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ABSTRACT 

Oligopeptides and low molecular weight polypeptides play central roles as 

effectors and signal transducers acting as hormones, neurotransmitters, growth factors, 

toxins, and antimicrobial factors that are important for the survival of the organism.  

Owing to the ubiquitous involvement of peptides in many key regulatory processes, we 

have been interested to identify native peptides in different cells and tissues and 

understand their functions. To conduct our studies, we used avian macrophages and 

heterophils as models of specialized cells which constitute central components of innate 

immunity. These studies involved (a) qualitative identification and characterization of the 

peptides associated with high intensity mass spectral peaks in macrophage and heterophil 

and (b) the quantitative changes in those peptides under immunomodulating effects of 

toll-like receptor (TLR) activators. The work presented here describes the identification 

of thymosin beta 4 (Tβ4), an actin binding peptide, in macrophages and its modulation 

under TLR activation. This dissertation also includes identification of mature avian beta 

defensin 2 (AvBD2), an antimicrobial peptide in heterophils of 4 different avian species 

(chicken, turkey, pheasant and quail) and its modulation in chicken heterophils under 

similar conditions.  
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INTRODUCTION 

Cellular identities are often determined by a repertoire of proteins and peptides 

which make up their structural components and govern their specialized functions. 

Therefore, despite genomic unity amongst different cell and tissue types of an organism 

they emanate proteomic diversities. In recent years there has been major emphasis in 

proteomics to study and understand the individual proteins, their modifications, and 

functions in relation to development, differentiation, metabolism, and disease. While 

significant developments have taken place in the analysis of proteins, particularly using 

2D gel electrophoresis, similar developments for the analysis of low molecular weight 

peptides are lagging behind. It is because peptides are less amenable to 2D analysis and 

conventional proteomic procedures. Oligopeptides and low molecular weight 

polypeptides play central roles as effectors and signal transducers acting as hormones, 

neurotransmitters, growth factors, toxins, and antimicrobial factors that are important for 

the survival of the organism. Owing to the ubiquitous involvement of peptides in many 

key regulatory processes, we have been interested to identify native peptides in different 

cells and tissues and understand their functions. We have used avian heterophils and 

macrophages as models of specialized cells which constitute central components of 

innate immunity to conduct our studies. These cells share many common features such as 

they respond to similar microbial stimuli, exhibit chemotaxis, engulf microbial 

pathogens, and produce many identical cytokines and metabolites to maintain immune 

homeostasis. Yet, these cells also differ in many ways with respect to their morphology, 

physiology, longevity, priming adaptive immunity, and also in the pattern of their 

response to inflammatory stimuli. To understand the similarities and differences in the 
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peptide profiles of these cells, we used matrix assisted laser desorption/ionization-time of 

flight (MALDI-TOF) mass spectrometry which has proved to be a formidable tool to 

analyze biomolecules. Using whole cells or their extracts, the studies in this dissertation 

involves both qualitative and quantitative characterization of molecules associated with 

high intensity mass spectral peaks in macrophage and heterophils. Thus, the study in this 

dissertation is divided into two categories with specific objectives in each. The categories 

are: (A) qualitative identification and characterization of the peptides associated with 

high intensity mass spectral peaks in macrophage and heterophil and (B) study the 

quantitative changes in those peptides under immunomodulating effects of toll-like 

receptor (TLR) agonists which activate these cells. The work presented here describes 

identification of thymosin beta 4 (Tβ4), an actin binding peptide in macrophages and its 

modulation by toll-like receptor activation, and the identification of mature avian beta 

defensin 2 (AvBD2), an antimicrobial peptide in heterophils of 4 different avian species 

and its modulation in chicken heterophils under similar conditions.  

Based on the two categories, the dissertation is divided into six chapters including 

the literature review. Chapters 2-4 submit to the identification and characterization of 

differentially associated peptides such as thymosin beta 4 and avian beta defensin 2 in 

avian macrophages and heterophils respectively, and the chapters 5 and 6 include the 

regulation of these peptides by toll-like receptor activation. 

Chapter 1: Peptidomic Perspective of Avian Biology: A Literature Review  

Chapter 2: Identification and Characterization of Thymosin Beta 4 in Chicken 

Macrophages using Whole Cell MALDI-TOF (Ann. N. Y. Acad. Sci. 1112: 424-434, 

2007). 
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Chapter 3: Direct Screening Identifies Mature Beta Defensin 2 in Avian Heterophils 

(Poult. Sci. 88(2):372-9, 2009). 

Chapter 4: A Direct MALDI MS Study to Identify Avian Beta Defensin 2 (AvBD2) 

from Pheasant and Quail Heterophils (Submitted to Journal of Proteome Research). 

Chapter 5: Effect of Toll-Like Receptor Activation on Production of Thymosin Beta 4 

by Chicken Macrophages (In internal review). 

Chapter 6: Evaluation of Beta Defensin 2 Production by Chicken Heterophils using 

Direct MALDI Mass Spectrometry (Mol Immunol. 46(15):3151-6, 2009). 
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PEPTIDOMIC PERSPECTIVE OF AVIAN BIOLOGY: A LITERATURE 
REVIEW 
 

INTRODUCTION 

Peptides are strings of amino acids covalently linked through secondary amide or peptide 

bonds which include dipeptides, oligopeptides to as long as 100 amino acid stretch 

polypeptides that can be loosely classified as low molecular weight proteins (Norbert and 

Hans-Dieter, 2003a; Petra and Harald, 2007). The oligopeptides and polypeptides play 

many central roles in maintenance of homoeostasis regulating many metabolic and 

physiological functions essential for the survival of organism (Norbert and Hans-Dieter, 

2003b). For instance, tripeptide glutathione takes part in intermediary metabolism and 

acts as an antioxidant (Martin and Teismann, 2009). Ubiquitin which regulates many 

cellular processes such as protein sorting, inflammation and proteosomal degradation is a 

widely occurring 8.5 kDa polypeptide (Ramage et al., 1994). Many oligopeptides and 

polypeptides serve as signaling and growth factors acting as hormones (ghrelin, 

urotensin, obestatin), and neurotransmitters (opioid peptides, vasopressin, angiotensins, 

bradykinins). These peptides function in autocrine, endocrine, or paracrine fashions 

(Konig, 1996). Others such as toxins and antimicrobial peptides are designed to function 

as defense factors protecting the organism. Most of these polypeptides are produced or 

stored in specific cells and tissues and are released upon physiological exigencies. The 

instantaneous actions of peptides are presumably suited through their low molecular mass 

that allows their easy access into cell environments to participate in physiological 

mechanisms. The peptides are classified as ribosomal, non-ribosomal, and peptide 

fragments, depending on how they are produced (Petra and Harald, 2007). Most peptides 
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in higher organisms that play important role as effector molecules and signal transducers 

are ribosomal produced by the translation of mRNA. Similar to proteins, they also 

undergo posttranslational modifications such as phosphorylation, acylation, amidation, 

glycosylation, sulfonation and disulfide bond formation (Baggerman et al., 2004). By 

contrast, non-ribosomal peptides are synthesized by modular enzyme complexes called 

nonribosomal peptide synthetases and are commonly found in unicellular organisms, 

plants, and fungi (Schwarzer et al., 2003). Peptides are also generated by proteolysis of 

larger proteins during physiological or pathological processes. For example, neutrophil 

invasion, and metastatic cancer cell migration induce tissue proteolysis generating protein 

fragments (Geho et al., 2005; Romero et al., 1991). Also aberrant quantities of peptides 

can be produced in the course of disease processes such as in Alzheimer’s (Nilsson et al., 

2001) or neoplastic transformation that are likely to be found in body fluids which have 

been exploited as diagnostic markers for specific diseases (Schrader and Selle, 2006).  

In addition to the native occurrence of many biologically active peptides in cells 

and tissues that function as hormones and neurotransmitters, bioactive peptides can also 

derived artificially from food/biological sources by proteolysis of larger proteins. These 

polypeptides have received much attention because of their specific biological activities 

and pharmacological properties as antioxidative, antimicrobial, anticancer or 

immunomodulatory efficacies (Fields et al., 2009; John Howl, 2009; Mine, 2007; Norbert 

and Hans-Dieter, 2003a). However, most cell/tissue-associated peptides are naturally 

occurring and are synthesized in the cell in the form of large prepro forms, which are then 

cleaved and modified, by selective action of peptidases to give biologically active 

products in their mature forms (Fricker et al., 2006; Hook, 1998). Owing to ubiquitous 
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involvement of peptides in many key regulatory processes, we have been working with 

the hypothesis that different cells and tissues exhibit their own repertoire of low 

molecular proteins/peptides that contribute to their specialized functions. Hence, 

identifying and characterizing these native mature peptides will not only provide insight 

into their functional physiology involving development, differentiation, metabolism, and, 

their disease related changes but also to prospect for their bioactivities in relation to their 

clinical applications. Compared with mammalian species, the analysis of low molecular 

weight (LMW) proteins or bioactive peptides in avian cells and tissues are lagging 

behind.  To date, very few peptides, less than 100 amino acids, have been identified in 

avian species most of which are largely limited to chicken. Many of these peptides 

belong to neuropeptide, neuroendocrine signaling pathways such as vasotocin, 

gonadotropin or corticotrophin releasing hormones in the brain (Takahashi et al., 1992; 

Troskie et al., 1997), galanin (Norberg et al., 1991), gastrin releasing peptide (McDonald 

et al., 1980) (Campbell et al., 1990), neuromedim-U-25 (Domin et al., 1992), neurokinin 

A (Conlon et al., 1988), motilin (De Clercq et al., 1996), Subtance-P (Conlon et al., 1988) 

that have been isolated from chicken intestine. Others include host defense related 

antimicrobial peptides such as beta defensins and fowlicidins present in chicken myeloid, 

epithelial cells, and liver (Harmon, 1998; Harwig et al., 1994; Lynn et al., 2004; Xiao et 

al., 2006; Xiao et al., 2004). Also mineral homeostasis maintaining calcitonin and 

parathyroid hormones (Homma et al., 1986; Khosla et al., 1988), play central roles in 

avian skeletal biology. Despite identification of few such peptides there is paucity of 

information about the identities and functions of many other polypeptides that occur 

naturally in the cells of avian species. Thus, characterization of native peptides and their 
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changes has potential to provide better understanding under a variety of physiological and 

pathological conditions.  

PROTEOMICS IN POST-GENOMIC ERA 

Among the avian species, chicken is the first livestock animal to enter the post 

genomic era and has reached the status of model organism, since the publication of 

chicken genome sequence and the development of high-throughput tools for functional 

genomics (Burt, 2004; Cogburn et al., 2007; Dodgson, 2007). Functional genomics refers 

to the study of function and regulation of gene and gene products on a global level. 

Although genomic technologies such as DNA microarrays are available to study gene 

products in the form of mRNAs, analyzing gene expression on the transcript level and 

extrapolating this data to the protein or peptide level is not sufficient. That is because of 

the differential mRNA translation, alternative splicing or post-translational modifications 

of proteins/peptides. Such changes that are not apparent from the DNA sequence can be 

determined only by proteomic and peptidomic methodologies and thus verification of a 

gene product by these methods is an important step in “annotating the genome” (Cogburn 

et al., 2007).  

Proteomics, a new discipline in functional genomics involves study of proteins in 

cells, tissues, or body fluids. Thus, since the sequencing of the genome, there has been 

increasing number of reports on proteomic studies to understand the molecular basis of 

chicken’s normo- and pathophysiology. Some reports include protein profiling in the 

facial development of chicken embryo (Mangum et al., 2005), skeletal muscles (Doherty 

et al., 2004), eye lens (Wilmarth et al., 2004), chicken germ line stem cells (GSCs) (Han 
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et al., 2009), whole organ bursa of Fabricius (McCarthy et al., 2006) and the analysis of 

chicken serum proteome (Huang et al., 2006). Also, different parts of chicken egg such as 

egg yolk plasma, vitelline membrane, calcified eggshell layer and egg white have been 

well characterized by proteomic analysis (Mann, 2007; Mann, 2008; Mann et al., 2006; 

Mann and Mann, 2008). Though proteome research in the chicken is still rudimentary 

stage, similar studies at the peptidomic level are under developed. Therefore, like 

proteins, it is necessary to understand the native peptides of cells and tissues in health and 

disease that also contribute to the fundamentals of chicken genome’s functional capacity.   

SCOPE OF PEPTIDOMICS 

The term peptidomics refers to the comprehensive qualitative and quantitative 

analysis of LMW proteins/peptides present in the biological system, thus covering the 

gap between proteomics and metabolomics (Clynen et al., 2001; Schulz-Knappe et al., 

2005; Soloviev and Finch, 2006). Although there has been a rapid development in 

proteome research over the last few decades, “peptidomics” in general, is under explored. 

The development of gel electrophoresis techniques for separation of proteins has been of 

great importance especially to the development of protein-derived drugs. However, the 

gel based systems have been less efficient for recovering components with molecular 

weights below 10 kDa, because of low resolution (Baggerman et al., 2004). Hence, 

research on naturally occurring low molecular weight polypeptides has not progressed 

sufficiently.  Also, in this context it is easy to understand why conventional proteomics 

has focused on proteins rather than on small and mature forms of peptides. Since there 

are many peptides that are abundant in biological fluids, cells and tissues yet unknown, 
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there is a strong interest and need for rapid and less laborious approaches to identify and 

quantify native peptides.  

Traditionally identification of peptides mostly involved separation techniques 

such as affinity chromatography, size exclusion chromatography, and multiple high 

performance liquid chromatography (HPLC) fractionation steps followed by detection via 

immunoassay techniques, and elucidation of primary structure by Edman sequencing. 

However, all of these methods for identification are considered laborious. The advent of 

genome projects, advancement in proteomic tools such as mass spectrometry (MS), 

improved separation techniques such as nanoscale HPLC, and bioinformatics has paved 

way for peptidomics to analyze LMW proteins/peptides in complex mixtures. Therefore, 

the current trend in peptidomics is largely based on MS, enabling simultaneous mass and 

sequence determination of peptide (Petra and Harald, 2007). A mass spectrometry is an 

analytical technique used to determine the molecular mass of a sample based on the 

mass-to-charge (m/z) ratio of charged ions. Different kinds of mass spectrometers exist 

and the two main technologies used for peptidomic research (both qualitative and 

quantitative analysis) include matrix-assisted laser desorption ionization-time of flight- 

mass spectrometry (MALDI-TOF-MS) and the electrospray ionization MS coupled with 

reversed phase HPLC (LC-ESI-MS) (Baggerman et al., 2004; Clynen et al., 2003; 

deHoffman, 2003). One of the major challenges for analysis of peptides in crude mixtures 

such as biological fluids is the interference by lipids, ions, and other small molecules. 

Some of these aspects can be surmounted using fractionation procedures such as liquid 

chromatography, capillary electrophoresis techniques (Guerrera and Kleiner, 2005).  
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Qualitative analysis 

 Identification and characterization of targeted proteins/peptides involve two types of 

analysis; (a) peptide mapping or peptide mass fingerprinting which refers to the analysis 

of intact peptide masses generated by enzyme digestion and (b) or analysis of peptide 

fragment ions for similar algorithm based in silico digestion and or de novo sequencing of 

novel peptides (Twyman, 2004). Also, identification of peptides in cells and tissues using 

whole cells, tissues or their extract are gaining momentum due to the advancement in 

direct mass spectrometric profiling by MALDI-TOF-MS. The direct analysis include 

identification of the mature forms of native peptides in whole cell/tissue/organs which is 

also accomplished by techniques called MALDI imaging where a spatial distribution of 

peptides in the tissues is observed (Chaurand et al., 1999). There are several reports on 

such direct analysis in both invertebrate and vertebrate species which have lead to studies 

and discoveries of novel neuropeptides and their relation to behavior and physiology 

(DeKeyser and Li, 2006; Dong et al., 2009; Herring et al., 2007; Hummon et al., 2006; Li 

et al., 2000; Ma et al., 2009; Yuan and Desiderio, 2005). In addition to MALDI, ESI MS 

is another powerful technique that can fragment even femtomole amounts of peptides 

with high efficiency making it an ideal tool for amino acid sequencing (Clynen et al., 

2003). Nano LC coupled with ESI-TOF MS, has been used to unravel peptidome of the 

nervous system of drosophila (Baggerman et al., 2002), the rat brain (Skold et al., 2002), 

and the human urine samples (Heine et al., 1997). The advancement in peptide discovery 

is further accomplished using tandem mass spectrometry (MS/MS) such as collision 

induced dissociation and post source decay, coupled to MALDI or ESI which favors 

structural and sequence determination of peptides because of its efficiency, accuracy and 
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sensitivity (Cape et al., 2009). This has lead to the finding of several peptides such as 

insulin-related peptides (de With et al., 1997), small cardioactive peptides (Jimenez et al., 

1998), and several neuropeptides (Cape et al., 2009; Ons et al., 2009).  

  Using such formidable tools, peptide discovery in avian species has been 

increasing over the years. For instance, the isolation and characterization of antimicrobial 

peptides from avian heterophils (Evans et al., 1994), chicken liver (Li et al., 2007), and 

identification of avian beta defensins from king penguin and ostrich (Sugiarto and Yu, 

2006; Thouzeau et al., 2003) were accomplished using MS. Myers and Patnoy  (2006) 

developed a new strategy utilizing electrospray-ionization mass spectrometry for the 

qualitative determination of gonadotropin releasing hormone (GnRH) peptides in several 

species including chicken I and chicken II GnRH peptide. They also demonstrated by de 

novo sequencing of intact GnRH peptides and by using ESI-MS/MS proposed adequate 

sequence coverage for these peptides (Myers and Patonay, 2006).  

 

Quantitative analysis 

Quantitative peptidomics is an additional dimension to peptide identification and 

characterization when it is required to know the peptide abundance in the sample. Similar 

to quantitative proteomics, the peptidomic approaches also involve mass spectrometry 

although it was realized that MS could not be simply used for quantification because it is 

not inherently a quantitative technique (Yan and Chen, 2005). However recent advances 

in stable isotope labeling methods, MS instrumentation, and bioinformatic analysis have 

facilitated platforms to obtain quantitative information about the peptide components of 

the cell. Comparing various conditions such as two disease states or the effects of genetic 
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knockout, the stoichiometry of proteins/peptides in a large complexes or monitoring 

changes to a proteome/peptidome over time has been accomplished (Brockmann et al., 

2009; Che and Fricker, 2005; Che et al., 2006).  The quantitative approaches solely based 

on signal intensities of spectral peaks have been difficult.  However, combining sample 

preparations such as affinity matrices (lectins) C18 matrix based isolation of peptides free 

of salts and ions and the use of novel algorithm based softwares the detection of 

quantitative difference detection are becoming feasible (Chernokalskaya, 2006). 

Besides, the advent of new approaches such as stable isotope labeling of 

proteins/peptides have facilitated mass spectrometry based quantification and the various 

approaches are discussed in detail in reviews by different research groups (Bantscheff et 

al., 2007; Ong and Mann, 2005; Yan and Chen, 2005). Stable isotope labeling of proteins 

was first introduced by Gygi and his research team in 1999 using isotope coded affinity 

tags (ICAT) (Gygi et al., 1999). Since then, many groups have adopted the principle of 

this strategy creating specific mass tags using differential stable isotopes which can be 

introduced into proteins or peptides metabolically, chemically, or enzymatic labeling 

such as SILAC, 18O labeling, isobaric tag for relative and absolute quantitation (iTRAQ), 

isotope coded protein labeling (ICPL) (Fenselau and Yao, 2009; Ong et al., 2002; 

Schmidt et al., 2005; Shevchenko et al., 1997; Wiese et al., 2007). By measuring the 

signal intensities of light and heavy isotope tagged peptides in the same spectrum, the 

quantitative differences can be calculated under different conditions. Metabolic labeling 

by stable isotope labeling of amino acids in cell culture (SILAC) was introduced by 

Matthias Mann’s group in 2002 has been used in many studies (Ong et al., 2002; Ong and 

Mann, 2007). By contrast, label-free quantification correlates to the mass spectrometric 
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signal of intact proteolytic peptides or the number of peptide sequencing events with the 

relative or absolute protein quantity directly (Asara et al., 2008; Wang et al., 2008). Thus 

different MS-based approaches have been generated with their own strengths and 

weaknesses (Moritz and Meyer, 2003) and the most commonly used MS tools for 

quantification of proteins and peptides are ESI or MALDI. Additionally, protein array 

based quantification similar to DNA microarray technology, also exists to detect and 

quantify proteins interacting with individual target proteins however, this method does 

not majorly rely on MS (Stoevesandt et al., 2009). Thus, most of the MS strategies are 

promising because they can reveal cell/tissue associated mature and functional peptides 

on both qualitative and quantitative basis.  

 

AVIAN MACROPHAGES AND HETEROPHILS 

Native bioactive peptides are more often than not, are produced by cells and 

tissues that play active roles in homeostasis such as neural, endocrine, and immune cells. 

While significant developments haven taken place in the analysis of neural and endocrine 

peptides, similar studies with immune cells are less explored. Multicellular organisms 

have evolved various defense mechanisms for protection against microbial invasions. 

Phagocytes such as the macrophages and neutrophils are principal cells responsible for 

innate immunity (Scott and Frank, 2009).  As the first line of defense against pathogen 

invasion, these cells have the ability to be mobilized for migration to the site of 

inflammation and counter pathogens or foreign components by producing factors to 

prevent their spread.  In the process, these cells engulf pathogens. The macrophages also 

ingest apoptotic neutrophils thereby removing inflammation (Kennedy, 2009). In birds, 
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the heterophils (neutrophil equivalent) and macrophages are major phagocytes (Juul-

Madsen et al., 2008). These cells play essential roles in all aspects of multicellular life 

ranging from inflammation and defense against pathogens to wound healing, 

development and tissue remodeling. They initiate immune response through cell 

signaling cascade by expression of effector molecules including chemokines, cytokines 

and other secretory factors such as anti-inflammatory or anti-microbial peptides (Juul-

Madsen et al., 2008; Kogut et al., 2005; Kogut et al., 2006; Qureshi, 2003). The immune 

responses in these cells are predominantly triggered by their ‘pattern recognition 

receptors’ (PRR), which are transmembrane or cytoplasmic proteins that identify the 

microbial pathogens or their derived products known as ‘pattern associated molecular 

patterns’ (PAMPs) (Janeway and Medzhitov, 2002). Thus, in recent years, an increasing 

number of pattern recognition receptors (PRRs), has been described to participate in 

innate recognition of microbes, through PAMPs evoking the production of effector 

molecules. Different kinds of PRRs such as Toll-like receptors (Sabroe et al., 2003), 

NOD-like receptors (Inohara and Nunez, 2003), glucan receptors and mannose receptors 

exist (Apostolopoulos and McKenzie, 2001), specific to cell types. Both TLRs and NOD 

receptors induce signal cascade mechanisms triggering the expression of pro 

inflammatory and co-stimulatory molecules and are thus involved in a variety of 

functions in regulation of inflammatory and apoptotic responses. Other receptors such as 

glucan and mannose PRRs triggers endocytosis and phagocytosis of the microbe and do 

not rely on signaling mechanisms. At present, TLRs have been found in many species 

ranging from insects to mammals (Sabroe et al., 2003). In birds, so far chicken is the only 

species where 10 TLRs have been reported to be expressed in a wide range of tissues 
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(Boyd et al., 2007; Temperley et al., 2008) whereas, NOD-like, mannose and glucan 

receptors are not well characterized in chickens unlike mammalian genome (Juul-Madsen 

et al., 2008). 

To understand the function of these cells, it is necessary to know the proteins and 

peptides involved, which are the active and functional product of most genes. Over the 

years, there has been considerable research at protein level in these cells as evident from 

the reports of different research teams that has contributed to the establishment of 

functional profile of the neutrophil and macrophage proteome in mammals (Gadgil et al., 

2003; Kang et al., 2009; Lominadze et al., 2006; Piubelli et al., 2002). However, to date 

we know of no reports on proteomic studies related to avian immune cells although an 

immunoproteomics program was developed at Mississippi State University (MSU) 

College of Veterinary Medicine by Dr. Burgess and his research group in January 2002 

(Burgess, 2004). While significant developments have taken place in the analysis of 

macrophage or neutrophil proteome, similar analysis at peptidome level is in nascent 

stage on global scale including mammals. In general, knowledge on the database of 

peptides in immunology is very limited except for certain peptides such as thymopoietin I 

and II in the induction of early T cell differentiation (Goldstein, 1974; Sunshine et al., 

1978), thymosin α1 in T cell differentiation (Bach et al., 1979; Deber et al., 1980) and 

antimicrobial peptides in host defense mechanisms. In birds, antimicrobial peptides such 

as avian beta defensins and fowlicidins are the widespread immune related LMW native 

peptides identified mostly in heterophils of chickens including few in other species of 

birds (Lynn et al., 2007; Sugiarto and Yu, 2006; Thouzeau et al., 2003; van Dijk et al., 

2008; Xiao et al., 2004).  



 17 

CURRENT AND FUTURE PROSPECTS 

 Over a period of time, the chicken has proved to be an outstanding model for 

biomedical research, especially in the field of immunology which can be exemplified by 

the invention of attenuated vaccines, the discovery of B cells and interferon, the first 

successful vaccines against a cancer, and more (Burgess, 2004). With the recent 

publication of the chicken genome sequence and development of functional genomics 

complemented with proteomics and bioinformatics, biomedical research in chicken has 

gained a whole new dimension. However, biologically active peptides in chicken and 

related species are still under explored. The advancements in proteomic technologies and 

bioinformatics also increase the likelihood of the identification, sequencing, and 

biological characterization of novel peptides that are hitherto unknown. Identification of 

endogenous bioactive peptides would not only be valuable for therapeutic purposes but 

also would help in improving poultry production, health, and welfare. For example, 

antimicrobial peptides can be useful for protection against pathogens, increasing food 

safety. Thus, the future for prospecting endogenous bioactive peptides is bright. 
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ABSTRACT 

      The aim of the study was to determine chicken monocyte- and granulocyte- 

associated peptides and proteins using “whole cell” matrix assisted laser 

desorption/ionization time-of-flight mass spectrometry and to characterize the peptides 

based on their abundance. The mass spectra showed a prominent peak at m/z 4963 in 

monocytes/macrophages but not in the granulocytes. Subsequent purification and 

characterization of the m/z 4963 peptide from an avian macrophage cell line HTC, 

revealed it to be thymosin β4 (Tβ4), an actin modulating peptide. HTC cells when treated 

with bacterial lipopolysaccharide and peptidoglycan to determine the modulation of Tβ4 

gene expression or its secretion, showed no changes. 

Key words: chicken macrophage thymosin beta 4, mass spectrometry  

 

INTRODUCTION 

      Mononuclear phagocytes and granulocytes are two major effectors of innate 

immunity that defend against microbes, mediate inflammatory response, and contribute to 

the tissue repair process. Despite an overlap of their functions that are mediated through 

many common cytokines, growth factors, and signal transduction agents, it is likely that 

these cells produce an abundance of different signatory proteins and peptides that may be 

of importance to their function and physiology. Thus, we have been interested in 

identifying protein and peptide profiles of these cells based on their occurrence and 

relative abundance. Mass spectrometry has emerged as a formidable tool not only to 

characterize biomolecules but has also been used to identify different prokaryotic cells by 

virtue of their molecular profiles. Matrix assisted laser desorption ionization/time of 
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flight mass spectrometry (MALDI-TOF MS) has been used for this purpose [1, 2]. 

However, the potential of this technique to study the molecular profiles of eukaryotic 

cells has not been much explored. To determine the applicability of this technique to 

differentiate between cell types we performed “whole cell MALDI” [2] on mononuclear 

cells and granulocytes of chicken peripheral blood. This report deals with the 

identification of thymosin beta 4 (Tβ4) as an abundant peptide present in avian 

monocytes/macrophages and its regulation by bacterial lipopolysaccharides (LPS) and 

peptidoglycans (PGN) which modify macrophage functions.   

 

MATERIALS AND METHODS 

Whole cell MALDI of mononuclear cells, granulocytes, and macrophages 

      All animal procedures followed Institutional Animal Care and Use Committee 

guidelines. Potassium-EDTA anti-coagulated blood was collected from 3 week-old 

broiler chickens by cardiac puncture and subjected to density gradient centrifugation on a 

PolymorphoprepTM medium (Accurate Chemical Company, Westbury, NY) to isolate 

both mononuclear cells and granulocytes as described earlier for avian blood[3]. After 

two successive washings and centrifugation, the cell pellets were resuspended in RPMI 

1640, to a concentration of 1x106 cells/ ml.  Two μl of each cell suspension was mixed 

with an equal volume of one molar 2,5-dihydroxybenzoic acid (DHB) in 90% methanol 

containing 0.1% formic acid and spotted onto a Bruker MTP 384 stainless steel MALDI 

target. MALDI-TOF MS analysis was performed in the mass range of 1-20 kDa using a 

Bruker Reflex III MALDI-TOF mass spectrometer (Bruker Daltonik GMBH, Bremen, 

Germany) in positive ion mode. Spectral distributions and relative intensities were the 



 31 

primary criteria of selecting peaks for further investigation. Using the mononuclear cell 

MALDI spectrum as reference we compared it with two avian macrophage cell lines 

HTC [4] and HD11 [5]. All these cells gave a prominent peak at m/z 4963. Subsequent 

experiments including the purification and the characterization of the peptide responsible 

for the peak at m/z 4963 and its regulation was performed using the HTC macrophage 

cells grown in culture. 

 

Reverse phase HPLC Purification and ESI Mass Spectrometry 

      HTC cells were extracted with 70% ethanol containing 0.2% acetic acid at 

concentrations of 1×107 cells/ml and centrifuged at 21,000×g for 10 min to obtain the 

supernatant. The supernatant was dried using a SpeedVac concentrator (Savant 

Instruments, Inc., Farmingdale, NY) and reconstituted to one tenth of its original volume 

with distilled water. It was then subjected to reverse phase high pressure liquid 

chromatography (RP-HPLC) using a Hewlett Packard (Palo Alto, CA) 1100 series HPLC 

instrument and monitored using a single wavelength UV detector and a Bruker Esquire 

2000 quadrapole ion trap electrospray ionization mass spectrometer (ESI MS) (Billerica, 

MA).  A Bio wide Pore C8 reverse phase column (4.6 mm × 15 cm, 5 µm) (Supelco, St. 

Louis, MO) was used with a solvent flow rate of 0.7 ml/min using a 0.1% formic 

acid/acetonitrile gradient of 0-50% over 40 min.  The ESI MS was operated in positive 

ion mode with the nebulizing pressure (N2) at 2.1×105 Pa (30 Psi), and a drying gas 

temperature at 300ºC with flow of 12 ml/min. The mass spectrometer was optimized at 

m/z 1000 with low skimmer voltage. After optimizing the HPLC separation by 

monitoring the effluent simultaneously at 214 nm and by ESI MS, appropriate fractions 
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with m/z 4963 were collected, pooled, and evaporated to dryness. This fraction was tested 

by MALDI TOF MS to confirm the presence and the purity of the compound.  

 

Peptide mass fingerprinting 

      The HPLC fraction obtained corresponding to m/z 4963 was dissolved in 25 mM 

ammonium bicarbonate solution and an aliquot was subjected to trypsin digestion at 37°C 

for 22 h using sequencing grade recombinant trypsin (Promega, WI). The trypsin digest 

was then desalted and concentrated using Ziptip C18 pipette tips (Millipore, Bedford, 

MA) according to the manufacturers suggested procedure. Two μl of the eluted sample 

was mixed with an equal volume of saturated α-cyano-4-hydroxycinnamic acid in 34% 

acetonitrile containing 0.1% formic acid, spotted onto a stainless steel MALDI target, and 

analyzed by MALDI-TOF MS as described above. The peptide mass fingerprint was 

subjected to a NCBI data base search for identification using the MASCOT search engine 

(http://www.matrixscience.com). The search was performed using a compiled list of the 

30 most abundant monoisotopic peaks in the mass spectrum of the tryptic digest. 

 

Effects of immunomodulators on Tβ4 gene expression 

      Two immunostimulatory agents, Salmonella typhimurium lipopolysaccharide (LPS) 

and Streptococcal pyrogenes peptidoglycan (PGN-PS) (Becton Dickinson, Franklin 

Lakes, NJ) were used to activate HTC cells and determine their effects on Tβ4 gene 

expression and its secretion into the culture medium. HTC cells were grown in RPMI-

1640 medium containing 10% fetal bovine serum for 12 h at a concentration of 2×106 

cells/ml/well in 24 well cell culture plates. Duplicate cultures were then treated with 

http://www.matrixscience.com/�
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either phosphate buffered saline (PBS) (control) or 1 μg LPS or 10 μg PG-PS in PBS for 

an additional 12 h. At the end of incubation, the cells were centrifuged at 250×g and the 

supernatant was used to determine Tβ4 concentration by a competitive enzyme 

immunoassay using a rabbit anti-human Tβ4 antiserum (Abcam, Cambridge, MA) and 

human Tβ4 (ProSpec-Tany TechnoGene Ltd, Israel) as the coating antigen and the 

standard [6, 7]. The nitrite and the IL-6 concentrations in the culture supernatant was 

determined using Griess reagent [8] and a B9 hybridoma bioassay[9] as described earlier 

[3, 4]. 

      After removing the medium, the cells were washed once with sterile PBS and DNA 

free total cellular RNA was purified using RNAeasy and On-column DNA digestion kits 

(Qiagen Corp, Chatsworth, CA). RNA was reverse transcribed to cDNA using a 

Retroscript kit (Ambion, Austin, TX). Two microgram RNA equivalent of cDNA was 

amplified using a “hot start” Taq Polymerase Multiplex PCR kit (Qiagen Corp, 

Chatsworth, CA) in a 200 gradient Peltier Thermal Cycler (MJ Research, Watertown, 

MA, USA) for 30 cycles. The conditions included denaturation at 94°C for 1 min, 

annealing at 60°C for 30 sec, and extension at 72°C for 1 min using primers for Tβ4, 

interleukin-6 (IL-6), and inducible nitric oxide synthase (iNOS) along with β-actin as the 

reference gene [10]. The primers were designed with the Primer 3 software program [11] 

from the coding sequences of chicken Tβ4 (Genbank Accession # NM_001001315) [12], 

IL-6 (Genbank accession # AJ309540) [13], and iNOS (Genbank accession # U46504  

[14, 15]. The primer sequences for Tβ4: forward: 5’GCCGAGATCGAGAAATTTGA3’; 

reverse: 5’GAAGGCAATGCTTGTGGAAT 3’. The coding sequences of chicken IL-6 

precursor and iNOS were, forward: 5’CTCCTCGCCAATCTGAAGTC3’; reverse: 
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5’TCATAGAGACGCTGCTGCCAG3’; forward: 5’AGGCCAAACATCCTGGAGGTC3’; reverse 

5’TCATAGAGACGCTGCTGCCAG3’ respectively. The PCR products were analyzed by 2% 

agarose gel electrophoresis using a low range DNA ladder as standard (Fermentas, 

Hanover, MD). The gels were stained using ethidium bromide and photographed. The 

expression of genes for IL-6 and iNOS, along with the accumulation of IL-6 and nitrite in 

the conditioned media were used as positive controls as the indicators of macrophage 

activation. 

 

RESULTS 

Whole cell MALDI of mononuclear cells, granulocytes, and macrophages 

      The whole cell MALDI TOF mass spectra of mononuclear cells and the HTC cells 

are shown in Figs. 1 and 2. There were several small peaks associated with the 

mononuclear cell population along with a prominent peak at m/z 4963. The macrophage 

cell lines HTC and HD11 showed profiles similar to mononuclear cells with a prominent 

spectral peak at m/z 4963 (Fig. 2). The granulocytes, on the other hand, showed a 

prominent peak corresponding to m/z 3915 but not 4963 (data not shown). 

 

Reverse phase HPLC Purification of 4963 Da peptide 

      The reverse phase-HPLC chromatogram of acid-alcohol extract of HTC cells is 

shown in Fig. 3a.  Based on the analysis of HPLC fraction, a peptide corresponding to 

m/z 4963 was observed to elute at about 10.8 min. The HPLC/ESI-MS spectrum of this 

peptide is shown in Fig 3b. The peaks at m/z 829, 994, 1242 and 1655 correspond to the 
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+6, +5, +4 and +3 charged peptide ions, respectively (Fig. 3b). An oxidized form of the 

peptide with m/z 4979 was a minor peak in the chromatogram. 

 

Peptide mass fingerprinting 

      Attempts to determine the N-terminal sequence of the peptide with m/z 4963 by 

Edman degradation failed, suggesting that it may be N-terminally blocked. MASCOT 

database searches using the 30 most abundant monoisotopic tryptic fragments along with 

a single set of search parameters (4 missed cleavages, 100 ppm mass error, and N-

terminus variable acetyl modification in the protein level) resulted in a statistically 

significant hit corresponding to Tβ4 in Gallus gallus. The search also indicated that Tβ4 

contains methionine at the 6th position that can be oxidized to thymosin β4 sulfoxide, 

which accounts for the peak observed at m/z 4979 (Fig. 2).  

 

Expression of Tβ4 gene 

      The agarose gel electrophoresis profile of PCR products showed no change in the 

expression of Tβ4 in response to either LPS or PGN-PS. However, an increased 

expression of both IL-6 and iNOS genes were evident (Fig. 4). Enzyme immunoassay 

showed no detectable levels of Tβ4 in the culture medium of either control or treated 

cells but the concentrations of IL-6 and nitrite increased by both LPS and PGN treatments 

(Table 1). The absence of any significant peak corresponding to Tβ4 was also confirmed 

by MALDI-TOF MS using the Ziptip purified culture supernatant (data not shown). 
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DISCUSSION AND CONCLUSION 

     The foregoing results demonstrate that whole cell MALDI-TOF has the potential to 

provide insight into cellular characteristics and their possible functions based on the 

relative abundance of their signatory proteins and peptides. The results show that the 

peptide corresponding to m/z 4963 is indeed thymosin β4, an evolutionarily conserved 

peptide that regulates actins polymerization [16, 17]. Its presence in chicken tissues was 

shown using hybridization of a rat Tβ4 probe with chicken blood DNA [18]. However, 

the complete structure of the chicken peptide was not known until 2004 when Dathe and 

Brand-Saberi [12] predicted its sequence from the Tβ4 EST nucleotide sequence. The 

reported peptide sequence did not suggest N-terminal modification and it also contained 

an additional lysine at the C terminus [12] resulting in an average mass of 5181 Da. 

However, our results show that the chicken Tβ4 has a molecular mass of 4963 Da, 

identical to that of human peptide [19, 20]. While, the N-terminal peptide modification 

may not be apparent from nucleotide sequences, the presence of a C-terminal lysine in 

the chicken sequence remains puzzling. 

     The relative abundance of Tβ4 in macrophages and the tissues rich in 

macrophages and lymphocytes such as the spleen, bone marrow, and lungs, [18, 21, 22] 

suggests that it may possibly have other physiological significance aside from its G-actin 

sequestering property. It has been shown that monocyte/macrophages produce Tβ4, and 

suggested that its oxidized form, thymosin β4 sulfoxide, has better anti-inflammatory 

efficacy compared with Tβ4 itself [23]. Whereas intracellular up-regulation of Tβ4 has 

been linked to cancerous and metastatic transformation of cells [24, 25] it has also been 

shown to promote angiogenesis, wound healing, mediate tissue remodeling, subvert 
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inflammation, and prevent apoptosis when administered extracellularly [26-29]. Other 

lines of evidence are suggestive of Tβ4 having anti-microbial activity against several 

gram positive and gram negative bacteria [30]. These extra cellular actions of Tβ4 are 

consistent with the functions of macrophages that not only have antimicrobial activities 

but are also involved in the resolution of inflammation by promoting tissue healing and 

angiogenesis [31]. A high level of occurrence of Tβ4 in macrophages is likely to help 

these functions. However, the secretion of Tβ4 has been controversial due to an apparent 

absence of a signal sequence [18, 32].  Several studies have shown the occurrence of Tβ4 

in wound fluids, [33] suggesting that it can not only be secreted but also actively 

internalized. To examine whether activation of macrophages results in Tβ4 secretion and 

alters the expression of its gene, the HTC cells were treated with bacterial LPS and 

peptidoglycan. Although these treatments changed the expression of genes encoding IL-6 

and iNOS along with their corresponding products, IL-6 and nitrite, there was neither any 

effect in the expression of Tβ4 mRNA nor its concentration in the condition medium. 

Thus, it is likely that the Tβ4 in the wound fluids may be derived from dying or dead 

cells or is secreted under different conditions and by other cell types as has been 

demonstrated by Bock-Marquette et al [34]. Dead macrophages and similar other cells 

such as the platelets, in the inflamed areas, may also provide Tβ4 to initiate extracellular 

functions such as wound healing. In conclusion, although the physiological significance 

of Tβ4 in macrophages is speculated, the mechanism and conditions under which it is 

expressed and regulated need to be determined. 
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Table 1: Effects of lipopolysaccharide (LPS) and peptidoglycan on nitrite, IL-6, and Tβ4  

concentrations of HTC cell culture supernatant. 

 

Treatment Nitrite  

µg/ml 

Interleukin-6 

Units/ml 

Thymosin β4 

PBS (Control) 0.14 ± 0.06 0.03 ± 0.003 BD 

LPS (1µg/ml) 1.66 ± 0.03 1.752 ± 0.02 BD 

PG-PS (10µg/ml) 1.48 ± 0.03 1.618 ± 0.04 BD 

BD= below detection 
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FIGURE LEGENDS 

Figure 1:  Whole cell MALDI-TOF mass spectrum of chicken peripheral blood 

mononuclear cells isolated by density gradient separation showing m/z 4963 as a major 

peak. 

Figure 2:  Whole cell MALDI-TOF mass spectrum of HTC cells showing m/z 4963 as a 

major peak. 

Figure 3: (a) RP-HPLC trace of HTC cell extract showing the elution of 4963 Da and 

4979 Da peptides. (b) Electrospray mass spectrum from the HPLC fraction collected at 

10.8 min. 

Figure 4: An agarose gel electrophoresis profile of RT-PCR amplicons of Tβ4, IL-6, 

iNOS, and β-actin from HTC cells treated with either control medium (1), 1 μg LPS (2), 

or 10 μg PG-PS (3) for 12 h.  
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Figure 2. 
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Figure 3. 
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Figure 4. 
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ABSTRACT 

Matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-

TOF-MS) was used to screen avian heterophils in the m/z range of 1-20 kDa with an 

objective to identify the cell associated peptides that may be reflective of their functional 

physiology.  The MALDI-TOF-MS profiles of crude heterophil extract showed a high 

intensity peak with average mass of m/z 3916.1 for chicken and at m/z 4129.6 for turkey 

respectively. To identify these peaks, we first purified m/z 3916.1 from chicken bone 

marrow extract using reverse phase high performance liquid chromatography (RP-

HPLC). Edman sequencing and peptide mass fingerprinting exclusively confirmed this 

peptide as beta-defensin 2 (BD2) or gallinacin-2, a broad range antimicrobial peptide. 

Uniprot database search followed by the MASCOT sequence query revealed m/z 4129.6 

to be the corresponding turkey ortholog of avian beta-defensin 2 (AvBD2), also called 

turkey heterophil peptide 2 (THP2). Both AvBD2 peptides are 36 amino acids long 

including a highly conserved region with 6 invariant cysteines forming three disulfide 

bonds characteristic of defensins.  These results demonstrate that screening of the crude 

extract by MALDI-TOF-MS can identify cell or tissue associated peptides in their 

functional/mature forms. This study also confirms the existence and the complete mature 

peptide sequence of the turkey heterophilic BD2 previously proposed based on cDNA 

analysis. 

Key words: heterophils, mass spectrometry, avian beta defensin 
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INTRODUCTION 

Low molecular weight (MW) proteins (<20 kDa) and peptides regulate many 

physiological functions as hormones, neurotransmitters, antimicrobials, growth and 

signaling factors. It is likely that differentiated cells and tissues express many bioactive 

peptides, which can serve as biomarkers. Identifying and characterizing these peptides in 

cells and tissues can provide insight into their functional physiology involving 

development, differentiation, metabolism, and disease related changes.  Although there 

has been a rapid development in peptide research over the last few decades, 

“peptidomics” is still under explored because small peptides are not well suited for 

resolution by conventional proteomic techniques such as 2D gel electrophoresis 

(McNulty and Slemmon, 2004). However, recent advances in mass spectrometry (MS) 

particularly MALDI and ESI techniques have facilitated direct screening, identification 

and characterization of small peptides with significant sensitivity and accuracy (Schwartz 

et al., 2003). MS techniques have been applied at the organismal levels to characterize 

prokaryotes (Fox, 2006; Lay, 2001), to study physiological and pathological changes at 

tissue levels (Blomqvist et al., 1999; Chaurand et al., 1999; Nelsestuen et al., 2005), and 

to characterize biological fluids and cellular secretions (Hida et al., 2005; Li et al., 2000; 

Romanova et al., 2006; Schrader and Schulz-Knappe, 2001; Thompson et al., 2006; 

Williams et al., 2006). MS based identification and characterization of tissue associated 

peptides has been extensively used to study neuropeptides from a variety of organisms 

(DeKeyser and Li, 2007; Desiderio et al., 2000; Schmidt et al., 2008). Using a whole cell 

screen, we have previously detected differential profiles of peptides in monocytes and 

granulocytes and identified thymosin beta4 in chicken monocytes and macrophages 
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(Kannan et al., 2007; Rath et al., 2007). However, characterizing such peptides and 

understanding their relevance to specific cell physiologies or use as biomarkers requires 

extensive study. Also, the homology of peptides and peptide biomarkers between related 

species needs more study.  To explore the detection of biomarker peptides in discrete 

cells and related species, we screened the crude heterophil extracts of chickens and 

turkeys by MALDI-TOF-MS. Based on the signal intensities in the spectra from crude 

extracts we selected 2 peptides (one from each species) for further study.  More complete 

characterization of these potential biomarkers was accomplished by HPLC/MS and 

Edman degradation to establish their identities.  In this case both peptides were identified 

as AvBD2 from each species.  It is noteworthy that the specific AvBD2s reported herein 

have been confirmed in chicken and from cDNA studies in turkey (Brockus et al., 1998; 

Evans et al., 1994; Harwig et al., 1994).  This report provides experimental evidence in 

complete agreement with the prior studies on chicken and turkey BD2.   

 

MATERIALS AND METHODS 

Chemicals 

One Step PolymorphTM medium (Accurate Chemicals Co, Westbury, NY), recombinant 

trypsin (Promega, Madison, WI), RPMI-1640 medium (Mediatech Inc., Herndon, VA), 

C18 ZipTip micropipette tips (Millipore, Bedford, MA), and K-EDTA Vacutainer tubes 

(BD Bioscience, Franklin, NJ) were purchased from the respective companies.  All other 

chemicals and reagents were obtained from Sigma Chemical Company (St. Louis, MO). 
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Isolation of Heterophils 

All animal procedures were approved by institutional animal use and care committee. 

Blood was obtained from three week-old broiler chickens and six week-old turkeys by 

cardiac puncture using K-EDTA Vacutainer tubes prior to killing.  Three ml of individual 

blood samples were layered over 2ml PolymorphprepTM density gradient medium and 

spun at 500 X g for 40 min at 23°C. The density gradient medium containing 

granulocytes, between the top mononuclear cell layer and the bottom red blood cells, was 

treated per manufacturer’s protocol to isolate granulocytic heterophils as described 

previously (Rath et al., 1998). The granulocyte preparations from chickens and turkeys 

were pooled separately, centrifuged to pellet the cells, washed 3 times with RPMI-1640 

medium by successive centrifugation at 380 X g for 8 min each.  The purity of cells was 

determined by staining the cytocentrifuged cells with fluorescein isothiocyanate (FITC) 

and propidium iodide (PI) (Rath et al., 1998) which showed the cells to be predominantly 

heterophil granulocytes (Fig 1). 

 

Chicken and Turkey Bone marrow Preparation 

The birds were killed by carbon dioxide inhalation and the tibias were removed free of 

soft tissues and periosteum.  The tips of each extremity was cut and the bones were 

placed in 15 ml centrifuge tubes and spun at 100 X g for 5 min at 23°C to collect the 

bone marrow.  The bone marrows were frozen at -200C until extraction. 
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MALDI-TOF-MS 

The heterophil granulocytes (1x106cells/ml) and the bone marrow (~100 mg/ml) were 

extracted with 70% methanol containing 0.2% acetic acid for 2 h to overnight, and 

centrifuged at 21,000 X g for 10 min to obtain the supernatant.  Two μl of supernatant 

was mixed with an equal volume of 1M 2, 5-dihydroxybenzoic acid (DHB) in 90% 

methanol containing 0.1% formic acid and spotted onto a Bruker MTP 384 stainless steel 

MALDI target.  MALDI-TOF-MS analysis was performed in the spectral range of m/z 1-

20 kDa in positive ion reflectron mode using a Bruker Reflex III MALDI-TOF mass 

spectrometer (Bruker Daltonik GMBH, Bremen, Germany). Reproducibility and signal 

intensity were the primary criteria for the selection of corresponding peaks to purify and 

characterize the peptides. Average mass values were measured in the MALDI-TOF-MS 

experiments on crude extracts.  

 

Reverse Phase HPLC-ESI-MS  

The chicken bone marrow extract was subjected to RP-HPLC (Hewlett 1100; Hewlett 

Packard, Palo Alto, CA) separation using SUPELCO C8 column (15 cm x 4.6 mm, 5 µm) 

which is coupled online to a quadrapole ion trap electrospray ionization mass 

spectrometer (ESI-MS) (Bruker Esquire 2000; Billerica, MA) for MS analysis.  The 

chicken peptide m/z 3916.1 was purified at a solvent flow rate of 0.7 ml /min using a 

0.1% formic acid/ acetonitrile gradient of 0-50% over 50 min period. The ESI-MS was 

operated in positive ion mode with the dry gas temperature of 300ºC, drying gas flow of 

12 ml/min and nebulizing N2 pressure of 2.1 × 105 Pa (30 Psi). The mass spectrometer 

was optimized at m/z 1000 with low skimmer voltage to avoid ion fragmentation and 
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charge stripping. After optimizing the HPLC separation by monitoring the effluent 

simultaneously using total ion chromatogram and by ESI-MS, the fractions 

corresponding to m/z 3916.1 was collected, pooled, and evaporated to dryness using a 

SpeedVac concentrator (Savant Instruments, Inc., Farmingdale, NY). Homogeneities of 

these fractions were tested by MALDI-TOF-MS to confirm the purity of the peptides.  

 

Automated Protein Sequencing 

The RP-HPLC purified m/z 3916.1 peptide was spotted on a PVDF membrane and 

subjected to an automated Edman degradation using an Applied Biosystems Procise 

sequencer (Weiterstadt, Germany) to determine the N-terminal sequence.  

 

Peptide mass Fingerprinting using MALDI-TOF-MS 

Replicate aliquots of the purified peptide of average mass m/z 3916.1 were reconstituted 

in 25 mM ammonium bicarbonate and subjected to reduction and alkylation prior to 

digestion with recombinant trypsin.  Peptide aliquots were reduced for 1 hr with 10 mM 

1,4- dithiothreitol (DTT) followed by alkylation with 20 mM 2-iodoacetamide in dark for 

25 min at 37°C.  Excess iodoacetamide was quenched by an addition of DTT.  Reduced 

and alkylated peptides were then digested with trypsin for 22 h at 37°C, desalted, and 

concentrated using C18 ZipTips as recommended by manufacturer’s protocol. Two μl of 

the eluted sample was then mixed with an equal volume of saturated α-cyano-4-

hydroxycinnamic acid prepared in 34% acetonitrile containing 0.1% formic acid and 

spotted on to the MALDI target plate for MS analysis. A Bruker reflex III MALDI-TOF 

mass spectrometer was operated in positive ion reflectron mode and optimized in the m/z 
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range of 500 Da to 2 kDa.  Peptide mass finger print obtained from the MALDI-TOF-MS 

was subjected to data base search as described below.  Monoisotopic mass values were 

measured and used in the peptide mapping experiments. 

 

Database Search for m/z 3916.1 

Using the partial N- terminal sequence of m/z 3916.1, a NCBI blast search 

(http://www.ncbi.nlm.nih.gov) and a MASCOT sequence query search 

(http://www.matrixscience.com) were done to establish this peptide’s identity. The tryptic 

peptide mass fingerprint (PMF) MASCOT search confirmed the identification of the 

peptide. The PMF was performed using a compiled list of 10 most abundant 

monoisotopic peaks in the mass spectrum. PMF search parameters at NCBInr database 

were set to a peptide tolerance of 100 ppm with fixed carbamidomethyl modification and 

maximum number of missed cleavages set to one under chordate taxonomy.  

 

Sequence Query for m/z 4129.6 

Based on the chicken sequence, the Uniprot database in the Expasy proteomic server 

(http://www.expasy.org/uniprot/P46158) was used to test for homologous sequences, in 

this case to determine the identity of the turkey peptide. It was verified by Mascot 

sequence query search using the reduced average mass 4135.7 (+6 Da for disulfides) and 

partial Edman sequence of the chicken peptide.  
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RESULTS 

 MALDI-TOF-MS Profiles 

Table 1 shows a list of twelve most abundant peaks from the MALDI-TOF-MS spectra of 

chicken and turkey heterophils. Fig. 2 and 3 show the MS profiles of methanol-acetic 

acid extract of chicken and turkey bone marrow.  The most intense peaks in the chicken 

and turkey bone marrow spectra were found at m/z 3916.1 and m/z 4129.6 respectively 

similar to their corresponding peaks observed in the MALDI-TOF-MS profile of the 

heterophils (Fig. 2 and 3, Table 1).  

 

Reverse Phase HPLC Purification of m/z 3916.1 peptide 

The total ion chromatogram (TIC) of methanol-acetic acid extract of the chicken bone 

marrow is shown in Fig. 4. The peptide corresponding to m/z 3916.1 was eluted at about 

24.2 min. Corresponding ESI-MS spectrum of the peak, shown in Fig. 5, confirms the 

occurrence of the peptide in its four multiple-protonated species, m/z 650.9, 784.3, 979.9, 

and 1305.9, with charges corresponding to +6, +5, +4, and +3 respectively (Fig 5). 

 

Edman Sequencing 

Edman degradation of m/z 3916 yielded an N-terminal partial sequence of first 15 amino 

acids: LF_KGGS_HFGG_PS. The missing amino acid positions in between are 

conventionally assigned to be unmodified cysteine residues. 
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Identification of m/z 3916.1 peptide 

NCBInr blast search with the partial sequence LFCKGGSCHFGGCPS produced 

alignments with Gallus gallus beta-defensins 2, 3 and 1. However, the BD2 sequences 

showed the highest hit with an expected value (E) of 2e-08 compared with BD 3 and 1 

that had an E value of 36. The E value refers to the number of matches with equal or 

better scores that are expected to occur by chance alone. MASCOT sequence query was 

done using the reduced monoisotopic peptide mass 3919.6 along with the partial N-

terminal sequence LFCKGGSCHFGGCPS. The search parameters at Swissprot/NCBInr 

database set at peptide tolerance 100 ppm and maximum number of missed cleavages at 

zero under taxonomy of chordate resulted in a statistically significant hit for Gallus 

gallus BD2. 

          Identification of 3916 peptide was further established by its tryptic mass fingerprint 

generated by MALDI-TOF-MS (Fig 6). MASCOT data base search using the tryptic 

mass fingerprint also resulted in a statistically significant hit for AvBD2 with a high 

probability MOWSE score of 112 and an E value of 5.9e-06. The peaks from the peptide 

mass fingerprint, m/z 929.4, 1208.5, 1613.7, 2161.9 (Fig 6), corresponded to the cysteine 

modified tryptic peptides, VGSCFGFR (position 20-27), SCCKWPWNA (position 28-

36), GGSCHFGGCPSHLIK (position 5-19), LFCKGGSCHFGGCPSHLIK (position 1-

19) respectively thus, showing a sequence coverage of 100% spanning the mature Gallus 

gallus AvBD2 peptide sequence. 

 

 

 



 58 

Identification of m/z 4129.6 peptide 

The first attempt to identify this peptide was a homology search.  The Uniprot database 

search for chicken AvBD2 homologous peptides identified turkey heterophil peptide 2 

with 90% homology.  Likewise a MASCOT sequence query using its reduced average 

mass and partial chicken AvBD2 sequence also resulted in a hit for THP2 with a high 

probability MOWSE score of 235 and an E value of 3e-18.   Because cDNA experiments 

have also predicted the same sequence for turkey AvBD2 (Brockus et al., 1998), it was 

evident that this peptide (THP2) was indeed with MW 4129.6.  Since the peptide was 

identified as a homolog, additional experiments were not needed. 

 

DISCUSSION 

The study was initiated with the hypothesis that different cells may exhibit their specific 

profiles of peptides in a manner reflective of their physiology, and also that it might be 

possible to extrapolate across taxonomy.  MALDI-TOF-MS analysis of crude extracts of 

chicken and turkey heterophils showed different spectral profiles for each population of 

cells. Using signal intensity as a criterion we selected two high intensity peaks, m/z 

3916.1 in chicken and m/z 4129.6 in turkey, to determine their identities.  The first was 

clearly established as chicken AvBD2 and the second was consistent with a known turkey 

protein, THP2, that was predicted to be AvBD2, an ortholog of chicken AvBD2 or 

gallinacin-2  (Brockus et al., 1998; Evans et al., 1994; Harwig et al., 1994).  AvBD2 is a 

cationic anti microbial peptide predominantly expressed in heterophils, intestinal and 

reproductive tissues of the birds (Harwig et al., 1994; Hida et al., 2005; van Dijk et al., 

2007; Yoshimura et al., 2006).  Since heterophils originate in the bone marrow, it appears 
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to be a significant source of this peptide. Other than chicken and turkey, AvBD2 

orthologs have been found in other species of birds such as penguins, ostriches, and 

pigeons (Sugiarto and Yu, 2006; Thouzeau et al., 2003; van Dijk et al., 2008).  The beta-

defensins, in general, have a wide spectrum anti-microbial activity and exhibit 

evolutionarily high conservancy such as the position specific disulfide bonds (Brogden, 

2005; Sugiarto and Yu, 2004; Zasloff, 2002). In chickens approximately 14 different 

AvBD has been identified (Lynn et al., 2007).  The identification of different chicken 

AvBDs in their pre-protein forms have been made by genome browsing and 

bioinformatics followed by gene expression studies (Higgs et al., 2005; Lynn et al., 2004; 

Xiao et al., 2004). Since the exact processing of pro peptide is not understood, the 

identity of mature peptides that have been deduced by bioinformatics approaches have 

led to varying masses of the mature form. For example the mature peptide for chicken 

AvBD2 has been reported to have different masses (Harwig et al., 1994; Higgs et al., 

2005; Lynn et al., 2004; Xiao et al., 2004).   In our study, the molecular mass of the 

mature chicken AvBD2 showed to be 3916.1 consistent with the results of Harwig et al. 

(1994) and the turkey peptide 4129.6 as reported (Evans et al., 1994). A second peptide 

with m/z 4503 present in the chicken heterophils and bone marrow extracts, also shows to 

be an exact match with beta-defensin 1 reported by Harwig et al (1994).  

        In a previous study we compared peripheral blood heterophils, mononuclear cells, 

and a chicken macrophage line HTC and identified the presence of thymosin b4 in 

chicken macrophages but not in the granulocytes (Kannan et al., 2007; Rath et al., 2007). 

Both AvBD1 (m/z 4503) and AvBD2 were absent in the macrophages. Although both 

macrophages and heterophils are derived from the bone marrow and share many over 
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lapping innate immune functions, they show distinctive spectral profiles by MALDI-

TOF-MS suggesting that these profiles might be tissue or cell specific. While genome 

based bioinformatics has the advantage of predicting the structure of the whole peptide or 

proteins, the MALDI based approach can be a tool of discovery and identification of 

known as well as novel peptides possibly in their functional/mature forms. In this 

application MALDI-TOF-MS may be a rapid method to probe cell or tissues for 

physiological changes, and perhaps disease associated changes.  A potential downside of 

direct MALDI approach is that in a typical mixture of peptides, all molecules do not 

ionize with equal efficiency because of the differences in amino acid composition and 

some sequences are suppressed by co-occurring peptides.  This problem can be easily 

corrected by peptide fractionation using standard chromatographic approaches before 

MALDI.  However, at this point this limitation is largely theoretical, because most related 

peptides will have similar spectral behavior. Moreover, the time/cost advantages of the 

direct analysis of cells or crude extracts suggest that this should be the method of first 

resort.  In conclusion, our study shows that rapid screening of crude extracts by MALDI-

TOF-MS can detect important homologous peptides relevant to disease or other 

peptidomics endpoints, even across species lines. 
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Table 1: Average mass and relative intensities of the twelve most abundant peaks 

associated with the MALDI-TOF of a typical crude chicken and turkey heterophil extract. 

The errors for the given masses are ± 100 ppm. 

 

Chicken Heterophils Turkey Heterophils 

Peaks (m/z) Relative Intensities Peaks (m/z) Relative Intensities 

3916.1 1 4129.6 1 

3844.9 0.70 2784.1 0.91 

3731.2 0.53 4362.5 0.24 

2811.2 0.36 5516.1 0.12 

4503.9 0.27 8565.0 0.12 

2601.6 0.18 5091.1 0.09 

5353.4 0.12 2588.2 0.09 

3531.2 0.10 2065.2 0.08 

8165.7 0.09 5939.5 0.06 

13959.9 0.09 6026.1 0.05 

7646.8 0.07 6598.1 0.05 

6027.1 0.05 9685.5 0.03 
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FIGURE LEGENDS 

Figure 1: Chicken peripheral blood heterophils stained with FITC and propidium iodide 

(X400 magnification) 

Figure 2: MALDI-TOF-MS of chicken bone marrow extract shows m/z 3916 (arrow) as 

a high intensity peak. 

Figure 3: MALDI-TOF-MS of turkey bone marrow extract showing several peaks along 

with m/z 4129.1 (arrow) as the most prominent peak. 

Figure 4: Total ion chromatogram of RP-HPLC of chicken bone marrow extract showing 

the elution of 3916 Da peptide at 24.2 min.  

Figure 5: Electrospray ionization mass spectrum of the HPLC fraction collected at 24.2 

min showing different protonated species of 3916 Da peptide 

Figure 6: Peptide mass fingerprint of m/z 3916 after trypsin digestion. Arrows 

correspond to MW of tryptic peptides spanning different stretches of amino acids with 

carbamidomethyl (CAM) modification of the cysteine residues in the positions specified 

in the parenthesis. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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ABSTRACT 

Defensins are antimicrobial peptides containing six cysteine residues bridged internally 

by 3 characteristic disulfide bonds. Only beta defensin isoforms occur in birds. Avian 

beta defensin 2 (AvBD2) is the major isoform present in heterophils. In this study, we are 

reporting a direct MALDI approach to screen and identify avian beta defensins from 

crude heterophil and bone marrow extracts leading to the deduction of amino acid 

sequences for pheasant and quail AvBD2. Taking advantage of the characteristic three-

disulfide bonds in defensins by reduction and alkylation, using dithiothreitol and 

iodoacetamide, this approach was able to differentiate these peptides from others with 

different numbers of disulfide bonds.  Before reduction/alkylation, MALDI-TOF mass 

spectra of heterophil extracts of chicken, turkey, pheasant, and quail showed high 

intensity peaks corresponding to m/z 3916, 4129, 4114, and 4163 respectively, but after 

reduction/alkylation, these peaks were shifted by 348 Da consistent with the presence of 

six cysteine residues. Metastable ion decay studies of corresponding reduced/alkylated 

ions by MALDI LIFT-TOF/TOF showed the presence of a conserved stretch of 4 amino 

acids, ‘LFCK’ at the N-terminal, indicative of AvBD2. Comparing with known 

sequences of chicken and turkey AvBD2, the pheasant and quail peptide sequences were 

deduced assuming 90% homology. MALDI in source decay (ISD) fragmentation was 

performed for the respective peptides, purified by reverse phase HPLC from their bone 

marrow extracts. This was a parallel approach to verify the sequence obtained from direct 

MALDI by MS/MS (MALDI LIFT-TOF/TOF) which showed the sequences to be 

congruent. 

Key words: avian beta defensin, mass spectrometry, tandem mass spectrometry, MALDI 
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Introduction 

Defensins are cationic, cysteine-rich antimicrobial peptides that are one of the 

most evolutionarily conserved components of innate immunity occurring in many 

vertebrate and invertebrate species. 1-5 The interaction between positive charges on 

defensins and negatively charged sites on microbial membranes forms the basis of their 

antimicrobial effects against a broad range of bacteria, fungi, protozoa and enveloped 

viruses. 2, 6, 7 Vertebrate defensins are classified into three main categories, namely α, β 

and θ defensins, based on disulfide bond pairing of 6 conserved cysteine residues as 

Cys1-Cys6, Cys2-Cys4, Cys3-Cys5 for α defensins, Cys1-Cys5, Cys2-Cys4, Cys3-Cys6 

for β defensins and Cys1-Cys4, Cys2-Cys5, Cys3-Cys6 for θ defensins. 4, 8-10 The 

absence of α and θ defensins in sub mammalian vertebrates, such as birds and fish, 

suggests that defensin subfamilies possibly evolved from an ancestral β defensin gene by 

duplication, polymorphism, and diversification. 11 The major sources of these defensins 

are myeloid cells such as neutrophils (heterophils in birds) and epithelial cells. 8, 12-15 

While over 14 isoforms of beta defensins have been identified in various chicken 

tissues only a few have been reported from other species of birds. 16-19 The functional and 

mature forms of these peptides are the result of signal and other tissue specific 

peptidases. Although genomics and bioinformatics have facilitated prediction of defensin 

structures, they cannot unambiguously predict the functional and mature forms of the 

peptide therefore, requiring experimental verifications. In recent years, mass 

spectrometry has been successfully applied to identify and characterize many cell and 

tissue associated peptides in several invertebrate and vertebrate species. 20, 21, 22 This 

strategy can reveal tissue associated mature and functional peptides, sometimes even with 



 76 

minimal pre-analysis sample preparation. In previous studies, using direct screening of 

chicken and turkey heterophil extracts, by MALDI-TOF-MS followed by HPLC 

purification, we identified β defensins respectively in their mature forms, which on 

reduction and alkylation showed a 348 Da mass shift. 23, 24 Hence, the current study was 

undertaken to extend our prior work to identify AvBD2 from two other avian species, 

pheasant and quail, using a rapid and a simple approach to increase the specificity with 

minimal impact on the method’s sensitivity. Reduction and alkylation was incorporated 

to our general MALDI approach to selectively screen peptides having 6 cysteine residues 

followed by mass spectrometric fragmentation to sequence these peptides. This ‘top 

down’ fragmentation was introduced in place of a relatively time consuming ‘bottom up’ 

enzymatic digestion method which involves HPLC isolation and MALDI peptide mass 

fingerprinting (PMF). Herein, we report for the first time the mature peptide sequence of 

pheasant and quail AvBD2. 

 

Experimental Procedures 

Chemicals and Reagents. One Step PolymorphTM gradient (Accurate Chemicals 

Co, Westbury, NY), K-EDTA Vacutainer tubes (BD Bioscience, Franklin, NJ), C18 

ZipTip micropipette tips (Millipore, Billerica, MA), Bio-Rad dye binding reagent  (Bio-

Rad, Hercules, CA), peptide calibration standards (m/z 500-5000 Da, Bruker Daltonics, 

Bremen, Germany), Bio wide Pore C8 reverse phase HPLC column (15 cm x 4.6 mm, 5 

µm) (Supelco, St. Louis, MO) were purchased from respective vendors. All other 

reagents including fluorescein isothiocyanate (FITC), propidium iodide (PI), 1,4- 



 77 

dithiothreitol (DTT), 2-iodoacetamide (IAA), 2, 5-dihydroxybenzoic acid (DHB), 1,5-

diaminonaphthalene (DAN) were purchased from Sigma Aldrich (St. Louis, MO). 

 

Isolation of Heterophils. Heterophil granulocytes were isolated from K-EDTA 

anti-coagulated peripheral blood using One Step PolymorphTM gradient centrifugation. 23 

The cells were washed with RPMI media successively and the granulocyte enrichment 

was determined for purity by staining the cells with FITC and PI. 25 Following bleeding, 

birds were euthanized and bone marrow collected from tibia as described previously. 23 

Bone marrow samples were frozen at -200C until extraction.  

 

Sample Preparation and Direct MALDI Screening. Approximately, 1x106 

heterophils or ~100 mg of bone marrow from chicken, turkey, pheasant and quail were 

homogenized in 1 mL of 70% methanol containing 0.2% acetic acid, allowed to 

precipitate overnight at 40C, and centrifuged at 21,000 X g for 10 min to obtain the 

supernatant. For preliminary screening, the crude supernatants were mixed in equal 

volumes with 1M DHB prepared in 90% methanol, 0.1% formic acid. Spotting was done 

using the standard dried droplet method by allowing 1-2 microlitres of a 1:1 

matrix/analyte mixture to air dry on a Bruker MTP 384 ground stainless steel MALDI 

target. Mass spectra were acquired on Reflex III MALDI-TOF (Bruker Daltonics GMBH, 

Bremen, Germany) operated in the positive-ion reflectron mode. Carbamidomethylation 

was performed by reducing the extracts for 1 hr with 10 mM 1,4-dithiothreitol (DTT) 

followed by alkylation with 20 mM 2-iodoacetamide in the dark for 25 min at 370C. 24  

High intensity mass spectral peaks showing the expected carbamidomethylation of six 
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cysteines, as indicated by a 348 Da mass shift (after alkylation), were tentatively 

identified as beta defensins and subjected to subsequent MS based sequencing. 

 

MALDI-MS Sequencing. Presumed beta defensins were sequenced using two 

different MS approaches. Main approach proposed here for quick and direct analysis 

involved metastable parent ion selection followed by LIFT-TOF/TOF to study fragment 

ions produced by its gas phase unimolecular dissociation 26. The other method used for 

verification utilizes an indirect approach involving HPLC purification followed by matrix 

enhanced MALDI-ISD fragmentation.  These experiments were performed on an 

Ultraflex II MALDI TOF/TOF (Bruker Daltonics GMBH, Bremen, Germany). The 

amino acid sequence was derived from differences between the selected parent ion’s 

mass and the masses of the metastable ion fragments in the MS/MS spectrum. For ISD 

studies, peptides were first purified by reverse phase HPLC chromatography (Hewlett 

1100; Hewlett Packard, Palo Alto, CA) from their respective bone marrow extracts using 

a method described previously. 23 The HPLC fractions corresponding to these peptides 

were collected and tested for purity by MALDI-TOF-MS before and after subjecting to 

reduction and alkylation. The experiments relying on enhanced ISD employed a saturated 

solution of DAN prepared in 50% ACN/ 0.1% FA as the matrix. 27, 28 The purified and 

reduced/alkylated peptides were each mixed with DAN in equal volumes and spotted on 

the MALDI target plate.  Then the MALDI-ISD mass spectra were used to verify the 

sequence derived from the metastable ion decay studies.  

 



 79 

Data Analysis. Chicken and turkey AvBD2 peptide sequences 13, 29 were used as 

references to determine the sequences of the pheasant and quail peptides. Bruker Flex 

Analysis 2.4, 3.0 softwares were used to generate the peak list from the MS/MS and MS 

spectra.  For MS/MS the average isotopic mass values were used whereas for MS with 

enhanced ISD the monoisotopic mass values were used for sequence determining 

calculations.  Typically a, b and y ions were observed in metastable ion decay studies by 

MALDI LIFT-TOF/TOF (MS/MS) whereas c and z+2 ions dominated the matrix-

enhanced ISD experiments.  Spectra generated from reduced/alkylated forms of chicken 

and turkey AvBD2 were compared with their corresponding theoretical fragment ions 

using Bruker’s Biotools 3.1 software.  Ions generated from the reduced/alkylated 

pheasant and quail peptides were likewise compared with those of chicken and turkey 

AvBD2 to identify differences indicative of possible mutations in their amino acid 

sequences.  

 

Results and Discussion 

Screening Beta Defensin like Peptides by Direct MALDI. Direct screening of 

tissue extracts by MALDI-TOF-MS has been shown to be a promising strategy not only 

to identify and characterize novel peptides but also to distinguish cell specific proteins 

and peptides. 30-34 Direct MALDI-TOF-MS of crude heterophil extracts from chicken, 

turkey, pheasant and quail, showed distinct spectral profiles attributable to their 

individual peptide constituents (Figure 1). Not surprisingly, bone marrow extracts from 

all four species also contained peaks similar to those present in the corresponding 

heterophil MALDI-TOF-MS profiles (data not shown). The most prominent and distinct 
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peaks were m/z 3916 in chicken, m/z 4129 in turkey, m/z 4114 in pheasant and m/z 4163 

in quail. The chicken m/z 3916 and turkey m/z 4129 corresponded to their mature AvBD2 

peptides having four amino acid differences but otherwise more than 90% sequence 

homology. 13, 23, 29 By analogy, high intensity peaks from pheasant and quail heterophil 

extracts obtained under similar conditions, could likely represent respective beta 

defensins. A simple way to provide additional evidence regarding the identity of the 

peptides in these samples was selective alkylation of cysteine residues. Direct MALDI-

TOF mass spectral profiles obtained for reduced/alkylated heterophil extracts of each 

species showed that the specific peptide peaks were shifted by 348 Da upon 

carbamidomethylation indicative of six cysteines, characteristic of beta defensins.  

Figures 2a and b compare direct MALDI-TOF-MS profiles of chicken before and after 

reduction/alkylation. The most intense peak at m/z 3916 (AvBD2) and the peak at m/z 

4503, which corresponds to chicken AvBD1, were shifted by 348 Da. In turkey, the 

intense peak at m/z 4129 identified as AvBD2 23 also shifted by 348 Da (Figure 2c,d) 

whereas peak at m/z 2784 did not show a mass shift suggesting that it has no cysteine 

residues. The Figures 2e,f for pheasant and 2g,h for quail, illustrate shifts of two 

respective high intensity peaks by 348 Da. By analogy with chicken and turkey AvBD2, 

it was likely that the reduced/alkylated peaks at m/z 4463 and 4512 correspond to 

pheasant and quail AvBD2 respectively. 

 

Identification of Avian Beta Defensin 2.  The ions at m/z 4264, 4478, 4463 and 

4512 from chicken, turkey, pheasant and quail respectively, were examined by MS/MS 

(MALDI LIFT-TOF/TOF) to obtain sequence information. Fragment masses from 
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chicken and turkey were compared with pheasant and quail to identify similarities and 

differences for the conserved or mutated regions in the amino acid sequences.  The 

observed fragment ions in Table 1, for chicken and turkey AvBD2 were consistent with 

the known sequences of these species.  

A systematic approach was used to compare certain common ions of pheasant and 

quail with those of chicken and turkey starting with N- and/or C- termini fragments (an, 

bn and yn series).  For instance, fragment ions at m/z 550 and 522 were found common in 

all four species (Table 1). Therefore, based on the chicken and turkey sequences and 

conservancy with other avian species 12, 13, 18, 19, 35, 36 these b4 and a4 ions correspond to 

the N-terminal amino acid stretch of LFCK (position 1-4), a characteristic of AvBD2 

(Figure 3).  Table 1 shows a series of ions in pheasant identical to yn in chicken up to 

n=24 which indicates that the amino acid stretch from position 13 to 36 in pheasant are 

same as in chicken corresponding to sequence ‘CPSHLIVGSCFGFRSCCKWPWNA’. The 

observed accurate intact monoisotopic mass difference between chicken and pheasant 

peptide showed 198 Da (chicken, m/z 3913.7 and pheasant, m/z 4111.8). Since the amino 

acid sequences in pheasant peptide of 1-4 and 13-36 of pheasant are the same as chicken 

AvBD2, the 198 Da mass differences could be nested in the N-terminal stretch of amino 

acids between 5 and 12 due to specific positional mutations. Because, the amino acids at 

position 6 and 8-11 are reported to be highly conserved in AvBD2, across species such as 

chicken, turkey, duck, and ostrich, (Figure 3), the most likely mutations in pheasant 

would be at positions 5, 7 or 12. Replacing glycine (G) at position 5 and 12 in chicken 

AvBD2 with arginine (R) matched the mass difference of 198 Da between chicken and 

pheasant peptides leading to a possible sequence of 
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‘LFCKRGSCHFGRCPSHLIKVGSCFGFRSCCKWPWNA’ which was in agreement with other 

observed an and bn ions (Table 1). 

Likewise, a series of fragment ions similar to yn in chicken were found in quail up 

to y24, all of which were shifted by a constant mass of 49 Da (Table 1).  For instance, 

peak at m/z 253 in quail was 49 Da higher than the y2 ion of chicken. The peak at m/z 

3118 of quail was 49 Da more than the y24 of chicken. This is coherent with possible 

mutation of asparagine (N) to tyrosine (Y) at position 35 in quail.  The fact that the same 

series of ions, mentioned above, showed 48 Da differences compared with yn series up to 

y24 in turkey, further supports the possible mutation of aspartic acid (D) to tyrosine (Y) 

transition at position 35 in quail (Table 1).  As noted above, the amino acid sequence of 

1-4, 6 and 8-11 are reported to be highly conserved in AvBD2 across the species. 

Therefore, mutations are most likely present at positions 5, 7 or 12.  Replacing serine (S) 

at position 7 and glycine (G) at position 12 of chicken AvBD2 with glutamic acid (E) and 

asparagine (N) respectively, matched the exact mass of the quail peptide (m/z 4160.7) 

leading to a possible sequence of ‘LFCKRGECHFGNCPSHLIKVGSCFGFRSCCKWPWYA’. 

This was further in agreement with other observed fragment ions an and bn (Table 1). 

The most probable mutations consistent with the data and the corresponding 

sequences for pheasant and quail peptides are given in Figure 4. The annotations in 

Figure 5 and masses listed in table 1 represent some of the observed and calculated 

fragment ions of chicken, turkey, and the proposed pheasant, and quail AvBD2 

sequences.  

Sequences predicted by MALDI LIFT-TOF/TOF were evaluated by MALDI-ISD 

fragmentation enhanced by DAN as a matrix. While matrix selection and other 
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approaches can be used to enhance the low level of ISD inherent in MALDI mass spectra, 

associating any fragment with a specific parent ion remains difficult.  Therefore, the 

peptides were purified by HPLC and their purity was verified using MALDI-TOF-MS 

with DHB prior to enhancement of ISD using the DAN matrix.  The use of ISD 

fragments in MALDI mass spectra as a means of sequencing is a ‘top down’ approach 

similar to metastable ion decay analysis by MALDI LIFT-TOF/TOF. The MALDI-ISD 

and MALDI LIFT-TOF/TOF data are complementary to one another and both provide 

better sequence information than a typical ‘bottom up’ enzymatic digestion method as 

evident from Figures 5, 6 and Table 1, 2.  Although reduced/alkylated ISD fragments are 

used for sequencing, this approach can also be used without reduction and alkylation 

(Figure 7). It is customary to do reduction/alkylation to yield better fragmentation and 

sequence specific information for peptides containing disulfide bonds. 27, 28  As seen in 

Figure 6 and Table 2 (reduced/alkylated pheasant peptide) and Figure 7 and Table 2 (non 

reduced pheasant peptide), the ISD fragmentation appears to be more extensive after 

alkylation than before.  However, in both these cases, most of the observed cn and z+2n 

ISD fragment ions covered a wider range of the overall sequence.  While ISD data 

presented herein, are based on the proposed sequence (Figure 4), the observations made 

with cn and z+2n ions also suggests the possibility to derive the sequences directly and 

independently (Table 2, Figure 6 and 7). For example, cn series ions from n=8-12 and 14-

28, and z + 2n series ions from n=10- 22 were observed for reduced/alkylated form of 

pheasant peptide based on the sequence obtained from MALDI LIFT-TOF/TOF, (Figure 

6, Table 2). This observation not only supports the proposed N-terminus sequence, 1-28, 

and the C-terminus sequence, 14-36 (Table 2), but also confirms the presence of amino 
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acid sequence tags that correspond to ‘HFGR’,  ‘SHLIKVGSCFGF’ and  

‘FGFCSGVKILHS’ (Figure 6). Similar observations were made for MALDI-ISD mass 

spectra obtained from non reduced pheasant peptide which showed cn series ions n=8-25, 

27, 28 and z+2n series ions n=10-21 and 25-28. This supports the N-terminus sequence 1-

28 and C-terminus sequence 8-36 (Table 2), and proves the existence of stretches of 

amino acids corresponding to ‘HFGRCPSHLIKVGSCFGF’, ‘FGFCSGVKILH’, and 

‘GFH’ (Figure 7).  Quail ISD data showed cn series ions from n=8-17, z+2n series ion 

from n=19-27 for reduced/alkylated form supporting N-terminus sequence 1-17 and C-

terminus sequence 9-36, obtained by the MALDI LIFT-TOF/TOF. Similarly, the ISD 

data obtained for non-reduced quail peptide showed cn series ions n= 8-16 and 22-26, and 

z+2n series ion n=10-14, 21, 22, and 25-28 further supporting N-terminus sequence 1-26 

and C-terminus sequence 8-36 (Table 2). The combined information from ISD data 

obtained from non reduced and reduced/alkylated quail peptide confirms ‘HFGNCPSHL’ 

and ‘CFGF’ sequence tags. It should be noted that complementary information was 

obtained from both the fragmentation methods. Typical bn and yn ions observed in 

metastable ion decay studies by MALDI LIFT-TOF/TOF were derived from CO-NH 

bond cleavage whereas cn and z+2n ions observed in ISD fragmentation were produced by 

NH-CH bond cleavage. Besides, MALDI LIFT-TOF/TOF method depends primarily on 

the mass selection of the parent ion, whereas the ISD requires pre MS purification that 

gives better fragmentation.  
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Conclusion 

In conclusion we report the identity of two new avian AvBD2 orthologs in 

pheasant and quail for the first time.  The AvBD2 sequences determined are: 

‘LFCKRGSCHFGRCPSHLIKVGSCFGFRSCCKWPWNA’ and 

‘LFCKRGECHFGNCPSHLIKVGSCFGFRSCCKWPWYA’, for pheasant and quail respectively. 

This study demonstrates a direct MALDI approach to identify beta defensin like peptides 

in complex mixtures without any elaborate separation processes such as the 1D/2D gel 

electrophoresis, multidimensional HPLC chromatography, or enzymatic/ chemical 

digestion processes.  Identification is based on the finding of 6 cysteine residues by 

cysteine-specific alkylation followed by the determination of the amino acid sequences 

by MALDI LIFT-TOF/TOF.  ISD fragmentation using DAN as the MALDI matrix 

verified the sequences obtained from MALDI LIFT-TOF/TOF data. 
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Table 1. MS/MS fragmentation ions obtained by MALDI LIFT-TOF/TOF showing 

theoretical and observed masses of selective an, bn and yn ions of the reduced/alkylated 

chicken, turkey, pheasant and quail peptides.  

 

 

Ion types 

Chicken Turkey Pheasant Quail 

Theo Obsv Theo Obsv Theo Obsv Theo Obsv 

a4 521.7 520.5 521.7 520.8 521.7 520.2 521.7 522.7 

a6 635.8 N/D 734.9 735.1 734.9 735.1 734.9 734.7 

a8 883.1 N/D 996.2 998.6 982.2 982.5 1024.2 1025.6 

a10 1167.4 1168.4 1280.5 1281.5 1266.5 1267.2 1308.6 1308.9 

a15 1625.9 1626.3 1838.2 1837.8 1824.1 1823.1 1824.1 1825.3 

a16 1763.0 1763.5 1975.3 1975.7 1961.3 1962.7 1961.2 1960.1 

a18 1989.3 1989.9 2201.6 2202.3 2187.6 2188.4 2187.6 2186.3 

a26 2872.4 2873.6 3084.7 3084.6 3070.6 3071.4 3070.6 3070.2 

a35 4147.8 N/D 4361.1 N/D 4346.1 4344.1 4395.1 4394.1 

b1 114.2 113.6 114.2 113.27 114.2 113.3 114.2 114.1 

b2 261.3 260.9 261.3 260.99 261.3 261.2 261.3 260.6 

b3 421.5 422.4 421.5 N/D 421.5 421.6 421.5 421.0 

b4 549.7 549.0 549.7 549.0 549.7 549.3 549.7 550.9 

b7 750.9 N/D 864.0 N/D 850.0 850.2 892.1 892.6 

b8 911.1 911.8 1024.2 N/D 1010.2 1010.9 1052.3 1053.6 

b9 1048.2 1048.9 1161.4 1162.0 1147.4 1147.5 1189.4 1188.7 

b10 1195.4 1196.2 1308.6 N/D 1294.5 1294.5 1336.6 1337.0 

b11 1252.4 1253.5 1365.6 1366.5 1351.6 1352.5 1393.6 1394.4 

b12 1309.5 1309.7 1521.8 1522.9 1507.8 1508.5 1507.7 1508.1 

b14 1566.8 N/D 1779.1 1781.0 1765.1 1767 1765.0 1765.0 

b15 1653.9 N/D 1866.2 1864.3 1852.2 1853 1852.1 1853.2 

b18 2017.3 N/D 2229.6 2230.6 2215.6 2217 2215.6 2215.4 

b20 2244.6 N/D 2456.9 2456.9 2442.9 2443 2442.9 2242.2 

b36 4246.9 4247.9 4460.2 4460.6 4445.2 4446.5 4494.2 4493.6 

y1 90.1 N/D 90.1 N/D 90.1 90.5 90.1 89.0 
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y2 204.2 204.4 205.2 204.3 204.2 204.3 253.3 253.3 

y4 487.5 487.9 488.5 488.9 487.5 487.9 536.6 538.3 

y7 962.1 N/D 963.1 963.1 962.1 964.3 1011.2 1009.5 

y13 1717.0 1717.4 1718.0 1718.6 1717.0 1717.9 1766.0 1765.2 

y14 1877.2 1877.6 1878.1 1878.2 1877.2 1877.3 1926.2 1925.1 

y15 1964.2 1964.6 1965.2 N/D 1964.2 1962.7 2013.3 2012.0 

y16 2021.3 2021.6 2022.3 2022.0 2021.3 2021.7 2070.4 2071.2 

y18 2248.6 2248.7 2249.6 2247.5 2248.6 2249.1 2297.7 2299.4 

y21 2612.1 2612.5 2613.0 N/D 2612.1 2612.9 2661.1 2660.8 

y23 2796.2 2796.8 2797.2 2797.9 2796.2 2796.8 2845.3 2845.3 

y24 2956.4 2957.0 2957.4 2958.1 2956.4 2956.9 3005.5 3005.1 

y25 3013.5 3014.5 3113.6 3114.1 3112.6 3113.7 3119.6 3118.9 

y26 3070.5 3071.8 3170.7 3171.5 3169.7 3170.6 3176.7 3176.0 

y27 3217.7 3218.9 3317.8 3318.6 3316.9 3318.4 3323.8 3324.7 

y28 3354.9 3355.8 3455.0 3456.1 3454.0 3455.3 3461.0 3461.6 

y29 3515.1 3516.2 3615.2 3616.3 3614.2 3614.8 3621.2 3621.4 

y33 3844.4 3845.0 4057.7 N/D 4042.7 4042.3 4091.7 4091 

y36 4264.9 4264.9 4478.2 4477.8 4463.2 4463.4 4512.2 4511.2 

Theo= theoretical; Obsv= observed; N/D= not detected 
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Table 2.  Fragmentation ions obtained by MALDI ISD showing theoretical and observed 

masses of selective cn and z+2n ions of pheasant and quail AvBD2 before and after 

reduction/alkylation.  

 

Ion types 

Reduced/alkylated Non reduced 

Pheasant Quail Pheasant Quail 

Theo Obsv Theo Obsv Theo Obsv Theo Obsv 

c8 1026.5 1026.4 1068.5 1068.5 912.5 912.6 954.5 954.7 

c9 1163.6 1163.5 1205.6 1205.6 1049.5 1049.7 1091.5 1091.8 

c10 1310.6 1310.6 1352.6 1352.7 1196.6 1196.8 1238.6 1239.0 

c11 1367.6 1367.7 1409.7 1409.7 1253.6 1253.8 1295.6 1296.0 

c12 1523.7 1523.8 1523.7 1523.7 1409.7 1409.9 1409.7 1410.2 

c14 1780.8 1780.8 1780.8 1780.8 1609.8 1610.0 1609.7 1610.2 

c15 1867.9 1867.9 1867.8 1867.9 1696.8 1697.0 1696.8 1697.3 

c16 2004.9 2004.9 2004.9 2003.8 1833.9 1834.1 1833.8 1833.3 

c17 2118.0 2118.0 2118.0 2118.0 1946.9 1947.2 1946.9 N/D 

c22 2602.3 2602.2 2602.3 N/D 2431.2 2431.6 2450.2 2450.6 

c23 2762.3 2762.2 2762.3 N/D 2534.3 2534.7 2553.2 2553.5 

c24 2909.4 2909.3 2909.4 N/D 2681.3 2681.8 2700.2 2700.5 

c25 2966.4 2966.3 2966.4 N/D 2738.3 2738.8 2757.3 2757.4 

c26 3113.5 3113.3 3113.4 N/D 2885.4 N/D 2904.3 2904.5 

z+2(10) 1349.6 1349.6 1398.6 N/D 1235.5 1235.7 1265.5 1264.9 

z+2(11) 1496.7 1496.7 1545.7 N/D 1382.6 1382.8 1412.6 1412.2 

z+2(12) 1553.7 1553.7 1602.7 N/D 1439.6 1439.9 1469.6 1469.1 

z+2(13) 1700.7 1700.8 1749.8 N/D 1586.7 1586.9 1616.7 1616.2 

z+2(21) 2595.2 2595.2 2644.2 2644.2 2424.2 2424.5 2473.1 2473.5 

z+2(22) 2682.3 2682.2 2731.3 2731.2 2511.2 N/D 2560.1 2559.4 

z+2(25) 3095.4 3095.3 3102.4 3102.3 2867.4 2867.7 2874.2 2874.4 

z+2(26) 3152.5 N/D 3159.4 3158.3 2924.4 2923.9 2931.3 2931.3 

z+2(27) 3299.5 3299.3 3306.5 3307.3 3071.4 3071.3 3078.3 3078.2 

z+2(28) 3436.6 N/D 3443.5 N/D 3208.5 3209.7 3215.4 3215.1 

Theo= theoretical; Obsv= observed; N/D= not detected 
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FIGURE LEGENDS 

Figure 1. MALDI-TOF mass spectra of crude heterophil extracts of chicken, turkey, 

pheasant and quail. 

Figure 2. MALDI-TOF mass spectra of non-reduced and reduced/alkylated heterophil 

extracts of chicken (a and b), turkey (c and d), pheasant (e and f), and quail  

(g and h). Arrows indicate the intact and modified forms of AvBD. 

Figure 3. Mature AvBD2 peptide sequences of chicken, turkey, duck and ostrich aligned 

with respect to their conserved regions. 

Figure 4. Proposed sequences of mature AvBD2 of pheasant and quail aligned with 

chicken and turkey counterparts. The highlighted amino acids are the proposed 

mutations. 

Figure 5. MALDI LIFT-TOF/TOF MS/MS spectra of (a) chicken, (b) turkey, (c) 

pheasant and (d) quail showing an, bn and yn ion fragments. 

Figure 6. MALDI MS ISD fragmentation profile of purified and alkylated pheasant 

AvBD2, showing cn and z+2n ions.  

Figure 7. MALDI MS ISD fragmentation profile of purified and non-alkylated pheasant 

AvBD2, showing cn and z+2n ions.  
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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(b) Turkey 
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(c) Pheasant 
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(d) Quail 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 104 

 

 

Figure 6. 
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ABSTRACT 

Thymosin beta 4 (Tβ4) is a 5 kDa actin sequestering intracellular peptide which has been 

shown to possess a variety of extracellular functions including chemotaxis, wound 

healing, tissue remodeling, and angiogenesis. However, the regulation of Tβ4 production 

and the mechanism of its secretion to extracellular environment are not understood.  

Previously, we found that the chicken macrophage is a rich source of Tβ4. Since 

macrophages play a central role in innate immunity including their participation in wound 

healing and angiogenesis, the objective of this study was to find whether activation of 

macrophages through appropriate toll-like receptors (TLR) would promote Tβ4 synthesis 

and secretion. We treated chicken macrophages with different TLR agonists and studied 

their effects on cellular and extracellular Tβ4 levels  at 6 and 24 h time points. Real time 

PCR was used to determine changes in gene expression while SILAC followed by mass 

spectrometry was used to monitor Tβ4 content in cells and conditioned media. The results 

show that while certain TLR activators, induced the expression of reference genes 

(interleukins-1β, -6, and nitric oxide synthase) indicative of macrophage activation, none 

caused any significant change on Tβ4 gene activation. The SILAC data however, showed 

a decrease in the cellular Tβ4 content along with its corresponding detection in cell 

culture supernatants at 24 h by PGN, PAM and LPS. No changes in Tβ4 level were 

detectable at 6 h time point. In the absence of any change in Tβ4 gene expression that 

would indicate its intracellular replenishment, the decrease in cellular Tβ4 levels at 24 h 

could likely relate to macrophage death induced by those agonists.  Using lactate 

dehydrogenase (LDH) activity of the conditioned media, as an indicator of cell death, our 

results show that those agonists which showed depletion of cellular Tβ4 also caused 
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higher LDH levels in the conditioned media. These results imply that Tβ4 in the 

extracellular fluid likely originate from dying cells. 

Keywords: macrophage, SILAC, thymosin beta 4, toll-like receptor 

 

INTRODUCTION 

Thymosin beta 4 (Tβ4) is a highly conserved polypeptide, originally identified as T cell 

maturation factor in the thymus gland and later found to occur ubiquitously in many cells 

and tissues [1, 2]. Tβ4 binds to the cytoplasmic G-actin preventing its polymerization to 

F-actin thus, regulating cytoskeletal organization, and cell motility [3, 4]. Extracellularly, 

Tβ4 promotes a variety of functions including chemotaxis, angiogenesis, wound healing, 

and down regulate inflammation [5-8]. Additionally, Tβ4 also possesses antimicrobial 

activity, facilitates antigen presentation, and is one of the major genes up regulated 

following immune activation [9, 10].  Although many of its diverse effects on different 

cells and tissues have been understood using exogenous Tβ4, the mechanism of its 

synthesis and secretion to extracellular environment is not well understood [7, 11].  

In the course of screening for bioactive peptides in phagocytic cells, we identified 

Tβ4 as an abundantly occurring peptide in chicken macrophages [12]. The macrophages 

are a major component of innate immunity, which participate in many functions 

attributed to Tβ4 such as, wound healing, angiogenesis, and tissue remodeling [13-15]. 

The macrophages recognize various microbial pathogens and their products through a 

series of ‘pattern recognition receptors (PRR)’ called toll-like receptors (TLR) [16] that 

cause their activation leading to the synthesis and secretion of various cytokines, 

chemokines, metabolites, and enzymes which in turn mediate different biological effects 
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[13, 17]. Therefore, the objective of this study was to find whether TLR activation would 

lead to the production of Tβ4 by the macrophages, which could then participate in post-

inflammatory healing processes.  

 

MATERIALS & METHODS 

Reagents and chemicals 

Dialyzed fetal bovine serum (FBS) and SILAC RPMI-1640 cell culture media (L-

arginine and L-lysine depleted) were purchased from Pierce (Rockford, IL).  13C1 labeled 

lysine (H) was obtained from Cambridge Isotope Laboratories (Andover, MA).  BCA 

protein assay kit (Pierce, Rockford, IL), RNAeasy mini and on-column DNA digestion 

kit (Qiagen Corp, Chatsworth, CA), Retroscript reverse transcriptase kit (Ambion, 

Austin, TX), Multiplex PCR kit (Qiagen, Valencia, CA), SYBR green PCR master mix 

(Applied Biosystems, Austin, TX), and lactate dehydrogenase  (LDH) cytotoxicity kit 

(Promega, Madison, WI) were all purchased from the respective vendors. All other 

chemicals including L-lysine (L), L-arginine, non-enzymatic cell dissociation medium, 

antibiotic antimycotic solution, were obtained from Sigma-Aldrich (St. Louis, MO).  

 

Toll-like Receptor ligands 

The peptidoglycan-polysaccharide polymers PG-PS 10S (PGN), a sonicated cell wall 

preparation of Streptococcus pyrogenes, was a gift from BD Bioscience (San Jose, CA).  

The concentration of the product, 5mg equivalent rhamnose/ml 0.85% saline, was used to 

dilute to required concentration.  A synthetic lipoprotein Pam3CSK4 (palmitoyl- 3-

cysteine-serine-lysine-4; PAM), Salmonella typhimurium flagellin (FGN) and guanine 
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analog loxoribine (LOX) were purchased from Invivogen (San Diego, CA).  The CpG-

oligodeoxynucleotide (CpG-ODN 2006), corresponding to the sequence 

TCGTCGTTTTGTCGTTTTGTCGTT [18] was synthesized by Invitrogen (Carlsbad, 

CA). Salmonella typhimurium lipopolysaccharide (LPS) and dsRNA analog, polyI:C 

were purchased from Sigma-Aldrich (St. Louis, MO).  All the above ligands were 

prepared as stock solutions in sterile physiological water. 

 

Preparation of SILAC media 

L-Lysine (L) and L-arginine were dissolved in sterile PBS at a stock concentration of 

10g/L and 50g/L, respectively and filtered using a 0.2µm filter. A stock concentration 

(10g/L) of 13C1-lysine (H) was similarly prepared and filtered. The “Light (L)” SILAC 

medium for the control cells was prepared adding 2 mL of stock solution of L-arginine 

and 4 mL of lysine (L) to 500 ml of depleted RPMI 1640 medium. The “Heavy (H)” 

SILAC medium was prepared in a similar manner by adding 2mL of arginine and 4 mL 

of 13C1-lysine (H) stock solutions to 500 ml of depleted RPMI 1640 medium.  Both ‘L’ 

and ‘H’ SILAC media were filtered and supplemented with 10% dialyzed FBS, 20 mM 

glutamine, and 1X concentration of antibiotic antimycotic solution.  

 

Macrophage culture and activation by TLR agonists for SILAC studies 

Transformed chicken macrophage cell line HTC [19] cultured in RPMI-1640 media 

containing 10% FBS and 1X concentration of antibiotic antimycotic solution were 

initially grown in normal RPMI 1640 medium.  At 80% confluence, the media was 

aspirated and the cells were washed with PBS and detached using a non-enzymatic 
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dissociation medium for 5 min, and washed with PBS three times by successive 

centrifugation at 380 X g for 8 min each [12]. One half of the detached cells were seeded 

into the ‘L’ SILAC RPMI medium and the other half into the ‘H’ SILAC RPMI medium, 

prepared as described above. Metabolic labeling of cells were done according to Ong and 

Mann (2006) with 6 successive passages of cells in respective media that theoretically 

labels the entire proteome of the cells with 90-100 % efficiency [20]. Both light and the 

heavy isotope labeled HTC cells were detached and plated in triplicates at a concentration 

of 1 X 106 cells / ml in 12 well culture plates in their respective media and grown 

overnight incubated at 37ºC under 5% CO2. The H labeled cultures was then stimulated 

with different TLR agonists for 6 and 24 h.  Each TLR agonist treatment consisted of a 

triplicate culture consisting of: TLR2, gram positive bacterial peptidoglycan (PGN), 

TLR3, poly inosinic, cytidylic (poly I:C), TLR4,gram negative LPS, TLR5, flagellin, 

TLR2/1, PAM3CSK4, TLR7,Loxoribine; and TLR9, CpG-ODN [16].  The final 

concentrations of the agonists were PAM (1 µg/ml), PGN (1 µg rhamnose equivalent 

/ml), FGN (100 µg/ml), poly I:C (1 µg/ml), LOX (100 µM), CpG-ODN (5 µM) and LPS 

(1 µg/ml) respectively. The concentrations of the TLR agonists were based on values 

recommended by the suppliers and used in earlier literatures [21, 22].  

 

Sample preparation for MALDI-MS and SILAC studies 

After specified periods, 6 and 24 h of stimulation with TLR agonists, the plates were 

centrifuged at 300 X g for 10 min and the conditioned media from both control and 

treatment group were removed. Aliquots of the conditioned media free of cells were 

mixed with equal volumes of 100% methanol containing 2% acetic acid to denature and 
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precipitate proteins over a 16 h period at 4°C, and centrifuged at 21,000 X g for 10 min to 

obtain the supernatant extract containing Tβ4. The adhered cells were washed with 

Dulbecco’s PBS twice, lysed with 200 µl of 0.1% n-octyl β-glucopyranoside (OβG  by 

repeated pipetting, and centrifuged at 21,000Xg for 10 min to obtain the cell lysate.  The 

cell lysate and conditioned media extract from each control (C) consisted of L and H 

lysine labeled samples (CL and CH) whereas the TLR agonist treated groups (T) consisted 

of only H lysine labeled samples (TH) based on the in vivo incorporation of stable 

isotopes (Fig.1).  Protein concentrations of both supernatant extract and cell lysates were 

determined using micro BCA protein assay to equalize the protein concentrations in case 

of variations between different samples. All the treatment samples (cell lysate and 

supernatant extract) were used individually but the L labeled control samples (cell lysate 

and supernatant extract) were pooled and used for all mixing experiments.  

 Cell lysate and supernatant extracts were mixed individually with an equal 

volume of one molar 2, 5-dihydroxybenzoic acid (DHB) in 90% methanol containing 0.1 

% formic acid and spotted onto a Bruker MTP 384 stainless steel MALDI target. 

MALDI-TOF spectra were acquired over the m/z range 1-10 kDa in the positive ion 

reflector mode using Bruker Reflex III MALDI-TOF mass spectrometer (Bruker Daltonik 

GMBH, Bremen, Germany) [12, 23]. The data were processed using Bruker Flex 

Analysis 2.4/3.0 software.  Initial screening of the supernatant extract and cell lysate 

samples of CL, CH and TH by MALDI-TOF-MS was done to detect the presence of Tβ4 

(m/z 4963, protonated molecule in CL and m/z 4972, protonated molecule in CH and TH).  

Following preliminary screening, pooled control CL and individual CH were mixed 1:1 to 

determine the intensity ratios of L and H Tβ4 in the cell lysate and conditioned media by 
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MALDI-TOF-MS as above.  Based on the peak intensities observed in the mass spectrum 

for L and H Tβ4, the intensity ratios (CH /CL) for controls and (TH /CL) were calculated 

for all treatment groups. The final fold changes or the relative changes in the levels of 

intracellular C and released Tβ4 were calculated by dividing the intensity ratio TH /CL 

over CH /CL. The mean and standard error of the mean (SEM) was calculated for control 

and each treatment group using measurements obtained from individual set of 

experiments repeated thee times. The results were evaluated using Students t-test and a p 

value ≤ 0.05 was considered significant.  

 

Activation of macrophages by TLR agonists for other analysis 

HTC cells of 1 X 106 / mL were seeded and grown separately in triplicates in normal 

RPMI 1640 medium and treated with different TLR agonists as above for 6 and 24 h for 

gene expression and other analyses.  For nitrite and LDH determination, the conditioned 

media was collected from all samples at both time periods, centrifuged, and saved at  -

200C until assay. 

 

Gene expression studies 

The macrophage activation induced changes in the expression of Tβ4 and other reference 

genes were assessed at 6 h stimulation as follows: Total RNA was extracted from control 

and TLR agonist treated macrophage cultures using RNAeasy Mini Kit. Any 

contaminating DNA was subjected to on column digestion with RNase-free DNase 1 

according to the manufacturer’s instructions. The cDNA was synthesized using 

Retroscript reverse Transcriptase kit.  The gene-specific primers for Tβ4, IL-6, IL-1β, 



 115 

iNOS and β-actin were designed with the Primer 3 software program 

(http://frodo.wi.mit.edu/) (Table 1). The expression of genes for IL-6, IL-1β and iNOS 

were used as positive controls indicative of macrophage activation, and β-actin as the 

housekeeping gene. Q-PCR was used to determine the expression of target genes relative 

to the levels of the housekeeping gene β-actin.  Following optimization of primer 

concentrations and volumes (what does it mean?), real-time PCR was performed using an 

ABI Prism 7700 Sequence Detector (Applied Biosystems, Austin, TX). Each mRNA 

sequence was amplified in duplicate in 25 µL reactions containing SYBR green PCR 

master mix; cDNA corresponding to 1 µg of reverse transcribed RNA and 200 nM 

(optimized concentration) of forward and reverse primers. Both a no template and no 

reverse transcriptase control were included for each amplification reaction, and the 

homogeneity of the amplified products were confirmed routinely by melting curve 

analysis. The results were analyzed by the standard curve method and normalized to β-

actin as an endogenous control. Then the relative fold change in the expression of target 

genes (Tβ4, IL-6, Il-1β and iNOS) were assessed between the non stimulated control or 

TLR agonist stimulated macrophages. 

 

Nitrite and LDH measurement 

The nitrite content of all conditioned media was measured as described earlier using 

Griess reagent [19].  The LDH activity of the conditioned media was used as an indicator 

of cell damage or death [24]. The assays were done using control and treatment culture 

supernatants at both 6 and 24 h time points. The LDH activity was measured using a 

cytotoxicity assay kit according to the manufacturer’s protocol. 

http://frodo.wi.mit.edu/�
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Statistics 

The quantitative results were evaluated using students t test.  A p value ≤ 0.05 was 

considered significant. 

 

RESULTS 

TLR activation induced Tβ4 release  

MALDI-MS profiles of 1:1 mixtures of ‘L’ control cell lysate and ‘H’ cell lysates and 

similarly treated conditioned media extracts are shown in Figs 2-4.  Protonated ion, m/z 

4963 corresponds to Tβ4 with ‘L’ lysine (12C) label, while m/z 4972 corresponds to Tβ4 

with ‘H’ lysine (13C).  Signal intensities of L and H Tβ4 were monitored at 6 h and 24 h 

time period. MALDI spectrum in Fig 2a shows L and H labeled Tβ4 in the 1:1 mixture of 

control cell lysates whereas Figs. 2b-h represent spectra from 1:1 mixture of control (L) 

and respective TLR agonist stimulated H cell lysates at 6 h. The signal intensity of L and 

H labeled Tβ4 remained approximately same in all groups in cell lysates at 6 h and in the 

corresponding conditioned media extract it was below the detection limit.  At 24 h time 

point, the cell-associated Tβ4 decreased significantly in PGN, PAM, and LPS treated 

cells (Fig 3). Both CpG and FGN treatments showed a moderate decrease but neither 

poly I:C nor LOX showed any change in cellular Tβ4 (Fig 3). Maximal decrease in the 

cellular Tβ4 was detected in PGN, PAM and LPS treated groups which was consistent 

with its presence in their respective conditioned media along with their oxidized forms 

(L: Tβ4 sulfoxide m/z 4979, H: m/z 4988; Fig 4).  It is note worthy that the oxidized form 

appeared to be the predominant form of the observed Tβ4 in the conditioned media (Fig 
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4). The relative changes in cellular Tβ4 in macrophages treated with different TLR 

agonists at 6 and 24 h are shown in Fig 5. Whereas at 6 h no change in cellular Tβ4 was 

observed, at 24 h PGN, PAM and LPS showed significant decrease in cellular Tβ4 (p ≤ 

0.001) along with CpG and FGN treated groups that also showed a lower albeit 

statistically significant decrease in cellular Tβ4 (p ≤ 0.05). 

 

Gene expression  

qPCR results for the mRNA expression in macrophage Tβ4, Il-6, Il-1β, iNOS relative to 

β-actin reference is shown in Fig 6. Tβ4 mRNA expression in both control and in all TLR 

agonist treatment groups remained unchanged. By contrast, PAM, PGN, LPS, CpG, and 

FGN induced a significant up-regulation of IL-1β, IL-6, and iNOS (Fig. 3) compared 

with the non-stimulated controls. However, FGN produced lesser effect on comparison 

with other agonists mentioned above. Both poly I:C and LOX agonists showed very 

minimal effect that was not statistically different from control. 

 

Functional activation of macrophages by TLR agonists 

Groups treated with TLR agonists PGN, LPS, PAM, FGN and CpG showed a moderate 

nitrite release at 6 h time point that was significantly enhanced at 24 h.  Except for poly 

I;C, and LOX all treatment groups a showed a significant increase in nitrite levels at 24h 

time points albeit some which showed very high levels of nitrite (Fig. 7).   

   

 

 



 118 

LDH changes 

There were no differences in LDH activity between control and the different TLR agonist 

treated culture media at 6 h time point but at 24 h, the LDH activity was significantly 

higher in all treatment groups except for poly I:C and LOX.   The 24 h conditioned media 

including that of control groups had higher LDH activities at 24 h point compared with 6 

h (Fig 8). 

 

DISCUSSION  

Thymosin β4 is a ubiquitously occurring peptide in eukaryotic cells which has been 

shown to exert a variety of extracellular effects including wound healing, angiogenesis, 

and tissue remodeling [6, 7, 25, 26].  Despite its diverse extracellular actions, the 

mechanism of its release into the extracellular fluid remains intriguing because the 

peptide lacks a signal sequence, which is essential of most secretory proteins and peptides 

[11]. Nonetheless, there are a handful of reports suggestive of its secretion to 

extracellular environment using bone marrow endothelial cells and myocardial cells in 

culture and Tβ4 is present in significant quantities in human wound and blister fluids [27-

29]. Our rationale to study Tβ4 release from macrophages was its abundance in these 

cells [12, 30, 31] and these cells when subjected to immunomodulation by TLR-agonists 

increase their secretory activities [32].  SILAC has been a very sensitive and quantitative 

mass spectrometric method to measure the changes in peptide levels using corresponding 

MALDI MS signal ratio of light (L) and heavy (H) labeled peptide ions [33, 34]. 

Labeling with H (13C) and L (12C) lysine showed 9 Da difference  consistent with the 9 

lysine residues present in mature chicken Tβ4 as expected and the ratio of the MALDI 
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signal of these ions were monitored to determine the expression differences as shown in 

Fig 4 [12].  Our results however, showed any discernible change in neither cellular nor 

conditioned media associated Tβ4 at 6h time point in any treatment group. By contrast, a 

significant decrease in cellular Tβ4 was evident at 24 h time point in cultures treated with 

PGN, LPS, PAM, and CpG. Both L and H Tβ4 as well as their corresponding oxidized 

forms (Tβ4 sulfoxide) with additional mass difference of 16 Da due to oxidation of 

methionine [35] were detected in the conditioned media after 24 h treatment. 

Interestingly the Tβ4 sulfoxide appeared to be the dominant form in the conditioned 

media. The Tβ4 sulfoxide formation may be related to macrophage respiratory burst 

resulting from their activation (Rath et al., 2003).  Tβ4 sulfoxide ostensibly acts as an 

antioxidant that appeases inflammation [35-37].  

Based on 24 h result, it was clear that at least some TLR agonists are able to 

induce release of Tβ4 into the culture media implying that similar mechanisms may be 

operative in vivo leading to its accumulation in extracellular fluids under inflammatory 

conditions. Hence, we asked if Tβ4 was released by secretion induced by the above 

agonists, then it should be replenished in the cells that could be evident by assessing the 

changes in Tβ4 gene expression.  Along with Tβ4, we also monitored the expression of 

Il-1β, Il-6, and iNOS genes at 6 h time point as the measures of macrophage activation, 

and the changes in nitrite levels of cell culture supernatant at 24 h. The results showed 

that none of the agonists were able to modulate the expression of Tβ4 gene whereas PGN, 

LPS, PAM and CpG caused significant stimulation in the expression of Il-1β, Il-6, and 

iNOS genes and induced nitrite release that was consistent with the macrophage 

activation [19]. The changes in mRNA expression are generally considered to reflect the 



 120 

changes in their respective proteins or peptides. In the absence of any detectable changes 

in Tβ4 gene expression, at the same time the observed intracellular and extracellular 

changes in the levels of this peptide suggested that cell damage may be a factor leading to 

its release into the cell conditioned media. LDH leakage into the extracellular medium is 

used as an indicator for the loss of cell viability which is caused by cytoplasmic 

membrane damage leading to cell death [24]. Therefore, we measured the changes in 

LDH levels in cell culture media, which showed is significant increase in culture media 

in those groups which showed the loss of cellular Tβ4 at 24 h.  It is likely that 

macrophage apoptosis is induced at 24 h by the action of those TLR agonists causing the 

leakage of Tβ4 into the conditioned medium. In fact, there are several reports, which 

show that both gram-positive and gram-negative microbial products such as PGN and 

LPS induce macrophage apoptosis [38-40].     

In conclusion our studies demonstrate that immunomodulatory and inflammatory 

agents affect the release of Tβ4 into extracellular environment that is induced by cellular 

damage. We believe this finding provides a mechanism for the release of Tβ4 into wound 

environment facilitating healing of injured or damaged tissues. 
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Table 1: Primer sequences used in Q-PCR [12, 19]. 

 

RNA 

target 

Forward primer (5’ to 3’) Reverse primer (5’ to 3’) Accession number 

β- actin CCATGAAACTACCTTCAACTCCA GATTCATCGTACTCCTGCTTGCT L08165 

IL-6 CTCCTCGCCAATCTGAAGTC TCATAGAGACGCTGCTGCCAG AJ309540 

iNOS AGGCCAAACATCCTGGAGGTC TCATAGAGACGCTGCTGCCAG U46504 

IL-1β GGCTCAACATTGCGCTGTAC CCCACTTAGCTTGTAGGTGGC Y15006 

Tβ4 GCCGAGATCGAGAAATTTGA GAAGGCAATGCTTGTGGAAT NM_001001315 
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FIGURE LEGENDS 

Figure 1. A flow chart illustrating SILAC method to study the effects of different TLR 

ligands on Tβ4 production by HTC cells. 

Figure 2. MALDI-MS profiles of 1:1 cell lysate mixtures containing light (L) and heavy 

(H) lysine labeled Tβ4 after 6 h stimulation with TLR agonists.   

Figure 3. MALDI-MS profiles of 1:1 cell lysate mixtures containing light (L) and heavy 

(H) lysine labeled Tβ4 after 24 h stimulation with TLR agonists.   

Figure 4. MALDI-MS profiles of 1:1 supernatant extract mixtures containing light (L) 

and heavy (H) lysine labeled Tβ4 after 24 h stimulation with TLR agonists.  

Figure 5. Relative changes in the cellular Tβ4 induced by TLR agonists at 6 and 24 h. 

Data represent the mean value ± SEM for triplicates samples in each groups from three 

independent experiments (n=9). ** Indicates p ≤ 0.0001 and * is p ≤ 0.005. 

Figure 6. Q-PCR gene expression results after 6 h stimulation of HTC cells by different 

TLR agonists. The results represent an average of duplicate experiments. 

Figure 7. Changes in nitrite production at 6 and 24 h time point induced by TLR agonists 

in HTC cells. * Indicates p ≤  0.0001. 

Figure 8. Cell viability changes measured by LDH activity at 6 and 24 h.  ** Indicates p 

≤ 0.0001 and * is p ≤ 0.005. 
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Figure 1. 
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Figure 2. 
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Figure 3.  
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Figure 4. 
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Figure 5.  
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Figure 6.   
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Figure 7.  
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Figure 8.  
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ABSTRACT  

Beta defensins (BD) are cysteine rich, cationic antimicrobial peptides (AMP) produced 

mainly by epithelial and myeloid cells such as neutrophils. In birds, the neutrophil 

equivalent heterophils produce avian beta defensins (AvBD) of which AvBD2 is the 

major isoform. Heterophils recognize pathogens or their derived products through a series 

of pattern recognition receptors called toll-like receptors (TLR) leading to their 

antimicrobial activities. This work is the first report of TLR modulation of AvBD2 

expression in chickens. To measure the effect of TLR activation on AvBD2 production, 

the heterophils were cultured with different TLR agonists for 6 h. Modulation of AvBD2 

levels by TLR activation was measured using direct MALDI mass spectrometry without 

stable isotopic labeling or chromatographic separation.  Chemical modification of the 

conditioned media was performed using reduction/alkylation with dithiothreitol and 

iodoacetamide to distinguish TLR treated AvBD2 (reduced/alkylated) from controls 

(non-reduced). Changes in corrected ion intensity ratios were assumed to reflect AvBD2 

modulation in heterophils upon activation with different TLR agonists. In general, TLR 

agonists increased AvBD2 production with LPS showing the greatest induction and CpG-

ODN showing little or no effect. These data show that the direct MALDI-MS coupled 

with reduction/alkylation may provide a rapid relative quantitative approach to the 

measurement of agonist-induced differential expression of AvBD2.  

Key words: avian beta defensin 2, heterophil, MALDI-TOF-MS, toll-like receptors 
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1. INTRODUCTION 

Antimicrobial peptides are the efferent arms of innate immunity that play a vital role in 

host defense mechanisms by neutralizing microbial pathogens (Boman, 1995; Hancock, 

2001). The defensins are an important class of these peptides that have been identified 

and characterized in many species including plants, invertebrates, and vertebrates 

(Brogden et al., 2003; Ganz, 2005; Zasloff, 2002). The vertebrate defensins contain three 

pairs of intramolecular disulfide bonds and are classified into subfamilies of α, β, and θ 

depending on the positions of their cysteine residues and the disulfide bond connectivity 

(Ganz, 2005; Klotman and Chang, 2006; Selsted and Ouellette, 2005). However, the 

avian species only express beta defensins and to date, there are 14 known isoforms of 

avian beta defensins in chicken and few orthologs in other species of birds (Lynn et al., 

2004; Lynn et al., 2007; Sugiarto and Yu, 2006; van Dijk et al., 2008; Xiao et al., 2004). 

Whereas these AvBDs have been predicted using genomic and bioinformatics 

approaches, only a few corresponding peptides have been isolated (Evans et al., 1994; 

Harwig et al., 1994; Kannan et al., 2009; Sugiarto and Yu, 2006; Thouzeau et al., 2003). 

The avian leukocyte, heterophils, play a central role in innate immunity during acute 

phase response and microbial infection (Harmon, 1998; Kaiser, 2007).  These cells use 

their surface receptors, called ‘Toll-like receptors’ (TLR) to discriminate microbial 

motifs called ‘pathogen-associated molecular patterns’ (Janeway and Medzhitov, 2002; 

Sabroe et al., 2003). TLR activation triggers immune responses resulting in the 

expression of effectors such as cytokines, chemokines, and antimicrobial factors 

including beta defensins (Boyd et al., 2007; Kogut et al., 2005; Kogut et al., 2006). 

Although there are several studies on the expression profiles and antimicrobial activities 
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of AvBDs, there is a limited knowledge of TLR activation and resultant beta defensin 

expression. Most studies on the regulation of AvBD have employed RT-PCR which can 

detect gene expression, but not subsequent peptide production (Akbari et al., 2008; 

Milona et al., 2007; Subedi et al., 2007; van Dijk et al., 2008). To date, we know of no 

study on the TLR activation induced expression of BD at the peptide level in avian 

species. Our earlier studies using direct screening of phagocytes and bone marrow of 

chickens and turkeys, by matrix-assisted laser desorption/ionization time-of-flight mass 

spectrometry (MALDI-TOF-MS), showed avian beta defensin 2 (AvBD2) as an abundant 

peptide present in heterophils (Kannan et al., 2009). Thus, the objective of the current 

study was to find whether TLR activation would induce changes in the production of 

AvBD2 by heterophils. In recent years, MS has been used to measure differential 

expression of proteins and peptides. MS approaches include direct intensity based 

measurements and methods based on differential labeling of proteins using stable 

isotopes such as SILAC (stable isotope labeling of amino acids in cell culture), isotope-

coded affinity tag (ICAT), and isobaric tag for relative and absolute quantitation 

(iTRAQ) reagents (Gygi et al., 1999; Ong and Mann, 2007; Wiese et al., 2007; Yan and 

Chen, 2005). Herein, we report a simple and an inexpensive method to determine the 

changes in AvBD2 production by heterophils induced by TLR agonists, using differential 

chemical labeling (reduction/alkylation) followed by MALDI-TOF-MS.  
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2. MATERIALS AND METHODS 

2.1. Chemicals and reagents 

One Step PolymorphTM medium (Accurate Chemicals Co, Westbury, NY), K-EDTA 

Vacutainer tubes (BD Bioscience, Franklin, NJ), RPMI-1640 medium (Mediatech Inc., 

Herndon, VA), C18 ZipTip micropipette tips (Millipore, Billerica, MA), peptide 

calibration standards of 500-5000 Da (Bruker Daltonics, Bremen, Germany), BioRad dye 

binding reagent  (Bio-Rad, Hercules, CA), TLR agonists such as synthetic lipoprotein 

Pam3CSK4 (palmitoyl-3-cysteine-serine-lysine-4; PAM), Salmonella typhimurium 

flagellin (FGN), and guanine analog loxoribine (LOX) (Invivogen, San Diego, CA) were 

purchased.  The Streptococcal pyrogenes peptidoglycan (PGN) was a gift from BD 

Bioscience (San Jose, CA). The CpG-oligodeoxynucleotide (CpG-ODN 2006), 

corresponding to the sequence TCGTCGTTTTGTCGTTTTGTCGTT (Xie et al., 2003), 

was synthesized by Invitrogen (Carlsbad, CA). All other reagents including Salmonella 

typhimurium lipopolysaccharide (LPS), synthetic dsRNA analog poly I:C, bovine serum 

albumin (BSA), fluorescein isothiocyanate (FITC),  propidium iodide (PI), 1,4- 

dithiothreitol (DTT), 2-iodoacetamide (IAA), and 2,5- dihydroxybenzoic acid (DHB) 

were purchased from Sigma Aldrich (St. Louis, MO).   

 

2.2. Isolation of chicken blood heterophils 

All animal procedures were approved by the University of Arkansas animal care and use 

committee. Blood was obtained from ten three week-old broiler chickens by cardiac 

puncture using K-EDTA Vacutainer tubes prior to killing. The K-EDTA anti coagulated 
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blood was subjected to centrifugation over One Step PolymorphTM gradient at 500 X g 

for 20 min. After removing the mononuclear cell layer at the inter phase of serum and the 

density gradient medium, the cells were further centrifuged for another 30 min to band 

the heterophils in the gradient and pellet red blood cells to the bottom. The bands rich in 

heterophil granulocytes, were washed following manufacturer’s suggested protocol, 

pooled, and finally suspended in RPMI-1640 media containing 0.2% BSA. The viability 

and the purity of heterophils were determined by trypan blue exclusion and staining of 

cytocentrifuged cells with fluorescein isothiocyanate and propidium iodide respectively 

(Rath et al., 1998). The viability of the cells was determined to be more than 98%.  

 

2.3. Activation of heterophils by TLR agonists 

The heterophils were distributed at a concentration of 1 x 105 cells/ ml/ well in 12 well 

plates and cultured in triplicate with different TLR agonists for 6 h at 370C. Different 

ligands, TLR1/2: peptidoglycan (PGN), TLR3: poly inosinic cytidylic acid (poly I:C), 

TLR4: gram negative bacterial lipopolysaccharide (LPS), TLR5: bacterial flagellin 

(FGN), TLR1/6: PAM3CSK4, TLR7: loxoribine; and TLR9: CpG-ODN, were prepared 

at 100X concentrations in RPMI-1640 medium and added to the cultures.  TLR agonists 

may elicit a response by different mechanisms and they have different active 

concentrations. In order to be reasonably certain that these agonists would elicit 

heterophil activation and also the differential expression of AvBD2, concentrations of the 

TLR agonists were selected based on values recommended by the suppliers and in the 

literature (Kogut et al., 2005; Xie et al., 2003).  The final concentrations of the TLR 

agonists were PAM (1µg/ml), PGN (1 µg/ml), FGN (1 µg/ml), poly I:C (1 µg/ml), LOX 
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(100µM), CpG-ODN (1µM) and LPS (1 µg/ml).  The control cultures received the 

diluent media only.  

 

2.4. Sample preparation 

After 6 h of stimulation, the conditioned media were aspirated and spun at 1,000 X g for 

5 min to obtain supernatants free of cells and frozen at -200C for subsequent use. Aliquots 

of the conditioned media were mixed with equal volumes of 100% methanol containing 

2% acetic acid to denature and precipitate proteins over a 16 h period at 40C, and 

centrifuged at 21,000 X g for 10 min to obtain the supernatant extract containing AvBD 

(Kannan et al., 2009). The residual protein concentrations of the media were measured 

using a BioRad dye binding assay in order to equalize the protein content of different 

samples if necessary.  

 

2.5. Chemical modification 

Aliquots of supernatant extract from different TLR treatment (T) groups were subjected 

to reduction for 1 h with 10 mM 1,4-dithiothreitol (DTT) followed by alkylation with 20 

mM 2-iodoacetamide (IAA) in dark for 25 min at 370C. Equivalent aliquots of both 

control (C) and treated samples were also subjected to similar conditions but without 

DTT/IAA additions. Thus, each group consisted of non-reduced (nr) and 

reduced/alkylated (r) samples based on their chemical treatments, Cnr, Cr, Tnr, and Tr 

respectively, (Fig. 1). They were used not only to calculate correction factors (CF) for 

individual groups but also to determine the relative changes in AvBD2 production due to 

treatments as described below. 
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2.6. Direct MALDI-MS analysis 

For MALDI measurements, microliter volumes of sample were mixed 1:1 with 1M DHB, 

prepared in 90% methanol containing 0.1 % formic acid. Two µl of this mixture was 

spotted onto a Bruker MTP 384 MALDI target. Calibrated MALDI-TOF spectra were 

acquired over the m/z range from about 1-10 kDa in the positive ion reflector mode using 

either a Bruker Reflex III MALDI-TOF or a Bruker Ultraflex II MALDI-TOF-TOF MS 

(Bruker Daltonik GMBH, Bremen, Germany). Samples were analyzed in both manual 

and automation modes. The data were processed using Bruker Flex Analysis 2.4/3.0 and 

ClinProTools 2.2 softwares. 

The samples were initially screened for the presence of AvBD2 by searching for 

ion signal at m/z 3916 indicated by its protonated intact ion. After confirmation of the 

presence of AvBD2, aliquots of the TLR agonist treated samples were reduced/alkylated 

to produce a characteristic mass shift of 348 Da to produce m/z 4264 that would 

differentiate them from the controls. The efficacy of this chemical modification was also 

confirmed by MALDI-MS. The control and treated samples were then mixed 1:1 for the 

determination of differential expression of AvBD2. 

 

2.7. Determination of correction factor (CF) 

Our procedure compares the signal intensities of AvBD2 peptides that are 

reduced/alkylated or are not.  This approach assumes that the peak heights for the 

protonated molecules reflect the quantity of these AvBD2 species in modified and non-

modified samples. However, the ionization efficiency of the two peaks can be affected by 

the complex environment, necessitating the use of correction factors (CF) estimated for 
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each group, CFC for control and CFT for treatments. Therefore, each sample split 

consisting of equal amounts of reduced/alkylated and non-reduced AvBD2 were mixed 

so that the theoretical intensity ratios would be 1. This 1:1 mixture was then subjected to 

direct MALDI-MS analysis and the actual intensity ratios of reduced/alkylated over non-

reduced AvBD2 peaks (Cr/Cnr & Tr/Tnr) were measured for controls and each of the 

individual treatments as described in Fig. 1.  Accordingly, the correction factors were 

calculated based on six mass measurements obtained from triplicate samples, CFC = 

Cnr/Cr  and CFT = Tnr/Tr. CFC corrects for the differences in ionization efficiency due to 

reduction/alkylation, whereas CFT corrects for the differences due to reduction/alkylation 

and the presence of TLR agonists. Since CFT takes care of both the factors that may 

influence the ionization efficiency of AvBD2, we consider the use of only CFT in the 

formula for calculating the relative changes in AvBD2 production.  

 

2.8. Relative changes in AvBD2 

Based on the peak intensities observed in the mass spectrum for reduced/alkylated and 

non-reduced AvBD2, the intensity ratios (Tr /Cnr) were calculated for all treatment 

groups. Relative changes in AvBD2 production were determined by multiplying the 

intensity ratio (Tr /Cnr) with appropriate correction factors CFT for each treatment group 

(Fig. 1).  The mean and standard error of the mean (SEM) was calculated from six mass 

measurements obtained using triplicate samples. The differences were determined using 

students t-test and a P-value ≤ 0.05 was considered statistically significant.  
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3. RESULTS AND DISCUSSION 

Defensins are important mediators of innate immunity; hence, there is a considerable 

interest in measuring their changes under a variety of conditions which challenge 

immunity.  However, the occurrence of different isoforms of beta defensins which in 

chicken alone numbers upto 14 variants (Lynn et al., 2007; van Djik et al., 2008), has 

precluded the development of some common immunoassays that may be broadly 

applicable to all of them. In fact, commercially available immunoassays of defensins are 

largely limited to mammalian species (Gardner et al., 2009; Ghosh et al., 2007). 

Consequently, RT-PCR has been the method of choice for most AvBD related studies, 

which measure the changes in mRNA populations. However, incongruency in the 

expression levels of mRNA and proteins that may relate to alternative splicing, post 

transcriptional gene silencing and protein modifications can preclude accurate estimation 

of changes at the peptide level. Therefore, the current method may be suitable to measure 

the changes in BD levels using simple chemical modification of their highly conserved 

cysteine residues rather than more expensive stable isotope methods.  

Our results show that the heterophils constitutively produce AvBD2 as evident 

from the protonated ion observed in direct MALDI-MS spectra (Fig. 2) (Kannan et al., 

2009).  Generally, in mass spectrum the signal intensity of the peaks reflect the quantity 

of materials present; however, the experimental conditions and chemical modifications 

can alter the ionization efficiency of the peaks (Guerrera and Kleiner, 2005; Yan and 

Chen, 2005). Therefore, we checked to determine whether the ionization efficiency of the 

reduced/alkylated and non-reduced AvBD2 were identical. AvBD2 containing samples 

(treated and controls) were split and half of the sample was reduced/alkylated, before 
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remixing to measure the different signal levels for nominally identical quantities of both 

forms of AvBD2 in the same sample. The prominent ion corresponding to AvBD2 (m/z 

3916) shifted in reduced/alkylated samples by 348 Da, showing complete 

carbamidomethylation of 6 cysteine residues resulting in the mass of 4264 (Fig. 3a, b). In 

general, carbamidomethylation is an efficient and reliable chemical modification method 

widely used in many proteomic studies (Simpson, 2003). In this experiment, we 

confirmed the labeling to be 100%, with no trace of non-reduced AvBD2 in the TLR 

agonist treated samples. Fig. 4a shows a MALDI spectrum for a 1:1 mixture of non-

reduced and reduced/alkylated forms of AvBD2 in the control sample whereas Fig. 4b to 

4h show spectra for a 1:1 mixture of the control (non-reduced) and TLR agonist treated 

(reduced/alkylated) samples. The peak at m/z 3916 represents AvBD2 in untreated 

control group whereas the peak at m/z 4264 corresponds to the reduced/alkylated AvBD2 

from the treated sample. Changes in relative intensity ratios of m/z 4264 and m/z 3916 are 

taken to reflect the changes in AvBD2 production induced by different TLR agonists. 

However, it is evident that the intensity ratio obtained directly from the MALDI spectra 

does not truly represent AvBD2 populations. Therefore, correction factors were estimated 

to calculate the changes in the ionization efficiency of AvBD2 due to both 

reduction/alkylation and presence of TLR agonists. The average CF and the SEM for 

different groups were as follows; controls, 1.5 ± 0.1; PGN, 2.0 ± 0.1; Poly I:C, 2.2 ± 0.2; 

LPS, 2.2 ± 0.2; FGN, 1.8 ± 0.3; PAM, 1.5 ± 0.1; LOX, 2.2 ± 0.3; and CpG, 2.0 ± 0.1. 

 The overall results show that most TLR agonists increased the secretion of 

AvBD2 by heterophils albeit to different extents except for CpG-ODN which showed no 

change (Fig. 5). The inability of CpG-ODN to incite production of AvBD2 may be that, it 
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is not a potent inflammatory agent in the concentration used in this study or due to the 

absence of TLR 9 receptor in chickens for which it acts as a ligand (Boyd et al., 2007; 

Dar et al., 2009; Kogut et al., 2006; Temperley et al., 2008). However, many studies 

using CpG-ODN in poultry models have shown it to activate of both macrophages and 

heterophils (Xie et al., 2003; Kogut et al., 2006).  Therefore, the inability of CpG-ODN to 

induce AvBD2 remains unexplained. LPS is a potent inflammatory agent, which induced 

maximal changes in AvBD2 production (P≤0.001); others such as PGN, PAM, FGN, 

LOX and poly I:C also showed significant increase in its production (P≤0.05) consistent 

with their efficacies to activate heterophils (Kogut et al., 2005).  

  Quantitative analysis of human defensins by mass spectrometry has been reported 

using polyacrylamide gel electrophoresis, heavy stable isotope labeling, liquid 

chromatography, and electro spray ionization (ESI) mass spectrometry (Jorgensen et al., 

2006; Thompson et al., 2006; Zhou et al., 2002). The advantage of the current procedure 

is that the measurement of the relative changes in BD can be achieved without stable 

isotope labeling or liquid chromatography and the assay can be performed directly and 

quickly in complex mixtures.  

 In conclusion, these results demonstrate that the method of chemically modifying 

AvBD without stable isotope tagging followed by direct MALDI-TOF-MS analysis may 

be a suitable and inexpensive method to study their differential expression. This general 

method of relative quantification can likely be adopted for any system where peptide of 

interest contains at least one cysteine residue.   
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FIGURE LEGENDS 

Figure 1: A flowchart showing the experimental protocol to determine the relative 

changes in AvBD2 production by chicken heterophils upon TLR activation. 

Figure 2: MALDI-TOF spectral profiles of heterophil conditioned media extract 

prepared from control and TLR agonist treated cultures showing AvBD2 peak (m/z 

3916). 

Figure 3: MALDI-TOF mass spectra of heterophil conditioned media extracts showing 

AvBD2 peaks (a) without reduction and alkylation and (b) after reduction and alkylation.  

Figure 4: MALDI-TOF-MS profiles of 1:1 mixture of non-reduced and reduced AvBD2 

forms. (a) control sample showing both non-reduced (m/z 3916) and reduced (m/z 4264) 

and (b) to (h) represent equivalent mixtures of control non-reduced (m/z 3916) and TLR 

agonist treated reduced (m/z 4264) AvBD2.  

Figure 5: Relative changes in the production of AvBD2 by heterophils induced by 

different TLR agonists compared with control. Data represents the mean value ± SEM for 

six mass measurements from triplicates samples in each groups. * indicates significant 

statistical differences with control p≤0.05 and ** represents p≤0.001.   
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CONCLUSION 

Owing to the ubiquitous role of peptides in many physiological processes as 

hormones, neurotransmitters, growth and antimicrobial factors, we hypothesized that 

many such peptides occur as native components of cells as part of its specialized 

functions and peptide levels are likely regulated under physiological demand. 

We used avian mononuclear cells/macrophages and heterophils as models of 

specialized cells that are central components of innate immunity. Using matrix assisted 

laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry we screened 

whole cells and their extracts to determine similarities and differences in their spectral 

profiles. The high intensity mass spectral peaks were used as the criteria of selection to 

identify and characterize the corresponding peptides from each of the above cell 

populations. Then the quantitative changes in peptide levels were studied under TLR 

activation of these cells mimicking immunomodulation.  

Screening mononuclear cells, transformed avian macrophages, and heterophils 

identified a high intensity spectrum corresponding to m/z 4963 expressed differentially in 

mononuclear cell but not in heterophil populations which exhibited its specific profiles.  

Using proteomic approaches such as reverse phase high performance liquid 

chromatography-electrospray ionization, N-terminal sequencing, and peptide mass 

fingerprint, m/z 4963 was identified as thymosin beta 4 (Tβ4), an actin binding peptide.  

The mature form of the peptide identified was found to be modified and had lower mass 

than that predicted from its corresponding genomic sequence (Chapter 2). Similarly, we 

identified and characterized avian beta defensin 2 (AvBD2), as an abundantly occurring 

antimicrobial peptide in heterophils of both chickens and turkeys with 90% sequence 
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homology (Chapter 3). The study on beta defensins was extended to two other related 

avian species, pheasant and quail. Chapter 4 deals with reduction and alkylation 

approach, incorporated to general MALDI screening strategy, to selectively screen 

peptides having 6 cysteine residues followed by mass spectrometric fragmentation 

method to sequence the peptide. The approach proved to be rapid in place of time-

consuming HPLC isolation and MALDI peptide mass fingerprinting (PMF) method. The 

study yielded the mature peptide sequences of pheasant and quail orthologs of AvBD2 

(Chapter 4). This is the first report of these peptides in pheasant and quail. These results 

demonstrate that MALDI-TOF is a potential tool to rapidly screen and detect low 

molecular weight proteins and peptides associated with cells, tissues, and biological 

fluids that cannot be resolved by 2-D gel electrophoresis. Also, these studies show that a 

simple, rapid and direct screening of crude extracts by MALDI-TOF-MS can detect 

important homologous peptides relevant to disease or other peptidomic endpoints, even 

across species lines. 

Tβ4 is an anti inflammatory peptide involved in tissue remodeling, angiogenesis 

and wound healing while avian beta defensins are antimicrobial peptides although their 

other physiological roles are not completely understood. AvBD2 has been suggested to 

act as an immunomodulator and anti inflammatory factor. Thus it postulates that these 

peptides need to be regulated under conditions, which evoke an innate immune activity. 

A reasonable assumption with reference to the regulatory mechanisms of these peptides 

can be related to Toll like receptors (TLR). The TLRs are the primary sensors of innate 

immunity acting as the pattern recognition molecules on the surface of both 

monocytes/macrophages and heterophils. Recognition of different ligands derived from 
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different pathogen sources such as bacteria, virus, parasites, and fungi can elicit both 

common and separate immune responses. Thus, the recognition of these pathogens would 

lead to the activation of intracellular signaling pathways to modulate the production of 

these peptides along with other pro and/or anti inflammatory molecules. We studied to 

find the effects of different TLR agonists on the expression and production of Tβ4 in a 

chicken transformed macrophage cell line and AvBD2 in chicken blood heterophils using 

gene expression and peptide quantification as described in Chapters 5 and 6.  

Chapter 5 discusses the activation of different TLRs by corresponding agonists 

and their effects on Tβ4 production by chicken macrophages. In view, of its multiple 

effects such as wound healing, angiogenesis and tissue remodeling, the study was done to 

understand the mechanism of its release to the extracellular environment. Gene 

expression studies by real time PCR showed only few agonists, lipopolysaccharide, 

peptidoglycan, and synthetic lipoprotein PAM3CSK4, that stimulate activation of TLR 2, 

4, and TLR2/1 respectively, up-regulated the expression of Il-6, Il-1β and iNOS but had 

no effect on Tβ4. Stable isotope labeling with amino acids in the cell culture (SILAC) 

followed by mass spectrometry, to study Tβ4 secretion showed these ligands caused a 

significant decrease in cellular Tβ4 content at 24 h. The decrease was accompanied by a 

corresponding release of Tβ4 into the culture medium. In the absence of its synthesis, the 

release of Tβ4 into the culture medium appears to be associated with cell death as 

indicated by LDH measurements in the culture medium. These results imply that Tβ4 in 

extracellular fluid originates from dying cells rather than active secretions. This 

contributes to the understanding of the origin of Tβ4 in the wound fluids. 
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Chapter 6 describes a novel method to quantify AvBD2 production by heterophils 

under immunomodulating conditions of TLR activation. It uses chemical modification 

and mass spectrometric approach to measure the changes in AvBD2 levels. The results 

show significant differences among the different TLR agonist treatment groups in 

eliciting AvBD2 release into the culture medium with LPS having highest effect and the 

CpG showing no effect. Also peptidoglycan, PAM3CSK4, flagellin, and Poly I:C showed 

significant secretion of AVBD2. In the absence of an available immuno assay method for 

AvBDs, the current method which uses chemical modification of cysteinyl residues in 

BDs provides an approach to measure the relative levels of any AvBD isoforms in 

complex biological mixtures. This approach of modifying beta defensins and MALDI-

TOF-MS analysis appears to be a suitable tool which is simple, cost and time effective.  

These studies provide a paradigm of expression peptidomics of cells which likely 

are consequential for their physiology. Identifying and characterizing all cell or tissue 

associated peptides will provide better understanding of their functions and their 

application potentials.   
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