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i. Abstract 
 

Unconventional natural gas (UNG) is harvested using a unique fossil fuel 

extraction method that uses horizontal drilling and hydraulic fracturing techniques. The 

combined methods have expanded the industry both nationally and globally, and 

development has the ability to transform landscapes and impact freshwater resources. 

Natural gas wells are often near streams, yet substantial knowledge gaps remain as to 

how and the extent to which development affects surface waters. Stream algal biomass 

can respond positively to anthropogenic stressors associated with different types of land 

use, including agriculture. Benthic algal biomass can also positively correlate with UNG 

well density and proximity to streams in the Fayetteville shale, but wells are often 

associated with agricultural land that may confound the relationship.  

The first objective of the present study was to determine if stream benthic algal 

biomass related to previously developed metrics of sensitivity, exposure, and 

vulnerability to land use change.  These metrics incorporated landscape measures of 

UNG development, an emerging human land use change that may affect stream 

ecosystems.  The second objective was to determine if the relationships among algal 

biomass and the metrics differed in streams draining lands with and without the presence 

of UNG wells. Forty stream reaches in the Fayetteville shale were sampled that 

represented a gradient of vulnerability scores (hereafter, Vulnerability), and analysis of 

covariance was used to determine if algal biomass, measured as Chlorophyll a, differed 

based on land use type across a covariate score. The results indicated no relationship 

between Chlorophyll a and Vulnerability or its two individual metrics, Sensitivity and 

Exposure (p>0.50 for all scores). There was no difference in Chlorophyll a between sites 
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with and without UNG wells present. I suggest modifications to the vulnerability index 

that might yield an overall Vulnerability effect as well as additional considerations for 

choosing a response metric. 
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1. Introduction 

 Ever-increasing technology for extraction of and demand for natural resources 

threatens the health and condition of many ecosystems. Unconventional natural gas 

(UNG) extraction, one of the more recently developed fossil fuel extraction methods, has 

the potential to threaten freshwater resources in the United States and across the globe. 

UNG development allows the extraction of natural gas from deposits that have previously 

been inaccessible, and makes this extraction economically feasible, by combining 

methods such as high-volume hydraulic fracturing (HVHF) and horizontal drilling 

(Moran et al. 2015). These combined methods require the use of large volumes of water, 

often withdrawals from nearby streams (Kargbo et al. 2010), and the potential use of 

chemicals that are not regulated by the U.S. Safe Drinking Water Act (Vidic et al. 2013). 

Souther et al. (2014) suggested that top research priorities associated with UNG 

development include studies examining how this development can lead to contamination 

of freshwater resources.  

Extraction of natural gas from shale formations is a developing industry in the 

U.S. and abroad. With 20 shale plays, the U.S. leads the way in shale gas extraction 

globally (Malakoff 2014; Brittingham et al. 2014); certainly, natural gas extraction from 

shale plays in the U.S. is one of the fastest growing trends in domestic onshore energy 

production (Arthur et al. 2008). New extraction technologies are important in the 

transition towards renewable energy, and HVHF may help reduce CO2 emissions 

compared to conventional energy (Vidic et al. 2013). In addition, other positives of UNG 

development include the creation of new jobs, increases in economic activity, and the 
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creation of a more stable and diverse energy base (Burton et al. 2014; Kargbo et al. 

2010).  

Despite the potential benefits of hydraulic fracturing, there is still much to learn 

about how it might be affecting freshwater systems (Vengosh et al. 2014). As the quest 

for sustainable energy continues, landscapes may be transformed before the long-term 

ecological effects are fully understood (Souther et al. 2014). Many potentially harmful 

impacts of UNG development are similar to those resulting from activities such as 

silviculture, agriculture, mining, and urban development (Burton et al. 2014). However, 

UNG is unusual on a chemical and geographical scale and could potentially lead to 

effects that are not directly comparable to those from other types of development (Kiviat 

2013; Souther et al. 2014). For example, wastewater spills are a unique threat of UNG 

(Brittingham et al. 2014), and because of its deeper extraction depth, UNG typically 

results in a larger disturbance footprint than conventional gas drilling (Drohan and 

Brittingham 2012). UNG development, which is often located near streams, can alter 

streams through withdrawals, infrastructure development, and land clearing, which can 

result in sediment runoff, reduced stream flow, altered riparian vegetation, degraded 

water quality, and the introduction of contaminants (Entrekin et al. 2011; Entrekin et al. 

2015). Estimates of water usage include 400-4000 m3 of water to drill an UNG well, and 

another 7000-18,000 m3 to hydraulically fracture each well (Gregory et al. 2011). Rozell 

and Reaven (2011) evaluated potential risks of UNG development to surface water and 

created a model that identified transportation spills, well casing leaks, leaks through 

fractured rock, drilling site discharge, and wastewater disposal as the top five water 

contamination pathways.  
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It is important to study the environmental effects of HVHF to ensure sustainable 

development and to make informed decisions on how this industry should progress. 

Using existing data for six productive shale plays in the U.S., Entrekin et al. (2015) 

developed a multivariate vulnerability index of streams that describes vulnerability as a 

combination of an ecosystem’s natural sensitivity to development and the extent of the 

exposure of an ecosystem to various types of anthropogenic development. A highly 

vulnerable stream is one with extensive exposure to stressors and high natural sensitivity 

to such stressors. In theory, streams with a higher calculated sensitivity are more at-risk 

for alterations due to exposure to anthropogenic stressors. This threat index might be 

useful as a tool to help predict ecological impacts resulting from UNG development, as 

well as other existing stressors, and in refining management practices (Entrekin et al. 

2015).  

The index is composed of two multivariate metrics: Exposure and Sensitivity. The 

exposure metric attempts to quantify human impacts and includes the following 

variables: road density, %impervious surface cover, %crop cover, %pasture cover, mine 

density, dam density, vertical well density, and non-vertical well density. HUC12s were 

used to rank each variable with a score from 0-4 based on calculated quartiles across all 

HUC12s, with the lowest exposure receiving a score of 0 and the highest a 4. These 

scores were summed and averaged within each shale play.  

The sensitivity metric takes into account natural factors that may make streams 

more or less susceptible to anthropogenic stressors. The variables included are: thirty-

year mean precipitation, catchment slope (in degrees), %wetlands, soil permeability, soil 

K factor (erodibility), and stream density. Sensitivity scores were assigned similarly to 
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exposure scores, with the exceptions being precipitation and wetlands, which were 

assigned inverse scoring (ex: lower precipitation yielded a more highly sensitive 

ranking). These scores were also summed and averaged, and a vulnerability score was 

calculated by multiplying each sensitivity score by the corresponding exposure score. The 

Fayetteville shale in Arkansas was found to have the 2nd highest average Vulnerability 

out of the six shale plays, and so it is a good place to test these metrics for biological 

significance.  

The effects of human land use, including agriculture, mining, and urbanization, on 

stream ecosystems have been extensively studied (see review by Allan 2004; Clapcott et 

al. 2012; Wang et al. 1997). These human actions constitute a significant threat to the 

ecological integrity and overall health/condition of freshwater systems, and affect these 

systems through multiple, complex pathways at various scales (Allan et al. 1997). 

O’Brien and Wehr (2010) demonstrated that streams draining different landscapes (rural 

versus urban) differed physically, chemically, and biologically, and Taylor et al. (2004) 

found that large, spatial-scale differences in land use accounted for much more variation 

in algal communities among study sites than did physical variables such as light and 

substratum composition. Anthropogenic impacts can occur due to one or a combination 

of the following: nutrient, pesticide, and sediment runoff, degraded riparian habitat, and 

altered flow and hydrology associated with development of natural landscapes (Allan 

2004; Paul and Meyer 2001; Lenat and Crawford 1994). A gradient approach is often 

useful in determining the mechanisms and extent to which land use influences stream 

ecosystems, since changes in land use can vary continuously (O’Brien & Wehr 2010; 

Taylor et al. 2004; McDonnell and Pickett 1990).  
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Development of land for HVHF can also lead to habitat fragmentation and 

degradation; each well installation is comprised of a wellpad, access road(s), storage 

areas for water, chemicals, sand, and wastewater, a compressor station, and a pipeline 

(Kiviat 2013). Studies have documented changes to streams that are correlated with UNG 

development. Williams et al. (2007) found that UNG installations in the Barnett shale in 

Texas resulted in increased sedimentation to streams for a short time immediately 

following well drilling, and the disturbed areas around the pad site continued to supply 

increased levels of sediments for an even longer period of time. Burton et al. (2014) 

found that stream ecosystems were significantly impacted by UNG development, and 

linked these impacts to well pad densities, rates of UNG development, distance of 

development to streams, and proximity to roads and pasture land. Natural gas wells are 

often associated with agricultural land, so potential threats from UNG development could 

combine with existing anthropogenic stressors to affect water quality and biological 

communities, and these cumulative impacts can be difficult to assess and measure (Vidic 

et al. 2013; Moran et al. 2015). A combination of land use factors may confound the 

relationship between a single type of land use and stream responses, so one objective of 

this study was to assess whether the effects of agriculture, a prevalent industry in 

Arkansas, and natural gas extraction on stream biota could be separated. 

Stream algal communities are often sensitive to anthropogenic impacts and 

respond quickly, so they are commonly used as biological indicators for stream 

bioassessment studies (Barbour et al. 1999; Evans-White et al. 2013). Human disturbance 

can result in excess nutrient runoff to streams, which can lead to elevated algal biomass 

(Delong and Brusven 1998). Stevenson et al. (2006) found that algal biomass positively 
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correlated with both nitrogen and phosphorus concentrations in streams with varying 

levels of disturbance. Dodds et al. (2002) demonstrated bottom-up control of benthic 

algae and found that Total Nitrogen and Total Phosphorus were positively correlated to 

Chlorophyll a concentrations and explained 40% of the variation for algal biomass in 

their study streams. In Fayetteville shale streams in particular, it was found that algal 

biomass and production were positively correlated to nitrogen concentration, which was 

positively correlated to natural gas activity (Austin 2015). Austin et al. (2015) proposed 

that unconventional drilling for natural gas might relieve limiting nutrients in streams by 

runoff, resulting in elevated algal biomass. Johnson et al. (2015) found differences in 

macroinvertebrate density and community structure in streams draining UNG lands in the 

Fayetteville shale, and suggested that the increase in algal biomass could instigate these 

changes.  

This study examined benthic algal biomass in Fayetteville shale streams to 

determine whether the metrics of the recently available vulnerability model (Entrekin et 

al. 2015) related to the biomass response of these communities to agricultural land use 

and UNG infrastructure. A gradient approach was used to assess differences in 

periphyton biomass across streams that drain mostly agricultural land or land with a 

combination of agriculture and natural gas wells in an effort to separate the effects of 

each land use on benthic algae.   

I hypothesized that benthic algal biomass would relate positively to increasing 

Vulnerability and Exposure (Figure 1). I expected to find a positive relationship with 

increasing Exposure due to increased sediment and nutrient runoff and light availability 

resulting from habitat alterations. The Sensitivity effect would be dependent upon the 
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exposure of each ecosystem. Together, I expected algal biomass to have a positive 

relationship with Vulnerability, and predicted a greater slope for the response between 

algal biomass and Vulnerability for sites in the presence of UNG wells compared to sites 

without UNG infrastructure; this difference in slope would imply an “UNG effect” above 

and beyond agriculture. 

 
  



	   11	  

2. Materials and Methods 
 
2.1 Experimental design  

Benthic algal biomass was calculated for 40 streams in north and central Arkansas 

(Figure 2) during the summer of 2015. Sites were divided into two land-use categories 

representing one factor based on the presence or absence of UNG wells (+UNG Wells, 

No UNG Wells). Analysis of covariance (ANCOVA) and regressions were used to test 

for statistically significant linear associations (p<0.05) of land use and Vulnerability on 

algal biomass to determine whether the vulnerability index (Entrekin et al. 2015) 

correctly predicted the response of streams to different anthropogenic stressors. Similar 

analyses examined the viability of the two individual metrics, Sensitivity and Exposure, 

used to calculate Vulnerability. Water samples were also analyzed for nutrient 

concentrations to examine relationships of nutrients with Chlorophyll a, land use, and 

physical landscape variables. 

2.2 Site Selection  

Streams sampled for this study are located in the Fayetteville shale play in 

Arkansas, and are within the Boston Mountain and Arkansas River Valley Ecoregions. 

Sensitivity, exposure, and vulnerability scores were calculated for all catchments 

according to Entrekin et al. (2015) using available data for all streams in the Fayetteville 

shale (Table1). Table 2 shows the mean and range for each of the land-use variables 

taken into account in the exposure scores, and for each of the variables taken into account 

in the sensitivity scores. All sites had some percentage of the draining land used for 

agriculture (measured as percent crop plus percent pasture). Sites were divided into 

catchments that had UNG development present and those that had no UNG development, 
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and were chosen across a gradient of exposure to each land use factor (+UNG, No UNG). 

This resulted in a gradient of calculated vulnerability scores for each category. Sampling 

took place during May and June of 2015. Study reaches (~200 m) with and without UNG 

development present in the watershed (N=18 and 22, respectively) were sampled, 

resulting in 40 experimental units (N=40).  

2.3 Sampling Method 

2.3.1 Chlorophyll a 

 Each site consisted of two riffles, and periphyton samples were taken in each 

riffle by choosing three random cobbles of roughly average size (6 cobbles per site). A 

stiff utility brush was used to scrape the periphyton from each cobble into a container, 

and water was added to create a composite slurry for each site. The algal samples were 

held on ice and frozen if not immediately processed. Frozen samples were held in the 

dark and allowed to thaw completely before processing.  

As a proxy to estimate algal biomass, samples were analyzed for Chlorophyll a 

(Chl a). The total volume of each algal sample was measured, homogenized, and two 

subsamples of 5-30 mL were pushed through pre-ashed glass fiber filters into a vial. 

Next, 5-10 mL of 95% ethanol was added to each subsample filter to extract the Chl a. 

The solutions were boiled in a water bath at 78oC and then allowed to sit in a dark 

refrigerator for 24 hours according to Sartory and Grobbelaar (1984). Using a Genesys 10 

VIS spectrophotometer (Thermo Fischer Scientific Inc., Waltham, MA), each sample’s 

absorbance was measured at 664 and 750 nm. Then, 100 microliters of 0.1 N HCl was 

added to acidify each subsample and correct for phaeopigments, and after 90 seconds, the 

absorbance at 665 and 750 nm was recorded. Chl a values (µg) were calculated according 



	   13	  

to linear relationships between absorbance values and Chl a concentrations published in 

APHA (2005).  

Each cobble from which periphyton was scraped was wrapped in aluminum foil, 

which was then weighed. Foil mass was converted to surface area using a conversion 

factor based on the weight of a 1-cm2 piece of foil, and the values were divided by two to 

produce an estimate for the upper half of each cobble’s surface (the area accountable for 

the periphyton). These values were used to convert the Chl a values to mass per unit area 

(µg/cm2).  

2.3.2 Water Column Nutrients  

 At the top of the more downstream riffle at each site, water samples were taken to 

analyze for nutrient concentrations. One unfiltered and one filtered sample were taken 

and stored on ice or frozen until processing. Samples were analyzed for Total Nitrogen 

(TN) and Total Phosphorus (TP) concentrations. TP concentrations were calculated by 

first digesting the samples with persulfate, and then analyzed following the molybdate 

and ascorbic acid Soluble Reactive Phosphorus method found in APHA (2005) using the 

above spectrophotometer. The TN analysis followed standard methods found in APHA 

(2005) using a Latchat QuikChem Analysis System (Lachat Instruments, Loveland, CO).  

2.4 Statistical Analysis 

Chlorophyll a values were log10 transformed to normalize the data. Analysis of 

covariance (ANCOVA) was used to examine the interactions and individual effects of 

Vulnerability (covariate) on algal biomass (response variable) for each of the land use 

categories (1 factor: +UNG, No UNG). If this yielded a significant interaction effect 

(α=0.05), linear regressions were used to examine the relationships between sites with 



	   14	  

UNG and Vulnerability and between sites without UNG and Vulnerability separately. If 

there was no statistically significant interaction effect, a regression was done across all 

sites to test for a significant linear relationship between Vulnerability and algal biomass. 

This analysis was repeated with Sensitivity and Exposure as the covariate, respectively. I 

wanted to determine if any individual measures within each metric were related to 

benthic algal biomass.  So, a Pearson correlation matrix was used to assess univariate 

correlations among all variables taken into account in the sensitivity and exposure metrics 

and nutrient concentrations to determine the variables driving Chlorophyll a variation. All 

analyses were performed in R Statistical Package, Version 3.2.3 (2015, Vienna, Austria). 
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3. Results  
 
3.1 ANCOVA Results 

3.1.1 Vulnerability Analysis 

Chlorophyll a spanned a wide range of values (0.22 – 11.66 µg/cm2), though 

concentrations were predominately low (mean=1.83, median=1.10 µg/cm2). The 

ANCOVA indicated that the algal response, log-transformed Chl a, did not differ based 

on the presence or absence of UNG wells (p=0.69) across a covariate of vulnerability 

scores. There was not a statistically significant interaction effect of Vulnerability and 

land use (p=0.63). Linear regression indicated that there was no statistical relationship 

between Chl a and Vulnerability across all sites (p=0.66). (Figure 3) 

3.1.2 Sensitivity Analysis 

 ANCOVA suggested no statistically significant difference of Chl a across a 

gradient of sensitivity scores based on the presence or absence of UNG wells (p=0.82), 

and there was not an interaction effect of Sensitivity and land use type (p=0.88). Across 

all sites, Chl a was not found to relate to sensitivity scores (p=0.82). (Figure 3) 

3.1.3 Exposure Analysis 

 ANCOVA results suggested that sites with UNG wells present did not differ in 

their Chl a density compared to sites without UNG wells (p=0.51) across a gradient of 

exposure scores. The intercepts of these lines did not differ (p=0.52), which implies no 

effect from an interaction of Exposure and land use. Regression found no overall 

statistically significant relationship between exposure scores and Chl a (p=0.54). (Figure 

3) 

3.2 Pearson Correlation Results 
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 Two of the sensitivity variables, catchment slope and permeability, and two of the 

exposure variables, UNG Density and %Pasture+%Crop, explained some of the variation 

in Chl a (Figure 4, Table 3). Pearson correlation showed weak negative relationships 

between slope (r=-0.35, p=0.02) and permeability (r=-0.27, p=0.09) with the log-

transformed Chl a values. Contrastingly, two exposure variables, UNG Density and 

%Pasture+%Crop, had slight positive correlations with Chl a (r=0.29, p=0.07; r=0.32, 

p=0.04, respectively). Slope was negatively associated with UNG Density (r=-0.34, 

p=0.03) and %Pasture+%Crop (r=-0.82, p<0.01), although permeability did not have 

statistically significant relationships with UNG Density or %Pasture+%Crop. 

 TN values ranged from <0.05 – 1.16 µg/L and did not show a significant 

correlation with Chl a. Like Chl a, TN did have negative relationships with slope (r=-

0.49, p<0.01) and permeability (r=-0.37, p=0.01). There was not a statistically significant 

relationship between TN and UNG Density, but TN related positively with 

%Pasture+%Crop (r=0.57, p<0.01). Overall, TN had positive relationships with 

Sensitivity (r=0.42, p<0.01), Exposure (r=0.38, p=0.01), and Vulnerability (r=0.43, 

p<0.01).  

 TP concentrations ranged from <2 to 66.31 µg/L. TP was not related to Chl a, 

permeability, or UNG Density, but was negatively related to slope (r=-0.37, p=0.01) and 

positively related to %Pasture+%Crop (r=0.32, p=0.04). TP also had positive 

relationships with Exposure (r=0.56, p<0.01) and Vulnerability (r=0.51, p<0.01). 
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4. Discussion 

 The previously published vulnerability index was not predictive of the observed 

variation in Chlorophyll a from the present study's stream reaches sampled in May and 

June 2015. The algal response metric did not relate to any of the three metrics tested: 

Sensitivity, Exposure, or their product, Vulnerability. Although this multivariate index 

approach was limited in its ability to detect relationships, some of the variables included 

in each metric were related to Chl a. It is possible that these weak relationships, such as 

permeability, slope, UNG Density, and %Pasture+%Crop, were diluted in their respective 

index scores due to the several other variables included, which did not have statistically 

significant relationships with Chl a. Additionally, the opposite-direction relationships of 

sensitivity variables (which predicted a negative relationship) and exposure variables 

(positive) may have canceled when combined into a vulnerability score. A detectable 

Vulnerability effect might result if the relationships between Chl a and the two 

component indices (Sensitivity and Exposure) were unidirectional.  

 Multi-metric approaches are difficult due to the many confounding factors that 

influence stream biota and the varying factors that influence different trophic levels at 

different spatial and temporal scales. The variables included in the sensitivity metric were 

designed to predict species diversity and not necessarily algal biomass, but algal biomass 

is a common and economical bioassessment variable that might be helpful in assessing 

possible UNG impacts to wadeable streams. The goal of the sensitivity metric was not to 

directly relate to biological response variables. Instead, its purpose was to identify 

streams that would have a stronger response to human land use changes that would be 

visible when Sensitivity was combined with Exposure. Specifically, reaches receiving a 
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high sensitivity score should have a steeper positive or negative relationship with 

Vulnerability than reaches receiving a low sensitivity score. Modifying this metric to use 

specifically with algal biomass estimates may yield more intuitive results. For example, 

replacing percent wetlands with stream order may generate a steeper, positive slope for 

the relationship between benthic algal biomass and Vulnerability in forested wadeable 

streams. Light-limitation in low-order streams could influence the density of periphyton 

(Hill et al. 2009), and runoff from agricultural lands is more likely to result in 

eutrophication in low-order streams due to the lower dilution in these smaller streams 

(Montuelle et al. 2010). As reported in this study, Detenbeck (2000) found that slope and 

soil permeability influence a stream’s resilience to stressors, but that observed 

relationship was influenced by the natural hydrologic regime, including annual 

precipitation.  

  I suspect that the hydrologic regime during the timeline of field sampling, May 

and June 2015, played a large role in the predominately low Chlorophyll a values 

observed and the lack of correlation with nutrients. During the summer of 2015, Arkansas 

experienced higher than average rainfall (NOAA Arkansas Yearly Climate Summary) 

and frequent flooding during the 2015 El Niño events. It was not possible to sample study 

reaches during a time when they had been at baseflow for long enough that benthic algae 

could recover from high flow events since the whole year was characterized by an 

increased frequency of spates. These spates scoured the benthos and likely greatly altered 

stream biota, including possible decreased benthic periphyton biomass and increased or 

diluted nutrient concentrations, depending on sources and type of nutrient. Frequent 

flooding has been linked to decreases in Chl a (Biggs 1995), and such disturbances can 
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interact or supersede relationships with other factors that might otherwise influence Chl 

a. Likewise, Lohman et al (1992) found significant decreases in Chl a after flooding, and 

suggested that frequency and intensity of floods are the dominant factors in explaining 

variation in Chl a. Their results also suggest that streams that are more exposed to human 

development rebound more quickly than undisturbed sites because in flood-free periods, 

nutrient enrichment is able to exert its influences on biomass accrual. Biggs (2000) also 

found that streams with a higher frequency of floods did not respond to increases in 

nutrients as strongly as sites that were less disturbed by flooding. During this study’s 

restricted sampling period, streams were continually rising and falling, and it is possible 

that they did not have time to fully recover and reach maximum standing crop of benthic 

algae before sampling took place, leading to the observed typically low densities of 

Chlorophyll a. 

 To mitigate the effects of temporal variation in climate, which affects light, 

temperature, disturbance, and grazing, on nutrient concentration and limitation and algal 

abundance, it is useful to sample sites multiple times seasonally (Francoeur et al. 1999). 

The relative importance of these factors that influence algal abundance can also vary 

seasonally (Rosemond et al. 1999). The temporal scale of this study might have limited 

the efficacy of the vulnerability model to detect changes in algal abundance related to 

different land uses. During a two-year study, Hoorman et al. (2008) found significant 

seasonal variations in stream nutrient concentrations from agricultural runoff. Austin et 

al. (2015) found seasonal variations in Chl a, which affected the strength of their 

observed relationship between Chl a and UNG development. In that study, algal samples 

taken during the winter season had less variability and indicated a stronger correlation 
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with distance to UNG Wells. These results, along with excessive flooding, imply a 

cautious interpretation of the lack of statistically significant relationships found in this 

study.  

Another possible reason for the lack of detection of an “UNG effect” based on 

statistically insignificant ANCOVA results is the low power of the vulnerability model. 

However, while Austin et al. (2015) found a significant positive correlation between 

Chlorophyll a and UNG Wells, the results of the present study show only a marginally 

significant correlation, and it was not able to be separated from effects of other land use, 

such as agriculture, which explained more of the variation in Chl a. There was also no 

observed relationship between UNG Density and TN or TP in this study. Over time, the 

initial impact of UNG development might have decreased until streams were able to 

recover and reach equilibrium. For the Marcellus shale play in Pennsylvania, Brantley et 

al. (2014) suggested that HVHF incidents involving nutrients and contaminants that 

impact freshwater resources might be rare and quickly diluted. Rather than nutrient 

concentrations, sedimentation due to habitat alteration might be a more suitable predictor 

of lasting UNG effects (as seen in McBroom et al. 2012; Williams et al. 2007).  

Algal communities respond not only to in-stream and landscape-scale physical 

factors but also to land-use, which makes it difficult to detect individual relationships. 

Despite the fact that Chlorophyll a is widely used in studies and is relatively easy to 

sample, there is not a clear consensus on which algal metrics are most useful as bio 

indicators (Black et al. 2011; Morin and Cattaneo 1992). Specifically, some studies have 

been unable to detect relationships between land-use or environmental variables with Chl 

a. Liess et al. (2012) sampled streams across a gradient of catchment land use and was 
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unable to detect a single significant predictive model of Chl a with any of the land-use, 

nutrient, or in-stream variables studied. Hill et al. (2009) also found high variation in Chl 

a when studying the interacting effects of light and nutrients on periphyton, and warned 

that it should be used cautiously as a proxy for algal abundance. Growth rate, ash-free dry 

weight, or biovolume could be used in conjunction with Chlorophyll a to provide 

additional accuracy in abundance estimates. Species composition data, such as diversity 

and taxon richness, would also be useful in sensitivity analyses, since certain pollution-

tolerant taxa could be hypothesized to be in greater abundance in more highly vulnerable 

sites.  

Vulnerability classification of freshwater resources can be a useful tool for 

environmental managers to assist with preventing further degradation of and restoring 

previously impaired ecosystems (Detenbeck et al. 2000). There are numerous ways to 

classify an ecosystem’s vulnerability to stressors; nevertheless, Paukert et al. (2008) 

examined published threat indices and found that many classification methodologies, 

grouped into categories based on how severity and frequency of stressors are calculated, 

provide similar threat scores, regardless of the exact system used to calculate such scores. 

They also found that, for each of the studied indices, percent urban land was most highly 

correlated with vulnerability, and variables such as road density and number of stream 

crossings greatly influenced the overall vulnerability scores. Whether each of these 

indices is biologically significant in a given setting is less clear. My results show that a 

multi-metric analysis can be limited based on the specifics of a study. The variables 

included in a threat index must be relevant to the response measured, and the response 

must provide a clear indication of an ecosystem’s quality or condition. When examining 
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algal communities, this approach is made even more difficult due to the variable relative 

influence of factors that affect benthic periphyton, such as the interacting effects of light 

and nutrient limitation/saturation. The scale of such studies must also account for 

temporal and spatial variation in continuously changing lotic systems.  

    Overall, this study was unable to validate the ability of the recently available 

vulnerability index to predict a relationship between its multi-metric scores and algal 

biomass, though the limited temporal scale of this study must be taken into account. 

Tailoring the metrics to better reflect a true sensitivity relationship might provide more 

insight into the capabilities of this biotic index. Further, this model was unable to detect 

differences in periphyton abundance between sites that had UNG wells compared to those 

without. I suggest that this is due to a combination of the fading effect of the initial 

impact of UNG development and the low power of the current model to detect changes in 

biomass. Further studies based on suggested modifications of this vulnerability model 

may provide guidance for its use as a predictive tool for UNG development. 
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6. Figure Legends 

Figure 1. Hypothetical relationship between Vulnerability and Exposure scores and 

Chlorophyll a. 

 

Figure 2. Map of the location of the 40 study sites in the Fayetteville shale play separated 

by land use, No UNG Wells (red) and +UNG Wells (black).  

 

Figure 3. Scatterplots of Log(Chl a) versus Vulnerability (a), Sensitivity (b), and 

Exposure (c) scores as calculated by Entrekin et al (2015).  

 

Figure 4. Scatterplots of Log (Chl a) versus Slope (degrees), Permeability, UNG Well 

Density (wells/km2), and %Pasture+%Crop. 
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7. Figures 

Figure 1.   
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Figure 2.   
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Figure 4.  
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8. Table Legends 

Table 1. Calculated Sensitivity, Exposure, and Vulnerability scores for each of the 40 

streams sampled for each of the two land use categories. 

 

Table 2. Mean, minimum, and maximum values for Exposure variables (dark grey) and 

Sensitivity variables (light grey). 

 

Table 3. Pearson Correlation matrix for each of the scores, sensitivity variables, exposure 

values, TN, TP, and Log (Chl a).  
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9. Tables 

Table 1.  

  

Stream	   Sensitivity	   Exposure	   Vulnerability	   Land	  Use	  

Bayou	  Des	  Arc	   15	   15	   225	   +UNG	  

Beardy	  Branch	   12	   15	   180	   +UNG	  

Butler	  Creek	   12	   13	   156	   +UNG	  

Cedar	  Big	   14	   11	   154	   No	  UNG	  

Cedar	  Cove	   17	   18	   306	   +UNG	  

Choctaw	  Creek	   15	   16	   240	   +UNG	  

Cravens	   11	   14	   154	   No	  UNG	  

Creben	  Creek	   17	   15	   255	   +UNG	  

Departee	  Creek	   10	   19	   190	   +UNG	  

Dirty	  Creek	   15	   17	   255	   No	  UNG	  

Driver	  Creek	   9	   4	   36	   No	  UNG	  

EF	  Horsehead	   16	   15	   240	   No	  UNG	  

Fane	  Creek	   11	   4	   44	   No	  UNG	  

Galla	  Creek	   17	   21	   357	   No	  UNG	  

Gap	  Creek	   17	   17	   289	   +UNG	  

Gar	  Creek	   17	   14	   238	   No	  UNG	  

Granny	  Creek	   16	   15	   240	   No	  UNG	  

Greenbrier	  Creek	   15	   26	   390	   +UNG	  

Hill	  Creek	   11	   12	   132	   +UNG	  

Hogan’s	  Creek	   18	   22	   396	   +UNG	  

Indian	  Creek	   11	   4	   44	   No	  UNG	  

Jack’s	  Fork	   12	   14	   168	   No	  UNG	  

Little	  Froggy	  Bayou	   17	   15	   255	   No	  UNG	  

Little	  Mulberry	   14	   20	   280	   No	  UNG	  

Little	  Spadra	   15	   16	   240	   No	  UNG	  

Maxie	  Creek	   10	   12	   120	   No	  UNG	  

McCoy	  Creek	   17	   13	   221	   No	  UNG	  

Mill	  Creek	   16	   13	   208	   No	  UNG	  

Mill	  Mulberry	   12	   12	   144	   No	  UNG	  

Mountain	  Creek	   11	   8	   88	   No	  UNG	  

NF	  Cadron	   14	   21	   294	   +UNG	  

Pine	  Creek	   12	   19	   228	   +UNG	  

Pool	  Hollow	   17	   24	   408	   +UNG	  

Prairie	  Creek	   14	   20	   280	   +UNG	  

Rock	  Creek	   12	   13	   156	   +UNG	  

Slover	  Creek	   15	   13	   195	   No	  UNG	  

Spadra	  Creek	   14	   14	   196	   No	  UNG	  

Tenmile	  Creek	   11	   20	   220	   +UNG	  

Weaver	  Creek	   14	   13	   182	   +UNG	  

Wilson	  Creek	   14	   10	   140	   No	  UNG	  
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Table 2.  

Exposure	  
Variables	  

%Crop	   %Pasture	   UNG	  
Density	  

Mine	  
Density	  

Dam	  
Density	  

Vertical	  
Well	  

Density	  

Road	  
Density	  

Impervious	  
Surfaces	  

Mean	   0.00	   30.74	   0.62	   0.25	   0.02	   0.24	   7.04	   0.46	  

Range	   0	  –	  0.01	   0.44	  –	  64.81	   0	  –	  2.99	   0	  –	  2	   0	  –	  0.09	   0	  –	  1.43	   2.47	  –	  
27.39	  

0.02	  –	  3.41	  

Sensitivity	  
Variables	  

Permeability	   Precipitation	  
(inversed)	  

Stream	  
Density	  

%Wetlands	  
(inversed)	  

Slope	  
(degrees)	  

kfactor	   	   	  

Mean	   1.45	   1299.15	   1.63	   0.47	   6.62	   0.29	   	   	  

Range	   0.99	  –	  2.11	   1252	  –	  1395	   1.03	  –	  
3.01	  

0	  –	  12.69	   2.42	  –	  
16.59	  

0.24	  –	  
0.34	  
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Table 3.  
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