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ABSTRACT 

 Infectious laryngotracheitis virus (ILTV; Gallid herpesvirus 1) causes upper respiratory 

diseases in mainly chickens and exhibits 90-100% of high morbidity and up to 70% of mortality, 

resulting in huge economic losses in the poultry industry worldwide.  

 To study host-ILTV interactions, the changes in genome-wide gene expressions in 

response to wild-type and vaccine ILTV infections in primary chicken embryo lung cells were 

investigated using microarray analysis. Results provide crucial insights into host cell pathogenic 

and immunogenic responses against wild-type and vaccine ILTV infections. Using microarray 

method and Ingenuity Pathway Analysis (IPA) bioinformatics tool, 273 and 306 differentially 

expressed genes were identified responding to wild-type and vaccine ILTV infections, 

respectively. Further integrated analysis to compare differentially expressed genes revealed that 

eight host genes including coagulation factor II (thrombin) receptor-like 1 (F2RL1), bone 

morphogenetic protein 2 (BMP2), inhibitor of NF-kB (IkB) kinase subunit beta (IKBKB) 

interacting protein (IKBIP), thymidylate synthetase (TYMS), chromosome 8 open reading frame 

79 (C8orf79), coagulation factor X (F10), prostaglandin-endoperoxide synthase 2 (PTGS2) and 

neuropeptide Y (NPY) were regulated differently between wild-type and vaccine ILTV 

infections in an opposite direction, suggesting that these host factors may play important roles in 

host immune responses against ILTV infection. In addition, the transcriptome changes of ILTV 

encoding genes were studied during infection time courses using quantitative PCR. In this study, 

infected-cells polypeptide (ICP) 4 showed the highest expression level and UL21 and UL42 

showed unique expression patterns, unlike most of the other ILTV gene which exhibited 

continuous elevation of expression during lytic infection. Kinetic analysis of ILTV gene 

expression in host cells may provide new knowledge to understand ILTV pathogenesis.
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1. Herpesvirus 

1.1. Herpesvirus virion structure and alphaherpesviurs 

 Herpesviruses share the same virion structure ranging from 130 to 300 nm in size. 

Commonly, the virion includes a linear dsDNA genome in 100 to 110 nm icosahedral capsid 

surrounded by tegument proteins [1]. The tegument proteins consisting of at least 20 viral 

proteins play various roles in viral genome replication and the modulation of cellular responses 

[2]. A host lipid layer with viral glycoproteins covering the tegument layer mediates attachment, 

penetration and immune evasion. 

 According to the genome sequence, replication dynamics and latency site, the 

Herpesviridae family is divided into three subfamilies; Alpha-, Beta- and Gammaherpesvirinae 

[3]. In human herpesviruses, alphaherpesvirinae includes herpes simplex virus (HSV) type 1 

[(HSV-1; human herpesvirus 1 (HHV-1)], HSV type 2 (HSV-2; HHV-2) and varicella-zoster 

virus (VZV; HHV-3). Betaherpesvirinae includes human cytomegalovirus (hCMV; HHV-5), 

HHV-6 (herpes lymphotropic virus and HHV-7. Gammaherpesvirinae includes Epstein-Barr 

virus (EBV; HHV-4) and Kaposi’s sarcoma-associated herpesvirus (KHSV; HHV-8).  

In animal herpesviridae, alphaherpesvirinae is categorized into genera of simplexvirus, 

varicellovirus, mardivirus and iltovirus. Simplexvirus includes bovine herpesvirus 2 (BHV-2), 

cercopithecine herpesvirus 1 (herpes B virus) and ateline herpesvirus 1. Varicellovirus genus 

includes bovine herpesviurs 1 (BHV-1) and 5 (BHV-5), caprine herpesvirus 1, porcine 

herpesvirus 1 (pseudorabies herpesvirus; SuHV-1), equine herpesvirus 1 (EHV-1), 3 (EHV-3) 

and 4 (EHV-4), canine herpesvirus 1 (CHV-1), feline herpesvirus 1 (FVR-1) and duck 

herpesvirus 1 (DEV-1).  Mardivirus genus includes gallid herpesvirus (GaHV) 2 (Marek’s 

disease virus; MDV) and 3 (GaHV-3 or MDV-2), and herpesvirus of turkeys (HVT). Iltovirus 



3 
 

genus includes GaHV-1 (infectious laryngotracheitis virus; ILTV) and pittacid herpesvirus 1 

(PsHV-1). Betaherpesvirinae has only one rahdinovirus genus including porcine herpesvirus 2. 

Gammaherpesvirinae includes alcelaphine herpesvirus 1 (AIHV-1) and 2 (AIHV-2), bovine 

herpesvirus 4 (BHV-4), equine herpesvirus 2 (EHV-2) and 5 (EHV-5) and murid herpesvirus 4 

[murine gammaherpesvirus-68 (MHV-68)] [4]. 

 Alphaherpesviruses initially infect epithelial cells such as skin cells, replicate quickly and 

cause sores on the membranes of skin or mucous. Since the virus is neurotropic, the viruses 

travel to the central nervous system (CNS) to establish latent infection in the ganglia of sensory 

neurons without active virus replication. The latently infected viruses are reactivated by the 

environmental changes of host such as ultraviolet (UV) light stimulation, the immunosuppression, 

trauma of latently infected CNS and even social stress [5]. The alphaherpesviruses have been 

used as a model to study other herpesviruses and host-virus interactions due to the rapid 

replication [6]. Generally, betaherpesviruses produce progenies slower than other subfamilies 

and latently infect leukocytes, while gammaherpesviruses propagate at variable rates and latently 

infect only lymphocytes [7-9]. 

 

1.2. Herpesvirus life cycle 

 As an ancestor type of herpesviruses, the HSV-1 entry event follows three steps; the 

sequential-, intermediate hemifusion- and a stable entry pore forming stages [10]. During the 

sequential stage, herpesvirus entry is initiated by the interaction between the viral envelope 

glycoproteins and host cellular surface receptors. Viral glycoprotein (g) C (gC) binds to heparan 

sulfate on a cell surface. In turn, gD binds to one of three host cell entry receptors named 

herpesvirus entry mediator (HVEM), nectin-1 and 3-O heparan sulfate to establish a strong 



4 
 

attachment. In the hemifusion stage, gD changes its structural conformation and interacts with 

the complex of gH and gL. At the last entry step, gB also interacts with the gH and gL complex 

to form a pore for the viral capsid to enter into the host cell cytoplasm [10, 11]. 

 The viral capsid in the cytoplasm moves to a nuclear entry pore on the nuclear membrane, 

and the viral DNA is released into the nucleus through the capsid portal consisting twelve of 

proteins encoded by UL6 genes [12, 13].  

 The DNA released into nucleus transcribes the genes in three stages: immediate-early 

(IE), early (E) and late (L). In the IE stage, infected-cells polypeptide (ICP) 4 is mainly 

expressed and functions as a transcriptional transactivator for other virus genes by binding to 

viral promoters [14]. A cellular alpha trans-inducing factor (α-TIF) protein helps ICP4 to 

regulate the viral transcription activity in the IE stage [15]. The viral proteins expressed in the E 

stage play regulatory roles in virus genome replication. The most important E protein is the 

virion host shutoff (VHS) protein encoded by UL41 genes since VHS blocks host protein 

synthesis by cleaving host mRNA to support both viral genome replication and viral gene 

expression [16, 17]. The proteins expressed during the L stage mainly function in capsid 

formation and in packaging virus particles containing the virus genome, core and capsid proteins. 

Herpesvirus maturation and tegumentation occur in the perinuclear space and in the cytoplasm, 

respectively. Following two envelopment processes, including the egress of capsids from the 

nucleus and the second envelopment from the Golgi, the enveloped virus particles are released 

from infected cells [2, 18]. 

 

1.3. Latent infection 
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 During the HSV-1 latent infection in neuronal ganglia, viral genes named latency 

associated transcripts (LAT) are expressed to suppress apoptotic cell death by producing miRNA 

against apoptosis inducing cellular factors such as transforming growth factor-beta1 (TGF-β1), 

mothers against decapentaplegic homolog 3 also known as (a. k. a.) SMAD family member 3 

(SMAD3), trombospondin-1 [19-21], and caspase-8 and caspase-9 [22]. The herpesviral LAT 

genes can also regulate viral genome replication to establish the latent infection in the infected 

host [23, 24].  The function of ICP4 is inhibited by neuronal restrictive silencing factor (NRSF) 

and human repressor element silencing transcription factor (REST) in the latent infection [25, 

26]. The latently infected virus can be reactivated by the ICP0 and ICP4 from the dissociation of 

NRSF in illness or physical stress conditions [27]. 

 

2. Infectious laryngotracheitis and infectious laryngotracheitis virus 

2.1. Infectious laryngotracheitis 

 Infectious laryngotracheitis (ILT) is an acute respiratory disease in the avian species such 

as chickens [28, 29], pheasants, peafowls [30-32] and turkey [33]. ILT is caused by the infection 

of ILT virus (ILTV; Gallad Herpesvirus 1). Since the first report of fowl ILT in 1925 [34], 

severe ILT outbreaks have been observed worldwide in Europe, Australia, New Zealand, China, 

Southeast Asia and the United States where poultry productions are concentrated [35-40]. 

ILT partially induces the occlusion of the upper larynx and trachea, and intensive 

inflammation [41]. Chickens in a mild stage of ILT show decreased egg production, watery eyes 

by conjunctivitis, mild tracheitis, swollen infraorbital sinuses, and a mucoid nasal discharge [42], 

while a severe stage of ILT induces severe sneezing and coughing, distressed open-mouth 
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breathing, and bloody mucus [43, 44]. Chickens frequently shake head to remove the bloody 

mucus since bird’s airway and trachea are filled with blood (Figure 1). 

 

(A) 

 

(B) 

Figure 1. Clinical signs by ILTV infection. 

(A) Swollen, watery eyes (http://www.worldpoultry.net/background/infectious-laryngotracheitis-

28ilt29-targets-broilers-7050.html). (B) Bloody trachea (left to right: severe, mild and normal) 

(http://www.bellsouth.com.au/tech/respiratory%20disease%20in%20breeder%20flocks.html) 

 

Clinical signs usually appear 6 to 12 days after exposure to ILTV [32, 38]. Though 

chickens showing breathing difficulty and coughing with bloody mucus usually die within a few 

days, chickens showing mild clinical signs recover in 10-14 days [45, 46]. The ILTV infection 

through natural routes can be detected in tracheal tissues from 6 to 12 days, and latent infection 

in the CNS is achieved at 7 days after an acute infection phase [47-49]. 

The latent infection in the trigeminal ganglion (TG) in the CNS was established by both 

vaccine and challenge strains in an experimental study [50]. Though the sporadic ILTV spread is 

unknown, reactivated ILTV replicates in the respiratory tract and virus can transmit from bird to 

bird by contact [51]. The reactivation of latently infected ILTV from vaccinated flocks was 

found in TG post 15 months vaccination [49, 52]. 

 ILT causes high morbidity which is 90-100%, but the mortality varies from 10-20% but 

can reach up to 70% [38, 45, 46]. The mortality and the decreased egg production by ILTV 
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infection cause economic losses in the poultry industry. Infected chickens serve as carriers which 

are the main source of the transmission to uninfected chickens through respiratory routes by 

coughing and sneezing. People working with ILTV-infected flocks can be candidates to spread 

ILTV through contaminated materials such as footwear, clothes, vehicles, equipment and even 

their hands [53]. 

 

2.2. Infectious laryngotracheitis virus 

2.2.1. ILTV genome 

 ILTV is classified as a member of Iltovirus genus, Herpesviridae family. ILTV has a 

linearized dsDNA, which is about 150kb in size, consisting of a unique long (UL) and a unique 

short (US) region flanked by inverted repeat (IR) and terminal repeat (TR) regions (Figure 2) [44, 

54-56].  

Figure 2. Map of ILTV genome [57].   

 

Since partial ILTV sequences were reported in the late 1980s [58], the first full-length 

ILTV genome sequence was reported in 2006 by the assembly of sequences from six different 

ILTV strains [59]. The ILTV genome contains unique five open reading frames (ORFs) named 
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ORF A, B, C, D and E located near a replication origin (ORIL) in the UL region that these ORFs 

have distinct characteristics from other alphaherpesviruses (Figure 2) [60]. The ILTV genome 

includes three origins for DNA replication as same as shown in other alphaherpesviruses. One 

OriL is located in the UL region, and two identical ORIS are located in the IR and TR sequences 

(Figure 2) [60]. ORIS has not been detected and was excluded in the first known ILTV genome 

sequence due to its long palindromic sequence characteristic [59]. Of the entire 76 ILTV genes, 

63 genes are homologs to those in HSV-1 [61], indicating translational proteins are inferred from 

the similar structure between ILTV and HSV-1 (Table 1). Eleven conserved ORFs namely UL27, 

UL44, US6, US8, US4, UL22, US7, US5, UL53, UL1 and UL10 encode glycoproteins of gB, gC, 

gD, gE, gG, gH, gI, gJ, gK, gL and gM, respectively. 

Very recently, the complete genome sequence of a single Austrailian commercial live 

attenuated ILTV vaccine strain (Serva) is reported using high-throughput sequencing technology 

[62]. The Serva ILTV genome encodes 80 predicted ORFs. UL and US regions included 65 and 

9 ORFs, respectively, and IR and TR region have three ORFs each. The genome length of the 

Serva strain was 152,628 bp in size with a G + C content of 48%. The nucleotide sequence is 

96.5% identical to the previous mosaic ILTV genome sequence (NC_006623). Four regions, 

including 528 bp sequences in the UL29, 594 bp sequences in the UL36, and two 1,563 bp 

sequences in the repeat regions, which were not identified in the previously known mosaic 

genome sequence, are newly determined. The size differences of the predicted protein products 

are also detected in UL54, UL30, UL37 and UL38. 
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 Table 1. Comparison of HSV-1 and ILTV genomes. 

HSV Time Functions ILTV (Matched) ILTV (Unmatched)
ICP34.5 IE   UL-1 
ORF-P IE   UL0 
ORF-O IE   UL3.5 
ICP0 IE   sORF4/3 
UL1 L gL UL1  
UL2 E-L uracil-DNA glycosylase UL2  
UL3 L (P) Nuclear protein UL3  
UL4 L (P) Nuclear protein UL4  
UL5 E Helicase-Primase complex UL5, UL8  
UL6 L portal protein UL6  
UL7 L Tegument UL7  
UL8 E synthesis of RNA primer   

UL8.5 L DNA replication   
UL9 E ATPase and Helicase UL9  

UL9.5 L    
UL10 L gM UL10  
UL11 L Tegument UL11  
UL12 E Alkaline nuclease UL12  

UL12.5 ?    
UL13 L PK UL13  
UL14 L Protein folding UL14  
UL15 L DNA cleavage and packing UL15  

UL15.5 ? (P) Capsid   
UL16 L (P) virion component   
UL17 L DNA cleavage and packing UL17  
UL18 L VP23 (Capsid) UL18  
UL19 L VP5 (Major capsid) UL19  
UL20 L (P) Envelop protein UL20  

UL20.5 L    
UL21 L Tegument UL21  
UL22 L gH UL22  
UL23 E TK UL23  
UL24 L Nuclear protein UL24  
UL25 L Capsid (DNA packaging) UL25  
UL26 L Scaffolding protein UL26  

UL26.5 L Scaffolding protein UL26.5  
UL27 L gB UL27  

UL27.5 L    
UL28 L DNA cleavage and packing UL28  
UL29 E ICP8 UL29  
UL30 E DNA polymerase UL30  
UL31 L Nuclear phosphoprotein UL31  
UL32 L DNA cleavage and packing UL32  
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HSV Time Functions ILTV (Matched) ILTV (Unmatched)
UL33 L Capsid (DNA packaging) UL33  
UL34 L Nuclear protein UL34  
UL35 L VP26 UL35  
UL36 L Largest tegument UL36  
UL37 L Tegument UL37  
UL38 L VP19C UL38  
UL39 E Ribonucleotide reductase UL39  
UL40 E Ribonucleotide kinase UL40  
UL41 L VHS UL41  
UL42 E DNA polymerase UL42  
UL43 L Membrane protein UL43  

UL43.5 L    
UL44 L gC UL44  
UL45 L Membrane protein UL45  
UL46 L VP11 and VP12 UL46  
UL47 L VP13 an dVP14 UL47  
UL48 L VP16 and á-TIF UL48  
UL49 L? VP22 UL49  

UL49.5 L Membrane protein (Possible) gN UL49.5 gN 
UL50 E dUTPase UL50  
UL51 L Tegument UL51  
UL52 E Helicase-Primase complex UL52  
UL53 L gK UL53  
UL54 IE ICP27 UL54  
UL55 L    
UL56 L Membrane protein UL56  
ICP4 IE ICP4 ICP4  

ICP22 IE ICP22   
US1.5 IE    
US2 L (P) Membrane protein US2  
US3 L PK US3  

US3.5 L    
US4 L gG US4  
US5 L gJ US5  
US6 L gD US6  
US7 L gI US7  
US8 L gE US8  

US8.5 L    
US9 L Membrane protein US9  

US10 L Tegument US10  
US11 L    
ICP47 IE ICP47   
LAT     

The expression time and function of HSV-1 encoding genes were referenced from Fields 
Virology (5th ed.) by David M. Knipe and Peter M. Howley [42]. 
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2.2.2. The unique characteristics of ILTV genome 

ILTV has unique features and characteristics compared to other herpesvirus species. 

UL3.5 located in ILTV genome between UL3 and UL4 is not presented in HSV-1, but is 

conserved in alphaherpesviruses, including BHV-1, BHV-5 and PrV [63-65]. UL16 is not 

contained in the ILTV genome though it is conserved in all other herpesvirus subfamilies [66, 

67]. UL47, which is a major tegument protein located in the UL region of other 

alphaherpesviruses [61], is present between US3 and US4 on the US region of ILTV genome 

[68]. A large internal inversion is found uniquely in the UL region of the ILTV genome [60]. 

ILTV and PsHV-1 were classified as members of the Iltovirus genus of the Herpesviridae 

family [59]. Both viruses have an identical inversion of TR region in between UL region and US 

region, and a translocation of UL47 also has been discovered in both viruses [59]. Genes within 

the US region [68], and ORF-A to ORF-E localized in the UL region are conserved in both ILTV 

and PsHV-1 genomes [59, 60]. UL0 and UL(-1) of ILTV show high similarities in deduced 

amino acid sequence indicating possible ancient duplication [69], while PsHV-1 has only UL(-1), 

no UL0, in its genome [59]. In genealogy tree, ILTV and PsHV-1 might belong to separate 

phylogenic branches in the herpesvirus family, which is confirmed by comparative analyses with 

the viral amino acid sequences [70, 71]. All these results indicated that ILTV and the mammalian 

alphaherpesviruses were separated from a common ancestor earlier than the separation into other 

avian herpesviruses including MDV and HVT [57]. 

 

2.2.3. ILTV virion structure, morphogenesis and propagation 

Electron micrographs of the reassembly of ILTV particles are very similar to HSV-1 

(Figure 3). ILTV virion possesses the hexagonal nucleocapsids which are 80-100 nm in diameter, 
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and the nucleocapsids are built with icosahedral symmetry and composed of 162 elongated 

hollow capsomeres [72, 73].  A tegument and an outer envelope membrane containing viral 

glycoproteins enclose an icosahedral capsid including a DNA-containing core [72, 73]. 

 

Figure 3. ILTV morphology by 

electron microscopy [57]. (A) 

Micrographs of entire cell and virus 

micrographs; (B and C) Nuclear egress 

and primary development; (D and E) 

Assembly of tegument and secondary 

envelopment in the trans-Golgi; (F and 

G) Release of virions by exocytosis. 

Bars indicate (A) 1 μm, (D) 500 nm, (E, 

F and G) 300 nm and (B and C) 150 

nm. 

 

The morphogenesis of ILTV follows that of typical herpesvirus in infected cells (Figure 3) 

[2, 18, 74]. The capsid formation and viral DNA inclusion occurs in the nucleus (Figure 3A and 

3C) and are followed by the nucleocapsids transportation into the cytoplasm by envelopment at 

the inner and outer leaflets of the nuclear membrane for the first budding (Figure 3B and 3C). 

The cytoplasmic capsids surrounded by dense tegument are re-enveloped by the second budding 

into the trans-Golgi (Figure 3D and 3E). Matured virions are released by exocytosis (Figure 3F 

and 3G). A unique feature observed in ILTV infected cells during propagation is to produce 



13 
 

many light (L) particles consisting only tegument and envelope without nucleocapsids, which 

cannot be replicated (Figure 3D) [18, 74]. The low ILTV titers produce in tissue culture may be 

due to the excessive production of non-reproducible ghost virion particles. 

The in vitro propagation of ILTV was first reported on the choriallantoic membrane of 

embryonated chicken eggs [75]. ILTV can be propagated in primary chicken embryo kidney 

(CEK) and liver (CEL) cells [76]. Only one continuously growing cell line, chicken liver tumor 

cell line (Leghorn male hepatoma; LMH), can propagate ILTV efficiently [77-79]. However, the 

ILTV titers produced from LMH cells were critically lower than in use of CEK and CEL cells 

(data not shown).  

Cytopathic effects (CPE) showing syncytia and inclusion bodies were detected during 

ILTV infection in permissive chicken cells at several hours post infection (hpi) [80], and plaques 

formed by cell lysis were developed 3 to 5 days post infection (dpi). Though the replicative life 

cycle of ILTV has not been studied sufficiently, it may be similar to that of other 

alphaherpesviruses such as HSV-1 [67]. The first infectious progeny viruses were detected at 8 

to 12 hpi, and maximum number of ILTV replication was reached 24 to 30 hpi [81]. The 

regulation of ILTV gene expression and DNA replication appeared to follow the way of typical 

herpesviruse propagation in infected cells [81-83].  

 

2.2.4. Diagnosis of ITLV 

ILTV detection methods include virus neutralization by ILTV-specific antibodies, 

immunodiffusion, indirect immunofluorescence assay (IFA), enzyme linked immunosorbent 

assays (ELISA) [48, 76, 84-89]. The gJ- and gC-specific monoclonal antibodies (MAbs) were 
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developed for the use of diagnostic purposes, such as IFA, immunohistochemistry, 

immunoelectron microscopy, radioimmunoprecipitations and Western blot analyses [57]. 

Recently, faster, more accurate and more sensitive methods have been developed to 

detect ILTV DNA. The methods include dot-blot hybridization using cloned DNA probes [90], 

in situ hybridization from ILTV infected chickens [91], PCR [88, 92-94], quantitative real-time 

PCR (qPCR) [95] and restriction fragment length polymorphism polymerase chain reaction 

(PCR-RFLP) [96-99]. 

 

2.2.5. ILTV proteins and functions 

Generally, herpesviruses produce pathogenically important proteins such as envelop, 

tegument, capsid, glycoproteins and even non-structural proteins such as thymidine kinase (TK) 

and transcriptional regulator. 

Among 11 glycoproteins encoded in the HSV-1 genome, four glycoproteins, gB, gD, gH 

and gL which are encoded by UL27, US6, UL22 and UL1, respectively, have critical roles for 

HSV-1 entry into host cells. The gD binds to TNFRSF14/HVEM, PVRL1 and 3-O-sulfated 

heparan sulfate, which are entry receptors for HSV-1, and provokes the fusion between host 

membrane and viral envelop. The gB interacts with a membrane fusion protein, and gH and gL 

forms heterodimers with gD and gB proteins [100-102]. Moreover, these four glycoproteins are 

related to the early innate and adaptive immunity of infected host cells [103]. Likewise, ILTV 

encodes 11 glycoproteins including gL, gM, gH, gB, gC, gK, gG, gJ, gD, gI and gE and a 

thymidine kinase (TK), and those proteins may critically function in viral virulence and 

replication. 
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2.2.5.1. Glycoprotein C (gC) 

 The gC of alphaherpesviruses is highly conserved and critically functions in virus 

attachment through the interaction with heparan sulfate proteoglycan (HSPG) chains on the host 

cell membrane [67, 104]. However, ILTV gC does not bind to heparan sulfate due to the lack of 

the heparan binding site of about 100 amino acids at the N-terminal end. Thus, ILTV may use 

different mechanisms from those used by other herpesviruses [105, 106]. 

 

2.2.5.2. Glycoprotein J (gJ) 

 The ILTV gJ, which was previously known as gp60 due to 60,000 D in weight, is 

encoded at the same position (US5) of HSV-1 [89, 107]. The gJ gene is not found in most other 

alphaherpesvirus, but EHV-1 has envelope glycoprotein 2 (gp2) which is highly homologous to 

ILTV gJ sequence [108, 109]. The gJ is processed by N- and O-linked glycosylation and may 

function in cell-to-cell spread and in the attenuation of ILTV which were shown using ΔgJ ILTV, 

a gJ-deficient form [110]. 

 

2.2.5.3. Glycoprotein B (gB) 

 The gB is highly conserved and functionally similar to that of other herpesviruses [111, 

112]. The gB was processed by the addition of N-linked glycosylation and two subunits were 

produced by proteolytic cleavage [113]. As a fusion protein, gB collaborates with gH and gL for 

viral entry into the cells [114-117]. 

 

2.2.5.4. Glycoprotein M (gM) and glycoprotein N (gN) 
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 In many herpesviruses including ILTV, gM and gN encoded by UL10 and UL49.5 in the 

ILTV genome, respectively, have to form a heterodimer to be functional [110]. The gN protein 

of ILTV is O-glycosylated like the gB protein of other herpesviruses, whereas the gM protein of 

ILTV is not glycosylated, which is different from other herpesviruses [66]. But, both gN and gM 

proteins are dispensable for viral replication in cultured cells [66, 110]. 

 

2.2.5.5. Glycoprotein G (gG) 

The gG, which is encoded by the ILTV US4 gene and conserved among other 

alphaherpesviruses, is not assembled into virus particles [83] but is secreted from infected cells 

and possibly has immunomodulating functions [118]. In vivo, gG is a virulence factor of ILTV, 

but dispensable for virus replication suggesting that gG may become a candidate for ILTV 

vaccine production [119-121]. 

 

2.2.5.6. Glycoprotein E (gE) and glycoprotein I (gI) 

 The gE and gI are non-essential proteins and also form a heterodimer for a functional 

protein. The gE and gI play a role in cell-to-cell spread [122] to the same as those in HSV-1 [123, 

124]. 

 

2.2.5.7. Glycoprotein L (gL) and glycoprotein H (gH) 

 The gL is essential for the replication of ILTV and forms a complex with gH for viral 

replication [63]. Moreover, gL is not independently anchored with gH in the cell membrane or 

on the virus envelope [125]. The function of gH in ILTV is not clear. However, based on other 
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alpharherpesvirus studies, gH of ILTV may be associated with virus entry and cell-to-cell spread 

and may be nonessential for egress [18, 126]. 

 

2.2.5.8. Glycoprotein D (gD) and glycoprotein E (gE) 

 The gD and gE of ILTV have not been studied, but it has been shown in DEV-1 infection 

that gD plays an important function in virus entry and gE is required for cell-to-cell spread [127]. 

 

2.2.5.9. Thymidine kinase (TK) 

 TK functions in DNA synthesis in living cells through catalyzing deoxythymidine to 

deoxythymidine 5’-phosphate using adenosine 5’-triphosphate (ATP) [128, 129]. TK encoded 

from the UL23 gene of ILTV affects the virulence of ILTV in infected cells but not viral 

replication [130, 131]. TK plays an important role in the reactivation and subsequent replication 

of alphaherpesviruses from latently infected ganglia [132]. Therefore, TK may become a 

candidate to study the mechanisms of latent infection, reactivation and virulence of ILTV, and 

vaccine development. 

 

3. Genomics approaches in host-virus interaction 

 This thesis mainly focuses on the host-ILTV interactions using microarray and qPCR. 

Moreover, newly developed bioinformatics programs have been used to analyze extensive data 

produced from the microarray and qPCR. 

3.1. Microarray 

A microarray is a powerful tool to compare the expression of massive number of 

interesting genes simultaneously. The current microarray concept, which evolved from Southern 
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blotting method, was first introduced by Maskos in 1992 [133], and the pre-existing approaches 

for microarray had been reported from 1982 to 1991 [134-137]. Finally, miniaturized 

microarrays were first utilized in 1995 [138], and a complete genome-wide microarray for 

eukaryote was developed in 1997 [139].  Cumulative set of DNA probes are utilized on a solid 

slide, and each probe can be hybridized with a specific target cDNA or cRNA. The expression 

level is quantified by labeling chemiluminescence dyes such as cyanine 3 (Cy3) and cyanine 5 

(Cy5). A microarray slide contains up to hundreds of thousands different probes.  Current 

microarray technology is being used for numerous applications such as gene expression profiling 

[140], comparative genomic hybridization [141] and SNP detection [142]. 

 

3.2. Application of microarray in herpesvirus-host interaction 

 Microarrays have been used to identify host responses against numerous viruses 

including herpesviruses such as hCMV and KSHV [143], EBV [144], ILTV [140], VZV [145], 

MDV [146, 147], HSV-1 [148] and HSV-2 [149]. 

Host cellular gene expressions in response to herpesvirus infection differed depending on 

virus types [150]. In case of HVT infection, microarray results showed that cellular gene 

expression on functions of signal transduction, transcription, scaffolding proteins and the 

cytoskeleton were regulated differentially in chicken embryo fibroblasts (CEF) [151]. 

Microarrays on host gene expression with HSV-1 infection reported that IFN-induced antiviral 

state was blocked through IFN-independent intracellular mechanism [152], and those genes on 

protein processing, carbohydrate processing, cell adhesion, apoptosis, and host defense and 

immune response were changed significantly in HSV-1 latent trigeminal ganglia (TG) [153]. In 

MDV infected CEF cells, data of microarray showed altered host gene expression on 
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macrophage inflammatory protein, interferon response factor 1, interferon-inducible protein, 

quiescence-specific protein, thymic shared antigen 1, MHC class I and II, beta-2 microglobulin, 

clusterin, interleukin (IL) 13 receptor alpha chain, ovotransferrin and a serine/threonine kinase in 

CEF cells [154]. Also, the critical changes of the gene expression of IL6, IL12 and IFN-α were 

observed in MDV-infected chicken brain, and IL18 was significantly expressed in only MD-

associated transient paralysis (TP) [155]. Differential gene expression of chemokine AH221, B-

cell marker BU-1, IgG, igA, IgM, MHC class II beta chain, granzyme A (GZMA) and signal 

transducers and activators of transcripition 2 (STAT2) genes were found in microarray assay on 

the resistance or susceptible chickens against MDV infection [156]. The results, found in 

microarray analysis on EBV infection, showed altered functions in signal transduction, 

transcription, protein biosynthesis and degradation, cell motility, and shape or adhesion in 

primary B lymphocytes [157]. Further, EBV infection in alveolar epithelial cells caused the up-

regulation of the TGF-β1 pathway resulting in the inhibition of cell proliferation and the increase 

of caspase 3 and 7 activities [158]. In addition, EBV infection influenced the modulation of DEK, 

cyclin-dependent kinase (CDK) inhibitor, p53/retinoblastoma (RB) and cascades pathway 

associated with E2F, activator protein 1 (AP-1), nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-kB) and STAT in nasopharyngeal carcinoma (NPC) transformation [159]. 

Microarray assay on hCMV infected human monocyte showed the alteration of host cellular 

functions such as a unique M1/M2 polarization leading to develop the classical M1 activation 

phenotype [160]. 

 

3.3. Bioinformatics 
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 Bioinformatics has been highlighted as a new approach to manage massive amounts of 

data from advanced technologies such as microarray or high-throughput DNA sequencing 

technology. Consequently, the priority of bioinformatics has been to analyze experimental data, 

to find a prime candidate to predict results and to aid research projects. More powerful and 

comprehensive analysis program or tools has been required to manage rapid and accurate data 

analysis [161]. 

 Normally, bioinformatics tools have been categorized into several groups such as 

homology and similarity analysis, protein function and structure analysis, genomic sequence 

analysis. The homology and similarity analysis is conducted to identify the evolutionary 

relationship and divergence of genes among different samples [162]. Protein function analysis is 

to determine critical motifs and domains, and the secondary structures of predicted protein 

sequence compared to previous information in databases [163, 164]. The protein structure 

analysis illustrates a protein's 2D or 3D structures which are essential for the functional study. 

Genomic sequence analysis programs determine a query sequence thoroughly to identify mutated 

sequences or regions, evolutionary analysis and compositional bias [165, 166]. 

 

3.4. Bioinformatics Tools 

 The basic local alignment search tool (BLAST; http://blast.ncbi.nlm.nih.gov/Blast.cgi) 

provided from National Center for Biotechnology Information (NCBI) is widely used for 

comparing gene and protein sequences. To date, several types of BLAST including nucleotide 

BLAST, protein BLAST, BLASTx, tBLASTn and tBLASTx are available on NCBI website. In 

NCBI, specialized tools are also available for primer selection, finding conserved domains, gene 

expression omnibus (GEO), immunoglobulins (igBLAST), transcript and genomic libraries 
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based on human, animal, plant, microorganism and other genomes. FASTA, which was first 

introduced by Pearson and Lipman in 1988 using the rapid sequence algorithm [167], have been 

widely used to search similarity of sequences of either nucleotides or peptides. The European 

Molecular Biology Open Software Suite (EMBOSS), which is a free open source software for 

the molecular biology and bioinformatics users [168], contains numerous programs for sequence 

alignment, codon usage analysis, CpG island detection and analysis, database searching with 

sequence patterns, protein motif identification and domain analysis, and protein analysis and 

more. ClustalW is intended for multiple sequence alignment of DNA or proteins 

(http://www.clustal.org/). Biologically meaningful sequences or divergent sequences are 

determined through the best match of the selected sequences. RasMol is a powerful computer 

program displaying the structure of DNA, proteins and smaller molecules [169]. 

 The Database for Annotation, Visualization and Integrated Discovery (DAVID; 

http://david.abcc.ncifcrf.gov/) has been widely used for functional annotation and gene 

functionality to grasp the meaning of huge number of genes identified by functional genomics 

data. Using DAVID, gene ontology (GO) terms, functionally related genes and groups, and 

protein functional domains and motifs can be identified. Moreover, gene pathway maps and 

related many genes and terms on 2D view can be visualized.   

 A newly developed program, ingenuity pathway analysis (IPA; 

http://www.ingenuity.com/products/pathways_analysis.html) program, helps to understand the 

complex, dynamic interaction between targeted molecules and surrounding molecules in life 

science research. To date, IPA has broadly supported various species such as plant, bovine, C. 

elegans, canine, zebrafish, fruit fly, chicken, Rhesus Monkey, chimpanzee and yeast as well as 

thousands of peer-reviewed journal articles. IPA provides integrated information and insight into 
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the biological and chemical interactions at various ways with different experimental platforms 

such as microarray and next-generation sequencing based on the programs own knowledge base 

system.  

 

4. Host responses against the infection of herpesvirus family 

4.1. Host responses by HSV-1 infection 

 ILTV genes and genome organization are highly conserved compared to those of HSV-1 

indicating close and potential evolutionary relationship between HSV-1 and ILTV [111, 170]. 

Recently, HSV-1 infection and host responses have been studied using various methods such as 

microarray [153, 171-174] and qPCR [175-178], and various conditions such as in vitro [179-

183] and in vivo [184-186]. The microarray results of the infection of various viruses including 

HSV-1 provided insights into host virus interactions and further, knowledge obtained from these 

assays can be compared to systems against infections of other herpesviruses such as ILTV. 

HSV-1 infection in neuronally differentiated PC12 cells up-regulated host genes related 

to proteolytic enzymes for neurite outgrowth/axon remodeling, while the DNA and nucleotide 

metabolism and apoptosis related host genes were down-regulated suggesting that HSV-1 

infection in neuronal cells led to accelerate cell survival and maintain latent infection [187]. In 

other study, HSV-1 infection leads to the modulation of leukocyte trafficking to inflamed tissues 

by chemokines, which critically organize the immune response in host cells [188]. 

In HSV-1 infected cells of the human neuronal cell line, early growth response 1 (EGR-

1) is up-regulated, and EGR-1 reduces the HSV-1 LAT gene expression by blocking the 

immediate downstream site of the TATA box [189, 190]. Furthermore, the mortality of mice was 

reduced by the depression of EGR-1 expression [191]. In rabbit corneal cells, EGR-1 is rapidly 
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induced by NF-κB and CREB mediated transactivation by HSV-1 infection [180]. In the mature 

dendritic cells, tumor necrosis factor (TNF) mRNA is destabilized by the induction of the AU-

rich elements (ARE)-binding protein tristetraprolin (TTP) in both the STAT1 and p38-dependent 

manners [192], and the expression of large multifunctional peptidase 7 (LMP7) mRNA is down-

regulated [193]. The expression of chemokine (C-X-C motif) ligand 9 (CXCL9) stimulated by 

TNF-α and IFN in HSV-1 infected brain is dependent on either TLR2 or TLR9 to induce innate 

antiviral responses [194]. The recognition of HSV-1 by innate immunity in dendritic cells is 

occurred in glycoprotein-dependent and TLR2-independent manners [195]. Human leukocyte 

antigen (HLA)-G which is a nonclassical human major histocompatibility complex class I 

(MHC-I) and functions in anti-inflammatory responses are up-regulated by HSV-1 infection in 

human neuroblastoma cells, SK-N-SH and human neurons, NT2-N [196, 197]. Caspase 3 and 7 

are activated by HSV-1 infection, and these proteins contribute to HSV-1-dependent apoptosis 

[198]. Galectin-1 (Gal-1), which is an endogenous lectin functioning in T-cell apoptosis, is up-

regulated by HSV-1 infection to avoid from the activation of host immune system by removing 

activated T-cells [199]. In HSV-1 infection, interferon regulatory factor (IRF), IFN, IL15 and 

natural killer (NK) cells critically function in host innate immunity according to in vivo study 

[200]. The data and knowledge on HSV-1-host interaction obtained from microarray studies for 

HSV-1 could provide the basis on understanding of ILTV-host interaction and host defense 

mechanisms in ILTV infection for this dissertation.  

 

4.2. The function of HSV-1 viral genes in host responses 

Due to the high genetic and functional conservation between ILTV and HSV-1, the 

analogical interpretation of the function of ILTV genes can be predicted from previously known 



24 
 

HSV-1 studies. ICP0 protein is expressed in the immediate early stage of HSV-1 infection and 

promotes the transcription of both viral and cellular genes [201]. During lytic infection, ICP0 

acts as an IFN antagonist to block a STAT1-dependent host response involving innate immunity 

[202], supresses the expression of SIAH-1, a cellular E3 ubiquitin ligase [203] and deactivates 

NF-κB and c-JUN N-terminal kinase (JNK) which are the downstream effectors of the TLR 

signaling pathways [204]. In addition, HSV-1 US7 helps the block of the TLR-mediated NF-κB 

and JNK through the deubiquitination of TRAF6 and IKK-γ [204]. US3 encoding 

serine/threonine kinase controls the neuronal apoptosis of peripheral nervous region to prevent 

from virus transmission to the CNS [205].  

ICP27 suppresses host gene transcription in addition to cell cycle arrest at the G1 phase 

and apoptosis [206, 207]. ICP27 is the counterpart to induce the early innate immunity by 

activating type 1 IFNs (IFN-α and β), type III IFNs (IL28 and IL29), TNF-α, CC chemokines 

ligand (CCL) 5 and CXCL10, and cytokines in macrophages and dendritic cells [208]. ICP27 has 

critical roles to inhibit STAT/Janus kinase (Jak) pathway by phosphorylation of STAT-1 [209], 

the secretion of type I interferon-antagonizing protein and IFN signaling by Jak-1 activation 

[210]. Moreover, ICP27 is related to both a extracellular signal-regulated kinase (ERK) 

activation and ERK survival activity by producing the AU-rich instability elements (AREs)-

containing IEX-1 which is a extracellular signal-regulated kinase (ERK) substrate [211] and is 

also associated with the stability of the AREs-containing IEX-1 mRNA through the activation of 

p38 mitogen-activated protein (MAP) kinase (MAPK) pathway [212, 213]. 

ICP34.5 is associated with viral maturation and egress [214] and acts as a neurovirulence 

factor for virus growth in the CNS tissue to maintain an appropriate condition for virus 

replication [215]. Beclin-binding domain (BBD) of ICP34.5 interacts with Beclin 1 (Atg6) to 
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regulate HSV-1 pathogenesis by the modulation of CD4+ T-cell responses [216]. The regulation 

is controlled by interferon regulatory factor (IRF) 3-dependent pathways in cells of the nervous 

system [217, 218]. ICP34.5 plays a role in the evasion of the host immune system by the 

dephosphorylation of eukaryotic initiation factor (eIF) 2α in the cytoplasm [219]. 

 

4.3. Host responses by MDV 

Marek’s disease virus (MDV) serotype 1 is the avian alphaherpesviruses known as Gallid 

herpesvirus 2 (GaHV-2) causing viral T cell lymphoma in chickens [220]. MDV-1 has been 

studied intensively due to the fact that MDV is an oncogenic herpesvirus in cells of the host’s 

immune system. Particularly, the immune responses and viral gene expression during MDV 

infection have been studied by the microarray analysis [156, 221-223]. The infection of highly 

oncogenic MDV RB1B strain in the bursa of Fabricius of chickens significantly up-regulates 

thioredoxin domain-containing protein 5 (TXNDC5), Ras-related protein Rab11A and budding 

uninhibited by benzimidazoles 3 homolog (BUB3) at 14 and 21 dpi, and IFN-α, IFN-γ, inducible 

nitric oxide synthase (iNOS) and CD4+ T cells at 4 to 14 days [224, 225]. The up-regulated 

genes produce tumor-associated proteins functioning in cell metabolism, immune and stress 

responses, apoptosis and tumorigenesis. In addition, in MDV RB1B strain infection of CEF, 

MHC class I is significantly decreased, while IFN expression is increased to prevent MHC II-

mediated antigen presentation [226, 227]. In contrast, MDV Md11 strain, which is very virulent 

serotype 1, enhances MHC class II cell surface expressions in CEF cells [228].   

 

4.4. The function of MDV viral genes in host responses 
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 ILTV could be an evolutional ancient of MDV and HVT. Thus, it suggests that the 

function of MDV genes may help understand ILTV gene expression comparing to the HSV-1 

gene study. The MDV pp38 protein encoded by LORF12 and its splice variants may function in 

metabolic activity resulting in latency and tumor development [229]. Moreover, the pp38 protein 

was involved in MDV reactivation [230]. The Meq homodimer, MDV nuclear oncoprotein, is 

essential to transform T-cell lymphoma by the interplay with c-Jun [231]. The plenty of MDV 

Δmeq lacking domains of the basic leucine zipper (bZIP) and transactivation domains are found 

in MDV infected cells during apoptosis, while L-meq was highly expessed in MD-derived 

lymphoblastoid cell lines [232]. Thus, in MDV infected cells, L-meq functions in anti-apoptotic 

effects, and Δmeq acts as a negative regulator in apoptosis.  

 

4.5. Host responses in HVT infection 

In HVT infected CEF cells, the expression of 56 cellular genes involving IFN, signal 

transduction, transcription, scaffolding proteins and cytoskeleton related proteins are altered 

[151]. The vnr-13 protein encoded HVT shows 80% homology with cellular Nr-13 which 

belongs to Bcl-2 family, is an apoptotic inhibitor, and functions to prevent apoptosis and to 

reduce cellular proliferation [233, 234]. 

 

5. Control of ILTV outbreak 

5.1. ILTV vaccines  

Commercial attenuated live vaccines have been used to prevent chicken flocks from 

ILTV outbreaks for many years [42]. Vaccinal laryngotracheitis (VLT) which was caused by the 

reversion of ILTV vaccine virulence is a current serious issue for the global poultry production. 
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To overcome this problem, inactivated vaccines and subunit vaccines using a HVT vector 

containing ILTV glycoproteins such as gI and gD or fowlpox-vectored infectious 

laryngotracheitis (FP-LT) vaccine have been developed and successfully tested [235, 236]. 

However, the high production costs and labor intensive immunization method of those 

approaches have been limited to use in large flocks. Therefore, the development of new vaccines 

such as genetically engineered live vaccines against ILTV has been demanded continuously. 

To find a genetically engineered vaccine candidate, 14 ILTV genes including UL0, ORF-

A to E, UL10, UL21, UL23, UL47, UL49.5, UL50, US4 and US5 were tested by individual 

removal from the ILTV genome. Individual deletions of ILTV genes listed above did not 

influence to ILTV propagation in cultured cells, indicating those genes are not necessary for 

virus replication. In turn, ILTV deletion mutants have been tested in vivo animal system as live 

virus vaccine candidates [44]. The deletion mutants of UL23 (TK gene), US4 (gG), UL47 

(tegument protein), US5 (gJ) and UL0 (nuclear protein) completely decreased the virulence of 

ΔILTV [83, 130, 237-239]. UL50 (dUTPase) deletion mutants might be applied in low doses 

though the high doses of the mutant caused significant virulence in terms of intratracheal 

infection [81]. The gJ and possibly gG deleted mutants would serve as marker vaccines for the 

differentiation of infected from vaccinated animals such as DIVA strategy [238, 240]. These 

results suggest that a genetically engineered ILTV strain might substitute for current vaccines to 

a new vaccine candidate. 

 

The objectives of this dissertation research are: 1) host responses against virulent ILTV 

infection in primary chicken embryo lung cells using microarray assay; 2) host responses against 

vaccine ILTV infection in primary chicken embryo lung cells using microarray assay; and 3) 
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expression analysis of whole ILTV encoding genes at different time points using quantitative 

PCR technique. 
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1. Abstract 

Infection of infectious laryngotracheitis virus (ILTV; gallid herpesvirus 1) causes acute 

respiratory diseases in chickens, resulting in a high mortality rate. To better understand host-

ILTV interactions at the host transcriptional level, a microarray analysis was performed using 4 

X 44K Agilent chicken custom oligo microarrays. Microarrays were hybridized by using the two 

color hybridization method with total RNA extracted from ILTV infected chicken embryo lung 

cells at 0, 1, 3, 5, and 7 days post infection (dpi). Results showed that 789 genes were highly 

altered in their expression during the time courses of ILTV infection. The differential 

expressions include genes responsible for immune responses (cytokines, chemokines, MHC, and 

NF-kB), cell cycle regulation (cyclin B2, CDK1, and CKI3), matrix metalloproteinases (MMPs) 

and cellular metabolism. Differential expressions for 20 out of 789 genes were confirmed by 

quantitative reverse transcription-PCR (qRT-PCR). A bioinformatics tool (Ingenuity Pathway 

Analysis) was used to analyze biological functions and pathways on the group of 789 genes that 

exhibited highly altered expression, resulting in that 275 genes were classified into a number of 

functional groups including cancer, genetic disorder, cellular growth and proliferation, and cell 

death. Furthermore, 21 possible gene networks indicating the intermolecular connections among 

275 functionally identified genes were generated using the gene network analysis. Results 

provide comprehensive knowledge on global gene expressions, and biological functionalities on 

differentially expressed genes in the host responses to ILTV infections. 
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2. Introduction  

Infectious laryngotracheitis virus (ILTV; gallid herpesvirus 1) is the only member of the 

Iltovirus genus of the Alphaherpesvirinae subfamily of the Herpesviridae family. ILTV includes 

~150 kb of linear dsDNA genome consisting of two unique regions (unique long; UL and unique 

short; US), inverted repeats (IR) and terminal repeats (TR) flanking the US region [15]. About 

76 open reading frames (ORFs) have been shown to express viral proteins [53]. The genome 

structure and gene contents of the ILTV genome clearly proved its classification as an 

alphaherpesvirus [45]. Infection of ILTV causes upper respiratory diseases in chickens during 

lytic infection, and ILTV can establish latency in the central nervous system. ILTV infection 

causes severe respiratory diseases such as increased mucus formation in the trachea and tracheal 

hemorrhage. In acute cases, there has been up to 70% mortality in infected chickens. Currently, 

live attenuated vaccines, which are developed from chicken embryo or cultured cells, are 

commercially available to control ILT disease [3]. However, vaccinal laryngtracheitis (VLT), 

which is caused by the reversion of vaccine virus to virulence by spreading from vaccinated- to 

unvaccinated birds, is critically associated with live attenuated ILTV vaccines [8, 19]. 

Microarray methodology was developed as an epochal method to simultaneously analyze 

enormous data sets for gene expression patterns in various biological conditions [28]. 

Microarrays have been used to investigate host responses to the infection of various viruses such 

as Epstein-Barr virus (EBV) [5, 7, 36], varicella-zoster virus (VZV) [25], human 

cytomegalovirus (HCMV) [6], Marek’s disease virus (MDV) [21, 33, 38, 46, 47], herpesvirus of 

turkey [26], herpes simplex virus-1 (HSV-1) [9, 40], hepatitis virus [41], human 

immunodeficiency virus (HIV) [10, 16, 50, 54] and coxsackieviruses [52].  
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ILTV, which is a special type of herpesvirus causing acute respiratory diseases, has not 

been studied sufficiently in genetic phases of host-virus interactions. Thus, the objective of this 

study was to understand host responses to ILTV infection in cultured chicken embryo lung cells 

using microarray analysis. The microarray used in the current study contains 44K chicken genes 

including functionally identified genes, predicted ORFs, ESTs, genomic contigs, chicken 

microRNAs and various control spots [32]. Genes were sorted into three groups according to the 

level of alterations at four different days post infection (dpi) time points. The 20 genes showing 

the great alterations during the time course of ILTV infection were validated by qRT-PCR. 

Microarray data sets for genes expressed differentially can be interpreted further by 

clustering analysis. Many of the heuristic clustering methods have several shortcomings, 

including the determination of the number of clusters which generally is unknown when there is 

no prior knowledge of the number or there no other information about the structure of the data to 

be clustered. A model-based clustering method can overcome the critical drawback by estimating 

the number of clusters in clustering analysis, treating a clustering problem as a model selection 

problem over a variety of candidate models specified by different numbers of clusters and 

distribution. The best model is selected on the basis of a model selection criterion, providing the 

optimal number of clusters and assigning cluster membership to observations simultaneously.  

Importantly, the functional analysis of differentially expressed genes should be followed 

by gene discovery research. However, it is difficult to find which gene (or set of genes) is a core 

regulatory factor or how genes interact with each other in a specific biological mechanism. The 

Ingenuity Pathway Analysis (IPA) program was developed to analyze large data sets such as 

microarray data in biological functionalities, gene networks, and physiological pathways [37]. 

Differentially expressed genes obtained from the microarray analysis of chicken lung cells 
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infected by ILTV were analyzed by using IPA program to find biological functionalities and 

molecular interactions.
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3. Results and discussion 

3.1. Gene expression profile of lung cells infected by ILTV 

Primary chicken embryo lung cells at passage 1 were infected by the USDA reference 

strain of ILTV and cells were collected at 1, 3, 5, and 7 dpi. Cytopathic effects (CPE) were 

observed from 3 dpi, which became more severe by 5 dpi, and finally massive cell disruption 

observed at 7 dpi (Figure 1). Total RNA was isolated from both controls and infected lung cells 

at each dpi time point and subjected to microarray analysis.  

To control dye bias effect, spike-in control mixtures were utilized by mixing with RNA 

samples according to manufacturer’s recommendations, and in the recommend quantity 

(Methods). The spike-in RNA controls consist of two sets of synthetic RNA mixtures derived 

from the Adenovirus E1A genes with different concentrations in each set [55]. Agilent chicken 

4X44K oligo gene expression array contains 320 spike-in indicating spots to be hybridized with 

spike-in controls of both A mix, which was hybridized with Cy3, and the B mix hybridized with 

Cy5 on each array. These spike-in sets were mixed with either uninfected control or infected 

samples and co-hybridized to arrays. The ratio of signal intensities for all spike-in spots were 

calculated and evaluated, resulting in that no significant dye effects were detected for all array 

slides (data not shown) as reported previously [55]. All raw and normalized data were deposited 

to Gene Expression Omnibus (GEO) and the accession number is GSE20630. 

Normalized signal intensities were subjected to statistical analysis to find differentially 

expressed genes during ILTV infection in cultured lung cells. The 44K array produced 11,491 

genes that showed significant signal intensities that were sorted by signal to noise ratio (SNR) >3, 

meaning that real (forward) signals of the samples were three times greater than background 

signals. In order to discover the expression patterns over time in the data, a model-based 
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clustering method [14] is used for clustering the gene expression profiles. A key drawback in 

heuristic clustering techniques is that they are difficult a priori to determine the number of 

clusters. The method enables the number of clusters to be determined by estimating the number 

of components in a multivariate normal mixture model from which the data are generated. The 

clustering analysis results in three clusters, and Figure 2 presents these clusters. 789 genes 

showed significant differential fold changes in response to ILTV (Group 1), 6,265 genes 

displayed moderate alterations (Group 2), and 4,437 genes revealed no alterations during ILTV 

infection at four time points in chicken lung cells (Group 3). Of the 789 genes in Group 1 

exhibiting considerable changes in differential expression in response to ILTV (see supplemental 

Table 1), the top 10 % (79 genes) were sorted by statistical analysis based on the highest value of 

standard deviations from the mean values of four different time points (Table 1). This is for the 

purpose to gain insights into genes with more significant alterations during the time course. Out 

of the 789 genes, 390, 370, 320, and 422 genes were down-regulated, while 399, 419, 469, and 

367 genes were up-regulated at 1, 3, 5, and 7 dpi, respectively. 

 

3.2. Quantitative reverse transcription-PCR (qRT-PCR) 

To validate the microarray data, 20 of 789 genes were subjected to qRT-PCR with the 

same RNA samples used in the microarray analysis using gene specific primer pairs (Table 2). 

Results were analyzed by 2-∆∆Ct method to determine relative levels of gene expression at each 

dpi time points compared to uninfected control [34]. There were no differences found between 

data of microarray or qRT-PCR at any dpi time point (Table 3). However, it should be noted that 

fold change values for certain genes obtained by qRT-PCR analysis showed much greater 

expression levels than those observed in the microarray analysis. For example, fold changes for 
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gene expression for matrix metalloproteinase (MMP) 27, interleukin (IL) 6, fatty acid binding 

protein (FABP) 4, IL8, and CXC chemokine K60 at 3- or 5 dpi showed much higher levels in 

qRT-PCR analysis compared to fold changes shown in microarray analysis. This qualitative 

difference between methodologies may be attributed to the upper detection limits of the 

fluorescent intensities for the array scanner. 

Both quality control data taken with spike-in controls and the results of qRT-PCR 

indicate that the microarray data sets for differential gene expression are valid to investigate 

genome-wide differential expression patterns for host responses during ILTV infection.  

 

3.3. Expression clustering 

The pattern of differential gene expression over time can provide insights into 

biologically functional relevance among genes. In the present study, a model-based clustering 

method [14] was used to cluster alteration patterns for the 789 differentially expressed genes in 

response to ILTV infection and revealed 7 gene clusters exhibiting distinct expression patterns 

(Figure 3 and supplemental Table 2). The 287 genes placed in cluster (C) 1 showed only nominal 

increases at 3 and 5 dpi followed by decreased expression levels at 7 dpi that were similar to 

those at the onset of the experiment . The C2 representing 97 genes exhibited a dramatic increase 

in gene expression only at 7 dpi, whereas the expression levels of the 90 genes in C3 

progressively declined at 5 and 7 dpi. Three genes in C4 showed higher levels of expression 

from the early infection stage (1 dpi), sharp increases at 3 and 5 dpi, and slight declines at 7 dpi. 

Expression patterns of 9 genes in C5 showed slightly lower expression at 1 dpi relative to the 

other time points, and then dramatically increased in 3 and 5 dpi, followed by decreased 

expression at 7dpi. The 85 genes in C6 showed lower levels of expression in 1 dpi and then 
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expression was progressively increased during the later time points, whereas C7 representing 218 

genes showed higher expression levels in the 1 dpi and progressively decreasing at 3, 5, and 7 

dpi. GenBank accession numbers for genes in each cluster are shown in supplemental Table 2.  

Interestingly, the genes in C4 that exhibited the highest expression during ILTV infection 

include cytokines (IL8 and IL1-beta) and a chemokine (CXC-K60), while in the C5, IL6 showed 

the most highly expressed. From these findings, it is reasonable to hypothesize that expression of 

functionally relevant genes such as cytokines and chemokines released in response to an immune 

challenge may be regulated similarly during a specific biological condition.   

 

3.4. Functional clustering 

Recently, new bioinformatics tools have been developed to facilitate efficient analyzing 

for biological functionalities for large number of differentially expressed gene sets obtained from 

microarray analysis. By using the IPA program (http://www.ingenuity.com/), bioinformatics 

aspects of differentially expressed genes during ILTV infection were analyzed for the relevance 

of gene functionalities and gene networks. Since gene functionalities and network analyses used 

in IPA program are based on the genetic information of mammalian species including human, 

mouse, and rat, data drawn from the chicken microarray were analyzed depending on 

mammalian biological pathways. In this study, whereas 789 differentially expressed genes were 

used as the input number of genes, only 275 have been characterized with specific cellular 

functions. Also, other bioinformatics tool, Database for Annotation, Visualization and Integrated 

Discovery (DAVID) version 6.7 (http://david.abcc.ncifcrf.gov/), was utilized to identify gene 

functionalities, resulting in that the similar number of genes were identified for their biological 

functions to the data obtained with IPA program (data not shown). Furthermore, the biologically 
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functional categories for gene information are also similar to those of IPA analysis (data not 

shown). Thus, the following bioinformatics results are based on the group of 275 genes obtained 

from the IPA program.  

The group of 275 differentially expressed genes were clustered as to 65 functional groups 

(see supplemental Table 3) and the top 25 functional groups of genes are displayed in Figure 4. 

The main categories for gene functionalities include diseases and disorders, molecular and 

cellular functions, and physiological system developments. Gene information was repeatedly 

used in multiple clusters of functionalities due to the multi-functional characteristics for 

designated genes. It can be seen that the cancer related function contains the highest number (140) 

of genes, while 125 genes were involved in genetic disorders, and 54 genes were clustered as 

inflammatory responses.   

 

3.5. Gene network analysis 

In addition to functional clustering analysis, gene network analysis was performed using 

the IPA program, resulting in that top 6 network groups were generated from differentially 

expressed genes (supplemental Table 4). The network analysis represents the intermolecular 

connections among interacting genes based on the functional knowledge inputs contained within 

the IPA program. Independent networks were generated in each dpi sample group with 

considering alteration levels of expression, and 21 possible gene networks for all dpi groups 

were obtained from the 275 functional input genes. Of the 21 potential gene networks, only top 6 

identical networks were observed across all dpi time points. It might be caused by different sets 

of focus molecules, which were generated based on different p-values calculated by the IPA 

algorithms with the altered fold change values in each dpi group. Dynamics of alterations in gene 
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expression for a subset of genes during the time course of ILTV infection can provide insights 

into biologically interacting genes within a network displaying functional similarities. The most 

strongly interactive network (network #1) is presented in Figure 5 whereas the other networks 

are shown in S1 in the supplemental materials. 

The network #1 is closely associated with a signaling pathway of IL6, which is a cytokine 

known to be involved in cell proliferation and inflammatory responses [27]. The top functions 

related with genes in network #1 involve cancer, gastrointestinal disease, and the cell cycle. 

Interestingly, expression of certain genes in network #1 such as CDC20 (cell division cycle 20 

homolog), PTTG1 (pituitary tumor transforming 1), CDC2, and Cyclin B, which function for 

cellular proliferation by the cell cycle progression, appeared to be inversely regulated with the 

time course response of IL6 expression to ILTV infection. When considered functionalities of 

genes in network #1, the dynamics of alterations in gene expression over time during ILTV 

infection suggests that ILTV infection elevates IL6 expression followed by the inhibition of 

cellular proliferation. In contrast, expression patterns of HPGD (hydroxyprostaglandin 

dehydrogenase 15-NAD), SOCS (suppressors of cytokine signaling), JAK (Janus kinase 1), and 

NASP (nuclear autoantigenic sperm protein) exhibited expression patterns that were independent 

to the IL6 expression pattern (Figure 5A, 5B and S1. A). The consistent downregulation of JAK, 

which is known to enhance cellular proliferation through signal transducer and activator of 

transcription (STAT) pathway that can be suppressed by IL6 signaling [22], supports the 

repression of cellular proliferation by ILTV infection. The top functions of genes in network #2 

are involved with cellular compromise, connective tissue disorders, and post-translational 

modifications. Several heat shock proteins (HSP) were focused in this network (see S1. B). Heat 

shock proteins, especially HSP70 family as molecular chaperones, are known to interact with 
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viral early immediate genes in HSV-1 genomic DNA replication [31]. Interestingly, the 

expression of several HSPs in the network #2 are decreased consistently except in the 7 dpi, 

suggesting that lowered level of HSPs until 5 dpi may lead to production of erroneous structures 

of ILTV virions, resulting in the low titers of ILTV in tissue culture, which barely exceed on 

infectious unit per cell [15, 18]. Network #3 contains genes for growth factors and matrix 

metalloproteinases (MMPs), and the genes have top functions associated with endocrine system 

development and function, carbohydrate metabolism, and digestive system development and 

function (see S1. C). Levels of expression for growth factors and MMPs are increased from 3dpi 

and maintained higher levels until 7dpi. Infection of herpesviruses, such as HSV and HCMV, 

lead to an increase of the expression of growth factors and MMPs for extracellular remodeling, 

tissue invasion and angiogenesis [20, 35, 48]. Networks #4 and #5 contain genes of the cytokines 

(IFN beta and IL1B), chemokines (CCL20 and CCL4), and NF-kB families (NF-kB and NFIB) 

and the top functions involve organism injury and abnormalities, antigen presentation, cell 

mediated immune responses, lipid metabolism, small molecule biochemistry, and molecular 

transport (see S1. D and E). Finally, genes in network 6 contain IL1, NF-kB, and ID1 that 

function in cardiac inflammation, cardiovascular disease and inflammatory response (see S1. F). 

Interacting molecules found in networks #4, 5, and 6 are mostly focused on the host immune 

responses against pathogenic inflammations.  

The network analysis suggests that a large number of biological pathways, regulated by 

various sets of genes, closely interact each other in host responsiveness during ILTV infection. 

More detailed interactions among genes showing altered expression levels in each network are 

currently under investigation to find unknown host-response mechanisms in addition to general 

immunological reactions during ILTV infections.  
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The altered fold changes for interesting molecules that were associated with cellular 

immune response, cell signaling, MMP molecules, cytokines, chemokines, and cell proliferation 

are plotted individually (Figure 6) since the those molecules are noteworthy on clarifying the 

interaction of host lung cell and ILTV. Four matrix metalloproteinases (MMPs) including MMP 

7, 13, 16, and 27 were differentially expressed during ILTV infections. Previously, MMP 1, 2, 

and 9 were shown to function in cell invasions of primary human endothelial cell in Kaposi's 

sarcoma-associated herpesvirus (KSHV) pathogenesis [42]. The viral oncoprotein meq in MDV 

is known to activate MMP3 transcription [2]. Furthermore, in HCMV infection, the balance of 

MMP9 and tissue inhibitor of metalloproteinases 1 (TIMP1) was changed in human 

macrophages, and the MMP9 activity was declined in infected cells. It could be proven that 

HCMV infection may affect atherogenesis in mice through the control of MMP9 expression. [48]. 

Taken together, these results suggest that MMPs generally play a role in herpesvirus 

pathogenesis, but different isoforms of MMPs may be capable of responding to specific 

herpesviruses. Furthermore, in the present study with chicken lung cells, expression of surfactant 

protein A (SFTPA-1; GenBank accession - AF411083; Table 1 and 3) was downregulated by 

ILTV infection. When considering that surfactant protein A is a transcriptional indicator of 

EGFR (epidermal growth hormone receptor) signaling pathway [11], EGFR signaling pathway 

was suppressed during ILTV infections. This result is consistent with the downregultion of 

EGFR functions in hCMV infected human lung [11] and foreskin fibroblastic cells [23]. Also, 

our result is same as the mRNA expression of SFTPA-1 that was decreased after inoculation of 

influenza A virus H9N2 into chicken lung cells [44]. Ovotransferrin (Otrf; GenBank accession- 

X02009; Table 1 and 3) is related with both iron transport and antibacterial activities. In the 

present study, the expression level of Otrf was increased in ILTV infected cells (Figure 6A). The 
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finding may lead to similar results that the upregulation of Otrf in MDV infection could protect 

the spread of MDV in chicken embryonic fibroblast [17]. Otrf accelerates the expression of 

immune response gene such as IFN-γ against MDV infection [12]. Futhermore, lactoferrin which 

is homologous form of transferrin in mammals showed antiviral activity against canine 

herpesvirus [51]. It has been hypothesized that the anti-viral activity of Otrf may be similar to the 

anti-HSV capability of mammalian transferrins [24]. IL6 plays a role in both pro-inflammatory 

and anti-inflammatory responses [27]. The elevation of IL6 expression during virus infection is 

one of well-characterized immune responses in the pathogenesis of various viruses, such as 

Dengue virus in human [30], or HSV-1 in mice [29]. Also, the expression of IL6 is increased by 

KHSV-encoding miRNA [43]. Similarly, expressions of IL8 and IL1B were upregulated in ILTV 

infected cells, and gene expression pattern were observed in MDV infected chicken lung [1]. 

These are consistent with previous findings of NF-kB activation via IL8 signaling pathway by 

human herpesvirus (HHV)-8 infection [49] and HHV-6 infection in peripheral blood 

mononuclear cell cultures [13], respectively.  

In addition to the well-characterized host-virus interactions, a variety of unique responses 

were drawn from the microarray analysis of ILTV infection. For instance, the expression level of 

vasoactive intestinal peptide (VIP; GenBank accession number- U09350: Table 1 and 3) was 

decreased dramatically in ILTV infection, but the functional aspects were not determined. 

Likewise, genes related to various metabolic enzyme functions such as acyl-CoA synthetase long 

chain-1 (ACSL1; GenBank Accession number- AJ851480; Table 1 and 3) were differentially 

expressed in ILTV infected cells, but the precise mechanisms have not been verified. Therefore, 

further investigations are being performed to identify unique and more deeply involved 

interactions between host and ILTV.     
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4. Materials and methods 

4.1. Cell culture and ILTV infection 

Cell culture reagents were purchased from Invitrogen Life Technologies (Carlsbad, CA, 

USA). Chicken embryo lungs were isolated from 19 day old specific-pathogen free (SPF) 

chicken embryos (Charles River Laboratories, North Franklin, CT, USA). Lung tissues were 

homogenized and incubated in a 0.125% trypsin solution for 30 min at room temperature (25°C). 

Cells dissociated from lung tissues were suspended in a 1:1 ratio of mammary epithelial growth 

media (MEGM; Lonza, Rockland, ME, USA) and Dulbecco’s Modified Eagle’s Medium 

(DMEM, 0.45% glucose) plus 2% fetal bovine serum (FBS), 100units/ml penicillin, 100µg/ml 

streptomycin, and 2mM L-glutamine in 10 cm tissue culture dishes (Sarstedt Inc., Newton, NC, 

USA) pretreated with 0.5% gelatin in PBS to improve cell adhesion. Cultured cells were grown 

at 39°C containing 5% CO2 until cells reached confluent monolayers (2 to 4 days). The USDA 

reference strain of ILTV (National Veterinary Services Laboratories, Ames, IA, USA) was used 

to infect the chicken embryonic lung cells at a multiplicity of infection (m.o.i.) of 0.1. Infected 

cells were incubated at 37°C for 1hr with rocking gently every 15 min. After the incubation, 

10ml of media, 1:1 MEGM/DMEM, were added to each culture dish, and the cells were 

incubated at 37°C in 5% CO2 for up to 7 days. This research was performed under the permitted 

protocol approved by both the Institutional Biosafety Committee (IBC; permit number: 10007) 

of University of Arkansas and the Animal and Plant Health Inspection Service (APHIS; permit 

number: 102743) of United States Department of Agriculture (USDA). 

 

4.2. Total RNA extraction 
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Total RNA was extracted from uninfected- or ILTV infected chicken embryonic lung 

cells at 1, 3, 5, and 7 dpi using TRIzol reagent (Invitrogen Life Technologies, Carlsbad, CA, 

USA) following the manufacturer’s instructions. Total RNA was treated with DNase I (New 

England BioLabs Inc., Ipswich, MA, USA), and RNA was re-purified by the TRIzol reagent. 

The quality of RNA was checked by fractionation on an agarose gel (data not shown).  

 

4.3. Probe labeling and microarray hybridization 

A two color labeling microarray system was used to compare uninfected- and ILTV 

infected embryonic lung cells at 1, 3, 5, and 7 dpi. Fluorescently labeled complementary RNA 

(cRNA) probes were generated by using the Two Color Microarray Quick Labeling kit (Agilent 

Technologies, Palo Alto, CA, USA) and following the manufacturer’s instructions. RNA spike-

in controls were used to adjust possible dye effects following manufacturer's instructions. The 

Spike-in controls represent two sets of ten synthesized RNA mixtures derived from the 

Adenovirus E1A transcriptome with different concentrations in each set [55]. These spike-in sets 

were mixed with either uninfected control or infected samples and co-hybridized to arrays. 

Briefly, 2　g of total RNA were mixed with Spike-ins and converted to cDNA using reverse 

transcriptase and oligo dT primers in which T7 promoter sequences were added. T7 RNA 

polymerase was used for the synthesis and labeling of cRNA with either Cy3 dye for the 

uninfected control or Cy5 dye for the ILTV infected samples. The fluorescently labeled cRNA 

probes were purified using the Qiagen RNeasy Mini Kit (Qiagen Inc., Valencia, CA, USA), and 

the concentration, fluorescent intensities, and quality of labeled cRNA probes were determined 

using a Nano-drop spectrophotometer (Thermo Scientific, Wilmington, DE, USA). An equal 

amount (825ng) of Cy3 and Cy5 labeled cRNA probes were hybridized on a 4X44K Agilent 
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custom chicken oligo microarray (array ID: 017698). The hybridized slides were washed using a 

commercial kit package (Agilent Technologies, Palo Alto, CA, USA) and then scanned using a 

Genepix 4000B scanner (Molecular Devices Corporation, Sunnyvale, CA, USA) with the 

tolerance of saturation setting of 0.005%. Three biological replicates were conducted.  

 

4.4. Microarray data collection and analysis 

Background-corrected red and green intensities for each spot were used in the subsequent 

analysis. Global normalization based on local polynomial regression (loess) was applied to the 

intensities to remove effects that were due to undesirable systematic variations in microarray 

experiments rather than biological differences. The average values of the resulting normalized 

expression values in replicate hybridization sets were considered in the subsequent analysis. In 

order to identify a set of genes with high alterations over time, a model-based clustering method 

[14] was employed, and the genes in the cluster were considered as differentially expressed over 

the time period. All analytic techniques were implemented in R (http://www.R-project.org). 

 

4.5. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) 

Reverse transcription was performed with 3 μg of total RNA using Superscript II reverse 

transcriptase (Invitrogen Life Technologies, Carlsbad, CA, USA) with oligo dT12-18 primers 

(Invitrogen Life Technologies, Carlsbad, CA, USA) following the manufacturer’s instructions. 

The reverse-transcribed products were diluted by 1:10 ratio and a portion (1 l) of 　 each product 

was subjected to qPCR under the following conditions: 40 cycles of 95°C for 30 s, gene-specific 

annealing temperature for 62°C for 1 min, extension for 30 s at 72°C, and a final extension at 

72°C for 10 min. A non-template control and endogenous control (chicken GAPDH) were used 
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for the relative quantification. The differential expression levels for the ILTV infected group 

were compared by the 2-ΔΔCT method against the uninfected controls [34]. Primers for qRT-PCR 

were designed using Primer3 software (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3.cgi) with 

these parameters: amplicon length, 95–100 bp; primer length, 18–27 nucleotides; primer melting 

temperature, 60–64°C; primer and amplicon GC content, 20–80%; difference in melting 

temperature between forward and reverse primers, 1–2°C. Primers were synthesized by 

Integrated DNA Technologies (Coralville, IA, USA). Primer information is listed in Table 2.  

 

4.6. Bioinformatics 

Functional interpretation of differentially expressed genes was analyzed in the context of 

gene ontology and molecular networks using the Ingenuity Pathways Analysis (IPA) 6.5 

software (Ingenuity Systems®; www.ingenity.com). The differentially expressed genes were 

categorized, compared to genetic categories in the IPA database, and ranked according to p-

values. [39]. The IPA analysis determined the subcategories within each category which is 

supplied with an appropriate p-value and the number of genes identified. Since the size of the 

created network could potentially be enormous, the IPA software limited the number of 

molecules in the network to 35, leaving only the most important ones based on the number of 

connections for each focus gene (focus genes= a subset of uploaded significant genes having 

direct interactions with other genes in the database) to other significant genes [4]. 
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Table 1. Top 10% (79 out of 789 genes) of the most highly differentially expressed. 

Accession # Gene Symbol Fold Change 
Day 1 Day 3 Day 5 Day 7

Y14971 CXC chemokine K60 3.7 17.3 19.7 11.3 
X65459 FABP7 1.1 0.3 0.8 0.2 
X16881 CDC2 1.9 0.4 0.7 0.4 
X03509 CKB 0.9 4.7 5.5 2.0 
X02009 LTF 0.7 2.7 3.6 3.2 
U62026 CENPF 3.3 0.7 1.4 0.6 
U12438 RFC2 1.9 0.8 1.0 0.3 
U09350 VIP 2.0 0.2 0.3 0.2 
M16199 IL8 3.7 22.4 26.8 18.5 

CR733296 LIPG 1.0 0.7 0.6 0.1 
CR523746 TMEM196 1.0 2.3 2.8 0.7 
CR406543 SELO 1.0 0.9 1.1 4.1 

CR406252 
Prematurely terminated mRNA 

decay factor-like 
1.2 1.1 1.4 4.7 

CR391404 ITGA8 0.7 0.8 0.5 0.2 
CR391234 LL 1.5 0.3 0.6 0.2 
CR387914 CHAD 1.1 0.8 0.7 0.2 
CR385491 IDl1 1.3 0.8 0.9 0.2 
CR385166 MYCN 0.6 1.0 1.1 5.7 
CR385124 DHCR7 1.3 0.9 1.0 0.3 
CR382435 HDGFRP3 0.8 0.9 0.9 5.1 
CR352395 OSTN 0.8 0.9 0.9 4.2 
CO635775 HSP90AA1 0.8 0.5 0.5 2.6 

CN218923.1 ARHGEF9 1.1 1.3 0.9 5.5 
CF250950 ALDH1A3 0.6 2.1 2.3 3.6 
CD763113 FDPS 1.1 0.6 0.7 0.2 
BX936026 AURKA 2.4 0.5 0.7 1.0 
BX935864 XBP1 0.9 0.8 0.7 3.4 
BX935550 AKR1D1 0.6 2.9 2.7 1.2 
BX935026 MAT1A 0.7 1.0 0.7 3.5 
BX934121 TFPI2 0.9 1.5 2.2 5.5 
BX932212 PTTG1 2.1 0.7 0.8 0.3 
BX931971 SPON2 1.6 2.8 4.0 12.1 
BX931663 ROPN1L 0.7 2.7 1.1 5.6 
BU456021 SNAl1 1.9 1.0 0.7 0.4 
BU409770 HMG_COA_S 2.5 1.4 1.2 0.3 
BU200000 TNFAIP6 1.0 1.9 4.0 0.4 
BU138507 CYP51 1.0 0.7 0.7 0.2 
AJ851480 ACSL1 1.2 7.3 8.7 7.3 
AJ721110 VNN2 0.5 3.3 6.5 2.5 
AJ721107 SLA 0.8 1.1 1.4 5.0 
AJ720861 LSS 1.3 1.1 1.3 0.2 
AJ720657 DNAJB9 0.9 0.9 0.8 3.8 
AJ720217 STARD4 1.8 0.9 1.0 0.3 
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AJ719858 ITFG1 1.3 1.0 1.2 4.8 
AJ719718 SC4MOL 1.1 0.8 1.1 0.2 
AJ719295 INSIG1 1.5 0.9 0.9 0.2 
AJ443395 TRIP13 2.1 0.6 0.7 0.4 
AJ393939 ITPR3 1.5 1.4 1.8 0.4 
AJ309540 IL6 0.9 4.8 7.2 3.1 
AJ004940 HSPA8 0.9 0.5 0.6 2.7 
AF432506 FABP4 1.0 5.3 7.1 14.9 
AF411083 SFTPA1 1.7 0.4 0.9 0.4 
AF070478 MMP-13 0.7 3.4 2.9 0.7 
AF062392 MMP27 0.8 4.1 6.6 3.5 
AB031398 LEFTY2 1.2 1.7 1.8 5.8 
BU306841 NSDHL 1.5 0.6 0.8 0.1 
BU144940 ATF3 0.6 0.9 2.0 3.2 
BU106686 MKI67 2.6 0.8 1.1 0.5 
BU336892 HSPH1 1.0 0.5 0.5 3.2 
CR385186 PREDICTED: similar to CUG2 2.2 0.5 0.8 0.4 

CR387761 
PREDICTED: similar to Gap 

junction alpha-7 protein 
1.2 0.7 0.8 0.2 

BU456843 
PREDICTED: similar to Cancer 

susceptibility candidate 5 
2.9 0.7 1.2 0.6 

BU468099 
PREDICTED: similar to Histone 

protein Hist2h3c1 
2.5 0.9 0.9 0.4 

BX950657 
PREDICTED: chemokine (C-C 
motif) receptor-like 1 isoform 1 

1.1 1.3 2.5 0.3 

CR390562 
PREDICTED: hypothetical 

protein 
1.2 1.2 1.3 6.2 

CR388632 Unknown 0.7 1.4 0.8 0.2 
BU212825 Unknown 0.7 0.6 0.6 0.2 
BU281664 Unknown 1.1 0.8 0.9 0.2 
BU377399 Unknown 0.9 1.4 1.2 5.3 
BU420694 Unknown 0.6 18.2 26.2 3.1 
BU433279 Unknown 0.7 1.2 2.4 3.5 
CR385201 Unknown 0.6 5.0 7.0 0.6 
CR385678 Unknown 1.1 1.3 1.8 5.5 
CR386845 Unknown 1.0 0.8 0.7 3.1 
CR389767 Unknown 1.2 3.2 3.2 0.5 
CR389813 Unknown 1.0 1.3 1.2 5.9 
CR390519 Unknown 1.4 1.5 1.8 8.3 
CR391100 Unknown 0.3 3.0 4.1 0.4 
DR431104 Unknown 1.2 1.7 1.9 0.3 
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Table 2. Primers used for qRT-PCR. 

Accession # 
Forward Primer 

Gene Symbol 
Reverse Primer 

AJ711110 
TGGTGGCTCGTTACCACAAG 

VNN2 
TTCCCAAAGGGAGTCTCGAA 

AF070478 
TCCCAAAACGCCAGAGAAAT 

MMP-13 
TCGCCAGAAAAACCTGTCCT 

AF062392 
CAGCCCCAGTGAATTTCCTC 

MMP27 
GACGGTTGGCCTTTTACCTG 

X03509 
CCAGGGGTATCTGGCACAAT 

CKB 
TCATGTTGCCACCTTTCTGC 

AJ309540 
CCTGTTCGCCTTTCAGACCT 

IL6 
GCCAGGTGCTTTGTGCTGTA 

AF432506 
CCTGTTCGCCTTTCAGACCT 

FABP4 
GCCAGGTGCTTTGTGCTGTA 

X65459 
GGACAGCCACAACTTTGACG 

FABP7 
GCTGCTGATGATCACTGTGG 

AJ851480 
TGATGCAAGCACACGACTTG 

ACSL1 
ACCCACCAGGGTATTTGTCG 

AJ720861 
AGGTTCACCCAGATCCCAGA 

LSS 
CCACAGTCCCGTGTGCTAAA 

AJ719295 
CTGTTTCCCGACGAGCTCAT 

INSIG1 
GGTACAGCAGGCCAACAACA 

AJ719718 
GGCAGTGAACGACAGCGTTA 

SC4MOL 
TAAATGGCTGCTGCAGAGGA 

U09350 
CGAAAGCAAATGGCTGTGAA 

VIP 
TGCTTCACCTCGAAGTTTGG 

U62026 
GAATGCTGGCACCAGGAAA 

CENPF 
TCCGGAAAGGTTCCATCATC 

M16199 
CGCTGGTAAAGATGGGGAAT 

IL8 
CTTGGCGTCAGCTTCACATC 

X02009 
GATAGCGGCTGTGTGTTTCG 

LTF 
GAGGTCCCTGAGGTTGTTGC 

AJ004940 
CTGAATTCAAGCGCAAGCAC 

HSPA8 
TGACAGGGTACGCTTTGCAC 

AF411083 
GTTGCTTTGCTAACGCCTTG 

SFTPA1 
AGAGCTCCCAGACCAAGCAG 

X16881 
TTCCACGGGGACTCAGAGAT 

CDC2 
TGCAAGGATTCCACATCAGG 

U12438 
GTCAGCAGGCTGGAGGTCTT 

RFC2 
AGCAGAGGATGCTCCTCCTT 

Y14971 
GGCTGTAGCTGCTGTCATGG 

CXC chemokine K60 
TATGCACTGGCATCGGAGTT 

NM_204305 
GGCACTGTCAAGGCTGAGAA 

chGAPDH 
TGCATCTGCCCATTTGATGT 
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Table 3. Comparison of fold changes between microarray and qRT-PCR. 

Gene 
Accession # 

Gene Symbol 
1 Day 3 Day 5 Day 7 Day 

Micro 
array 

RT-
PCR 

Micro 
array 

RT-
PCR 

Micro 
array 

RT-
PCR 

Micro 
array 

RT-
PCR 

AJ721110 VNN2 0.5 0.3 3.3 3.5 6.5 8.7 2.5 2.6 
AF070478 MMP13 0.7 0.8 3.4 3.7 2.9 3.8 0.7 0.5 
AF062392 MMP27 0.8 0.8 4.1 7.8 6.6 23.7 3.5 7.9 

X03509 CKB 0.9 1.4 4.7 6.8 5.5 11.0 2.0 3.3 
AJ309540 IL6 0.9 1.1 4.8 7.7 7.2 37.1 3.1 5.7 
AF432506 FABP4 1.0 1.2 5.3 7.8 7.1 33.4 15.0 10.0 

X65459 FABP7 1.1 1.5 0.3 0.8 0.8 1.1 0.2 0.3 
AJ851480 ACSL1 1.2 0.9 7.3 6.0 8.7 8.0 7.3 7.6 
AJ720861 LSS 1.3 1.1 1.1 0.7 1.3 1.1 0.2 0.1 
AJ719295 Insulin induced gene 1 1.5 1.3 1.0 0.7 0.9 0.9 0.2 0.1 
AJ719718 SC4MOL 1.1 1.7 0.8 0.9 1.1 1.3 0.2 0.2 
U09350 VIP 2.0 2.4 0.2 0.1 0.3 0.2 0.2 0.2 
U62026 CENPF 3.3 9.9 0.7 0.7 1.4 2.2 0.6 0.6 
M16199 IL8 3.7 3.0 22.4 43.4 26.8 172.7 18.5 39.0 
X02009 LTF 0.7 0.5 2.7 2.3 3.6 5.2 3.2 4.1 

AJ004940 HSPA8 0.9 1.1 0.5 0.4 0.6 0.5 2.7 3.2 
AF411083 SFTPA1 1.7 2.5 0.4 0.7 0.9 0.9 0.4 0.3 

X16881 CDC2 1.9 2.2 0.4 0.3 0.7 0.6 0.4 0.4 
U12438 RFC2 1.9 2.0 0.8 0.6 1.0 0.9 0.3 0.2 
Y14971 CXC chemokine K60 3.7 7.9 17.3 60.3 19.7 206.4 11.3 38.2 
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Figure 1. ILTV infection in chicken embryonic lung cells. The chicken embryo lung cells were 

infected with ILTV at a MOI of 0.1. The infected cells were visualized at 0, 1, 3, 5, and 7 dpi, 

respectively, using a phase contrast microscope at 200X magnification. 
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Figure 2. Groups of differentially expressed genes in the time course of ILTV infection. The 

11,491 genes showing a signal to noise ratio (SNR) > 3 were sorted into three groups based on 

alterations of fold changes at each dpi time point. The Y-axis represents log2 values of fold 

changes and the X-axis indicates dpi time points. 
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Figure 3. Patterns of differential expression. The mean value of each cluster was independently 

plotted in the graph. The closed circle displays dpi time points The Y-axis indicates fold changes 

by log2 value. 
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Figure 4. Functional gene Ontology (GO) for differentially expressed genes. The 789 genes 

were categorized into functional groups by the IPA program. Bars represent the number of genes 

for each cluster. The Y-axis shows the total number of genes, and the X-axis indicates name of 

clusters. 
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Figure 5. Network 1 of gene network analysis. Molecular interactions among important focus 

molecules are displayed at each dpi time points. Green represents down-regulation while red 

depicts up-regulation. White symbols depict neighboring genes. The intensity of color represents 

the average of log fold change in a given population. The numbers below the color change bar 

denote log2 values. Symbols for each molecule are present according to molecular functions and 

type of interactions. 
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Figure 6. Genes of interest in the time course of ILTV infection. The expression levels for genes 

of interest at each time point displayed by the bar graphs; Genes showing lower range of 

alteration levels are displayed in (A), whereas genes ranging higher alteration levels displayed in 

(B). The open, upward diagonal, vertical, downward diagonal and horizontal bars reflect 0, 1, 3, 

5, and 7 dpi, respectively. Graphs show the mean ± SE. 
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1. Abstract 

Infectious laryngotracheitis virus (ILTV; gallid herpesvirus 1) infection causes high 

mortality and huge economic losses in the poultry industry. To protect chickens against ILTV 

infection, chicken-embryo origin (CEO) and tissue-culture origin (TCO) vaccines have been 

used. However, the transmission of vaccine ILTV to unvaccinated chickens can cause severe 

respiratory disease. Previously, host cell responses against wild-type ILTV infections were 

determined by microarray analysis. In this study, a microarray analysis was performed to 

understand host-vaccine ILTV interactions at the host gene transcription level. The 44 K chicken 

oligo microarrays were used, and the results were compared to those found in wild-type ILTV 

infection. Total RNAs extracted from vaccine ILTV infected chicken embryo lung cells at 1, 2, 3 

and 4 days post infection (dpi), compared to 0 dpi, were subjected to microarray assay using the 

two color hybridization method.  Data analysis using JMP Genomics 5.0 and the Ingenuity 

Pathway Analysis (IPA) program showed that 306 differentially expressed genes could be 

grouped into a number of functional categories including cellular metabolism, immune response, 

cancer, genetic disorder and cellular proliferation. Moreover, 10 possible gene networks were 

created by the IPA program to show intermolecular connections. Interestingly, of 306 

differentially expressed genes, 31 genes were commonly found in both wild-type ILTV and 

vaccine ILTV infections. Eight of these commonly expressed genes, F2RL1, BMP2, IKBIP, 

TYMS, C8orf79, F10, PTGS2 and NPY were expressed oppositely between the vaccine and the 

wild-type ILTV infection. Intensive knowledge of gene expression and biological functionalities 

by comparing host cell responses to either wild-type or vaccine ILTV infection can provide 

insight into the pathogenesis and immune responses during ILTV infections. 
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2. Introduction 

Avian infectious laryngotracheitis virus (ILTV), named as Gallid herpesvirus 1, is a 

member of the Iltovirus genus, Alpharherpesvirinae subfamily and Herpesviridae family. ILTV 

has a linearized dsDNA genome of about 150kb in size which contains unique long (UL), unique 

short (US) sequences flanked by inverted repeat (IR) and terminal repeat (TR) sequences [1, 2]. 

The genome encodes 80 predicted viral protein open reading frames (ORFs). ILTV infection 

causes respiratory disease symptoms in chickens, pheasants, partridges and peafowl [3, 4] that 

includes clinical signs of the extension of the neck, gasping, gurgling, rattling and coughing of 

clotted blood [5]. ILTV usually causes the reduction of egg production and variable mortality 

ranging from 5 to 70%, resulting in the severe economic losses in the poultry industry [6].   

Two types of commercial live attenuated vaccines, chicken embryo origin (CEO) and tissue 

culture origin (TCO) have been widely used to immunize chicken flocks against ILTV outbreak 

[6, 7]. However, it was found that live vaccines infect the nervous system similar to that 

exhibited in the wild-type ILTV infections, and could revert to become a causative agent to 

induce vaccinal laryngotracheitis (VLT) by transmission to unvaccinated birds [8-10]. Moreover, 

global ILTV outbreaks are mostly associated with CEO vaccines [11-13], and the genomic- and 

antigenic characteristics between wild-type and vaccine ILTV are very similar [6]. 

Microarray analysis has become popular, along with the recent development of a RNA-seq 

(RNA sequencing) technique using next-generation sequencing, to analyze massive gene 

expression in different biological conditions. Microarrays have been performed intensively to 

investigate host gene transcriptional responses to infections of various viruses such as hepatitis C 

virus (HCV) [14], rice dwarf virus (RDV) [15], influenza virus [16], herpesvirus saimiri (HVS) 

[17], human immunodeficiency virus (HIV) [18, 19], Japanese encephalitis virus (JEV) [20, 21], 
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chicken anemia virus (CAV) [22], human cytomegalovirus (hCMV) [23], Epstein-Barr virus 

(EBV) [24], infectious laryngotracheitis virus (ILTV) [25], varicella-zoster virus (VZV) [26], 

alphaherpesvirus [27], Marek’s disease virus (MDV) [28] and herpes simplex virus type 1 (HSV-

1) [29], and in even vaccine strains including recombinant flavivirus [30], west nile/dengue 4 

virus [31] and dengue virus [32].   

Previously, we studied the differential gene expression of host responses against wild-

type ILTV infection in cultured primary chicken embryo lung cells using microarray analysis 

[25]. To compare and contrast host responses to the infection of either wild-type or vaccine 

ILTV, primary chicken embryo lung cells were infected with live attenuated CEO vaccines and 

host gene expression during a four days period post infection was determined using 44K chicken 

oligo microarrays in the present study. Interestingly, genes showing opposite expression patterns 

in vaccine ILTV infection were identified compared to wild-type ILTV infection. Results in this 

study provide knowledge of differential regulation of host pathogenic and immunologic 

responses against either wild-type or vaccine ILTV.
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3. Results and discussion 

3.1. Profiling of differentially expressed host genes in vaccine ILTV infection 

Primary chicken embryo lung cells at passage 1 were infected with 3 vaccination doses of 

a live fowl laryngotracheitis vaccine, which is widely used in the poultry industry, and infected 

cells were subjected to analysis for cytopathic effect (CPE) and virus infection validation at 1, 2, 

3 and 4 days post infection (dpi). Although weak CPE, such as cell rounding, aggregation and 

syncytia were observed at certain locations of plates at 1 and 2 dpi, infected cells began to 

recover with healthy cells at 3 dpi, and no CPEs were observed at 4 dpi (Fig. 1A).  To verify the 

infection of vaccine ILTV, the expression of ILTV viral RNA was determined, and genes of 

UL35 encoding small capsid protein and US5 encoding envelop glycoprotein J (gJ) were shown 

to progressively increase their expression post infection though US5 expression began to be 

detected from 2 dpi (Fig. 1B).   

In the microarray assay using 44K genes, two approaches to avoid possibly hidden dye 

effects were used: the use of RNA Spike-in controls synthesized from the Adenovirus E1A 

transcriptomes containing different concentrations of dye in each set [33], and the dye-swap in 

two replicates of four total replicates. No significant dye effects were detected in all microarray 

slides (data not shown). The subsequent data analysis revealed that 1305 differentially expressed 

genes at four dpi time points of vaccine ILTV infection were selected by one-way ANOVA test 

using the JMP Genomics 5.0 program (Additional file 2). The 1035 differentially expressed 

genes were subjected to the bioinformatics study using Ingenuity Pathways Analysis (IPA, 

Ingenuity® Systems, www.ingenuity.com) to generate the gene networks and functional 

annotations, resulted in 306 genes that recognized as mapped IDs (functionally known genes) by 
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IPA program (Additional file 3). The list of 306 genes was analyzed for further bioinformatics 

studies. 

 

3.2. Quantitative reverse transcription-PCR (qPCR) 

To validate the microarray results, expression of 18 genes of the 1,305 differentially 

expressed genes were subjected to qPCR using the same RNA samples as those used in the 

microarray and gene specific primer sets (Table 1 and Additional file 1). Of the 18 genes tested, 

the expression pattern for 12 genes completely matched the microarray data at four time points. 

The expression pattern for the remaining 6 genes also qualitatively matched to microarray data, 

though they were not quantitatively matched (Table 1). With the comparison of the spike-in 

controls, qPCR results indicated that the microarray data in this experiment were valid to 

determine host gene expression responses against vaccine ILTV infection. 

 

3.3. Top 10 differentially expressed genes.  

Out of 306 mapped IDs, the top 10 most differentially expressed genes in ILTV vaccine 

infection were selected by differences of standard deviation (SD) among all four dpi time points 

(Table 2A). The general functions and possible roles in vaccine ILTV infection of the selected 

genes are described briefly in Table 2B. These top 10 genes listed are involved in functions of 

immune responses, inflammation, cell proliferation, apoptosis and cell-to-cell interactions.  

 

3.4. Biological functions and gene networks of differentially expressed genes 

Using the IPA program, 306 mapped genes were categorized into 75 biologically 

functional groups, and the top 20 groups associated with greater numbers of genes, are shown in 
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Fig. 2. The 20 functional groups are mostly related to cellular growth and proliferation, cellular 

and tissue development, cell or tissue survival and interaction, diseases and disorders, and host 

immune activation and inflammatory responses. 

Network analysis by IPA to draw the connection of focus molecules displayed 

relationships between the interacting genes. Of the 10 networks that were generated, the top 4 

networks were identical among all four dpi time points, which may be due to the fact that the 

algorithms of the IPA program generate a network by considering fold change values and p-

values of focus molecules in addition to their biological functions. The lists, top functions and 

the main focused molecules of each network are shown in Additional file 4, and drawings of 

interacting molecules in each network during the time course of all dpi time points are displayed 

in Additional file 5. 

 

3.5. Common genes found in both wild-type and vaccine ILTV infection 

 Previously, we reported 273 differentially expressed chicken genes mapped by the IPA 

program for the wild-type ILTV infection, and the analysis of the functions and molecular 

networks of these genes [25]. To find commonly involved host cellular mechanisms against both 

wild-type and vaccine ILTV infection, the 306 differentially expressed genes in response to 

vaccine ILTV infection were compared to the 273 differentially expressed genes found in the 

previous wild-type ILTV infection study. Result showed that 31 genes were altered in their 

expression in both wild-type and vaccine ILTV infections. Of these 31 genes, 23 genes showed a 

similar differential expression pattern as found in the wild-type ILTV infection at 1 and 3 dpi, 

and the GenBank accession, gene symbol and gene name are listed in Table 3.  Interestingly, 

eight of 31 genes were regulated in the opposite direction for expression patterns at 1 or 3 dpi 
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between wild-type and vaccine ILTV (Fig.3 and Table 4). Those include coagulation factor II 

(thrombin) receptor-like 1 (F2RL1, AJ851370), bone morphogenetic protein 2 (BMP2, 

AY237249), inhibitor of kappa light polypeptide gene enhancer in B-cells kinase beta (IKBKB) 

interacting protein (IKBIP, BX931418), thymidylate synthetase (TYMS, BX932834), 

chromosome 8 open reading frame 79 (C8orf79, CR390951), coagulation factor X (F10, 

D00844), prostaglandin-endoperoxide synthase 2 (PTGS2, M64990) and neuropeptide Y (NPY, 

M87294). 

Bone morphogenetic protein 2 (BMP2) was not altered in its expression in wild-type 

ILTV infection at 3 dpi, while it was increased in vaccine ILTV infection at 3 dpi. The 

expression of BMP2 was related to both the inhibition of tumor cell growth in carcino-embryonic 

antigen (CEA) expressing cells and the induction of the differentiation of non-committed stem 

cells to bone [34]. The functional role of BMP2 in herpesvirus (including ILTV) propagation has 

not been studied, but the differential expression pattern of BMP2 in between wild-type and 

vaccine ILTV suggests that the up-regulation of BMP2 in vaccine ILTV infection may support 

the recovery of cellular structure at later phase of the infection. 

Thymidylate synthase (TYMS) catalyzes the conversion of deoxyuridine 5’-

monophosphate (dUMP) to deoxythymidine 5’-monophosphate (dTMP), which is one of the four 

essential components for DNA synthesis [35, 36]. Herpesviruses such as hCMV or murine CMV 

(mCMV), that do not contain its own thymidine phosphorylase (TYMP), uses host TYMS to 

replicate viral DNA [37, 38]. At 3 dpi, the expression of TYMS in wild-type ILTV infection was 

decreased about 2 fold, while the expression of TYMS in vaccine ILTV infection was similar 

between 1 and 3 dpi, which is 1.5 fold higher than that of uninfected control. The down-

regulation of TYMS in wild-type ILTV propagation may be due to the massive cell disruption 
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generated by severe CPE as observed in the previous report [25]. However, the expression of 

TYMS in vaccine ILTV infected cells was slightly elevated until 3dpi, which would support 

continuous cell growth even during the time course of vaccine ILTV propagation. According to a 

previous report, hCMV immediate early gene activates the expression of the TYMS gene to 

efficiently replicate viral DNA genome [39]; similar expression patterns were observed at 1dpi 

for both wild-type and vaccine ILTV replication. TYMS gene in wild-type ILTV infection might 

be related to cell death due to the suppression of DNA replication of the host cell, and the severe 

CPE production in wild-type ILTV infection might be caused by the down-regulation of TYMS 

[25]. However, in vaccine ILTV infection, maintaining expression level of TYMS gene may be a 

result of activation of the immune system by vaccine virus infection, resulting in cells that 

recovered and proliferated with the marginally increased expression of TYMS gene. 

Prostaglandin synthetase-2 (PTGS2), as known as (a. k. a.) cyclooxygenase-2 (COX2), is 

responsible for prostanoid biosynthesis, and its functional roles are related to inflammation and 

mitogenic stimuli [40]. Several reports have shown that viruses and viral products, such as HSV-

1 [41], HSV-2 [42] and Kaposi’s sarcoma-associated herpes virus (KSHV) [43, 44] induce 

COX2 expression and prostaglandin production in various cell types and the induction of COX2 

is associated with viral latency, inflammation and immune response.  In the present study, 

vaccine ILTV infection caused slight down-regulation of COX2 gene which may play a role in 

mile inflammatory response found in vaccine ILTV infection compared to that wild-type ILTV 

infection induced COX2 expression and led to massive CPE production. The transduction of 

HSV-1 thymidine kinase has been known to enhance COX2 expression and enzymatic activity in 

vitro and in vivo [45], suggesting that differential thymidine kinase activity between wild-type 

and vaccine type ILTV may regulate the opposite pattern of COX2 gene expression during either 
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wild-type or vaccine ILTV infection. Furthermore, the down-regulation of COX2 genes by 

inhibitors blocked the cell-to-cell spread of hCMV [46]. These observations suggest that COX2 

in avian host cells and thymidine kinase gene in ILTV can be potential targets to reduce the risk 

of ILTV infection.  

Neuropeptide Y (NPY) involves multiple cellular mechanisms related to both virus entry 

into the central nervous system (CNS) and virus-induced neurological diseases.  NPY protects 

the nervous system from murine retrovirus-induced neurological disease [47]. The up-regulation 

of NPY was observed in the reactivation of VZV from a latent infection in human sensory 

trigeminal and dorsal ganglia, which are both sensory neurons [48]. It suggests that the up-

regulation of NPY in wild-type ILTV infection at 3 dpi may facilitate the latent infection in the 

nervous system. In contrast, the continuous down-regulation of NPY in vaccine ILTV infection 

might delay the latent infection by the up-regulation of immune responses to protect the host 

from diseases.  

Inhibitor of NF-kB (IkB) kinase subunit beta (IKBKB) interacting protein (IKBIP) 

interacts with IKBKB triggering immune responses through the cytokine-activated intracellular 

signaling pathway in various herpesviruses infections including HSV-1 [49], KSHV [50, 51], 

EBV [52], hCMV [53], and gammaherpesvirus human herpesvirus 8 (HHV-8) [54]. The hCMV 

infection induces the prevention of viral genome replication by the activation of NF-kB [55]. The 

activation of IKK- β causes the degradation of IkB by ubiquitination of phosphorylated IkB 

followed by the activation of NF-kB [56]. In addition, the free NF-kB enters the nucleus and 

activates genes related to inflammation and immune responses. From this, it would appear that 

the relative up-regulation of IKBIP in vaccine ILTV infection may cause the increased activity of 
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NF- kB, and cause higher immune response levels, compared to those in the down-regulated 

IKBIP gene in the wild-type ILTV infection .   

F2RL1 and F10 are coagulation factors, and C8orf79 is an ORF region on chicken chromosome 

8. The functional roles in virus infection of the genes have not been studied yet. 

 

4. Conclusion 

In this study, we examined host gene responses by vaccine ILTV infection. Unlike our 

previous research of wild-type ILTV infection, vaccine ILTV infection showed weak CPEs and 

cellular recovery, little massive cell death, and activated immune responses and non-pathogenic 

inflammatory responses. Moreover, eight host genes were significantly modulated by vaccine 

ILTV infection, and could be important regulators in non-pathogenic host immune responses. 

Results in this study provide crucial insights into host immunologic and pathogenic responses 

against vaccine ILTV infection.
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5. Materials and methods 

5.1. Cell culture and vaccine ILTV infection 

Primary chicken embryo lung cells were prepared as previously described [25]. All cell 

culture reagents were purchased from Invitrogen Life Technologies (Carlsbad, CA, USA). Cells 

were maintained at 37°C in a 5% CO2 incubator in 10 cm culture dishes by passaging every 3-4 

days in 10ml growth medium consisting Dulbecco’s Modified Eagle Medium (DMEM, 0.45% 

glucose) plus 10% fetal bovine serum (FBS), 100units/ml penicillin, 100µg/ml streptomycin, and 

2mM L-glutamine. A modified live ILTV commercial vaccine, LT-Blen (Merial Limited, Duluth, 

GA, USA), was used to infect the chicken embryonic lung cells by the amount equal to 3 

vaccination doses. After incubation of infected cells for 1hr with gentle rocking every 15 min, 

growth medium was added to each culture dish. The cells were incubated for up to 4 days. The 

protocols used in this study were approved by both the Institutional Biosafety Committee (IBC; 

permit number: 10007) of University of Arkansas and the Animal and Plant Health Inspection 

Service (APHIS; permit number: 102743) of United States Department of Agriculture (USDA). 

 

5.2. Total RNA extraction 

TRIzol reagent (Invitrogen Life Technologies, Carlsbad, CA, USA) was used to extract 

total RNA from uninfected- or vaccine ILTV infected chicken embryonic lung cells from 1 to 4 

days post infection (dpi). Total RNA treated by DNase I (New England BioLabs Inc., Ipswich, 

MA, USA) was re-purified by TRIzol reagent and quantified by Nanodrop1000 

spectrophotometer (Thermo Scientific, Wilmington, DE, USA) and qualified quality assessed by 

agarose gel (data not shown). To validate vaccine ILTV infection, expression of UL35 and US5 

genes, in addition to chicken GAPDH (a host gene expression control), were determined by end-
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point reverse transcription PCR with gene specific primers. PCR amplicons were analyzed by 

agarose gel electrophoresis and images were obtained using the GelDoc system (Biorad, 

Hercules, CA, USA). 

 

5.3. Probe labeling and microarray hybridization 

Initially, 2 µg of total RNA was used to synthesize Cy3 or Cy5 labeled complementary 

RNA (cRNA) using the Two Color Microarray Quick Labeling kit (Agilent Technologies, Palo 

Alto, CA, USA) following the manufacturer’s instructions and as described previously [25]. To 

avoid possible dye effects, RNA Spike-in controls, which were synthesized from the Adenovirus 

E1A transcriptomes containing different concentrations of dye in each set [33], were added to 

RNA samples as Spike-in A for Cy3 and Spike-in B for Cy5 and mixed with un-infected control 

and vaccine ILTV infected samples at each dpi time point, respectively. For the additional 

control of dye effects, the dyes were swapped in two replicates of four total replicates to confirm 

further hidden dye effects. Each 825ng of Cy3 and Cy5 labeled cRNA probes were co-

hybridized on a 4X44K Agilent chicken oligo microarray (array ID: 015068). After washing and 

drying, the slides were scanned using a Genepix 4000B scanner (Molecular Devices Corporation, 

Sunnyvale, CA, USA) with the tolerance of saturation at 0.005%. 

 

5.4. Microarray data analysis 

Background-corrected red and green intensities for each spot were used in subsequent 

analyses. Global normalization based on locally weighted linear regression (LOWESS) was 

applied to the intensities by removing effects which arise from undesirable systematic variations 

in microarray experiment. The ratio of signal intensities of corresponding spots to all Spike-ins 
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used were compared to reference ratios reported previously [33].  All normalized data were 

deposited in the Gene Expression Omnibus (GEO; accession number: GSE30269). Genes 

showing both signal to noise ratio (SNR) of >3 (meaning foreground signals are three times 

greater than background signals), and foreground intensity of > 100 at all time points were 

considered as reliable signals. To identify differentially expressed genes throughout the four dpi 

time points, normalized fold change values were subjected to statistical analysis by one-way 

ANOVA test in JMP Genomics 5.0 (http://www.jmp.com/software/genomics/) licensed to the 

Cell and Molecular Biology (CEMB) program of the University of Arkansas. Fold change values 

representing differential expression were displayed as log2 conversion.  

 

5.5. Quantitative reverse transcription-polymerase chain reaction (qPCR) 

To verify the microarray data, qPCR was performed with 18 genes using gene specific 

primer sets designed by Primer3 software (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3.cgi), 

and the primer sets were synthesized by Integrated DNA Technologies (Coralville, IA, USA). 

Primer information is shown in Additional file 1. Three μg of total RNA, which was used for the 

microarray analysis, was converted to cDNA and qPCR was performed by following conditions: 

40 cycles of denaturing 95°C for 30 s, annealing at 58 - 62°C for 1 min, extending at 72°C for 30 

s, and finally extending at 72°C for 10 min. A non-template control (NTC) and an endogenous 

loading control (chicken GAPDH) were used for the relative quantification. The fold change 

values for the vaccine ILTV infected groups comparing to uninfected control were determined 

by the -ΔΔCT method, which is comparable to log2 values in microarray [57].  

 

5.6. Bioinformatics 
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The Ingenuity Pathways Analysis (IPA) software version 9.0 (Ingenuity Systems®; 

www.ingenity.com) was used to study biological functions and molecular interactions among 

differentially expressed genes. IPA analyzes various bioinformatics tools including functional 

annotation, clustering, and network discovery based on Ingenuity Knowledge Base, which is the 

core technology of all IPA systems and the p-value developed from Right-tailed Fisher’s exact 

test were mainly considered to interpret the interaction and functions of the differentially 

expressed genes [58, 59]. For the network analysis, 10 networks and 35 molecules in each 

network were limited to concentrate on the closest interacting focus molecules (focus genes= a 

subset of uploaded significant genes having direct interactions with other genes in the database) 

within the differentially expressed genes [60].  
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Table 1. Validation of gene expression between microarray and qPCR. 

GenBank Symbol 
Fold Change (Microarray / qPCR) 

Day 1 Day 2 Day 3 Day 4 

BX932962 SLC37A2 1.2 / 1.3 2.1 / 2.6 3.3 / 3.7 3.9 / 4.5 
M60853 THBS2 1.5 / 1.8 2.0 / 2.5 2.8 / 2.8 3.3 / 3.3 

BX933888 C1QTNF3 -0.2 / 0.1 1.2 / 2.0 1.9 / 2.5 2.7 / 3.4 
BX933728 CAPSL 2.3 / 3.0 2.6 / 3.7 3.2 / 4.3 3.5 / 4.4 
BX931297 CYTL1 1.0 / 1.7 1.4 / 2.8 2.7 / 4.2 2.9 / 4.4 
CR352775 ALDOB 0.7 / 1.1 1.0 / 1.7 2.1 / 2.2 2.7 / 2.5 
BX933478 MXRA5 0.8 / 1.5 1.7 / 3.0 2.5 / 3.7 3.0 / 4.4 
BX935456 EGLN3 -2.7 / -2.0 -2.3 / -1.9 -1.7 / -1.4 -1.3 / -0.9 
BX931599 VIPR2 1.7 / 2.0 2.3 / 2.9 2.9 / 3.6 3.1 / 5.1 
CR385566 CLEC3B 0.2 / 1.0 0.4 / 2.2 1.3 / 2.4 1.4 / 3.1 
M87294 NPY -0.4 / -0.3 -0.9 / -0.6 -1.5 / -0. 9 -1.7 / -1.3 
M80584 LUM 1.2 / 1.6 1. 5 / 2.3 1.9 / 2.5 2.5 / 3.2 
M64990 PTGS2 -0.6 / -0.6 -0.8 / -0.3 -0.2 / -0.4 0.7 / 1.2 

AB109635 HMGCR 0.4 / 0.4 0.2 / 0.6 -0.5 / -0.3 -0.9 / -0.6 
BX936211 TMEM116 0.0 / 0.0 -0.3 / 0.3 -0.3 / -0.1 -1.3 / -0.7 

X87609 FST 1.3 / 1.0 0.6 / 1.2 0.6 / 0.6 -0.3 / 0.2 
D87992 ANPEP -0.1 / -1.2 -0.5 / 0.5 -0.6 / 0.4 -1.4 / -0.2 

AF505881 SCX 1.1 / 0.2 1.4 / -0.6 1.8 / 0.1 2.3 / -0.6 
The gene expression levels of microarray were presented by log2 fold changes, whereas those of 
qPCR were indicated by -∆∆Ct that are comparable to the log2 fold change values in microarray.  
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Table 2. The 10 most differentially expressed genes in ILTV vaccine infection. 
 
A. The gene list and fold changes at each day post infection (dpi) 

GenBank Symbol 1 dpi 2 dpi 3 dpi 4 dpi Mean Std 

BX933888 C1QTNF3 -0.2 1.2 2.0 2.7 1.4 1.2 
AJ829443 AQP5 1.7 -0.4 -0.8 -0.6 -0.1 1.1 
AJ251273 CCK 0.2 -0.5 -1.1 -2.2 -0.9 1.0 

J00902 SPINK5 -0.4 -1.4 -2.1 -2.5 -1.6 0.9 
M60853 THBS2 1.5 2.0 2.8 3.3 2.4 0.8 

AJ719394 PPIF 0.1 -0.1 -0.8 -1.7 -0.7 0.8 
CR390466 NMU -0.1 -0.7 -1.3 -1.8 -1.0 0.8 

X80207 VLDLR -0.4 -0.6 -1.0 -2.0 -1.0 0.7 
AJ851685 ADAM28 -1.1 -1.2 -1.8 -2.5 -1.7 0.7 
X87609 FST 1.3 0.6 0.6 -0.3 0.6 0.7 

 
B. Gene functions 

Symbol Functions 

C1QTNF3 
(CTRP3) 

 C1q and tumor necrosis factor related protein 3, a. k. a. CTRP3. 
 Regulates angiogenesis by stimulating ERK1/2 and p38 MAPK [61]. 
 Cartonectin, an adipokine of the CTRP3 reduced IL6 and TNF production and 

caused anti-inflammatory function by the suppression of NF-kB signaling [62-
64]. 

 IL6 among cytomegalovirus secreted cytokines enhances angiogenesis and 
survival of endothelial cells through impediment of apoptosis by blocking 
caspase 3 and 7 [65]. 

 C1qTNF3 could accelerate embryonic growth and energy utilization for the 
development of high feed efficiency (FE) broiler line [66].  

 During ILTV vaccine infection, continuous increase of CTRP3 expression 
until 4 dpi except 1 dpi, suggested to prevent inflammation responses, but 
promote immune responses without massive cell death through cell recovery. 

AQP5 

 Aquaporin 5, a water channel protein. 
 Deficiency of Aquaporin 5 (AQP5) exacerbated lung injury by the infection of 

pseudomonas aeruginosa [67].  
 Down-regulation of AQP5 affects the increases of the proliferation and 

migration of human corneal epithelial (CEP117) cell line through indirect 
activation of ERK pathway [68]. 

 Adenovirus infection to mouse lung caused the down-regulation of AQP5 gene 
expression [69]. 

 The down-regulation of AQP5 gene expression in vaccine ILTV infection 
might be associated to the reduced CPE and cell recovery in later dpi time 
points.  
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CCK 

 Cholecystokinin, a peptide hormone of the gastrointestinal system to stimulate 
the digestion of fat and protein. 

 Adenovirus suppresses CCK mediated activation of c-Jun kinase (JNK). 
inducing apoptosis or inflammatory responses on pancreatic acinar cells [70]. 

 Down-regulation of CCK expression in vaccine ILTV infected cells may result 
in suppression of apoptotic cell death or inflammatory responses induced by 
JNK pathway activation. 

SPINK5 

 Serine peptidase inhibitor, Kazal type 5 or chicken ovomucoid. 
 Lymph-epithelial Kazal-type-related inhibitor (LEKTI). 
 Inhibits immune and inflammatory responses in human primary keratinocytes 

(HK) [71]. 
 Down-regulation of SPINK5 at all dpi time points may support the induction 

of immune responses caused by vaccine ILTV infection. 

THBS2 

 Thrombospondin 2, a potent inhibitor of tumor growth and angiogenesis and a 
matricellular glycoprotein to mediate cell-to-cell interaction [72]. 

 Functions in angiogenesis in patients with early-stage non-small cell lung 
cancer [73], and wound healing and development of exuberant granulation 
tissue in horse [74]. 

 Up-regulation of THBS2 in vaccine ILTV infection may function in virus 
spreads in infected cells. 

PPIF 

 Peptidylprolyl isomerase F, one of the peptidyl-prolyl cis-trans isomerase 
(PPIase) family proteins and a member of the mitochondrial permeability 
transition (PT) pore in the inner mitochondrial membrane. 

 Stimulates the cis-trans isomerization of proline imidic peptide bonds in 
oligopeptides and accelerate the folding of proteins [75, 76]. 

 Apoptosis and necrosis of cells were induced by the activation of the PT pore 
[77-79]. 

 Down-regulation of PPIF genes in vaccine ILTV infection may play a role in 
cell death and recovery of cells.  

NMU 

 Neuromedin U, a multifunctional neuropeptide. 
 Functions in conditions of pain and stress, the metabolism and  homeostasis of 

feeding and energy in body, immune and inflammatory diseases, smooth 
muscle contraction, and the control of blood flow and pressure [80, 81]. 

 Deeply related to innate and adaptive immunity according to previous reports 
regarding NMU and neuromedin U receptor 1 (NMU-R1). 

 Expressed in antigen presenting cells (APCs) such as dendritic cells, 
monocytes and B cells, and its receptor, NMU-R1, is fluently expressed in 
immune cells such as natural killer cells, T cells, and monocytes [82]. 

 Induces early-phase inflammation through the degranulation in mast cells in 
which NMU-R1 is highly expressed [83]. 

 Acts as an inflammatory mediator via the acceleration of IL-6 production in 
macrophage [84]. 

 Down-regulation of NMU may inhibit inflammatory responses and elevate 
immune responses.  
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VLDVR 

 Very low density lipoprotein / vitellogenin receptor. 
 Binds to baculovirus surface membrane to inhibit ligand-receptor interaction in 

viral infection of HeLa cells [85].  
 The meaning of down-regulation of VLDLR in ILTV vaccine infection in 

addition to in other herpesvirus infection, is unknown.  

ADAM28 

 A disintegrin and metalloproteinase (ADAM) domain 28. 
 Functions to cell-to-cell and cell-to-matrix interaction on the cell surface for 

cancer cell proliferation, invasion and metastasis [86, 87]. 
 Up-regulated at carcinoma cells and functions the proliferation and progression 

of human lung and breast cancer cells [88, 89]. 
 Acts as an inhibitor against human dental pulp stem cells (HDPSCs) 

proliferation and an inducer of apoptosis of HDPSCs through the stimulation 
of alkaline phosphatase (ALP) secretion and dentin sialophosphoprotein 
(DSPP) [90]. 

 Degrades Insulin-like growth factor (IGF) binding protein 3 (IGFBP3) [91]. 
 The decreased expression of ADAM28 in vaccine ILTV infection, may 

suppress the active induction of apoptosis. 

FST 

 Follistatin.  
 Inhibits follicle-stimulating hormone [92]. 
 Binds and neutralizes activin, a paracrine hormone of TGF-β superfamily, 

which is related to the regulation of cell proliferation, apoptosis, and 
carcinogenesis [93, 94]. 

 A member of fibrotic and wound healing response genes and cellular 
proliferation genes and plays a role in muscle growth and strength in 
nonhuman primates and liver proliferation. Moreover, the small plaque mutant 
of VZV down-regulates FST [95]. 

 Up-regulation of FST at early phase (1 dpi) of vaccine ILTV infection may 
play a role in the initiation of CPE. 
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Table 3. The 23 genes showing a similar expression pattern in both wild-type and vaccine ILTV 
infection. 

GenBank Symbol Name 

AB055783 CENPH centromere protein H  

AB105812 GEM GTP binding protein overexpressed in skeletal muscle 

AF051399 FBLN1 fibulin 1 

AJ309540 IL6 interleukin 6  

AJ719326 MMP7 matrix metalloproteinase 7 

AJ719339 NASP nuclear autoantigenic sperm protein (histone-binding) 

AJ720813 HNRNPD 
heterogeneous nuclear ribonucleoprotein D or AU-rich element 
RNA binding protein 1, 37kDa 

AJ720861 LSS lanosterol synthase or 2,3-oxidosqualene-lanostrol cyclase 

AY265159 LHFPL5 lipoma HMGIC fusion partner-like 5  

BX930381 EMP1 epithelial membrane protein 1 

BX931297 CYTL1 cytokine-like 1 

BX932426 LRRC6 leucine rich repeat containing 6 

BX932427 BATF3 basic leucine zipper transcription factor, ATF-like 3 

BX933215 SOCS1 suppressor of cytokine signaling 1 

BX933888 C1QTNF3 C1q and tumor necrosis factor related protein 3 

CR353484 C9orf91 chromosome 9 open reading frame 91 

CR387407 LOC424161 similar to LOC129881 protein 

D16187 MAFK V-maf musculoaponeurotic fibrosarcoma oncogene homolog K 

M61145 PRNP prion protein p27-30 

M80584 LUM lumican 

U34977 FMOD fibromodulin 

X91638 SMARCA2 
SWI/SNF related, matrix associated, actin dependent regulator of 
chromatin, subfamily a, member 2 

Y09235 GLRX glutaredoxin or thioltransferase 

The JMP Genomics 5.0 was used to compare the expression values at 1 and 3 dpi between wild-
type and vaccine ILTV infection. The expression levels can be found in supplemental file 1 in 
chapter 2 and supplemental file 3 in chapter 3. 
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Table 4. The comparison of expression levels for eight genes showing opposite expression 
pattern in between wild-type and vaccine ILTV infection. 

ID 
Wild-type ILTV 

Day1 
Wild-type ILTV 

Day3 
Vaccine ILTV 

Day1 
Vaccine ILTV 

Day3 

F2RL1 0.703 -0.051 0.924 0.614 

BMP2 1.152 -0.047 1.425 1.011 

IKBIP -0.326 -0.262 0.445 0.185 

TYMS 0.665 -0.989 0.678 0.622 

C8orf79 0.544 -0.636 1.663 2.015 

F10 -0.161 0.553 2.472 2.220 

PTGS2 -0.236 1.370 -0.641 -0.223 

NPY -0.437 0.368 -0.400 -1.456 

The values are presented by log2 ratio. 
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Figure 1. Morphology of chicken embryo lung cells infected by vaccine ILTV and the 

expression of ILTV genes. (A) Cell morphology and CPE development at 0, 1, 2, 3 and 4 dpi. 

Phase contrast microscopic images are displayed at 200× magnification. (B) ILTV gene 

expression (UL35 and US5) at 0, 1, 2, 3 and 4 dpi by RT-PCR. Expression of chicken GAPDH 

(chGAPDH) was used as an endogenous control. 
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Figure 2. Functional groups of differentially expressed genes. Out of 75 functional groups, the 

top 20 groups considered by gene numbers related to each category were displayed. 
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Figure 3. Eight differently expressed genes in both infections. Relative expressions were compared for eight genes in between wild-

type and vaccine ILTV infection. The upward diagonal, open, downward diagonal and close bar represent ILTV infected samples for 

wild-type at 1 dpi, wild-type at 3 dpi, vaccine at 1 dpi, and vaccine at 3 dpi, respectively. 
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1. Abstract 

 Avian infectious laryngotracheitis virus (ILTV; gallid herpesvirus 1) is a member of the 

Iltovirus genus of the Alphaherpesvirinae subfamily of the Herpesviridae family. ILTV encodes 

80 predicted open reading frames (ORFs) in about 150kb linearized dsDNA that contains UL 

region and US region flanked by IR and TR regions. The regulatory mechanisms of ILTV gene 

expression in infected cells are still unclear. In this study, the expression levels of all 76 genes 

known to be expressed in the ILTV genome were determined by quantitative PCR (qPCR) using 

SYBR green staining method with total RNA extracted from ILTV infected cells at 1, 3, 5 and 7 

dpi. It was observed that ICP4, UL21 and UL42 showed unique expression patterns at all dpi 

time points, whereby ICP4 showed the highest expression levels at all time points. UL21 showed 

similarly high expression levels between 5 and 7 dpi after an initial steadily increase, and UL42 

showed the fluctuations of expression level at all time points. UL17, UL28, UL29, UL50 and 

UL52 showed decreased expression at 3 dpi compared to 1 dpi, and increased again until 7 dpi.  

Twenty nine ILTV genes including UL-1, UL0, UL1, UL2, UL3, UL3.5, UL6, UL9, UL11, 

UL12, UL15, UL24, UL25, UL26, UL26.5, UL27, UL38, UL44, UL45, UL49, UL49.5, ORFA, 

ORFB, US2, US4, US5, US6, US7 and sORF1 indicated progressively increased with days post 

infection (dpi) time points. The relative expression levels of the remaining, 39 ILTV genes 

including UL4, UL5, UL7, UL8, UL10, UL13, UL14, UL18, UL19, UL20, UL22, UL23, UL30, 

UL31, UL32, UL33, UL34, UL35, UL36, UL37, UL39, UL40, UL41, UL43, UL46, UL48, 

UL51, UL53, UL54, UL56, ORFC, ORFD, ORFE, ORFF, US3, US8, US8A, US10, sORF4/3, 

are not different at 1 and 3 dpi, and then increased expression by 7 dpi. These results may 

provide insights into the molecular mechanisms of ILTV pathogenesis during the cytolytic 

infection phase. 
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2. Introduction  

 ILT as chicken respiratory disease is an economically important disease for the poultry 

industry worldwide. ILT causes a severe illness resulting in weight loss, reduction of egg 

production and high mortality rates, up to 70%. Currently, chicken embryo-origin (CEO) and 

tissue culture-origin (TCO) vaccines, which are live attenuated vaccines, have been broadly used 

to prevent ILT outbreaks in flocks, but the reversion of vaccine ILTV into virulent virus during 

passage in chickens became a current threat of ILT outbreak called vaccinal laryngotracheitis 

(VLT) [1-3]. ILTV is a causative agent for ILTV and ILTV Infected chickens or vaccinated 

chickens can transmit latently infected ILTV to uninfected chickens via respiratory route by 

coughing and sneezing or by bird-to-bird contact. 

 ILT virus (ILTV), which is a member of the Iltovirus genus of the Alphaherpesvirinae, is 

a causative agent of ILT. The dsDNA ILTV genome, which is about 150kb in size, includes one 

unique long region (UL), one unique short region (US), one inverted repeat (IR) and one 

terminal repeat (TR) flanking the US region [4, 5]. The ILTV genome encodes 80 predicted open 

reading frames (ORFs) expressing functional or structural proteins [6]. Previously, a mosaic 

ILTV genome sequence combined with partial sequences from 6 different ILTV strains has been 

used for ILTV research since 2006 [7]. Recently, the complete genome sequence of a single 

Australian commercial live attenuated ILTV vaccine strain (Serva) is reported in 2011[5]. Taken 

together, discriminatively, 5 ORFs named ORF A, B, C, D and E are located in near ORIL in the 

UL region in the ILTV genome [8]. Also, like typical herpesvirus, three DNA replication origins, 

one OriL in the UL region and two identical ORIS in the IR and TR regions, are included in the 

ILTV genome. Furthermore, 63 genes in the ILTV genome show homologies with the HSV-1 

genome [9], and it could be inferred that those proteins in both ILTV and HSV-1 genomes have 
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similar structure and function. Of 63 genes, 11 genes encode glycoproteins namely gB, gC, gD, 

gE, gG, gH, gI, gJ, gK, gL and gM, which function immunogenic and antigenic activity in ILTV 

infected cells. 

 Normally, herpesvirus gene expression can be classified into three stages; immediate-

early (IE), early (E) and late (L). Usually, proteins expressed in the IE stage function as viral 

gene transcription regulators, E stage proteins play roles in viral genome replication, and finally 

L proteins are produced for structure proteins of virus particles [10]. However, kinetic expression 

patterns of ILTV during lytic infection have not been determined. This study uses a time course 

approach to gain insight into ILTV gene expression in cultured chicken embryo lung cells using 

qPCR and to help fully understand ILTV pathogenesis and the control mechanism of ILTV genes.  
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3. Materials and methods 

3.1. Primary cell culture and ILTV infection 

Primary chicken embryo lung cells were prepared from 19 days old SPF chicken embryos 

as previously described [11]. ILTV purchased from the National Veterinary Services Laboratory 

(NVSL) was used to infect chicken embryo lung cells. The infected cells were incubated at a 

37°C and 5% CO2 incubator with gently rocking every 15 min for 1h. Ten ml of Dulbecco’s 

Modified Eagle Medium (DMEM, Invitrogen, Garlsbad, CA, USA) containing 10% fetal bovine 

serum (FBS), 100 units/ml penicillin, 100 µg/ml streptomycin, and 2 mM L-glutamine 

(Invitrogen Life Technologies, Carlsbad, CA, USA) were added in infected cells. Cells were 

incubated at 37°C and 5% CO2 for up to 7 days. The protocol used for this study was approved 

by both the Institutional Biosafety Committee (IBC; permit number: 10007) of University of 

Arkansas and the Animal and Plant Health Inspection Service (APHIS; permit number: 102743) 

of United States Department of Agriculture (USDA). 

 

3.2. Total RNA extraction 

The total RNA was extracted from uninfected or ILTV infected primary chicken embryo 

lung cells at 1, 3, 5 and 7 days post infection (dpi) using TRIzol reagent (Invitrogen Life 

Technologies, Carlsbad, CA, USA) following manufacturer’s instructions. After treating DNaseI 

(New England BioLabs Inc., Ipswich, MA, USA), the total RNA was re-extracted by the TRIzol 

reagent. The quantification of the total RNA was determined by NanoDrop1000 

spectrophotometer (Thermo Scientific, Wilmington, DE, USA) and the quality was determined 

by the fractionation of 18S and 28S RNAs on an agarose gel (data not shown).  
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3.3. qPCR 

qPCR was performed for all known 76 genes encoded in the ILTV genome using gene 

specific primer sets. Primer3 software (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3.cgi) was 

used to design primers synthesized by Integrated DNA Technologies (Coralville, IA, USA). 

Primer information is provided in Table 1. Briefly, 3 µg of the total RNA were initially used for 

reverse transcription and the qPCR was performed under the following conditions: total 40 

cycles, denaturation at 95°C for 30 s, annealing at 58°C for 1 min, extension at 72°C for 30 s, 

and one cycle of final extension at 72°C for 10 min. A non-template control (NTC) and 

endogenous loading control (reference; chicken GAPDH) were used for the relative 

quantification. The relative expression levels of ILTV infection were calculated with Cp value 

which is Ctref-Ctsample adding 24 as a specific constant in order to revise negative values to all 

positive value [12]. 

 

3.4. Data analysis 

All gene expression values were subject to one-way ANOVA test using JMP Genomics 

5.0 (http://www.jmp.com/software/genomics/) licensed for Cell and Molecular Biology (CEMB) 

of the University of Arkansas. The significant differences of the ILTV gene expression levels at 

each time point were considered by p < 0.05. 
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4. Results and disscussion 

4.1. Highest, fluctuation and invariable expression patterns in ILTV genes  

Of the viral genes determined, UL21, UL42 and ICP4 showed a distinct gene expression 

pattern during ILTV propagation (Figure 1). 

Of these three genes, ICP4 consistently expressed the highest level compared to other 

genes during all dpi time points with Cp values ranging from 17.15 to 17.67. ICP4 of herpes 

simplex virus was also highly expressed in the murine trigeminal ganglia until 7 dpi during lytic 

infection [13]. ICP4 as an immediate early gene is known to regulates many early and late genes 

[14-16]. ICP4 localizes in intranuclear distribution or in globular compartments at early or late 

stage of infection, respectively [17]. 

 The expression of UL21, a tegument protein functioning in virion morphogenesis, 

increased from 1 dpi to 5 dpi and remained elevated on 7 dpi. Specifically, Cp expression levels 

were 1.33, 3.75, 7.09, and 8.06 at 1, 3, 5 and 7 dpi, respectively. The UL21gene, which is 

conserved among mammalian herpesviruses [18], is known to function in herpesvirus virulence 

and virus propagation in cultured cells during infections of HSV-1 [19] and PrV [20-23]. In 

addition, the UL21 protein in HSV-1 infection is associated with virus transportation through 

microtubules [23]. Also, UL21 in PrV infection is required for package of UL46, UL49 and US3 

into mature virions [24] and is also related to retrograde and neuronal invasiveness in vitro and in 

vivo [25]. Thus, ILTV UL21 may play critical roles in virus propagation and ILTV virulence by 

progressively increasing its protein amount during lytic infection phase.   

 Expression levels of UL42, which codes for a DNA polymerase processivity subunit that 

functions in DNA replication [26], fluctuated between time points determined. The Cp values 

were 8.23, 12.43, 7.92, and 14.93 on 1, 3, 5 and 7 dpi, respectively. UL42 has been shown for 
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other herpesviruses to play a role in viral DNA replication [27, 28]. Additionally, in HSV-1 

infections, it appears to be also important in DNA replication for lytic viral growth [29]. The 

UL42 gene is expressed early under the regulation of immediate-early IE63 (ICP4) and can be 

detected at as early as 3 hpi in HSV-1 infection [30-32]. Likewise, ILTV UL42 examined here 

was expressed already on early lytic infection stages, 1 dpi, presumably to drive DNA replication. 

The reason for the biphasic nature of UL42 expression exhibiting a decrease at 5 dpi is unknown.  

 

4.2. Genes showing decreased expression at 3 dpi  

 The similar levels of expressions of UL17, UL28, UL29, UL50 and UL52 observed at 1 

dpi remained at the same levels on 3 dpi and increased further by 7 dpi (Figure 2). The Cp 

expression levels of UL17, DNA packing tegument protein related to DNA encapsidation and 

capsid transport, were 6.84, 5.89, 10.60 and 12.80 at 1, 3, 5 and 7 dpi, respectively. The UL17 in 

HSV-1 and PrV shown to be involved in viral capsid cleavage and packaging by association of 

immature B-type capsids [18, 33]. In Marek’s disease virus type 1 (MDV-1) infection, UL17 was 

formed to have a fundamental role for virus growth in the nucleus [34]. Likewise, ILTV UL17 

expression is increased at the later stages of lytic infection presumably because of its function in 

virion packaging. UL28, which codes for a DNA packaging terminase subunit during DNA 

encapsidation, showed Cp expression as of 4.45, 2.49, 6.56 and 8.59 at 1, 3, 5 and 7 dpi, 

respectively. In HSV-1 infection, UL28 play an important role in the maturation of capsid 

protein [35], DNA cleavage and encapsidation of viral gene through interacting with UL33 [36, 

37]. Previously, the homologues of UL28 were reported as a conserved region between 

herpesviruses such as MDV-2, bovine herpesvirus 1 (BHV-1) and green turtle herpesvirus 
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(GTHV) [38-40]. Similar to UL17 shown above, the functional role of ILTV UL28 in virion 

maturation is correlated to its increased expression at the late phase of lytic infection. 

  The UL29, single-stranded DNA-binding protein in DNA replication [29] showed Cp 

expression of 5.82, 4.56, 9.91 and 12.42 at 1, 3, 5 and 7 dpi, respectively. The Cp expressions of 

the UL50, deoxyuridine triphosphatase nucleotide metabolism, were 8.17, 7.61, 11.72 and 13.75 

at 1, 3, 5 and 7 dpi, respectivley. UL50 is closely conserved in herpesviruses such as BHV-1, 

equine herpesvirus type 1 (EHV-1), HSV-1 and varicella zoster virus (VZV) [41-45]. UL50 

deletion mutant of ILTV resulted in decreased cell-to-cell spread in vitro and attenuation in vivo 

and in efficient replication in the respiratory tract of infected hosts [46], demonstrating the 

importance of the virus gene in viral replication and virulence. The expression levels of UL52, 

helicase-primase subunit DNA replication, were 4.84, 3.02, 6.88 and 10.58 at 1, 3, 5 and 7 dpi, 

respectively. In HSV-1, UL52 is a subunit of a three polypeptide complex consisting of UL5, 

UL8 and UL52 proteins, the functions as a DNA helicase-primase [47]. Particularly, UL52 has 

the primase activity within the helicase-primase complex and the function is conserved among 

different herpesviruses such as VZV, Epstein-Barr virus (EBV), human cytomegalovirus (hCMV) 

and EHV-1 [48]. Generally, the viral gene transcription machinery is activated earlier than viral 

genomic DNA replication pathways. Therefore, the large increase of expression of UL29, UL50 

and UL52, which are responsible mainly in DNA replication, may be correlated to the later onset 

of ILTV genome replication.  

 

4.3. The typical expression patterns among ILTV genes.  

 Most of the ILTV genes were expressed in similar patterns showing continuous increase 

from 1 through 7 dpi or 3 through 7 dpi (Table 2 and 3). In total, 29 genes out of 76 ILTV genes 
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showed the progressive increase of gene expression until 7 dpi (Table 2).  The mean values of Cp 

expression for each dpi time point were 7.51 ± 0.25, 8.88 ± 0.18, 12.52 ± 0.10 and 15.15± 0.15 at 

1, 3, 5 and 7 dpi, respectively. Among the 29 genes, 23 and 6 genes were in the UL (UL-1, 0, 1, 

2, 3, 3.5, 6, 9, 11,12,15, 24, 25, 26, 26.5, 27, 38, 44, 45, 49, ORF-A and OEF-B) and US (US2, 4, 

5, 6, 7 and sORF1) region, respectively. In contrast, 39 genes showed no significant changes of 

gene expression between 1 dpi (6.46 ± 0.34 Cp) and 3 dpi (6.52 ± 0.33 Cp), but their expression 

increased further at 5 dpi (10.51 ± 0.17 Cp) and 7 dpi (13.20 ± 0.11 Cp) (Table 3). Among 39 

genes, 34 genes (UL4, 5, 7, 8, 10, 13, 14, 18, 19, 20, 22, 23, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 

41, 43, 46, 48, 51, 53, 54, 56, ORF-C, ORF-D, ORF-E and ORF-F) and 5 genes (US3, 8, 8A, 10 

and sORF4/3) were in the UL and US region, respectively.  

 Kinetic analysis of ILTV gene expression showed critical patterns compared to other 

herpesviruses. In the case of human herpesvirus (HHV)-6B, most HHV-6B genes were actively 

expressed until 8 hours post infection (hpi). Late genes slowly increased until 48 hpi [49], and 

after this time only late genes and few early and delayed-early genes were expressed until 60 hpi 

[50]. Most of the genes encoding HHV-8, which is also known as KSHV, were highly expressed 

within 48 hpi, and the expression level of most genes decreased after 48 hours [51]. In infected 

NIH 3T3 fibroblast cells with mCMV, late genes were detected at 48 hpi [52]. The expressions 

of murine herpesvirus (MHV)-68 genes in infected baby hamster kidney (BHK)-21 cells peaked 

until 32 hpi and then gradually decreased or remained at similar level until 5 dpi [53]. Among the 

genes, the expression of IE and E genes were reached to a peak by 8 to 12 hpi. However, most of 

ILTV genes were continuously up-regulated until 7 dpi. 
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5. Conclusion 

In this study, expression of ILTV genes was determined at 1, 3, 5 and 7 dpi by qPCR 

using SYBR. Though most of ILTV genes continuously increased during lytic infection period, 

some genes such as ICP4, UL21 and UL42 showed unique expression patterns. Also, the 

observation of elevated ILTV gene expression until 7 dpi was not previously reported for other 

herpesviruses. Therefore, the findings of ILTV gene expression may provide information on 

ILTV life cycle and pathogenesis. 
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Table 1. The primer sets for qPCR in ILTV infected chicken embryo lung cells. 
Gene 
Name Forward Primer (5' → 3') Reverse Primer (5' → 3') 

UL-1 TGT GCG ATG CTC CAA ATA GC ACA ATT CCT GCG ACA CTC CA 
UL0 CTT GAC GTC CGT GCT GTC AT CCA CTC ACG GTG GAT TTG AA 
UL1 TCC GTG TTT ACG CAC AGA GG AGA TAA CGG TGC GCG AAT TT 
UL2 CAC CCC CTA GGG ACA CTG AA ACT GCA ATC CGC AAG ATG TG 
UL3 TTC GTT TTG ACA TGC CCT TG TTG ACT GTG TTT CCG GAT CG 
UL3.5 GTG AGG AAA ATC GGG TCT CG CGG CTG CGT TAC AGG GTA AT 
UL4 TGG AGG AAT GCG GTT TAT TTG ATC ATT GTT GCG ACG GGA TT 
UL5 AAC AAC GTT CGT TGG CAG AA ACC GGA GAT GCC GTG TCT AT 
UL6 ATT TCG AAC CCT CTG GCA AA TGG CAG TGA TCT CGG AAA TG 
UL7 ATC ATC TAG GCG CAC ACA CG ATC CAG ATG GAT GGG GAA AA 
UL8 CCT GGG CTT CGA GAA GAG AA TAG CGG TGC TTA CGG TGT TG 
UL9 TTT CAA ACG TCG TTG CGT TC CGC CCC CAG TTA GTC GTA TC 
UL10 GCC CTT AGC AGT CCA GGT TG TTA GTC CGC AAG CAG GGT TT 
UL11 TCT GTG GAC ACC TCG GAG AAT TAG GGA CAA GCG CTC TCC AG 
UL12 GGC AGA GAA GCG TTC GAG TT CGC AGG ACT TTG AAC AGC AG 
UL13 GCG CAT CGA TCT ACG AGA AA TCC GCA TCC CAG TGA CAT AG 
UL14 AGG TGA CCC TGA TCG CAG AG GCA GTA GCG TCG GAG GAT TT 
UL15 TAG TGC GGC ATC GGT ATC TG CTA TTT CGC GTG CGT TTT CA 
UL17 GGC AAA AAC CGG CAA TAT GT TAG CCT GTT TGG CTG ACG TG 
UL18 CAG AAG CTT GCG TGG GAC TA TTC CAT GGG CGA AAA ATG AT 
UL19 CAC TTT TTC CGC CCA TGA TT GCT CTC TCT CCG AAG GTG GA 
UL20 CCA ATT CAA TCC GCC TCT CT TCA CCA TCA CGT TCT TTT TCG 
UL21 AGT TTC GGG GCT CTG GAT TT GCT CGG GCA CTA TCC TTG TC 
UL22 GAC AGC AGT TCC GTG TGG TC ACT GTT AGC CGG TGC CAA CT 
UL23 GAC GGC AAC CTC TCC AAT TT CGC CGC GTT GTA CTT CTT TA 
UL24 CTC GGA GCA AAA CTG CAC AC AGC GAT TAT GGC AAC GGA TT 
UL25 GAT CTG GAA AGG CGG AAC AG AGT TTG CAA TGC CGA TGA GA 
UL26 GAC CTG CCG AGA GGA CTG TT GGC ATT CGC AAA AAG AGC AT 
UL26.5 ACG GAG CAG CAG CTA TGT GA CCG GCA ACC TCT TTT TGA AG 
UL27 TAG CCT GGC GCT TAC AGG TT TCA GAA CCG CCA ACT GAT TG 
UL28 TTT CCC GTA CCC AAG CGT AG AGA GCG TGC TCC GAA ATA GC 
UL29 ACG CGC TCC ATT TGA GTT TT TCT GTC TCC TGC GCT CCA TA 
UL30 CCA AAT TCG AGA CCC AGG AC TCT GGC CAC GAG ACA TTG TT 
UL31 CGT ACC AGC GAA TAC GTC CA AAA CAG AGC ACG CCA CTT CA 
UL32 TCG AAG AGC ATG CCA GTG TT GGC GTC TAT TTT GCC TCA CC 
UL33 TTA GCG GAA AGG CCA CTC TC CCG GAG GCG ATA GGT CAT AA 
UL34 GAA CGA CAG CGA GTC TGG TG TGG GGG ACC GTC AAG TTT AG 
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UL35 AAA CCG AGC TCC AAT GCT TC GCG TTG TCT CAC TCC AAA CG 
UL36 GCG GCT TTG GCT ACT TTG AT AAA ACG AGC TCG AGG GAG TG 
UL37 CGC TTT CAG ACA CCC CTA CC ATC CGC GGA CGC TAC AGT AT 
UL38 ACG AGC CCA GGG AAA TTC TT GCG ATG GCC CTT GTA TCT TC 
UL39 AGA GCG GGA ACC ACA GGT TA GCC CTC AAC GCT AGT CAT CC 
UL40 TTT TTC GTG GCG TCC TTT G TTC ATC GCG ACT GAT GAG GT 
UL41 AGG ATC CTG AGG GCG GTA AT CCT TTG CCT GGA CGC TAT GT 
UL42 GGA GGA GCG CCT CAT ACA AC GGT GGT GGG ATG GGC TAA TA 
UL43 CTG GCA TTC CAT TTG GTG TC GTG TAT GGG TGG CCG TTT TT 
UL44 AGC TCG GTG ACC CCA TTC TA ACT AAG CTG GCT GGG TGT CG 
UL45 GGG CAC GGC AAG AAA GTT TA CGC CTG ACT GGA TTC AAC AT 
UL46 TCT CGA TGT CCC ATT TGG TG TGT CCG GGA AAA CCC AGT AG 
UL48 TGA GGA TGA TGC GAC TGA CC GTA CTT TGG CGC ATT GAC CA 
UL49 ATT CGA ACA CCC CTG GTC TG GAT GGC CGT AAT CCC CTT CT 
UL49.5 GCC GTG GGA AAG GAG TTT TA CAT TCC GTG TCC TGG TGT CA 
UL50 TAG CTG TGC CAC TCG GTC AC GAC CCG ATA CAT GTG CAG GA 
UL51 GCA GAC AGG ACG ATG ATG CT CCA TGC CGA GTA GTT CCA AA 
UL52 CCA GCA TGT CAG CCA AGT GT TTT TTG TCG TTC CGC ATT TG 
UL53 GCA CGG GTC AGC AAG TAA CA CGT CAT GGA AGT GGC AGA CT 
UL54 ACG TTT CGC AAC TCC TTC GT TTG GGA AAG AAA TCG GGA TG 
UL56 TGG GTT GGA GTG GCC TTA AT GGA TGC GGA TAC AAC CTT CC 
US2 CGC TCC ACT CGG GAC TTA CT AGT TTC CGG GGA GCT GTT TT 
US3 CAG CTC ATG TCA GCG GTC TC TGT CTT GCC GTC GCA GTT TA 
US4 CCG GGA TAC CTG ATT TCG AC AGG GAT CCA TTG CCA GAC AC 
US5 TCC AGC TAA TGT GCC TGT CG CTG GCG CGA TAT CTT TTT CC 
US6 GGA ATG TGG CGA CGT ACA AC TTC GCG ATA CAA GGG TGC TA 
US7 TGC GTG CGA AAT AAA CAA GG TTA TTG AGT CGG GCG AGC TT 
US8 AGA CGA GAA GGC TCC AGC AC CAT GAA ACG GCA GCA TTT GT 
US8A GGC ACC GGT AAG AAA ACT GC CGC GTG GTT GTC AGA TTC C 
US10 GCA ACG GGT TGG GAG AAT TA TAC GGC TCT CGT CCT CGA A 
sORF1 ACT GCC GAG GTC CTT TCT CA GGG GTC GGT TTG GAC TCA TA 
sORF4/3 GAA CCT TCG GGG AGG TCT TC GGC GAT AAG GAT AGG CAT GG 
ICP4 ACA GGG GAT GGA CCA TGA AC GCC AAT CCG AAA TCA GCT TC 
ORFA TCT CCT GGG ATC TGC GTT CT TCC TTC GCC TAT CTC GAA GC 
ORFB TTG CAG GTT GGA GTG CCT AA AGC ACA CTG CAG GAT CCA AA 
ORFC AAT CTG GCG TTG GTC CAC TT CGC AAA CTT GAG ATG GGA CA 
ORFD AAT GTG AAC GCA CTG CCA AG ATC TTT CCA GCT CCG ACG AA 
ORFE CTA TCT CAT CGG GGG TCC AA ATG TGC GGC AAG TTT CTG TG 
ORFF GAG AAT AGC TGC CCC TGC TG CCT GGG TCC TCT TCA CGT TC 
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Table 2. The list of virus genes continuously increased at all time points in ILTV infected 
chicken embryo lung cells. 

  1 dpi 3 dpi 5 dpi 7 dpi   

Genes 
Cp† Cp Cp Cp Protein§ 
SE‡ SE SE SE Functions§ 

UL-1 
9.41a 10.64b 13.48c 15.28d Protein LORF2 

0.16 0.12 0.11 0.09 Unknown 
      

UL0 
5.63a 7.21b 11.49c 14.60d Protein UL0 

0.12 0.22 0.07 0.04 Unknown 
      

UL1 
7.35a 9.71b 13.60c 16.33d Envelope glycoprotein L 

0.14 0.14 0.08 0.12 Cell entry: cell-to-cell spread 
      

UL2 
7.06a 8.73b 12.62c 15.74d Uracil-DNA glycosylase 

0.11 0.13 0.13 0.26 DNA repair 
      

UL3 
6.99a 7.94b 11.28c 13.33d Nuclear protein UL3 

0.25 0.19 0.06 0.14 Unknown 
      

UL3.5 
8.13a 9.29b 13.03c 17.00d Protein V57 

0.17 0.14 0.08 0.01 Possibly virion morphogenesis 
      

UL6 
4.19a 6.14b 8.85c 12.01d Capsid portal protein 

0.48 0.40 0.21 0.23 DNA encapsidation 
      

UL9 
1.65a 3.08b 5.51c 7.14d 

DNA replication origin-binding 
helicase 

0.39 0.46 0.34 0.03 DNA replication 
      

UL11 
8.93a 9.98b 13.99c 16.76d Myristylated tegument protein 

0.06 0.24 0.04 0.13 Virion morphogenesis 
      

UL12 
9.34a 10.72b 14.27c 17.19d Deoxyribonuclease 

0.10 0.05 0.09 0.10 DNA processing 
      

UL15 
5.87a 6.70b 9.63c 11.88d DNA packing terminase subunit 1 

0.35 0.18 0.11 0.17 DNA encapsidation 
      

UL24 
4.76a 5.55b 9.55c 13.22d Nuclear protein UL24 

0.31 0.26 0.03 0.12 Unknown 
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UL25 
5.79a 7.02b 10.46c 14.02d 

DNA packaging tegument protein 
UL25 

0.50 0.12 0.12 0.07 DNA encapsidation 
      

UL26 
5.37a 6.43b 10.33c 13.34d Capsid maturation protease 

0.10 0.06 0.16 0.15 Capsid mophogenesis 
      

UL26.5 
9.43a 10.26b 14.22c 17.16d Capsid scaffold protein 

0.20 0.14 0.08 0.23 Capsid morphogenesis 
      

UL27 
6.74a 7.54b 11.68c 14.46d Envelope glycoprotein B 

0.11 0.14 0.12 0.18 Cell entry: cell-to-cell spread 
      

UL38 
4.64a 6.10b 10.21c 13.85d Capsid triplex subunit 1 

0.53 0.23 0.03 0.03 Capsid morphogenesis 
      

UL44 
8.78a 9.84b 13.50c 15.91d Envelope glycoprotein C 

0.08 0.14 0.02 0.06 Cell attachment 
      

UL45 
6.67a 9.29b 12.94c 15.28d Membrane protein UL45 

0.36 0.09 0.11 0.16 Possibly membrane fusion 
      

UL49 
10.15a 11.44b 15.05c 18.00d Tegument protein VP22 

0.29 0.16 0.07 0.10 RNA transport to uninfected cells 
      

UL49.5 
7.63a 8.67b 12.23c 14.71d Envelope glycoprotein N 

0.41 0.27 0.05 0.19 Membrane fusion 
      

ORF-A 
10.90a 12.35b 15.91c 18.48d Protein IA 

0.11 0.13 0.17 0.35 Unknown 
      

ORF-B 
10.38a 12.17b 15.72c 18.19d Protein IB 

0.17 0.12 0.10 0.16 Unknown 
      

US2 
4.58a 6.32b 9.57c 10.93d Virion protein US2 

0.31 0.26 0.05 0.01 Possibly interacts with cytokeratin 18 
      

US4 
12.06a 12.44b 16.68c 19.48d Envelope glycoprotein G 

0.08 0.10 0.12 0.14 Cell-to-cell 
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US5 
8.38a 10.15b 13.95c 15.37d Envelope glycoprotein J 

0.59 0.24 0.17 0.14 Unknown 
      

US6 
9.34a 11.22b 14.81c 16.74d Envelope glycoprotein D 

0.21 0.15 0.02 0.02 Cell attachment 
      

US7 
10.63a 11.97b 15.86c 18.11d Envelope glycoprotein I 

0.16 0.18 0.19 0.08 Cell-to-cell spread 
      

sORF1 
7.15a 8.74b 12.69c 14.72d Tegument protein VP13/14 

0.27 0.26 0.10 0.25 Possibly gene regulation 
†The expression levels of ILTV genes were presented to Cp indicated by -∆Ct + 24. 
‡a, b, c and d indicate differential expression, and they were deducted by ANOVA test in JMP 
Genomics 5.0. 
§The productive proteins and their functions were referenced from the nucleotide information of 
Gallid herpesvirus 1 (NC_006623) in NCBI. 
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Table 3. The list of virus genes which were no differences of gene expression at 1 and 3 dpi in 
ILTV infected chicken embryo lung cells. 

  1 dpi 3 dpi 5 dpi 7 dpi   

Genes 
Cp† Cp Cp Cp Protein§ 
SE‡ SE SE SE Functions§ 

UL4 
5.80a 5.43a 10.40b 13.10c Nuclear protein UL4 

0.27 0.36 0.01 0.05 Unknown 
      

UL5 
4.19a 4.50a 7.40b 10.28c Helicase-primase helicase subunit 

0.43 0.57 0.12 0.03 DNA replication 
      

UL7 
2.83a 3.78a 6.65b 12.37c Tegument protein UL7 

0.73 0.56 1.59 0.47 Virion morphogenesis 
      

UL8 
4.98a 5.38a 9.36b 10.84c Helicase-primase subunit 

0.49 0.35 0.18 0.26 DNA replication 
      

UL10 
8.49a 8.77a 11.89b 14.48c Envelope glycoprotein M 

0.24 0.29 0.12 0.01 Membrane fusion 
      

UL13 
8.01a 8.32a 12.52b 15.35c Tegument serine/threonine protein kinase 

0.25 0.10 0.07 0.16 Protein phosphorylation: PK family 
      

UL14 
7.29a 7.69a 11.99b 14.81c Tegument protein UL14 

0.53 0.22 0.11 0.26 Virion morphogenesis 
      

UL18 
7.21a 7.48a 12.35b 14.67c Capsis triplex subunit 2 

0.29 0.43 0.21 0.18 Capsis morphogenesis 
      

UL19 
6.79a 7.36a 11.87b 13.54c Major capsid protein 

0.36 0.32 0.20 0.12 Capsid morphogenesis 
      

UL20 
4.03a 4.43a 8.42b 11.75c Envelope protein UL20 

0.38 0.38 0.13 0.07 Membrane fusion 
      

UL22 
7.40a 6.32a 10.42b 13.05c Envelope glycoprotein H 

0.79 0.38 0.11 0.10 Cell entry: cell-to-cell spread 
      

UL23 
3.72a 3.17a 7.62b 11.09c Thymidine kinase 

0.41 0.26 0.11 0.04 Nucleotide metabolism 
      

UL30 
5.46a 6.08a 8.83b 10.56c DNA polymerase catalytic subunit 

0.53 0.47 0.23 0.17 DNA replication 
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UL31 
7.42a 7.38a 11.25b 13.97c Nuclear egress lamina protein 

0.08 0.43 0.06 0.15 Nuclear egress 
      

UL32 
5.93a 5.76a 9.41b 11.31c DNA packaging protein UL32 

0.44 0.22 0.08 0.35 DNA encapsidation 
      

UL33 
5.35a 5.54a 9.77b 11.75c DNA packaging protein UL33 

0.04 0.13 0.23 0.20 DNA encapsidation 
      

UL34 
8.67a 8.50a 12.81b 15.64c Nuclear egress membrane protein 

0.16 0.22 0.02 0.01 Nuclear egress 
      

UL35 
8.38a 8.24a 13.08b 16.43c Small capsid protein 

0.07 0.16 0.02 0.03 Capsid morphogenesis 
      

UL36 
5.31a 5.27a 9.59b 12.10c Large tegument protein 

0.74 1.13 0.27 0.13 Capsid transport 
      

UL37 
6.46a 5.76a 10.97b 13.25c Tegument protein UL37 

0.26 0.54 0.19 0.13 Virion morphogenesis 
      

UL39 
6.96a 6.54a 11.09b 12.51c Ribonucleotide reductase subunit 1 

0.08 0.45 0.06 0.27 Nucleotide metabolism 
      

UL40 
8.51a 8.24a 12.40b 14.98c Ribonucleotide reductase subunit 2 

0.45 0.36 0.15 0.03 Nucleotide metabolism 
      

UL41 
5.44a 5.55a 10.02b 13.03c Tegument host shutoff protein 

0.20 0.28 0.09 0.10 Cellular mRNA degradation 
      

UL43 
8.75a 8.23a 13.29b 15.95c Envelope protein UL43 

0.23 0.19 0.07 0.03 Possibly membrane fusion 
      

UL46 
8.35a 8.39a 12.32b 14.66c Tegument protein VP11/12 

0.22 0.08 0.18 0.05 Possibly gene regulation 
      

UL48 
6.46a 6.57a 10.58b 13.09c Transactivating tegument protein VP16 

0.22 0.11 0.11 0.16 Transactivates immediate early genes 
      

UL51 
7.55a 7.06a 11.30b 14.93c Tegument protein UL51 

0.10 0.37 0.07 0.02 Virion morphogenesis 
      

UL53 
6.14a 6.77a 9.90b 12.11c Envelope glycoprotein K 

0.32 0.61 0.14 0.04 Membrane fusion 
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UL54 
6.08a 6.57a 10.62b 12.89c Multifunctional expression regulator 

0.24 0.34 0.10 0.13 RNA metabolism and transport 
      

UL56 
6.78a 6.98a 9.39b 11.94c Unknown 

0.24 0.01 0.15 0.08 Possibly vesicular traffiking 
      

ORF-C 
8.07a 8.13a 11.16b 14.23c Protein IC 

0.37 0.06 0.07 0.02 Unknown 
      

ORF-D 
5.39a 5.83a 9.80b 13.29c Protein ID 

0.73 0.44 0.08 0.08 Unknown 
      

ORF-E 
6.48a 6.13a 10.56b 13.59c Protein IE 

0.14 0.21 0.08 0.07 Unknown 
      

OEF-F 
4.55a 5.27a 8.14b 11.84c Protein IF 

0.53 0.31 0.09 0.01 Unknown 
      

US3 
7.48a 7.32a 11.89b 14.61c Serine/threonine protein kinase US3 

0.13 0.30 0.06 0.06 Protein phosphorylation: apoptosis 
      

US8 
6.90a 7.19a 11.27b 13.16c Envelope glycoprotein E 

0.21 0.18 0.14 0.20 Cell-to-cell spread 
      

US8A 
7.46a 7.77a 12.32b 14.36c Membrane protein US8A 

0.25 0.23 0.61 0.07 Unknown 
      

US10 
5.44a 5.58a 10.26b 13.29c Virion protein US10 

0.93 0.30 0.20 0.02 Unknown 
      

sORF4/3 
5.32a 5.02a 6.94b 9.96c Protein sORF3 

0.22 0.41 0.11 0.05 Unknown 
†The expression levels of ILTV genes were presented to Cp indicated by -∆Ct + 24. 
‡a, b, c and d indicate differential expression, and they were deducted by ANOVA test in JMP 
Genomics 5.0. 
§The productive proteins and their functions were referenced from the nucleotide information of 
Gallid herpesvirus 1 (NC_006623) in NCBI. 
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 (B) 

  

  1 dpi 3 dpi 5 dpi 7 dpi   

Genes 
Cp Cp Cp Cp Protein 

SE SE SE SE Functions 

UL21 
1.33a 3.75b 7.09c 8.06c Tegument protein UL21 

0.32 0.19 0.35 0.45 Virion morphogenesis 

UL42 
8.23a 12.43b 7.92a 14.93c 

DNA polymerase processivity 
subunit 

0.13 0.14 0.22 0.03 DNA replication 

ICP4 
17.15a 17.67b 17.44abc 17.67bc Transcriptional regulator ICP4 

0.13 0.02 0.05 0.12 Gene regulation 
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Figure 1. The virus genes indicating the unique pattern changes of gene expression at all time 

points in ILTV infected chicken embryo lung cells. (A) The three genes including UL21, UL42 

and ICP4 among 76 ILTV genes brought out a distinctive style at all time points. The blue line 

with the closed circle, the red line with the closed square and the green line with the closed 

triangle are shown UL21, UL42 and ICP4, respectively. The X-axis appears dpi as a time point, 

and the Y-axis exhibits Cp values as an expression level of each gene. (B) The definite numbers 

involving expression levels and standard error (SE) of each gene at each time point, expressing 

proteins and protein functions are denoted. The Cp and SE values were calculated from 

triplicates of biological samples, and the superscripts were drawn from ANOVA test. 
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(B) 

  

  1 dpi 3 dpi 5 dpi 7 dpi   

Genes 
Cp Cp Cp Cp Protein 

SE SE SE SE Functions 

UL17 
6.84a 5.89b 10.60c 12.80d 

DNA packing tegumnet protein 
UL17 

0.33 0.44 0.10 0.05 
DNA encapsidation: capsid 

transport 

UL28 
4.45a 2.49b 6.56c 8.59d DNA packaging terminase subunit 

0.43 0.13 0.25 0.37 DNA encapsidation 

UL29 
5.82a 4.56b 9.91c 12.42d 

Single-stranded DNA-binding 
pretein 

0.46 0.19 0.04 0.05 DNA replication 

UL50 
8.17a 7.61b 11.72c 13.75d Deoxyuridine triphosphatase 

0.08 0.16 0.12 0.03 Nucleotide metabolism 

UL52 
4.84a 3.02b 6.88c 10.58d Helicase-primase primase subunit 

0.42 0.67 0.42 0.52 DNA replication 
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Figure 2. The five virus genes expressing down-regulation of gene expression at 3 dpi in ILTV 

infected chicken embryo lung cells. (A) The expressions of the five genes named UL17, UL28, 

UL29, UL50 and UL52 were once down-regulated at 3 dpi than those of 1 dpi and then 

continually up-regulated until 7 dpi. The red line with the closed square, the light blue line with 

the closed diamond, the green line with the closed triangle, the blue line with the closed circle, 

and the purple line with the asterisk stand for UL28, UL52, UL29, UL17 and UL50, respectively. 

The X-axis represents dpi as a time point, and the Y-axis signifies Cp value as an expression 

level. (B) Overall, all expression levels, SE values, the names of functional proteins and the 

functions of the proteins were shown up. The Cp and SE values were resulted from triplicates of 

biological samples, and the superscripts were come up with ANOVA test. 
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1. Abstract 

 A continuously growing immortal cell substrate can be utilized for viral vaccine 

production based on a cell culture. The aim of this study was to establish an immortal chicken 

cell line for efficient propagation of avian infectious viruses including ILTV causing acute upper 

respiratory disease in chickens. Various ectopic expression plasmids containing cell cycle 

stimulating genes and small interfering RNA (siRNA) expression systems targeting cell cycle 

inhibitory genes were transfected into primary chicken embryo liver (CEL) cells. As results, 

three immortalized chicken embryo liver (CELi) cell lines named CELi-si-p53, CELi-im and 

CELi-vector were established. The CELi-im was spontaneously immortalized with no 

transfection, while the CELi-si-p53 and CELi-vector were immortalized with transfection of the 

expression construct for siRNA against p53 and the expression vector control, respectively. All 

three CELi cell lines are permissive to ILTV infection, but low ILTV titers (~10 plaque forming 

units/ml) were produced. In addition, newly immortal cell lines were permissive to MDV and 

avian metapneumovirus (AMPV). To identify genetic alterations in immortal CELi cell lines, 

mRNA expressions for cell cycle regulatory genes were determined during the immortalizing 

progresses. Compared to those in the primary CEL counterpart, the mRNA expressions of p53, 

Mdm2 and p16INK4a were down-regulated in all three CELi cell lines, while those of RB, E2F-1, 

p19ARF and c-myc were up-regulated. The p21WAF1 showed up-regulation in qPCR in contrast to 

down-regulation in RT-PCR results. These results are closely similar to genetic alterations found 

in previously established immortal chicken embryo fibroblast (CEFi) cell lines showing efficient 

propagation of MDV. Therefore, newly established CELi cell lines can serve as alternative cell 

lines for vaccine production against infectious avian viruses. 
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2. Introduction 

 The primary chicken embryo kidney (CEK), chicken embryo fibroblast (CEF) and CEL 

have been preferred for virus replication, propagation, detection and even vaccine production [1-

6]. However, the primary cultured cells directly prepared from live organ tissues have limitations 

for virus propagation such as the limited life-span, time consuming and labor intensive 

preparation, heterogeneous cell populations, and potential microbial contamination. Thus, 

continuously growing immortal cell lines can serve as an alternative cell substrate for virus 

propagation. Two immortalized avian cell lines, DF-1 derived from chicken embryo fibroblast [7] 

and LMH chemically induced chicken hepatocellular carcinoma cell line [8], have been widely 

used for the propagation of avian infectious herpesviruses including avian influenza, avian 

broncheitis virus, MDV, AMPV and ILTV [9]. For virus propagation and vaccine production, 

immortalized cell lines should not carry existing endogenous and exogenous viral genomes, 

should supply homogenous cells and should overcome a disadvantage found in the use of 

primary cells such as virus titer fluctuation. 

 To date, only two immortal CEF cell lines named DF-1 and SC-1 have been established 

spontaneously without the use of tumorigenic viruses or oncogenic chemicals [7, 10]. In addition, 

other CEFi cell lines such as breast CEFi (BCEFi) and heart CEFi (HCEFi) were established, but 

not spontaneously [11]. Although many chicken embryo cell lines have been established and 

reported, various cellular characteristics including cellular growth rate (rapid vs slow), 

morphology (piling-up vs contact inhibition) and the steady state expression levels (up- vs down-

regulation) for various cell cycle regulatory genes are critical to determine whether the 

established cell line is a tumor line or not, and in turn, whether a cell line can serve as a suitable 

substrate for the vaccine production. 
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 Of a variety of cell cycle regulatory factors, key regulatory factors including p53, Rb, 

Mdm2, E2F-1, p21WAF1, p19ARF, p16INK4a and c-myc in chicken cells were determined previously 

[10-13], and those factors have been well-characterized for cell cycle regulation in mammalian 

species in addition to model organisms. The tumor suppressor p53 functions in cell cycle arrest 

[14], and p21WAF1 (CDK inhibitor) and Mdm2 (ubiquitin ligase) are transcriptionally up-

regulated by p53 protein [15-18]. Rb protein inhibits premature G1/S phase transition by binding 

to E2Fs, which activate G1/S transition when E2Fs were released from phosphorylated Rb [19-

22]. Both p16INK4a and p19ARF were encoded at INK4a/ARF locus called CDKN2A [23]. ARF 

(CDK inhibitor) acts as a tumor suppressor or to active p53-dependent cell cycle arrest [24], and 

IKN4a (CDK inhibitor) is also tumor suppressor regulating the cell cycle [25]. Myc (c-myc) is a 

well-known proto-oncogene and transcriptional regulator controlling cell proliferation, cell 

growth, differentiation and apoptosis [26, 27]. 

In this study, we established three immortal chicken liver (CELi) cell lines mainly 

targeting the propagation of ILTV causing acute upper respiratory disease in chickens in addition 

to other avian viruses. Furthermore, the mRNA expression levels of cell cycle regulatory genes 

including p53, Mdm2 and p21WAF1 (transcriptional target of p53 and CDK inhibitor), p16INK4a 

and p19ARF (CDK inhibitor), Rb and E2F-1 (cell cycle progression), and c-myc (proto-oncogene), 

were determined at various passages during the progression of immortalization in CELi cell lines. 
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3. Materials and methods 

3.1. Isolation and culture of chicken liver cells 

The primary chicken embryo liver (CEL1°) cells were isolated from 15 days old chicken 

embryos. Embryonic liver tissues were treated with VT solution (1:1 of 0.25% trypsine and PBS) 

for 30 minutes. For cell growth and transfection, cells were plated into 100 mm tissue culture 

dishes (Sarstedt, Newton, NC, USA) coated with 0.5% gelatin in PBS. The CEL cells were 

cultured in Dulbecco’s Modified Eagle Medium (DMEM, 0.45% glucose with 10% of FBS, 1% 

of penicillin-streptomycin and 1% of L-glutamine (Invitrogen Life Technologies, Carlsbad, CA, 

USA) at 39°C and 5% CO2 in a humidified incubator. The 6x105 cells were transferred to a new 

tissue culture dishes, the medium was changed every 2 days, the cells were passaged every 4-5 

days after establishing immortal stage, and cell numbers were counted at every passage. 

 

3.2. Transfection and selection 

 Lipofectamin2000 (Invitrogen Life Technologies, Carlsbad, CA, USA) was used for the 

transfection using manufacturer’s instruction. After transfection, the 100 µg/ml concentration of 

hygromycinB (EMD, Darmstadt, Germany) was used to select out untransfected cells.  After 

selection for 15 days, surviving cells were transferred into a new 100 mm tissue culture dish.  

 

3.3. RNA extraction 

The RNA samples were prepared at passages of 20, 50, 70 and 90 for CELi-im, passages 

of 35, 50, 70 and 90 for both CELi-si-p53 and CELi-vector. Total RNA was extracted from all 

three CELi cells at designated passages in addition to every tenth passgae cells using TRIzol 

reagent (Invitrogen Life Technologies, Carlsbad, CA, USA) following manufacturer’s 
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instruction. The total RNA was treated with DNase I (New England BioLabs Inc., Ipswich, MA, 

USA) and re-purified by TRIzol reagent. Quantity of the re-purified total RNA was measured by 

Nanodrop1000 spectrophotometer (Thermo Scientific, Wilmington, DE, USA) and quality was 

assessed by agarose gel electrophoresis (data not shown). 

 

3.4. End-point reverse-transcription (RT)-PCR and quantitative RT-PCR (qPCR) 

 RT reactions were performed with SuperScript II RTase (Invitrogen Life Technologies, 

Carlsbad, CA, USA) using 3 µg of total RNA, and the RT products were diluted to 1:10 with 

DEPC-water. PCR reactions were performed by the following condition: denaturing 95°C for 30 

s, annealing at 62°C for 1 min, extending at 72°C for 30 s and finally extending at 72°C for 10 

min in 40 cycles and 18 cycles for chicken GAPDH (chGAPDH) which was used as an 

endogenous loading control. The same RT products used in end-point RT-PCR were used for 

qPCR with dyes of SYBR and reference ROX dye (Invitrogen Life Technologies, Carlsbad, CA, 

USA). The qPCR reactions were performed by the following condition: 40 cycles of denaturing 

95°C for 30 s, annealing at 62°C for 1 min, extending at 72°C for 30 s. A non-template control 

(NTC) and chGAPDH were used for the relative quantification. The fold change values for target 

gene groups comparing to the samples of CEL1° were determined by the -ΔΔCT method [28]. 

Moreover, gene specific primer sets for 9 genes were designed by Primer 3 software 

(http://frodo.wi.mit.edu/cgi-bin/primer3/primer3.cgi) and were synthesized by Integrated DNA 

Technologies (Coralville, IA, USA). Primer sequences are shown in Table 1.  
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4. Results and discussion 

4.1. Cellualr proliferation during immortalizing processes  

Various ectopic expression constructs for cell cycle stimulating genes and siRNA 

expression systems against cell cycle inhibiting genes were introduced into CEL1° cells, which 

were freshly isolated from chicken embryo liver and three embryo liver cell lines were 

established as immortalized cell lines. The cell lines were generated by the transfection with no 

construct (spontaneous), siRNA expression vector against p53 (siRNA-p53) and vector control 

(pcDNA3.1-hygro), and cell lines were named as CELi-im, CELi-si-p53 and CELi-vector, 

respectively.  Cells were passaged every 4-5 days until passage # 100 for more than 1 year. The 

rate of population doubling (PD) per day for each cell lines was determined at every passage 

(Figure 1). The CELi-si-p53 exhibited a low PD for the first 4 months until passage 30. Between 

passage 31 and 48, the PD dramatically increased reaching 1.2 PD/day. After the dramatic 

amplification period, the PD for this cell line fluctuated between 0.2 and 0.9 until passage 64. 

Though minor fluctuations were found until passage 86, the PDs stablized around 1.2 until 

passage 100 (Figure 1A). Unlike CELi-si-p53, CELi-im and CELi-vector displayed unstable cell 

proliferation from early- to the passage numbers (data not shown). In CELi-im, PDs largely 

fluctuated between 0.2 and 1.1 until passage 85, and became stable thereafter until passage 100 

(Figure 1B). The CELi-vector cells also showed big fluctuation in PDs ranging between less than 

0.1 and 1.2 until passage 61. After this unstable stage, PDs continuously increased until passage 

78 with cells exhibiting stable cell proliferation until passage 100 (Figure 1C). 

 

4.2. The morphologies and growth rates of immortal liver cell lines 
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The morphologies and growth rates of the three CELi cell lines at passage 100 were 

examined for 4 days (Figure 2 and 3).  Though morphologies were similar between the three cell 

lines, CELi-im and CELi-si-p53 were more roundish in shape and fatter compared to the thin and 

small CELi-vector cells (Figure 2). After growing for 3 days, morpholgies were not 

distinguishable under microscopy since culture dishes were confluent by excessive cell numbers. 

Growth rates of three CELi cell lines were compared to CEL1° cells and to cells from chemically 

induced chicken hepatoma cell line, LMH (Figure 3). While CEL1° and LMH cells showed no 

increase in cell numbers (CEL1°) or exhibited slow growth reaching 6x105 cells from 1x105 

(LMH), all three CELi cell lines showed much greater growth rates over the 4 day period 

examined. Growth rates of CELi-im and CELi-vector showed similar levels at all time points, 

while CELi-si-p53 exhibited slower growth than CELi-im and CELi-vector, with all 3 cultures 

exhibiting much greater growth rate than CEL1° and LMH cells. The fact that newly established 

CELi cell lines can proliferate stably and rapidly suggests CELi cell lines can become alternative 

cellular substrates for virus propagation if cells are permissive to infection with avian viruses.  

 

4.3. Altered expression of cell cycle regulatory genes  

 To characterize genetic alterations to induce rapid cell divisions in CELi cell lines, 

transcriptional changes of cell cycle regulatory genes such as p53, retinoblastoma (Rb), Mdm2, 

E2F-1, p21WAF1, p19ARF, p16INK4a and c-myc were determined by RT-PCR and qPCR during the 

progression of immortalization. The expression level of p53 mRNA in all three CELi cell lines 

was dramatically down-regulated compared to the CEL1° counterpart (Figure 4A, 5A and 6A). 

Similar results were reported previously regarding immortal CEF cell lines showing that p53 

mRNA expression was greatly decreased in immortal CEF cell lines [11-13]. Furthermore, the 
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down-regulation of p53 is known as a key feature in the immortalization of human cells [29, 30]. 

Thus, the down-regulation of p53 in CELi cell lines appears to be a typical genetic alteration 

process during cellular immortalization. As the result of the down-regulation of p53, the 

expression of p21WAF1 and Mdm2 mRNAs, which are the transcriptional targets of p53, were 

found to be down-regulated compared to the CEL1° counterpart when determined by qPCR and 

end-point RT-PCR (Figure 4C and 4E, Figure 5C and 5E, and Figure 6C and 6E).  

However, Rb, another tumor suppressor, was greatly up-regulated in all CELi cell lines 

(Figure 4B, 5B and 6B) similar to previous reports on other immortal CEF cell lines [11]. The 

increased Rb expression in immortal chicken cell lines are in contrast to its decreased expression 

reported in other mammalian cancers [31]. In addition, the mRNA level of E2F-1, which is 

regulated (suppressed) by binding with Rb , was up-regulated in all CELi cell lines (Figure 4D, 

5D and 6D) as shown in immortal breast chicken embryo fibroblast (BCEFi) and heart chicken 

embryo fibroblast (HCEFi) cell lines [11]. Generally E2Fs, including E2F-1, function in the 

cellular proliferation [32]. Moreover, E2F-1 mRNA expression is down-regulated in senescent 

cells of human diploid fibroblast (HDF), mouse embryonic fibroblast (MEF) and CEF [33]. 

According to the result of end-point PCR, the increased level of E2F-1 mRNA is much greater 

than those of Rb compared to the CEL1°counterpart, and hence the absolute expression level of 

E2F-1 may be much higher than Rb. Greater abundancy of E2F-1 compared to Rb suggests the 

level of free, not bound to Rb, E2F-1 increased in CELi cell lines and, in turn, may stimulate 

enhanced cell cycle progression in CELi cells. 

According to previous reports [11, 33], the expression level of cyclin A, B2, B3, C, D1 

and E were up-regulated in immortal CEF cell lines, but the expression levels of p16INK4a, one of 

the cyclin dependent kinase inhibitors, was down-regulated in immortal CEF cell lines. We 
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confirmed the down-regulation of p16INK4a mRNA expression in all three CELi cell lines (Figure 

4G, Figure 5G and Figure 6G) in addition to forecasting the up-regulation or activation of cyclin 

and cyclin dependent kinases. Interestingly, the expression patterns between p16INK4a and E2F-1 

were shown in reverse directions as same as showing in the previous study [33].  

The expression level of p19ARF mRNA was up-regulation in all CELi cell lines (Figure 

4F, 5F and 6F). Though the major function of p19ARF is tumor suppression and induction of 

apoptosis through binding to Mdm2 stabilizes p53 [34] and prevents cell proliferation [35], 

recent finding of the p53-independent function of p19ARF showed ribosome biogenesis and cell 

growth stimulation by binding to nucleophosmin/B23 (NPM) [35, 36]. Thus, the up-regulated 

p19ARF mRNAs in CELi cells may play a role in cell growth by increasing ribosome biogenesis 

and protein synthesis by binding to NPM [36]. 

The expression levels of c-myc mRNA were varied in the three CELi cell lines. 

Compared to CEL1° counterpart, the expression levels of c-myc mRNA fluctuated during the 

whole passage periods in all three CELi cell lines (Figure 4H, Figure 5H and Figure 6H). Though 

c-myc is a strong proto-oncogene and shows critical functions on cellular proliferation in 

mammal [26, 27], variable expression patterns found in CELi cells indicate that c-myc in avian 

cells may not significantly influence cellular proliferation and immortalization. 
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5. Conclusion 

 Three newly established CELi cell lines were found to be infection with permissive to 

avian infectious viruses including ILTV, MDV, and AMPV (data not shown), but those cell lines 

produced low virus titers except for AMPV propagation (data not shown). Nevertheless, CELi 

cell lines are still valuable to study further virus propagation due to the rapid proliferation 

potential and its morphological stability. Therefore, further research is needed to investigate 

CELis’ potential as cellular substrates for the propagation and vaccine production of avian 

infectious viruses. 
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Table 1. The primer sets for qPCR and end-point RT-PCR. 

Gene Name Forward Reverse 

p53 CCATCCACGGAGGATTATGG TTCAGCACCGGGGAGTAAGT 

RB TGTGCTGAGATTGGCTCACA CTGAGAGGCGCTCTTCTTCC 

Mdm2 GCCAAATTTCGGCTTGAAAA TGTTGTTGGCTGGGAAGTTG 

E2F-1 AGCGGAAGCTGAACTTGGAG CAGGAGACTTTGCCCCTCTG 

p21WAF1 AAGCGTGCAGGAACCTCTTC CAGGACCCTCTCCCACTTGA 

p19ARF GGAAGACCTGGGAATGGATG TGATGGGTGCACCACTGAAT 

p16INK4a GCGGGATGAACTAGCCAACG GTCCGACCGAAGGAGTTGAC 

c-myc TGTCACGTCAACATCCACCA ACCCTGCCACTGTCCAACTT 
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Figure 1. Growth curve during immortalization for chicken liver cell lines. Population doublings 

(PD) per day for each cell lines were determined by passaging every 4-5 days. The X-axis 

presents passage numbers, and the Y-axis indicates PD/day. (A) CELi-si-p53; (B) CELi-im; (C) 

CELi-vector. 
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Figure 2. The morphologies of CELi cell lines. Cells were visualized for four days using a phase 

contrast microscope at 100X magnification. (A) CEL-si-p53; (B) CEL-im; (C) CELi-vector. 
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Figure 3. Growth rate of CELi cell lines. Each cell line was plated at a density of 1x105 cells/6 

cm dish and the number of cells was calculated every day for 4 days. X-axis indicates day, and 

Y-axis depicts the number of cells. The asterisk, the closed circle, the closed triangle, the closed 

square and the closed diamond indicate CELi-im, CELi-si-p53, CELi-vectors, LMH cell lines 

and CEL cell line, respectively. 
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Figure 4. Expression of mRNA for cell cycle regulatory genes in CELi-si-p53. The end-point 

RT-PCR and qPCR results were displayed for each gene examined. X-axis indicates the passage 

numbers of designated cell lines, and the Y-axis presents fold change values of relative 

expression (REL). (A) p53; (B) Rb1; (C) Mdm2; (D) E2F1; (E) p21; (F) p19; (G) p16; (H) c-myc. 
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Figure 5. Expression of mRNA for cell cycle regulatory genes in CELi-im. The end-point RT-

PCR and qPCR results were displayed for each gene examined. X-axis indicates the passage 

numbers of designated cell lines, and the Y-axis presents fold change values of relative 

expression (REL). (A) p53; (B) Rb1; (C) Mdm2; (D) E2F1; (E) p21; (F) p19; (G) p16; (H) c-myc. 
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Figure 6. Expression of mRNA for cell cycle regulatory genes in CELi-vector. The end-point 

RT-PCR and qPCR results were displayed for each gene examined. X-axis indicates the passage 

numbers of designated cell lines, and the Y-axis presents fold change values of relative 

expression (REL). (A) p53; (B) Rb1; (C) Mdm2; (D) E2F1; (E) p21; (F) p19; (G) p16; (H) c-myc. 
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