluid (“ferrum” from Latin means iron) is a liquid suspension of magnetic 

particles (Fe3O4 or Fe2O3) that becomes strongly polarized in the presence of a magnetic 

field. Due to this ability, these colloidal suspensions possess a distinctive combination of 
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fluidity and the capability to intermingle with a magnetic field (Bailey, 1983). Magnetic 

iron oxide nanoparticles have a large surface area to volume ratio and hydrophobic 

surfaces, when a surface coating is in lack. These particles have a tendency to 

agglomerate and develop large clusters owing to hydrophobic interactions between 

particles. As a result, they start producing strong magnetic dipole-dipole attractions 

between clusters and showing ferromagnetic behavior (Hamley, 2003). Not only do 

forces between particle clusters rise up when they come to the magnetic field of the 

neighbor but also each single particle gets further magnetized (Tepper et al., 2003). A 

consequence of this magnetization process finds its reflection on the increased 

aggregation properties of particles. Therefore, surface modification of magnetic 

nanoparticles is essential due to the Vander Waals force that also causes agglomeration of 

particles and the above stated effects. To stabilize iron oxide nanoparticles, a high density 

coating such as a surfactant or a polymer is added at the time of preparation (Mendenhall 

et al., 1996). Depending on the purpose of the use of magnetic nanoparticles, a range of 

biological molecules such as antibodies, proteins, and targeting ligands can be attached to 

polymer surfaces of nanoparticles via amide or ester bonds to make particles more 

specific.  

 

2.6.4 Magnetic Separation Techniques 

The following techniques can be used for separation of cells using magnetic particles. 

(1) Direct method: Magnetic particles coupled with affinity ligands need to be added to a 

sample and incubated for a certain period of time. During incubation magnetic particles 

get attached to the surface of the target cells and separated from non-target cells using a 
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magnetic field. (2) Indirect method: Target cells get exposed to a specific primary affinity 

ligand and, after incubation, a washing step is applied in order to remove excess unbound 

affinity ligand. Next, magnetic particles attached with the secondary affinity ligand, 

which affinity for the first affinity ligand, are added to the sample to bind the target cells. 

A magnetic field will be applied to separate the target cells. 

In immunomagnetic separation (IMS) method, target cells get separated using 

magnetic particles that are coupled with specific antibodies against target cells. There are 

numbers of published papers that describe use of IMS for prokaryotic and eukaryotic 

cells, and this number is intensively escalating. Due to successful and simple applications 

of the IMS method, there have been many research experiments done that found their 

application in various aspects of biology such as microbiology, immunology, and cancer 

biology. Recently, several groups demonstrated the use of nanobeads in immunomagnetic 

separation. Nanoparticle-based IMS combined with real-time PCR was applied for rapid 

detection of L. monocytogenes from artificially contaminated milk and observed the 

detection limit of the target bacteria as 102 CFU/0.5 ml (Yang et al., 2007). In this study, 

carboxyl modified magnetic nanoparticles were covalently bound with antibody via the 

amine groups and were about 1.4 to 26 times more sensitive than those of Dynabeads®-

based immunomagnetic separation depending on the initial cell concentrations inoculated 

into milk samples. Varshney et al. (2005) applied magnetic nanoparticle-antibody 

conjugates (MNACs) for separation of Escherichia coli O157:H7 in ground beef. 

MNACs were conjugated via biotin-streptavidin complex and presented a minimum 

capture efficiency of 94% for E. coli O157:H7 ranging from 1.6×101 to 7.2×107 CFU/ml 

with an immunoreaction time of 15 min without any enrichment. They concluded that 
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using magnetic nanoparticles for immunoseparation methods has more advantages than 

microbeads in terms of higher capture efficiency, no need for mechanical mixing, and 

minimal sample preparation. Nano-biorecognition is established as a field of conjugation 

of biomolecules with nanomaterials. Soukka et al. (2003) evaluated the performance of 

nanoparticles, 107 nm in diameter, with biological samples and stated that each 

nanoparticle could efficiently conjugate about 150-200 molecules of antibody. This 

resulted in more than 300 active binding sites (two binding sites for each antibody). This 

property, coating nanoparticles with antibody, provides better contact between 

nanoparticles and target cells, which leads to higher binding affinity than free 

biomolecules.  

 

2.6.5 Nanotubes 

In this review, several important nanostructured materials that may find use in the 

development of biosensors for detection of foodborne pathogens will be examined.  

Carbon nanotubes were classified for the first time in 1991 by Sumio Iijima while 

observing the soot made from by-products from the synthesis of fullerenes by the electric 

arc discharge method. Later, single wall carbon nanotubes were synthesized by mixing 

metal particles to the carbon electrodes. Actually, more than forty years ago, an electric 

arc was used in production of carbon structures, which were produced between two 

carbon electrodes at different chemical potentials. In 1960, Bacon developed this method 

for the synthesis of carbon whiskers. The study of carbon nanotubes has only been made 

possible with the technical development of electron microscopy and nanotechnology 

research although they were produced in those experiments (Loiseau et al., 2006).  
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Carbon nanotubes found a wide range of application in high performance of 

composite materials, field emission displays, and nanoelectronic devices. The 

attractiveness of carbon nanotubes is that they have unique potential uses for structural, 

electrical, and mechanical properties. In addition, they have high tensile strength, 

metallic, semiconducting, or semimetallic, depending on helicity and diameter 

(Dresselhaus et al., 1996). 

The preparation of carbon nanotubes can be done by using different types of 

techniques such as evaporation, laser ablation, pyrolysis, and electrochemical methods. 

Properties of carbon nanotubes have been studied very widely; therefore, they can be 

considered as good candidates that are stiff and robust because the bond between two 

carbons is one of the strongest in nature. Carbon nanotubes are flexible and do not 

collapse upon bending. Except graphite, carbon nanotubes are the most stable forms of 

carbon and share the same sp2 bonding structure. Due to this fact, a carbon atom near 

neighbors becomes extremely stable in covalent bonds.  

Based on the number of walls present in the carbon nanotubes, carbon nanotubes can 

be classified as follows: single-wall (SWNT), multiwall (MWNT), and the newly 

established small diameter (SDNT) material. By characterization, SWNTs are single 

walled carbon nanotubes about 1 nm in diameter with micrometer-scale length; MWNTs 

are multiwalled carbon nanotubes with an inner diameter about 2 to 10 nm, an outer 

diameter of 20 to 70 nm, and a length of about 50 μm; and SDNTs have diameters of less 

than 3.5 nm and have lengths from several hundred nanometers to several micrometers. 

Typically, SDNTs have one to three walls.  



 

 
 

43 

Nanotubes have been applied to fabricate portable sensors due to their distinctive 

physical properties as stated above. Their one dimensional structure makes an electron 

transport go along the longitudinal way. Moreover, the sensitivity of the biosensor to be 

developed can be improved with the help of nanotubes due to their large surface that 

enhances interaction between a target analyte and nanomaterials (Heo and Hua, 2009). 

Raw SWNTs need to be customized in most applications and managed using organic 

chemistry on open ends, closed ends, and sidewalls (Koo, 2006). In early studies, most of 

the work has been concentrated on a chemical modification of nanotubes to trigger their 

solubility in aqueous solutions and make them more biocompatible (Elkin et al., 2005; 

Lin et al., 2006). For efficient capture of the bacterial pathogen, Gu et al. (2008) 

modified the surface of SWNTs with multivalent carbohydrate ligands. In another study 

by Elkin et al. (2005), bovine serum albumin (BSA) was used to promote the solubility of 

the carbon nanotubes in aqueous solutions, which was then functionalized with specific 

antibodies against E. coli O157:H7 cells for their specific detection. These examples 

clearly show that galactose functionalities on the surface of the nanotube not only 

promote solubility and interaction with biomolecules, but also facilitate identification, 

immobilization, and concentration of bacterial cells in a solution (Heo and Hua, 2009).  

A field effect transistor (FET) immunosensor comprised of carbon nanotubes was 

developed to detect Salmonella infantis (Villamizar et al., 2008). Carbon nanotubes were 

synthesized on top of silicon dioxide to build carbon nanotube-FETs and then antibodies 

against Salmonella were applied to coat this complex. The sensitivity of the sensor was 

100 CFU/ml with a detection time of 1 h. The carbon nanotube-FET immunosensor was 

specific enough that there was no interference by other strains of bacterial cells.  
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2.6.6 Nanowires 

There is growing interest in developing new advanced materials and designing novel 

devices with control features on a nanometer scale. Nanostructured TiO2 based materials 

have also been receiving significant attention due to their superior photocatalytic 

properties, nontoxicity and being one of the most basic materials in our life. 

Nanocrystalline TiO2 is particularly attractive for several applications including 

photocatalysis, solar cells, membranes, sensors, nanoceramics, and the degradation of 

environmental hazardous chemicals. Moreover, titanium dioxide has a special 

photocatalytic sterilization function, which can be used for antibacterial application. TiO2 

– coated tiles are being used as self sterilizing surfaces for the sterilization of Escherichia 

and methicillin resistant Staphylococcus aureus (Sujaridworakun et al., 2005). TiO2 has a 

degree of ionic character in its bonds and exhibits interesting properties such as a high 

refractive index, high dielectric constant and transparency in the visible region of the 

electromagnetic spectrum. The surfaces of TiO2 are negatively charged at pH values 

higher than 6.0. Because of nontoxicity, nanostructured TiO2 materials show high 

biocompatibility and good retention of biological activity for protein binding. In addition, 

TiO2 nanowires fabricated by low-cost anodic oxidation of the Ti substrate which possess 

large surface areas are desirable for electrochemical biosensor design. TiO2 nanowires 

have gradually received attention due to their one-dimensional nanostructures, uniform 

nanochannel, and electronic conductivity (Fabregat-Santiago et al., 2002). Furthermore, 

TiO2 nanowires are of chemical inertness, rigidity, and thermal stability; therefore, they 

are attractive for the development of nanowire biosensors. Conducting TiO2 electrodes 

have been found to be compatible with the biological molecules and have the ability to 
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efficiently transfer an electronic charge produced in biochemical reaction to an electronic 

circuit and have been used to enhance speed, sensitivity, and versatility of biosensors in 

diagnostics (Zhang and Cass, 2001). In the paper which I coauthored (Wang et al., 2008), 

a TiO2 nanowire based impedance immunosensor was developed to detect L. 

monocytogenes. Monoclonal antibodies specific to the target pathogen were employed on 

the surface of the TiO2 nanowire bundle followed by an impedance measurement of the 

nanowire-antibody-bacteria complex. The detection limit of the TiO2 nanowire bundle 

microelectrode based impedance immunosensor for detection of L. monocytogenes was 

as low as 102 CFU/ml with a detection time of less than 1h.  

Other types of nanowires have been extensively integrated into a sensing part of 

biosensors to improve the sensing limit. Pal et al. (2007) studied an electrochemical 

sandwich biosensor where polyaniline nanowires worked as a molecular electrical 

transducer for bacteria detection. Attached to polyaniline-antibody conjugates, target 

cells were then captured by the secondary antibodies immobilized on the surface between 

two electrodes. The biosensor could detect 101 to 102 CFU/ml of Bacillus cereus in a pure 

culture.  

 

2.7 Microfluidic Devices 

The main characteristics of microfluidic immunoassay devices that attract scientists to 

apply it in detection methods are high surface-to-volume ratio and nanoliter volume of 

microchannel (Henares et al., 2008). The latter can decrease analysis time from hours to 

minutes due to its ability to serve as an immunoreactor chamber. Since antibodies, 

proteins, enzymes, and immunoassay related reagents are high-priced, miniaturization of 
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devices is in a great need, and implementation of it will help to reduce reagent costs 

significantly. In addition to that, it is quite difficult to get a small trace of some target 

analytes that are of importance to detect.  

There are two main ways for introducing a sample into microchannels: pressure-

driven or electrokinetic. A positive pressure is produced by a syringe pump when a 

sample is introduced, whereas in electrokinetic flow molecules start moving due to their 

charges occurred in an electric field.  

Material substrate, surface chemistry and optical transparency play major roles in 

microfluidic device fabrication. Depending on the application, materials for microfluidic 

immunoassay devices may differ, from glass and silicon to polymers. Each of these 

substances has its own advantages and limitations. Silicon was one of the most used 

substrates in early stages of microfluidics work when technology for patterning, etching, 

and bonding silicon wafers had already been developed in the electronics industry. To 

give precise features to silicone on a nanometer scale, isotropical or anisotropical etching 

can be employed. Silicon dioxide can be developed when the substrate is in contact with 

air, and several techniques have been established to attach molecules and coatings 

covalently to the reactive silanol groups. Even though proteins and other biological 

molecules have an ability to bind to silicone surface groups, adsorption can be decreased 

due to surface treatment, which in this case will reflect on a reduction of the sensitivity of 

a sensing material. Boehm et al. (2007) reported an on–chip microfluidic biosensor for 

detection and identification of E. coli. This biosensor’s functionality was based on the 

microfluidic microelectrode that was made of silicone substrate. Recognition of bacteria 

in suspension that passed through the microfluidic chamber was made by antibodies and 
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selectively immobilized on the functionalized glass surface which served as the bottom of 

the microfluidic chamber. Sensitivity of the biosensor was controlled by the height of the 

sensing chamber, and ~104 CFU/ml of E. coli was detected when a shallow chamber (2 

µm) was used.  

Glass replaced silicone due to its outstanding optical properties, its resistance to 

solvents, and it can be used to transfer fluids electrokinetically which are the major 

problems of silicone substrates. Glass substrates are more suitable for immunoassays that 

involve optical detection rather than silicon (Bange et al., 2005).  

Lately, there has been growing interest in polymer and plastic microfluidics because 

of their possession of conspicuously excellent characteristics, such as optical, surface, 

mechanical, and solvent resistance, that can be adapted to a specific application (Becker 

and Locascio, 2002). Moreover, cost-wise, polymer substrates are less expensive to 

fabricate in comparison to glass. Polydimethylsiloxane (PDMS) is a polymer that was 

used in this study which retains remarkable properties such as compatibility with 

biological materials due its non toxicity to cells, impermeable to water, and permeable to 

gases. Last but not least, fabrication of PDMS and bonding it to other surfaces is easier in 

comparison to glass and silicon substrates.  CH3 groups in repeating –OSi(CH3)2 units of 

PDMS make its surface hydrophobic. Therefore, this surface property of PDMS develops 

poor wettability with aqueous solvents, makes the surface disposed to nonspecific 

adsorption to proteins or cells, and delivers microchannels sensitive to the trapping of air 

bubbles (Sia and Whitesides, 2003). This issue can be solved by exposure to an air 

plasma which oxidizes the surface to silanol.  
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Different kinds of sensing methods, including optical, fluorescent, electrical, and 

electrochemical, are attained with microfluidic devices. Among all of them, electrical and 

electrochemical detection methods are of the most importance due to the easy fabrication 

of microelectrodes using photolithography and integration of these detection methods 

with a microfluidic channel. Moreover, a labeling step is not necessary for a sensing 

target pathogen (Heo and Hua, 2009).  

Due to the insulating properties of the bacterial cell membrane at low alternating 

current (AC) frequency, Boehm et al. (2007) reported that a change in impedance can be 

produced in the presence of bacterial cells since an equivalent volume of conducting 

solution in the chamber gets displaced. The same group of researchers concluded that the 

detection limit for pathogen detection can be lowered when the dimension of the chamber 

is decreased (Boehm et al., 2007; Hua and Thomas, 2009). Their microfluidic sensor 

contained a silicon chip with thin film platinum electrodes and a measurement chamber 

of ~15µm, which were modified with antibodies specific to the target pathogen.  

A PDMS based microfluidic chip with a fluid channel (a pore) and cross-sectional 

dimensions of 15×15 µm was developed to detect bacterial pathogens (Carbonaro et al., 

2008). The pore was modified with specific proteins that interact with cell-surface 

receptors. When target cells are introduced into a channel, their presence blocked the 

current across the pore. In comparison to control cells, the target cells could stay longer 

inside the pore since they expressed receptors specific to the immobilized proteins. The 

developed assay could screen erythroleukemia cells based on their CD34 surface marker.  

Cheng et al. (2007) developed a microfluidic device comprised of two parallel glass 

slides and a thin PDMS gasket that could detect as low as 20 cell/µl of CD4 cells. The 
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method was based on the adherence of cells to the glass surface that functionalized with 

proteins specific to the target cells and monitored a conductivity change when they were 

lysed. This device can be adapted to detect pathogenic bacteria cells as well since their 

cell membrane has characteristics such as being electrically insulating, which makes the 

intracellular solution conductive due to the presence of ions. Therefore, a change in 

conductivity occurs when ions release from cell lysis.  

 

2.8 Interdigitated Array Microelectrodes 

Interdigitated array (IDA) microelectrodes can further boost an electrical impedance 

output by employing a parallel set of electrode configuration. Having a large number of 

parallel electrodes and a large active surface area, they make a contribution to improve 

the detection limit, response time, and maximize the impedance change at the surface and 

minimize interfering effects of non-target analytes in the solution (Thomas et al., 2004; 

Radke and Alocilja, 2005; Heo and Hua, 2009). Moreover, using current advanced 

techniques such as a photolithography, IDA microelectodes can be effortlessly integrated 

with microfluidic devices. Both current flow and capacitance between two electrodes 

changes whenever bacterial cells get attached on the surface of the IDA electrodes, which 

in their turn lead to the impedance change in a frequency dependent style (Heo and Hua, 

2009).  

Electrode geometry and inter-electrode spacing play a major role in the detection 

limit of an impedance sensor based on IDA microelectrodes (Lazcka et al., 2008). 

According to Lazcka et al.’s findings, the biosensor’s sensitivity improves when the 

electrode bands become narrower. Bacterial cells as low as 1.50×103 cells/ml were 
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detected using the electrode bands 7 µm wide and 13 µm gap. Another group of 

researchers fabricated IDA microelectrodes consisted of 1,700 lines of gold electrodes 3 

µm in width and 4 µm of in between spacing (Radke and Alocilja, 2005). E. coli 

O157:H7 in a concentration of 104 CFU/ml was detected in 5 min. Yang et al. (2004b) 

developed an indium-tin-oxide (ITO) based interdigitated microelectrode impedance 

sensor for the detection of viable S. Typhimurim in milk samples. The detection method 

was based on measuring an impedance change during bacterial cell growth. A linear 

relationship was found between the detection time and the logarithmic value of the initial 

cell concentration. Target bacterial cells in 105 CFU/ml were detected in 2.2 h. It was 

suggested that the detection limit of this biosensor should be improved by applying 

magnetic nanoparticle – antibody conjugates as in the study that was done by Varshney et 

al. (2007). Magnetic nanoparticles functionalized with specific antibodies to a target 

pathogen were used to concentrate E. coli O157:H7 cells, which were detected using IDA 

microelectrodes.  Detection limits as low as 1.6×102 and 1.2×103 cells of E. coli O157:H7 

were obtained in pure culture and ground beef samples, respectively.  

IDA electrodes also found application in Faradic impedance sensors that make use of 

redox probes for the pathogen detection. Wang et al. (2009) developed an impedance 

immunosensor based on an IDA microelectrode for rapid detection of avian influenza 

(AI) virus H5N1. IDA microelectrodes consisting of 50 digital pairs with 15 µm digit 

width, 15 µm interdigited space, and a digit length of 4985 µm were used. The detection 

of AI virus was achieved by measuring the change of the electron transfer resistance of 

[Fe(CN)6]3-/4-, a redox probe, on the IDA microelectrode before and after the AI virus 
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binding event. The impedance immunosensor could detect AI H5N1 virus at a titer higher 

than 103 EID50/ml in 2 h.  
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Chapter 3 IMMUNOMAGNETIC SEPARATION OF  

                  L. MONOCYTOGENES CELLS USING IRON  

                  OXIDE MAGNETIC NANOPARTICLES 
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3.1 Materials and Methods 

3.1.1 Chemicals and Reagents  

PBS (0.01 M, pH 7.4) was obtained from Sigma (St. Louis, MO). Polyclonal rabbit 

anti-L. monocytogenes antibodies in a concentration of 2-2.5 mg/ml were purchased from 

US Biological (Swampscott, MA). Magnetic iron oxide (Fe3O4) nanoparticles (average 

diameter of 30 nm, 1 mg/ml (Fe)) with streptavidin surface were received from Ocean 

NanoTech (Springdale, AR). Buffered peptone water was purchased from Becton, 

Dickinson and Company (Sparks, MD). All solutions were prepared with deionized water 

from Millipore (MilliQ, 18.2 MΩ·cm, Molsheim, France). Frozen stocks of L. 

monocytogenes (ATCC 13932, Rockville, MD) and L. innocua (ATCC 33090) were 

maintained in brain heart infusion (BHI) broth (Teknova, Hollister, CA) with 20% 

glycerol at -79 oC. 

 

3.1.2 Culture and Plating of Bacteria 

L. monocytogenes and L. innocua were re-cultured in brain heart infusion broth 

maintained at 37 oC for 19 h. Dilutions of bacteria cultures were made in 0.1% buffered 

peptone water. Both cultures were surface plated on Modified Oxford Listeria agar 

(EMD Chemicals Inc., Gibbstown, NJ), which was incubated at 37 oC for 48 h.  

 

3.1.3 Biotin Labeling of Antibodies 

Immediately before use, 10 mM Sulfo-NHS-Biotin solution was prepared by 

dissolving 2.2 mg EZ-Link Sulfo-NHS-Biotin (Thermo Scientific, Rockford, IL) in 500 

µl of deionized water. Biotin is described as a water-soluble B-complex vitamin that 
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comprises an ureido (tetrahydroimidizalone) ring combined with a tetrahydrothiophene 

ring and finds its application in biochemical assays that requires chemical linkage to 

proteins (Haugland and You, 2002). Three microliter of prepared Sulfo-NHS-Biotin 

solution (10 mM) and 100 µl of rabbit anti-L. monocytogenes antibodies  (in an original  

 

 

Fig. 3.1 Reaction of biotin with an amine group of the rabbit anti-L. monocytogenes 
antibody.  

 

concentration) were added into 200 µl of PBS. The reaction was incubated at room 

temperature for 60 min. The buffer exchange and the removal of excess of biotin were 

done with the use of Slide–A–Lyzer Dialysis Cassettes (10K MWCO, 0.5 ml) (Thermo 
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Scientific, Rockford, IL). After injecting the sample with a syringe (Thermo Scientific, 

Rockford, IL) into a dialysis cassette, it was immersed into 80 ml of PBS and dialyzed for 

2 h at room temperature. PBS was changed, and the sample was dialyzed for another 2 h. 

Then, PBS was changed one more time, and the sample dialyzed overnight at 4 oC. After 

biotin coupling, the concentration of rabbit anti–L. monocytogenes was one third of the 

original antibody, which was applied in further experiments. A brief immunoreaction of 

the rabbit anti-L.monocytogenes antibodies with biotin is presented in Fig. 3.1 and 

conjugation to one another was done via amine group of the rabbit anti-L. monocytogenes 

antibody. Until further use, biotin conjugated rabbit anti-L. monocytogenes antibodies 

were stored at -20 oC.  

 

3.1.4 Preparation of Immunomagnetic Nanoparticles 

Preparation of magnetic nanoparticle-antibody conjugates was done in 1.5 ml sterile 

polypropylene centrifuge tubes. Magnetic iron oxide nanoparticles with streptavidin 

surface were bound with biotin labeled rabbit anti–L. monocytogenes via biotin–

streptavidin complex. Streptavidin is a biotin binding protein derived from the culture 

medium of Streptomyces avidinii and has a tetrameric shape, which can bind four 

molecules of biotin (Haugland and You, 2002). The biotin binding capacity of 30 nm iron 

oxide nanoparticles was roughly equal to 30. If we consider each streptavidin could bind 

2-3 biotin, there were about 10-15 streptavidin on each nanoparticle that had possibility 

to be able to conjugate with antibodies. 145 µl of PBS was added to 55 µl of 

nanoparticles (1 mg/ml) and vortexed vigorously. The sample was exposed to a magnetic  
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Fig. 3.2 Illustration of biotin-streptavidin interaction on the surface of the iron oxide 
magnetic nanoparticle. 

 

field (1.35 T) for 2 h at room temperature, and then the pellet was resuspended in 50 µl of 

PBS. A magnetic holder was provided by Dr. Li’s research group at the University of 

Arkansas (Fayetteville, AR). 100 µl of PBS containing 50 µl of nanoparticles (1 mg/ml) 

was mixed with 100 µl of biotin conjugated rabbit anti–L. monocytogenes antibodies 

(0.6-0.83 mg/ml) and continuously rotated for 2 h at 15 RPM on a programmable rotator–

mixer PTR-30 (Grant Instruments Ltd, Shepreth, England) at room temperature. A 

magnetic field was applied to the sample for 1 h, and then the pellet was washed one time 

with 500 µl of PBS to get rid of unbound antibodies. After applying the magnetic field 

for 1 h, waste was removed and nanoparticles coated with antibodies were resuspended in 

100 µl of PBS. The resulting immunomagnetic–nanoparticles (IMNPs) (Fig. 3.2), i.e. 

magnetic nanoparticles coated with anti–L. monocytogenes were stored at 4 oC. 
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3.1.5 Immunomagnetic Separation by IMNPs and Concentration of Bacteria  

Serial dilutions of the pure culture of L. monocytogenes from 101 to 107 CFU/ml were 

prepared in 0.1% buffered peptone water. 100 µl of L. monocytogenes suspension from 

each serial dilution was mixed with 100 µl of IMNPs. For control samples, 100 µl of BHI 

broth was added to 100 µl of IMNPs. These mixtures were incubated at 15 RPM for 2 h 

at room temperature. The IMNPs–bacteria complexes were collected by a magnetic 

separator for 1 h and resuspended in 1 ml of PBS, followed by surface plating on 

Modified Oxford Listeria agar.  

 

3.1.6 Calculation of Capture Efficiency and Data Analysis  

Binding efficiency or capture efficiency (CE), the percentage of the total bacteria 

retained on the surface of the nanoparticles, is used to define the binding capacity of the 

nanoparticles with bacteria. The following equation was used to calculate CE (Varshney 

et al., 2005): 

CE (%) = Cb / Co × 100                                 (3.1) 

where, Co is the total number of cells present in the sample (CFU/ml), and Cb is the 

number of cells bound with immunomagnetic particles (CFU/ml). 

 

3.1.7 Scanning Electron Microscopy (SEM) 

100 µl of PBS containing nanoparticles (0.5 mg/ml) was mixed with 100 µl of biotin 

conjugated rabbit anti–L. monocytogenes (0.6–0.83 mg/ml) and continuously rotated for 

2 h at 15 RPM on a programmable rotator–mixer PTR-30 at room temperature. A 

magnetic field was applied onto the sample for 1 h, and, then, pellet was washed one time 
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with 500 µl of PBS. Nanoparticles coated with antibodies were resuspended in 100 µl of 

PBS, and, then, 1 ml of fresh L. innocua at concentration of 108 CFU/ml was added into 

the solution. Conjugates were incubated at 15 RPM for 2 h at room temperature. The 

IMNPs–bacteria complexes were collected by VSMS-13 mini centrifuge (Shelton 

Scientific, Shelton, CT) for 5 min at 13000 RPM and resuspended in 1ml of sterile DI 

water. A drop of the sample was made on a glass cover slip surface and air dried 

thoroughly. Then, a sample was ready for a critical point drying. The sample was 

immersed in Karnovsky’s fixative (2% paraformaldehyde, 2% glutaraldehyde in 0.05 M 

cacodylate buffer, pH 6.8 to 7.0) for 2 h in a week vacuum followed by soaking it in a 

0.05 M sodium cacodylate buffer (pH 7.2, adjusted with 0.2 M HCL) with two changes 

20 min apart. 1% osmium tetroxide (2% osmium tetroxide and 0.1 M sodium cacodylate 

buffer, pH 7.2) was used to post-fix the sample for 2 h, and, then, it was soaked briefly in 

DI water for 1-2 min. The sample dehydrated in a graded ethanol series of 30%, 50%, 

70%, 80%, and 95% and 3 changes of 100% with each change 5 min apart. Next, it was 

critical point dried 3 times (5 min each) in 100% hexamethyldisilizane and air dried 

under the hood. Finally, the sample was sputter coated with the gold for 45 sec and 

imaged using XL30 ESEM scanning electron microscope (FEI Co, Hillsboro, OR) in a 

high vacuum mode.  

 

3.2 Results and Discussion 

3.2.1 Capture and Separation of L. monocytogenes Using Magnetic Nanoparticles  

Depending on the size, particles made of iron oxide normally show different kinds of 

properties when a magnetic force is applied. For instance, when the size of the particles is 
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reduced to nanometer scale, their superparamagnetic properties increase, whereas their 

ferromagnetic properties decrease (Gupta and Gupta, 2005). This is why using particles 

in nanometer scale is efficient in separation methods. We developed an uncomplicated 

strategy that uses streptavidin conjugated 30 nm iron oxide magnetic nanoparticles to 

separate and capture a foodborne pathogen, L. monocytogenes. In this study, L. 

monocytogenes was taken as a model pathogen due to the fact that available polyclonal 

antibodies to our target pathogen show low affinity constants. Besides, commercially 

available 2.8 µm Dynabeads coupled with polyclonal antibodies to L. monocytogenes 

proved capable of capturing and separating our target pathogen with capture efficiency 

only 7-23% (Yavuz et al., 2006).  

Fig. 3.3 illustrates the principle of capture and separation of L. monocytogenes cells 

using 30 nm Fe3O4 magnetic nanoparticles. In this particular study, iron oxide (Fe3O4) 

nanoparticles with amphiphilic polymer coating and streptavidin functional group were in 

use. Streptavidin coated MNPs were conjugated to biotinylated rabbit anti-L. 

monocytogenes antibody since they have a few practical advantages, such as sensitivity 

of the streptavidin-biotin complex, that has been considered to be greater than the antigen 

–antibody system (Tchikov et al., 2001). The affinity of streptavidin for biotin shows a 

powerful noncovalent interaction that has 10-15 M dissociation constant and competes 

with covalent bonds (Gupta and Gupta, 2005; Tu et al., 2009). After incubating MNPs 

with antibodies for 2 h, a magnetic field was applied for 1 h to concentrate conjugated 

MNP-antibody complexes and get rid of unbound antibodies and MNPs. Upon removal 

of the magnetic field, iron oxide MNPs became stable and dispersed due to their 

superparamagnetic properties. However, in the absence of any surface coating,  
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Fig. 3.3 Working principle of capture and separation of L. monocytogenes using 30 nm 
iron oxide magnetic nanoparticles. 
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hydrophobic surfaces of MNPs would make these particles agglomerate and develop 

large clusters, which in their turn display strong magnetic dipole-dipole attraction 

between particles and start showing ferromagnetic properties (Hamley, 2003).  Thiswould 

lead to a permanent magnetization that can apparently be explained by the fact that 

unpaired electrons of MNPs spin around themselves so that they can produce 

magnetization without a magnetic force. Therefore, it was beneficial to use coated MNPs 

in this research in order to make sure of the stabilization of ferrofluid nanoparticles 

(Gupta and Gupta, 2005).  

It was thought that a high antibody loading on the microparticle surface augmented 

the reactivity of the microparticle–antibody conjugates by increasing the number of 

specifically bound particles (Okano et al., 1992). Nonetheless, binding affinity of the 

nanoparticle–antibody conjugates has been described elsewhere with smaller 

bioconjugates. Groups of researchers (Kubitschko et al., 1997; Hall et al., 1999; Soukka 

et al., 2001) studied the effect of the antibody loading on the kinetic rate and affinity 

constants as well as on the nonspecific binding of the nanoparticle-antibody conjugates 

and concluded that high antibody loadings affect the decreased reactivity of nanoparticle-

antibody bioconjugates. This could be a result of free, unconjugated antibodies that rival 

for binding with bioconjugates or antibody-stimulated cluster, consequential of a lower 

effective bioconjugate concentration. In this study, a great attention was paid to the size, 

specific activity, nonspecific binding, and binding affinity of the nanoparticle-antibody 

conjugates. Another reason of choosing 30 nm in diameter iron oxide nanoparticles was 

due to the decreased intake of antibodies in comparison with larger size particles (Soukka 
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et al., 2001). After the conjugation step of MNPs with antibodies, L. monocytogenes cells 

were incubated in IMNPs solution. 

 

Table 3.1 Comparison of the capture efficiency of L. monocytogenes using magnetic 
particles in different sizes coupled with anti–L. monocytogenes antibodies.  

 
Diameter of 

magnetic 
particles 

(nm) 

Functional 
group of 
magnetic 
particles 

Type of 
antibodies 

Immunoreac
tion time 

(min) 

CE (%) Reference 

150 Streptavidin Poly 60 40-42 this study 
90 Carboxylic acid Poly 15 60 Yang et al. 

(2007) 

30 Streptavidin Poly 60 75 this study 

 

In Table 3.1, the capture efficiency of magnetic particles specific to L. 

monocytogenes is compared across different sizes. CE is a percentage fraction that was 

calculated based on Eq. 3.1. A conventional plating method was applied to get the 

number of bacterial cells. The results showed that the capture and separation efficiency of 

75% could be attained with 30 nm particles for L. monocytogenes in PBS solution, and 

the total immunoreaction time was 60 min. However, particles with larger diameter (150 

nm) gave only 40-42% of capture efficiency. Yang et al. (2007) used 90 nm iron oxide 

particles that were functionalized with carboxylic acid to capture L. monocytogenes. In 

their study, 15 min immunoreaction time was applied, which showed 60% of capture 

efficiency. The obtained results compared with the capture efficiency of the 

commercially available Dynabeads® anti-Listeria in 2.8 µm diameter that was previously 

reported by Jung et al. (2003), and it was suggested that IMS method that was developed 

in this study using 30 nm MNPs is beneficial over larger particles due to their higher 
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capture efficiency, minimal sample preparation, and no need for a mechanical mixing. In 

addition to that, smaller size particles tend to have a higher concentration of antibodies 

attached to their surface due to a larger surface area, in comparison to larger beads, that 

provides more sites to which antibodies are able to bind (Tu et al., 2009). Moreover, 

IMNPs (30 nm), used in this study, were more specific to L. monocytogenes in 

comparison with Dynabeads® that can recognize flagella antigens on all Listeria spp.  

 

3.2.2 Optimization of the Parameters for Separation of L. monocytogenes  

The concentration of biotin conjugated anti-L. monocytogenes antibody used for IMS was 

found to be critical for the capture efficiency and, later on, for the detection limit of a 

microfluidics and interdigitated microelectrode based impedance immunosensor that will 

be covered in the next chapter. The capture and separation efficiency of L. 

monocytogenes using 30 nm iron oxide particles upon variations of biotin conjugated 

anti-L. monocytogenes antibodies concentrations is plotted in Fig. 3.4. In this set of 

experiments, 100 µl of PBS containing 50 µl of Fe3O4 MNPs (1 mg/ml) were mixed with 

100 µl of polyclonal rabbit anti-L. monocytogenes in concentration of 0.5-0.75 mg/ml, 1-

1.25 mg/ml, and 2-2.5 mg/ml for 2 h at 15 RPM in a variable speed rotator.  After 

removing tubes from the rotator, immunomagnetic nanoparticles were separated from 

unbound antibodies and nanoparticles using a magnetic holder for 2 h. The capture and 

separation efficiencies to L. monocytogenes were found to be 47±4%, 68±5%, and 

75±0.6% for anti-L. monocytogenes antibodies with 0.5-0.75 mg/ml, 1-1.25 mg/ml, and 

2-2.5 mg/ml concentrations, respectively, when the bacterial cells at a concentration of 

104 CFU/ml (100 µl) were separated using a magnetic field for 1 h. Significantly 
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(P<0.05) lower capture efficiencies were obtained with the use of 0.5-0.75 mg/ml of anti-

L. monocytogenes antibodies than with the 1-1.25 mg/ml of anti-L. monocytogenes 

antibodies. In contrast, increasing the concentration of anti-L. monocytogenes antibodies 

from 1-1.25 mg/ml to 2-2.5 mg/ml did not increase the capture efficiency significantly 

(P>0.01). Although using antibodies in a concentration of 2-2.5 mg/ml for IMS of L. 

monocytogenes showed to yield higher numbers of target bacteria, it was economically 

inefficient to use the latter concentration of antibodies in the detection part of this study.  
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Fig. 3.4 Capture efficiency of L. monocytogenes using 30 nm iron oxide nanoparticles 
upon variations of biotin conjugated anti-L. monocytogenes antibodies 
concentrations. Error bars represent standard deviations obtained from 
duplicates.  

 

The concentration of antibodies used for immunomagnetic separation was found to be 

crucial to the detection limit of the microfluicids and interdigitated microelectrode based 
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impedance biosensor. As a consequence, anti-L. monocytogenes antibodies in a 

concentration of 0.6-0.8 mg/ml were applied for further use in the detection of L. 

monocytogenes with the use of the microfluidics and interdigitated microelectrode based 

impedance biosensor.  

The capture and separation efficiency of L. monocytogenes was also evaluated for 

using centrifugation as a means of separation of immunomagnetic nanoparticles from 

unbound antibodies and nanoparticles. After mixing of the same amount and 

concentrations of both nanoparticles and polyclonal rabbit anti-L. monocytogenes 

antibodies with one another at 15 RPM for 2 h, as was described above, a centrifugation 

was applied for 10 min at 13000 RPM for a removal of the supernatant. The rest of the 

experiment followed the same procedure, as was described above for bacterial cells 

separation. Centrifugation was chosen for the comparison with the magnetization method 

and for the sake of saving the time that magnetization requires However, there were no 

significant differences (P>0.05) between capture efficiencies (55-58%) of all three 

concentrations of the rabbit anti-L. monocytogenes antibodies. This happened due to the 

loss of a large amount of antibodies and nanoparticles, which mainly reflected on 

capturing of a less amount of the target cells. Therefore, magnetization was the preferred 

method for the separation of the target bacteria cells with the IMNPs from unbound 

antibodies and MNPs by showing a greater capture and separation efficiency to bacterial 

cells than the centrifugation. 

Optimization of experimental parameters, such as immunoreaction time, would 

definitely enhance the capture and separation efficiency of L. monocytogenes. According 

to Fig. 3.5, increasing immunoreaction time from 90 min to 120 min did not significantly  
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Fig. 3.5 Capture efficiency of rabbit anti-L.monocytogenes antibody conjugated with 30 
nm Fe3O4 magnetic nanoparticles to L. monocytogenes with regard to different 
incubation times. Error bars represent standard deviations obtained from 
triplicates.  

 

increase the capture efficiency of the rabbit anti-L. monocytogenes antibodies conjugated 

with 30 nm iron oxide magnetic nanoparticles to the target pathogen from 61±13% to 

74±3% (P>0.01). Longer immunoreaction times did not also increase the capture 

efficiency significantly (P>0.01). Therefore, 120 min was used as an immunoreaction 

time for subsequent experiments to reduce the total detection time. In addition, a 

collection time (1h) might find its influence on a magnetization of bacterial cells due to 

an even distribution of magnetic nanoparticles and attachment on the bacterial cell 

surface, which can be easily separated by the magnetic field. 
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3.2.3 Scanning Electron Microscopy  

A confirmation of binding of 30 nm Fe3O4 MNPs on the cell surface of Listeria was 

done by a scanning electron microscopy (SEM). Live nonpathogenic L. innocua that very 

much resembles L. monocytogenes was selected as the target bacteria. Fig. 3.6a 

demonstrates the SEM micrograph of 30 nm in diameter Fe3O4 MNPs coupled with 

streptavidin. As we can see, IMNPs could cover up an entire cell surface of L. innocua 

after the IMS process due to their small size in comparison to the target cell. Fig. 3.6b 

and c  clearly show binding of 30 nm IMNPs on the cell surface of L. innocua and 

confirm that Listeria has 32-47 active binding sites on one side of the cell surface, which 

was three to four times higher than experimental results obtained and presented by Yang 

et al. (2006).  

 

 

                            (a)                                                            (b)                                                  (c) 
Fig. 3.6 SEM micrographs of (a) 30 nm iron oxide magnetic nanoparticles and (b, c) 

binding characteristics of L. innocua with 30 nm nanoparticles.  
 

According to Soukka et al. (2003), a nanoparticle with a diameter of 100 nm has an 

ability to conjugate around 150–200 molecules of antibody, which leads to more than 300 

active binding sites (two binding sites per antibody). Based on their results, each 

nanoparticle with a diameter of around 30 nm that was used in this study could efficiently 

conjugate 45–60 molecules of antibody and result in more than 90 active binding sites. 
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However, in the study by Yang et al. (2006), only  about 10 binding sites on one side (in 

total about 20 binding sites) of the cell surface of L. monocytogenes were detected, when 

labeled with 10 nm gold particles conjugated to anti-Listeria monoclonal antibody and 

exposed to a dielectrophoresis.  

In this study, 30 nm iron oxide magnetic particles functionalized with streptavidin 

were coupled with biotinylated polyclonal rabbit anti-L. monocytogenes antibodies. It can 

be concluded that smaller size particles can considerably enhance the ability to capture 

and separate L. monocytogenes cells. Optimization results showed that 30 nm iron oxide 

magnetic nanoparticles (0.45-0.5 mg/ml) conjugated with 2–2.5 mg/ml biotinylated rabbit 

anti-L. monocytogenes antibodies having a 2 h immunoreaction time improved capture 

and separation efficiency of the target bacteria greatly. Applications for these 

optimization parameters will be discussed in the next chapter, which will provide better 

prepared samples for further testing and present more specific and sensitive detection 

results. 
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Chapter 4 SENSITIVE DETECTION OF L. MONOCYTOGENES IN  

                  FOOD SAMPLES USING MICROFLUIDICS  

                  AND INTERDIGITATED MICROELECTRODE  

                  BASED IMPEDANCE IMMUNOSENSOR 
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 4.1 Materials and Methods 

4.1.1 Chemicals and Reagents  

PBS (0.01 M, pH 7.4) was obtained from Sigma (St. Louis, MO). 0.1 M mannitol 

solution (Sigma, St. Louis, MO) in deionized water was used for resuspending bacteria 

cells. Polyclonal rabbit anti-L. monocytogenes antibodies in a concentration of 2-2.5 

mg/ml were purchased from US Biological (Swampscott, MA). Magnetic iron oxide 

(Fe3O4) nanoparticles (average diameter 30 nm, 1 mg/ml (Fe)) with streptavidin surface 

were received from Ocean NanoTech (Springdale, AR). Buffered

peptone water was purchased from Becton, Dickinson and Company (Sparks, MD). 

Frozen stocks of L. monocytogenes (ATCC 13932, Rockville, MD), Staphylococcus 

aureus (ATCC 25923), Salmonella Typhimurium (ATCC 14028), Escherichia coli 

O157:H7 (ATCC 43888), and E. coli K12 (ATCC 29425) were maintained in brain heart 

infusion (BHI) broth (Teknova, Hollister, CA) with 20% glycerol at -79 oC. All solutions 

were prepared with deionized water from Millipore (MilliQ, 18.2 MΩ·cm, Molsheim, 

France).  

 

4.1.2 Culture and Plating of Bacteria 

All cultures were re-cultured in brain heart infusion broth maintained at 37 oC for 19 

h. Dilutions of bacteria cultures were made in 0.1% buffered peptone water. L. 

monocytogenes was surface plated on Modified Oxford Listeria agar (EMD Chemicals 

Inc., Gibbstown, NJ), which was incubated at 37 oC for 48 h. Staph. aureus, E. coli 

O157:H7, S. Typhimurium, and E. coli K12 were surface plated individually on Tryptic 
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Soy agar (EM Science, Gibbstown, NJ) and incubated at 37 oC for 20 to 22 h. Due to 

safety issues, all cultures were heat killed at 100 oC for 20 min.  

 

4.1.3 Immunomagnetic Separation by IMNPs and Concentration of Bacteria 

After collecting IMNPs-bacteria complexes with a magnetic separator that was 

discussed in the 3.1.5 Section of the 3.1 Materials and Methods, these complexes were 

resuspended in 1 ml of 0.1 M mannitol solution. Only 30 µl of the concentrated sample 

was used for an impedance measurement.  

 

4.1.4 Microfluidics and Interdigitated Microelectrode 

Microfluidics and interdigitated microelectrodes were supplied by Dr. Tung’s 

research group at the University of Arkansas (Fayetteville, AR), of a total electrode area 

(gold surface in channel) 125,000 µm2, channel depth 35 µm, chamber volume 34.6 nl, 

and 25 pairs of fingers of total size measuring 10 µm in width and 250 µm in length.  

 

 
Fig. 4.1 Layout of the microfluidics and interdigitated microelectrode (25 pairs of 

fingers): width 10 µm, length 250 µm, distance between fingers 10 µm, channel 
depth 35 µm, electrode area (gold surface in channel) 125,000 µm2, chamber 
volume 34.6 nl. 

Microfluidic channel 

Interdigitated  
gold  
microelectrodes 
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Before use, the microelectrode surface was hydrated with deionized water by means 

of syringe injection. Each microfluidics and interdigitated microelectrode was reusable 

for around three to four times. Before and after every test, microelectrodes were observed 

under magnification (Zeiss Stemi SV6, Carl Zeiss Light Microscopy, Goettingen, 

Germany) for any uneven features, and the gold surface of the microelectrode with 

microchamber was examined under the Nikon Eclipse E600  (Nikon Corporation 

Instruments Company, Melville, NY) fluorescence microscope, which is depicted in Fig. 

4.1. 

 

4.1.5 Impedance Measurement and Detection 

Impedance measurements were performed using the IM 6 impedance analyzer with 

Thales 2.49 software (BAS–Zahner, West Lafayette, IN) in amplitude of 100 mV and a 

frequency range from 1 Hz to 1 MHz. A syringe pump (KD–Scientific Inc., Holliston, 

MA) was used to inject samples into the microfluidics and interdigitated microelectrodes 

with a flow rate of 1 ml/h. A simulation was performed using the SIM program. Sixty-

four points of data from each measured spectrum were automatically selected by the 

software to generate a fitting range.  

0.1 M mannitol (30 µl) was introduced onto the interdigitated microelectrode surface 

via syringe for 2 min at room temperature. Another 2 min of waiting was required for 

stabilization of electrons of the injected solution on the active surface of the 

microelectrode. Then, impedance of the measure solution (0.1 M mannitol) was ready to 

be evaluated by impedance analyzer. After rinsing with deionized water (150 µl) for 5 

min, 30 µl of control was introduced into the chamber of the microfluidics and 
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interdigitated microelectrode for 2 min and preserved in it for another 2 min until 

impedance measurement was done. Injection of a bacterial sample (30 µl; 2 min) 

followed by a washing step (150 µl; 5 min) and again stabilization of electrons was done 

(2 min) in this step. After target bacteria measurement and detection, the microelectrode 

was rinsed for 5 min (150 µl) and 30 µl of a measure solution was introduced for 2 min. 

Finally, after waiting for 2 min, the last measurement was done to establish and confirm a 

baseline of 0.1 M mannitol solution that was previously evaluated. At the end of each 

test, the microfluidics and interdigitated microelectrode was simply cleaned using 

deionized water for 5 min (150 µl). Supposing that L. monocytogenes cells were 

concentrated by IMNPs ahead of the test, the total detection time was 3 h, which includes 

immunoreaction, washing, and measurement. All measurements were done in duplicates, 

and a mean value of the impedance was used.  

Mannitol solution with IMNPs and without L. monocytogenes cells was used as a 

control for all tests. A calibration curve for an impedance change and concentrations of L. 

monocytogenes was plotted based on the difference of magnitude of impedance with 

respect to the control. To calculate the value of the impedance change, the following 

formula was used:  

 

                      Z change = Z sample – Z control                                     (4.1)  

 

where Zcontrol is the magnitude of impedance for a control sample, and Zsample is the 

magnitude of impedance for a sample containing L. monocytogenes. An average of three 
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readings and their standard deviation were calculated and analyzed for each concentration 

of bacteria.  

 

4.1.6 Detection of L. monocytogenes in Artificially Contaminated Lettuce, Milk, and 

Ground Beef  

A 25 gram sample of ground beef, a 25 gram sample of fresh lettuce, and a 25 ml 

sample of milk (purchased from local grocery store) were mixed with 225 ml of PBS in 

Filtra bags (Labplas Inc., Quebec, Canada) and stomached with Stomacher®400 

(Seward, Norfolk, UK) for 1 min at 230 rpm. The wash solutions were collected and 1 ml 

of 105 and 106 CFU/ml of L. monocytogenes were inoculated to 9 ml each of phosphate 

buffered saline homogenized ground beef, lettuce, and milk samples. The 4.1.3 Section of 

the 4.1 Materials and Methods were followed to complete the rest of the experiments. 

 

4.2 Results and Discussion 

4.2.1 Detection of L. monocytogenes Using Iron Oxide Magnetic Nanoparticle-

Antibody Conjugates and Microfluidics and Interdigitated Microelectrode Based 

Impedance Immunosensor  

Integration of nanomaterials into pathogen separation and detection has been leading 

to the development of devices that are portable and simple in the sample preparation 

(Yang et al., 2008).  

After a conjugation step of MNPs with antibodies, L. monocytogenes cells were 

incubated in IMNPs solution. For a better capture efficiency, incubation time was set for 

2 h based on the results presented in Chapter 3. It has been noted that buffers used in the 
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detection methods play a significant role as well and are responsible for electrical 

impedance spectroscopic responses of bacterial cell suspensions (Yang, 2008). In this set 

of experiments, 0.1 M mannitol solution was used to resuspend separated magnetic 

nanoparticle–antibody conjugates attached to L. monocytogenes cells. This solution was 

chosen due to the bacteria cell characteristics that act as a conductor in the presence of 

the solution (Suehiro et al., 2003; Varshney and Li, 2007). Conductivity of some 

components of a bacterial cell (cell wall and cell cytoplasm) is higher than that of 

mannitol solution (Suehiro et al., 2003). Varshney and Li (2007) concluded that the cell 

behavior of a bacterial culture is in linear correlation with the cell wall, cell membrane, 

and cytoplasm in an electrical circuit when measuring impedance. 

Fig. 4.2 shows the experimental procedure of bacterial detection using the 

microfluidics and interdigitated microelectrode based impedance immunosensor. 

Immunoseparated bacteria samples were introduced into a microchannel via a syringe 

pump by causing a positive pressure. An impedance change typically occurs when a 

sample passes through the microchannel and bacterial cells present in the active layer of 

the interdigitated microelectrode (Gerwen et al., 1998). An interdigitated microelectrode 

consists of 25 pairs of gold fingers that mesh with each other and has two poles in a 

bipolar impedance measurement setup. The distance between finger electrodes is in a 

micrometer scale, which allows bacterial cells to get attached to the surface of electrodes. 

This event triggered an efficient electron transfer interaction between bacterial cells and 

gold finger electrodes at a high frequency, which in its place generated a detectable 

impedance signal. Another advantage of using impedance methods is that they are quite  
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                                   (a)                                                                            (b)                        
Fig. 4.2 Working principle of the detection (a) of L. monocytogenes cells and (b) a 

control using microfluidics and interdigitated microelectrode based impedance 
immunosensor.  
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powerful in terms of characterizing physicochemical processes of widely differing time 

constants, sampling electron transfer at a high frequency and creating a mass transfer at a 

low frequency. Chip based sensors are perfect for the detection of DNA binding, antigen 

antibody interaction, and cell identification and detection when a small amount is to be 

tested (Bhunia et al., 2001).  
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Fig. 4.3 Typical impedance spectrum of the microfluidics and interdigitated 

microelectrode based impedance immunosensor with magnetic nanoparticle–
antibody conjugates for detection of L. monocytogenes at a concentration of 
106 CFU/ml.  

 

A nyquist plot is used for measuring and analyzing impedance when redox probes are 

applied in electrochemical impedance spectroscopy (Ruan et al., 2002; Yang et al., 
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2004). In this case, parameters are not related to frequency, for example, charge transfer 

resistance and solution resistance. However, when impedance measurement is relied on 

direct detection of bacterial cells, a bode plot is the one that suits analyzing direct 

relationship of impedance with frequency (Gawad et al., 2004). Fig. 4.3 represents the 

bode plot of the typical impedance spectrum of the microfluidics and interdigitated 

microelectrode based impedance immunosensor for bacteria detection. A decrease in 

impedance of the cell suspensions implies that bacterial cells contribute to conductivity of 

the suspension.   

It is also worthwhile to note that impedance methods for detection of bacterial cells 

are based on the electrical nature of bacterial cells and their electrophysiology that alter 

the impedance of mannitol suspensions.  In the lipid bilayer of the cell membrane, lipid 

molecules are positioned with their polar groups facing outwards into the aqueous 

solution, and the interior of the membrane is formed by their hydrophobic hydrocarbon  

       

Fig. 4.4 A schematic diagram of the surface charge of L. monocytogenes captured by iron 
oxide immunomagnetic nanaparticles in mannitol solution.  
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Fig. 4.5 A schematic diagram of the surface charge of antibody coated iron oxide 
magnetic nanoparticles (control) in mannitol solution.  

 

chains. The inner part of a cell comprises membrane covered particulates, such as 

mitochondria, vacuoles, nucleus, and many other dissolved charged molecules. All above 

stated characteristics of the cell make the cell membrane highly insulating, whereas the 

interior of the cell is highly conductive. The conductivity of the cell membrane is likely 

to be around 10-7 S/m, while the inside of the cell can be as high as 1 S/m (Pethig and 

Markx, 1997; Yang and Bashir, 2008). Since in this study dead cells of L. monocytogenes 

were used (due to biosafety issues), it is worthwhile to note dielectric properties of dead 

cells as well. As Pethig and Markx (1997) stated, when a cell dies, its cell membrane 

becomes permeable and conductivity rises up by a factor of about 104. This factor will 

lead to the cell contents freely exchanging material with the external medium. Resistance 

of the cell membrane can vary between 1 MΩ and 100 GΩ•µm2 depending on the cell 

type, the location of the patch of membrane, and the transmembrane potential. The 

thickness of the total lipid bilayer of most biological membranes is around 8 nm, causing 

a membrane capacitance to be around 0.01 pF/µm2 (Hille, 1992). Decreases in impedance 

suggested that the solution became more conductive possibly due to the cell surface of 
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Listeria that was negatively charged at neutral pH (Briandet et al., 1999). Moreover, the 

binding of negatively charged antibody conjugated MNPs (Tromborg et al., 2004) to 

Listeria cells made the bacteria-IMNP complex have more negative charges (Fig. 4.4), 

 

      

Fig. 4.6 Comparison of impedance spectra of the microfluidics and interdigitated 
microelectrode based impedance immunosensor for mannitol solution, MNPs, 
antibody conjugated MNPs (IMNP), pure L. monocytogenes cells (105 
CFU/ml), and L. monocytogenes cells (105 CFU/ml) coupled with IMNPs. 
Impedance measurement was done in the presence of 0.1 M mannitol solution.  

 

resulting in desreased polarization comparing to the surface charge of antibody coated 

iron oxide magnetic nanoparticles (control) in mannitol solution (Fig. 4.5). Therefore, 

when bacterial cells get attached on an electrode surface, they start affecting the surface 
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by reducing the area that the current reaches and therefore increase the interface 

impedance. 

Fig. 4.6 shows the bode plote of the microfluidics and interdigitated microelectrode 

based impedance immunosensor for mannitol solution, MNPs, antibody conjugated 

MNPs (IMNP), pure L. monocytogenes cells (105 CFU/ml), and L. monocytogenes cells 

(105 CFU/ml) coupled with IMNPs. The magnitude of impedance at 40.8 kHz was found 

to decrease by 25%, 26%, 77.5%, and 81% (with resect to mannitol solution) due to the 

presence of pure bacterial cells, MNPs, antibody conjugated MNPs (IMNPs), and IMNPs 

attached to bacterial cells, respectively. In comparison with mannitol, pure bacterial cells 

and magnetic nanoparticles showed desrease in impedance values due to the presence of 

highly conductive proteins such as bovine serum albumin and streptavidin on the surface 

of cells and nanoparticles, respectively. There was 51.5% decrease in the value of 

impedance for IMNPs in comparison to MNPs due to the presence of antibodies on the 

surface of nanoparticles. Magnetic nanoparticles were used for improving specificity and 

sensitivity of the microfluidics and interdigitated microelectrode based impedance 

immunosensor. Immunomagnetic nanoparticles attached to L. monocytogenes cells were 

shown to decrease magnitude of impedance by 56% as compared to pure L. 

monocytogenes cells, which can be explained with fast settling and concentration of cells 

in the active layer of the interdigitated microelectrode due to the formation of clusters 

between IMNPs and bacterial cells.  
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4.2.2 Equivalent Circuit Analysis of Microfluidics and Interdigitated Array 

Microelectrode Based Impedance Imunosensor Coupled with Magnetic 

Nanoparticle–Antibody Conjugates for Detection of L. monocytogenes  

Obtained impedance results can be simulated with an equivalent circuit that 

comprises different kinds of characteristics that cause impedance change due to the 

presence of L. monocytogenes cells on the surface of the microfluidic microelectrode. In 

this circuit model, a double layer capacitance (Cdl) is connected to the medium resistance 

(Rs) and a stray capacitance (Cs) (Fig. 4.7b). Rs is responsible for a change in conductivity 

and charge transport across the bulk solution. Cdl characterizes the dielectric and 

insulating properties at the electrode surface, whereas Cs stands for the stray capacitance 

of the system associated with electrodes, wiring, connecting cables, and shielding. Fig. 

4.7a presents an experimental and a fitted impedance spectrum of L. monocytogenes cells 

(106 CFU/ml) attached to magnetic nanoparticle–antibody congugates in the presence of 

mannitol solution. The results of the Yang et al. (2003) study demonstrated that 

information about the double layer capacitance can be supplied by low frequency 

impedance (<10 kHz), whereas information about medium resistance can be collected by 

high frequency impedance (>10 kHz). In accordance with that, the impedance spectrum 

of this study shows two domains for L. monocytogenes cell suspensions attached to 

magnetic nanoparticle–antibody conjugates in mannitol solution: a double layer region in 

low frequency range from 1 Hz to approximately 10 kHz and a resistive region in the 

frequency range from 10 kHz to 1 MHz. As can be seen from Fig. 4.7a, when frequency 

increases in the low frequency range from 1 Hz to 10 kHz, impedance decreases linearly. 

However, in the high frequency range (10 kHz to 1 MHz); impedance turns out to be 
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independent of the frequency. Yang and Bashir (2008) defined this fact with an 

explanation of the main source contributing to the total impedance, which as they pointed 

out was the double layer capacitance since it offered essentially high impedance at low 

frequencies (<10 kHz). The double layer capacitance has no value in the high frequency 

range (>10 kHz) and, therefore, only the medium resistance, which is independent of the 

frequency, contributes to the total impedance. In this resistive region, conduction of ions 

in the medium dominates the signal.  

 

 
                                                             (a)                                                           (b) 
Fig. 4.7 (a) Impedance spectra of L. monocytogenes (106 CFU/ml) with experimental and 

simulated data. (b) Equivalent circuit for impedance measurement system based 
on the microfluidics and interdigitated microelectrode coupled with MNAC for 
detection of L. monocytogenes. 

 

According to the simulation, the values of Cdl, Rs, and Cs for the impedance spectra of 

control and samples with 106 CFU/ml of L. monocytogenes attached to magnetic 

nanoparticle–antibody conjugates are summed up in Table 4.1 with the mean error of 
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modulus impedance of 2.75%. As compared to the control sample, L. monocytogenes 

cells attached to the magnetic nanoparticle – antibody conjugates in mannitol solution 

 

Table 4.1 Simulated values in the equivalent circuit by fitting the experimental data for 
the controls and the samples with 106 CFU/ml of L. monocytogenes attached 
to MNAC.  

 
Samples Cdl (nF) Rs (kΩ) Cs (pF) 

Control 2.039 ± 0.97 23.24 ± 0.91 59.72 ± 0.97 

Sample 1.979 ± 0.97 10.53 ± 0.90 63.22 ± 0.87 

Change (%) -2.9 -54.7 5.86 

 
Sixty-four data points were selected for simulation. 
 

caused a drop of Rs and Cdl values by 54.7% and 2.9%, respectively. When L. 

monocytogenes cells attached to magnetic nanoparticle – antibody conjugates in mannitol 

solution, an increase in conductivity took place, which in its turn caused a decrease in 

values of Rs. According to Varshney and Li (2007), resistance of the medium in 

combination with the resistance of bacterial cells attached to magnetic nanoparticle-

antibody conjugates were the cause of a decrease of the value of Rs. In addition to that, 

those bacteria cells act as a conductor in the presence of mannitol solution. Hence, it can 

be concluded that this decrease in Rs value was caused by freely exchanging conductive 

cell ions with the external medium.  

 

4.2.3 Detection of L. monocytogenes in Food Samples 

The change in impedance of the immunosensor is directly proportional to the 

concentration of the target bacteria injected into the surface of the microfluidics and 
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interdigitated microelectrode. Fig. 4.8 demonstrates the impedance change based on 

calculation of Eq. 4.1 at 16.4–161 kHz frequency range for L. monocytogenes of 

concentrations 103–107 CFU/ml in pure culture. Triplicate tests were done for each 

concentration of L. monocytogenes, and standard deviations (SDs) are presented as error 

bars in the figure. A linear correlation was found between the impedance change and 

Z difference = -917.33N - 444

R2 = 0.86
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Fig. 4.8 Impedance change at 16.4 kHz–161 kHz frequency range for the samples with a 

range of L. monocytogenes concentrations from 103 to 107 CFU/ml in pure 
culture. Dashed line indicates the regression line. Error bars represent standard 
deviations obtained from triplicates.  

 

target bacteria in a range of 103–107 CFU/ml.  The regression equation for impedance 

difference versus bacteria concentration was Zchange = -917.33N–444 with R2=0.86, where 

N is the concentration of L. monocytogenes in log CFU/ml. The impedance 

immunosensor was able to detect the target bacteria in pure culture at a concentration of 
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103 CFU/ml, which was equivalent to several cells in 34.6 nl of the sample volume in the 

microfluidic chamber, with a total detection time 3 h from sampling to detection. The 

limit of detection for L. monocytogenes cells, defined as the amount required to give a 

signal of three times the standard deviation of background signal plus average 

background current, was 1.38×103 CFU/ml using the microfluidics and interdigitated 

microelectrode based impedance biosensor. 

 

 

Fig. 4.9 Impedance difference at 102 kHz for the samples with L. monocytogenes at 
concentrations of 104 and 105 CFU/ml in lettuce, milk, and ground beef with 
respect to the controls. Error bars represent standard deviations obtained from 
triplicates.  

 

Most of the time, an impedance detection of bacterial cells straight from food samples 

encounters problems such as interference of food matrix and non-target bacterial cells 

-12000

-10000

-8000

-6000

-4000

-2000

0

Concentration of L. monocytogenes  (Log CFU/ml)

Im
pe

da
nc

e 
di

ff
er

en
ce

 (O
hm

s)

Lettuce Milk Ground Beef

4 5 



 

 
 

87 

with the target since they all may share similar surface charge and change in the 

conductivity of the solution (Varshney and Li, 2009). Due to this reason, 30 nm iron 

oxide magnetic nanoparticles were engaged in this study for IMS, which in its turn could 

improve sensitivity and lower the detection limit of the impedance immunosensor based 

on microfluidics and interdigitated microelectrodes. Moreover, nanosized particles 

improve the rapid binding kinetics to target cells, which find their useful application in 

viscous food matrices (Yang et al., 2007). Fig. 4.9 shows the impedance difference at a 

frequency of 102 kHz of artificially contaminated food matrices such as lettuce, milk, and 

ground beef with L. monocytogenes at concentrations of 104 and 105 CFU/ml. Triplicate 

tests were also done for both concentrations of L. monocytogenes, and standard 

deviations (SDs) are shown as error bars in the figure. As can clearly be seen at a 

concentration of 104 CFU/ml of L. monocytogenes, all food samples show a detectable 

impedance response in comparison to controls. Among all the three food matrices, 

ground beef has the lowest response, which can be explained with the presence of an 

abundant amount of protein, fat, and other components of meat products.  Large error 

bars were observed possibly due to interference of food samples with the capture of the 

target organism by IMNPs in IMS techniques that might have found its effect on lower 

CE values (Varshney et al., 2005; Varshney and Li, 2007), which did not possibly have 

the same values in replicates. Moreover, limited sample volume (34.6 nl) injected into the 

microfluidics and interdigitated microelectrode surface, may or may not contain the same 

amount of target cells.   

To evaluate the specificity of the microfluidics and interdigitated microelectrode 

based impedance immunosensor, non-target pathogens such as E coli O157:H7, E. coli 
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K12, Staph. aureus, and S. Typhimurium at a concentration of 105 CFU/ml were selected 

as the controls (Fig. 4.10). No significant interference in impedance was found from these 

non-target pathogens at a frequency of 102 kHz. This was to be anticipated since MNPs 

were functionalized for L. monocytogenes. Mainly, the specificity of the sensor is reliant 

on antibodies immobilized on the surface of MNPs that capture and separate a target 

analyte. Moreover, even though the polyclonal anti-L. monocytogenes antibody may 

cross react with Staph. aureus (this information was provided in a specification sheet by 

the manufacturer), we learned any non-specific binding that did occur was not enormous 

enough to detect the impedance change with respect to the control. This exemplifies how 

specific the developed immonosensor is in the presence of non-target organisms.  

A sensitivity (which is defined as a ratio of the change in the biosensor’s output 

signal, impedance, over the change in the concentration of the target analyte, bacteria) of 

the developed immunosensor can possibly be further reduced when a lower flow rate is 

applied. According to the study of Yang et al. (2006), when a sample was injected into a 

microfluidic system, it followed a parabolic laminar flow. The average velocity was 

higher at a flow rate of 0.6 µl/min rather than at a flow rate of 0.2 µl/min, which caused 

higher hydrodynamic drag forces on the bacterial cells. Therefore, implementing a lower 

flow rate in future works of the microfluidics and interdigitated microelectrode based 

impedance immunosensor for the detection of bacteria will possibly result in a higher 

collection efficiency of cells in the chamber of the microelectrode, which will help 

decrease the detection limit.  
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Fig. 4.10 Comparison of different non-target bacteria at a concentration of 105 CFU/ml 
with the target pathogen, L. monocytogenes, for the specificity of the developed 
microfluidics and interdigitated microelectrode based impedance 
immunosensor. Error bars represent standard deviations obtained from 
triplicates.  

 

Despite the fact that magnetic nanoparticles are capable of capturing bacterial cells 

excellently and find their applications in detection of them based on the non-specific 

adsorption (without the use of bio-recognition element) on the surface of electrodes, they 

do possess some disadvantages such as formation of clusters with bacterial cells 

(Varshney et al., 2005). Therefore, immunomagnetic separation based impedance 

detection necessitates paying close attention to perfect the performance of the assay. 

Another disadvantage of the developed biosensor is that it cannot discriminate between 

live and dead bacterial cells, which is important in tracking down contaminated food by 
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bacterial toxins. Impedance microbiology is the technique that is able to monitor 

biological activity of bacterial cells in real-time and to detect metabolites produced as a 

result of the bacterial growth. Therefore, this technique is beneficial in differentiating 

between live and dead bacterial cells (Suehiro et al., 2003; Varshney and Li, 2009). 

Measuring the change in the electrical conductivity of the medium during growth of 

bacteria is the approach that is used in the impedance microbiology. The conductivity of 

the medium gets increased once bacteria start growing by means of converting uncharged 

or weakly charged substances present in the growth medium, such as peptone and sugar 

into highly charged elements such as amino acids, ketons, and aldehydes (Wawerla et al., 

1999).  

We described here an assay for electrically detecting L. monocytogenes with no need 

for an antibody immobilization on the gold surface of the microelectrode, consumption of 

a small volume, and possibility to miniaturize. These unique aspects facilitated to achieve 

a detection limit that can be compared to other electrochemical methods, and at some 

points, our method is more advanced. For instance, Varshney and Li (2007) developed an 

impedance biosensor based on an interdigitated array microelectrode coupled with 

magnetic nanoparticle-antibody conjugates for detection of E. coli O157:H7 with the 

detection limit of 7.4×104 and 8.0×105 CFU/ml in pure culture and ground beef, 

respectively. Yang et al. (2006) used a microfluidic device as well with the combination 

of dielectrophoresis (DEP) for capturing L. monocytogenes. This device had 

concentration factors between 102 and 103 with a sample volume of 5-20 µl in pure 

culture. These provided examples urged us to conclude that the sensitivity of the present 

antibody conjugated MNPs with the microfluidics and interdigitated microelectrode 
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based impedance immunosensor for detection of L. monocytogenes in our study is higher 

and amalgamation of an impedance immunosensor with MNPs creates a more sensitive 

detection of foodborne pathogens in food samples.  
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Chapter 5 CONCLUSIONS AND FUTURE WORK  
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Immuno-magnetic separation (IMS) has been counted as an efficient method for 

pathogen separation in different kinds of food matrices that engage magnetic 

nanoparticles (MNPs) coupled with antibodies specifically designed for the target 

pathogens (Pyle et al., 1999; Varshney and Li, 2007). The major advantage of using 

particles smaller than 100 nm in IMS of L. monocytogenes cells was that they possess 

higher effective surface regions, which allowed bacterial cells to attach easily and 

showed also lower sedimentation rates.  

A specific, sensitive, and reproducible immunomagnetic separation concept using 

MNPs with the size of 30 nm for high separation of L. monocytogenes without any need 

of filtration or centrifugation steps was developed. Iron oxide MNPs functionalized with 

streptavidin were coupled with biotinylated rabbit anti-L. monocytogenes antibody via 

biotin–streptavidin bond, and then amalgamated with the target analyte to capture it. A 

magnetic field was employed to catch the nanoparticle–L. monocytogenes complex and 

the supernatants were removed. This step developed separation and concentration of L. 

monocytogenes from a sample.  Results showed that the capture and separation efficiency 

of 75% could be attained for L. monocytogenes in PBS solution, and the total 

immunoreaction time was 2 h. The developed immunomagnetic nanoparticle based 

separation method proved to be beneficial over microbeads due to their higher capture 

efficiency, minimal sample preparation, and no need for mechanical mixing. The capture 

efficiency can be possibly increased further by using siliconized tubes over polystyrene 

ones, since they have an ability to retain MNPs-bacteria complex in a tube due to the 

hydrophobicity that implicates adsorption of proteins. In contrast, siliconized tubes have 

hydrophilic properties that can minimize the retention of cells in tubes (Yang et al., 
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2007). The outcome of this study tremendously enhanced the separation efficiency of 

bacterial cells with the use of nanotechnology and provided better prepared samples for 

specific and sensitive detection of L. monocytogenes cells in food samples.  

Impedance biosensors have been widely embraced in the study of different biological 

binding reactions due to the fact of showing high sensitivity and reagentless operation. 

Qualitative and quantitative detection and monitoring of bacteria with the use of 

electrochemical impedance biosensors was done by measuring the changes in the 

electrical impedance. This research also examined a novel microfluidics and 

interdigitated microelectrode based impedance immunosensor for rapid detection of L. 

monocytogenes in food samples, such as milk, lettuce, and ground beef. In this method, 

30 nm in diameter Fe3O4 MNPs coated with streptavidin were engaged for efficient 

capture and separation of the target organism, and capture antibodies were not 

immobilized on the gold surface of interdigitated microelectrode. The latter choice was 

made due to the fact that only a few bacteria cells have prospects to contact the 

interdigitated channel surface and get captured with immobilized antibodies on the 

microelectrode, when bacteria cells pass through a channel at velocities of several 

hundred microns per second (Yang et al., 2006).  A low intake of the sample was the 

main advantage of using a microfluidics and interdigitated microelectrode that didn’t 

require any chemical immobilization, redox probe, or sample incubation.  

These findings demonstrated and evaluated antibody conjugated magnetic 

nanoparticles with the microfluidics and interdigitated microelectrode based impedance 

immunosensor for the rapid, sensitive, and specific detection of L. monocytogenes in 

foods. Application of MNPs provided a more effective way to separate the target 
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pathogen from food matrices, which reflected on a high sensitivity of the microfluidics 

and interdigitated microelectrode based impedance immunosensor. Impedance 

measurement was able to detect L. monocytogenes as low as 103 and 104 CFU/ml in pure 

culture and food samples (milk, lettuce, and ground beef), respectively, which was 

equivalent to several cells in the 34.6 nl microfluidic detection chamber. The separation 

and detection of L. monocytogenes were not interfered with other nontarget foodborne 

bacteria, such as E. coli O157:H7, E. coli K12, Staph. aureus, and S. Typhimurium. This 

immunosensor method is specific, sensitive, and reproducible and is able to detect L. 

monocytogenes in foods in 3 h from sampling to measurement. Moreover, there was no 

antibody immobilization, nor surface modification of microelectrodes involved. If 

desired, this study may be certainly implemented for detection of other foodborne 

pathogens by substituting antibodies on the surface of MNPs.    

Future work should be focused on the improvement of the developed immunosensor 

including the parameter optimization and quality control of the microfluidics and 

interdigitated microelectrode. Incorporation of the microfluidics and interdigitated 

microelectrode based impedance immunosensor with a dielectrophoresis technique would 

be able to collect higher numbers of bacterial cells in a space between finger electrodes. It 

will require conducting a detailed examination due to having different impedance 

measurements from the one studied in this research.  
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