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Abstract 
 
 Plasmonic nanostructures have been shown to act as optical antennas that enhance 

optical devices due to their ability to focus light below the diffraction limit of light and 

enhance the intensity of the incident light. This study focuses on computational 

electromagnetic (CEM) analysis of two devices: 1) GaAs photodetectors with Au interdigital 

electrodes and 2) Au thin-film microstructures. Experiments showed that the photoresponse 

of the interdigital photodetectors depend greatly on the electrode gap and the polarization of 

the incident light. Smaller electrode gap and transverse polarization give rise to a larger 

photoresponse. It was also shown that the response from the introduction of the Au thin-film 

microstructure in the electrode structure was greater. The experimental device enhancement 

found for the introduction of the thin-film microstructures is most likely attributed to hot 

electron excitation. This computational study will simulate the optical properties of these two 

devices in order to determine what plasmonic properties and optical enhancement these 

devices may have. The modeling software used to validate the experimental results solved 

Maxwell’s equations with a finite element method (FEM) mathematical algorithm provided 

by COMSOL Multiphysics. For the interdigital photodetectors device, it was determined that 

the device response as a function of electrode gap and incident light polarization angle were 

similar to the experimental results. The enhancement provided by the introduction of the Au 

thin-film microstructures cannot be completely explained by plasmonic activity occurring 

with the microstructures, but there is plasmonic activity occurring with the devices.  
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Chapter 1: Introduction 

1.1 Plasmons 

 

 Plasmonics is the study of the interaction between free electrons along the surface of 

metallic structures and the metallic structures themselves. These plasmons are collective 

electron charge densities that oscillate along the surface of the metallic structure.1 Plasmons 

and plasmonics have grown tremendously as a field of study because of the ability of these 

plasmons to focus light at scales smaller than the diffraction limit.2 These plasmonic effects 

provide unique optical characteristics shown by plasmonic devices and structures. The 

structures act as optical antennae that enhance optical emission and reception. One of the 

main advantages to employing these plasmonic structures is their ability to interact with and 

enhance electromagnetic waves at the nanoscale. Improvements in nanotechnology have 

allowed the proliferation of plasmonic study and enabled a wide array of researchers to study 

the nanoscale interaction of light.3 

 A metallic nanostructure with no applied electromagnetic field can be roughly 

modeled as an electrically neutral structure with protons and electrons balanced as shown in 

Figure 1(a). The plasmonic effects can be analyzed classically using Maxwell’s equations 

governing electrodynamics.4 The effect of an applied electromagnetic wave incident on a 

metallic structure is shown in Figure 1.  
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Figure 1: (a) Metallic nanostructures at rest with no applied electromagnetic fields. (b) Metallic 

nanostructures with applied electromagnetic field with shown polarization and poynting vector, 

eliciting charge oscillations along the surface of the metallic structures with positive/negative 

localizations shown.  

 Two metallic nano-spheres shown in Fig. 1(a) have a balanced atomic structure 

without any incident electromagnetic waves. Fig. 1 (b) displays the effect of an applied 

electromagnetic wave with shown polarization and direction of wave propagation. The 

applied wave causes a displacement in the electrons creating negative ions (red spheres in 

image) and leaving positive ions behind (blue spheres). 

1.2 Plasmonic Applications 

 

 The usefulness of plasmonic effects is attributed to their ability to focus light at the 

nanoscale, below the diffraction limit of light and enhance the optical emission and 
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reception. This leads to applications in enhanced spectroscopies5-7, enhanced photodetectors8-

10, thermoplasmonic applications11-13, improved photovoltaics14-15, photothermal therapies16, 

plasmonic lasers, SPASERs17, and many more. A summary of these applications is found in 

Figure 2.  

 

Figure 2: Application of plasmonic effects for (a) improved photovoltaic cells [14], (b) plasmonic 

lasers: SPASERs [17], and (c) photothermal therapies [16]. 

1.3 Plasmonic Polarization 

 

Polarization dependence is a hallmark of plasmonic effect(s) occurring for device 

architecture(s). Plasmonic devices exhibit this polarization dependence with an increased 

response in optical emission.8,10,18 Fig. 3 displays this polarization dependence for two types 

of device architecture and displays results for both transverse and longitudinal 

polarizations.8,19  



 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: (a-b) Side-view and (c-d) Top-view results of computational electromagnetic modeling 

results showing plasmonic polarization dependence for both (a) and (c) transverse and (b) and (d) 

longitudinal polarizations. Plasmonic polarization dependence is shown for both (a-b) rectangular [8] 

and (c-d) circular shapes [19]. 

 

Both architectures in Fig. 3 have the longitudinal polarization traveling along the 

devices and the transverse polarization is traveling across the devices. The transverse 

polarization for both devices in Fig. 3 (a) and (c) show a greater device response in the 

computational results than the device response shown in (b) and (d). Both (c) and (d) show 

the top-side view of the nano-spheres and (a) and (b) show the side-view of the rectangular 

devices. 

1.4 Computational Electromagnetics 

 

 Computational electromagnetics (CEM) employs computer algorithms to provide 

solutions to complex electromagnetic problems; two popular methods in CEM are finite-

difference time domain (FDTD) and finite-element method (FEM). The FDTD method 

employs a time domain to solve time dependent Maxwell’s equations in partial differential 

equation form.20-22 This study, however, will use FEM software (COMSOL Multiphysics), 

which employs a mathematical method to break the simulation space into a finite quantity of 
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mesh elements. This discretization of elements, shown in Figure 4, allows for these 

electromagnetic waves represented by complex differential equations to be expressed as 

basic functions.20  

 

Figure 4: Finite Element Method (FEM) discretization of sample simulation space. Free triangular 

meshing pattern, simplifies complex partial differential equations that describe electromagnetic wave 

propagation into simple polynomials for each mesh element. 

 This component of FEM allows for very complex electromagnetic equations to be 

summarized in such a way that is not computationally intensive when compared to the 

number of elements that are created when finding a solution. Where the partial differential 

equation in the frequency domain for these models is given by 

  𝛁 𝑥 𝜇𝑟
−1(𝛁 𝑥 𝑬) − 𝑘0

2 (𝜀𝑟 −
𝑗𝜎

𝜔𝜀0
) 𝑬 = 0   (1) 

 Where 𝛁 is the gradient function, 𝜇𝑟 is the relative permeability of the material that 

the electromagnetic wave is propagating through, E is the electric field, 𝑘0 is the initial wave 

number, 𝜀𝑟  is the relative permittivity of the material that the electromagnetic wave is 

propagating through, j is the current density, 𝜎 is electrical conductivity of the material, 𝜔 is 

the angular frequency, and 𝜀0 is the permittivity of free space. The electrical conductivity and 

the relative permittivity and permeability of the materials are defined within the COMSOL 

interface. The vector component of (1), E, is given by 
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  𝑬(𝑥, 𝑦, 𝑧) = 𝑬(𝑥, 𝑧)𝑒−𝑖𝑘0𝑦     (2) 

 This expression shows that the electromagnetic waves conditions as modeled in a 

two-dimensional space can be polarized in the x and z directions and will propagate in the y 

direction. In addition to this meshing component, this simulation software treats a two-

dimensional model as infinitely long along the device architecture as shown in Figure 5 (b). 

In addition to these models being treated as infinitely long in the z-direction, these particular 

models are created with periodic boundary conditions and perfectly matched layers. The 

model employed the radio frequency (RF) module of COMSOL to analyze these devices. 

This model is robust and has the capability to simulate variable physical parameters of the 

system in order to determine the enhancements properties of these devices. Variable input 

parameters include particular polarization, directional poynting vectors, material parameters, 

and geometry.  

 The wave equation to simulate these desired mechanics is 𝐸b,X = 𝑒𝑖𝑘0𝑦; this equation 

represents the background electric field with a magnitude of 1 V/m that was incident on the 

structure for all simulations where a perfectly transverse polarization was employed. The 

equation components are as follows, i representing a complex number, k0 representing the 

initial wave number given by 𝑘0 =  
2𝜋

𝜆
, and y is the k-vector direction, the direction in which 

light is propagating for this simulation. The initial wave number for the simulated models is a 

function of the wavelength of the incident light. This enables the modeled simulations to 

properly compute the electromagnetic response for the devices as a function of spectral input. 

For the longitudinal wave equation the background field would be EL.  In order to alternate 

between the two polarization angles, the background electric field equations were altered 

from the form given in (2) and the effect is shown by 
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∞

∞a) b)

  𝐸𝐵,𝑥 =  𝑒𝑖𝑘0𝑦cos (𝜃)      (3) 

  𝐸𝐵,𝑧 =  𝑒𝑖𝑘0𝑦sin (𝜃)      (4) 

 Both (3) and (4) could be input into the initial physical conditions for all device 

designs and architectures and a incident polarization angle could be set so that the 

background electromagnetic conditions did not have to be changed from simulation to 

simulation. The electromagnetic response for a device is given by Φ = |
𝐸𝑙𝑜𝑐𝑎𝑙

2

𝐸0
2 | where Φ is the 

optical enhancement characterized by the electromagnetic response of the device and 𝐸𝑙𝑜𝑐𝑎𝑙 

and 𝐸0 are the local and initial electric field respectively. The initial electric field is 1 V/m 

which reduces the equation for optical enhancement to Φ = |𝐸𝑙𝑜𝑐𝑎𝑙
2 |. 

 

 

 

 

Figure 5: (a) Two dimensional rendering of sample structure, two-dimensional structures are treated 

as infinitely long in longitudinal direction, (b) Illustration of the two dimensional structure with 

infinitely long geometry in the z-direction (longitudinal). 

 When a device has been properly designed, meshed, all pertinent material properties 

entered, and electromagnetic conditions specified the software would display results similar 

to Figure 6.  

 

 



 14 

    

 

 

 

 

 

 

Figure 6: FEM result for sample structure shows optical enhancement distribution results for the 

sample structure and the direction of electromagnetic wave propagation and polarization. 

 The device structure will be displayed as well as the optical enhancement distribution 

for the particular physical situation created during the design of the simulation, optical 

enhancement for all device structures over a given area is given by 

  Φ =  |∑
𝐸𝑙𝑜𝑐𝑎𝑙

2

𝐸0
2 | = |∑ 𝐸𝑙𝑜𝑐𝑎𝑙

2 |     (5) 

 Where Elocal is the local electric field distribution and E0 is the initial electric field 

distribution, for the optical enhancement over a particular area, it is the sum each optical 

enhancement found for each mesh element. As the number of mesh elements increases, the 

size of the mesh elements decreases and the number of solutions computed for the local 

electric field as a result of the incident electromagnetic conditions increase. For this 

particular sample optical enhancement distribution, there is also an arrow map displaying the 

Poynting vector, 𝑆 = �⃑⃑� 𝑥 �⃑⃑⃑� where �⃑⃑� is the electric field vector and �⃑⃑⃑� is the magnetic field 

vector, for the electromagnetic wave with displayed transverse polarization. The Poynting 

vector describes the direction of electromagnetic wave due to the cross product between the 

electric and magnetic fields. The electromagnetic wave cannot fully penetrate the device 

material due to transmission losses, so the electromagnetic wave bends around the metallic 

layers. The distribution shown is a heat map with the white being the maximum value for the 

optical enhancement distributions and the black coloring being the minimum. From this type 
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of result, a more in-depth mathematical analysis can occur and other values can be derived 

from each particular result. 

1.5 Thesis Motivation 

 

 With the expansion of nanotechnology and the vastly improving computing power 

available currently, CEM has been explored in new and exciting mediums. Solutions to these 

complex electromagnetic problems are now available at the command of a few keystrokes, 

with the new level of computational ability, device optimization and creation is now more 

possible for device manufacture. CEM brings theoretical results that will help tune devices 

and systems for a wide array of applications as discussed in Section 1.2.  

 This work will analyze and further understand the potential plasmonic effects that 

could be occurring in an interdigital photodetector that is larger than customary devices that 

exhibit plasmonic activity; and to investigate the plasmonic enhancement that would occur if 

one were to fabricate these devices with geometrical specifications at the nanoscale.8,10 

Additionally, it will investigate new device architecture, Au thin-film microstructures. This 

particular device utilizes specific thin-film arrays and geometric dimensions of said 

microstructures to improve the photocurrent generation for electrodes.23  
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Chapter 2: Interdigital Photodetectors 
 

Note: Full details of this computational model and experimental results are found in 

submitted and published works [8] and [10] and contributed computational results to [26]. 

This chapter’s results also presented in an invited presentation/talk at the INBRE conference 

in Fayetteville, AR in 2015. 

2.1 Device Architecture and Simulation Setup 

 

 Semi-insulating GaAs photodetectors have been fabricated with interdigital gold 

electrode similar to the CdSe nanocrystal devices in previous work.9 The electrode design of 

the devices is shown in Figure 7. They are gold electrodes with a titanium adhesion layer. 

Devices with various electrode widths, w, and electrode gap, g, were fabricated; and the ratio 

between the width of the electrode and the electrode gap was kept constant so that w = 2g, as 

the spacing increased for various device sizes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Microscopic views of the interdigital photodetectors of both (a) aerial, top-down and (b) 

cross-sectional slices of interdigital “fingers” with electrode width w and electrode gap g. [8, 10] 

 

 This device architecture shown in 7(b) was created in the COMSOL software to 

analyze the structure. This creation is shown in Figure 8. 
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Figure 8: Simulation space creation for the interdigital photodetectors complete with: all material 

types (Au, Ti, GaAs), geometric conditions (electrode width and gap), electromagnetic wave 

polarization and poynting vector, periodic boundary conditions on the left and right boundaries, and 

perfectly matched layers on the top and bottom boundaries [8,10] 

 

 The simulation space as shown in Fig. 8 has periodic boundary conditions on the left 

and right sides of the simulation space. This was done so that the periodicity of the overall 

device could be maintained while the computational expense of the simulation run was 

minimized. As the overall simulation space increases the number of mesh elements needed to 

properly discretize the space also increases, which in turn drastically increases the number of 

solutions that have to be computed over the entire space. The particular material properties 

for this device were created using linear interpolation of experimental permeability and 

permittivity dielectric functions.24-25 The top and bottom boundaries for the simulation space 

are perfectly matched layers; these boundaries prevent any electromagnetic waves from 

reflecting off of the material interface and causing interference in the simulation results. The 

perfectly matched layers encounter the electromagnetic waves and then scatter the waves to 

infinity, these perfectly matched layers are also referred to as perfectly absorbing 



 18 

    

 

layers/boundaries. While the scattered to infinity or completely absorbing the 

electromagnetic waves are different effects, the result is the same, the simulated 

electromagnetic waves do not encounter the boundary and reflect back into the simulation 

causing interference.  

2.2 FEM Analysis  

 

 The optical enhancement distribution for this particular device is shown in Figure 9.  

 

 

 

 

 

 

 

 

 

Figure 9: FEM result for structure shown in Figure 8 shows optical enhancement distribution results 

for the interdigital photodetector and the direction of electromagnetic wave propagation. Area 

encompassed by the dashed box is the GaAs substrate that is integrated over in order to determine the 

Optical Enhancement in the GaAs.   

 

 The area bounded by the dashed line in Fig. 9 was integrated over to find the 

summation of optical enhancement for all mesh elements for a wavelength of 875 nm. This 

summation is given in (1). The period of the device in Fig. 7 can be given as Λ = 𝑤 + 2𝑑 

and the cross-sectional area as 𝐴Λ = 𝑎Λ where a is the height of the GaAs substrate in the 

simulation (a = 27 𝜇𝑚 for this model). From these quantities, the photocarrier generation can 

be calculated by 

  𝐺0 =  
𝑐𝑛𝜀0

2ℎ𝜈𝐴Λ
Φ        (6) 

 Where c is the speed of light, n is the refractive index of the GaAs substrate, 𝜀0 is the 

permittivity of a vacuum, h is Planck’s constant, and 𝜈  is the frequency of the 

electromagnetic wave. From (6) the photocurrent generation can be calculated by 
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  𝐼𝑃 = 𝑞𝑤𝑙𝐺0𝜏(𝜇𝑛 + 𝜇𝑝)
𝑉

𝑔
      (7) 

 Where q is the charge of an electron, w is the width of the electrode, l is the total 

length of the electrode array under illumination, 𝜏 is the decay time for the GaAs substrate, 

𝜇𝑛 and 𝜇𝑝 are the mobility of the carries for the GaAs, and V is the applied bias voltage for 

experimentation. If you filter out the constant values in (7) a proportionality expression is 

developed that describes the variables that influence the photocurrent generation, this 

proportionality is given by 

  𝐼𝑃  ∝  
𝑤𝑙

𝐴Λ𝑔
Φ ∝

𝑙

𝑔
Φ       (8) 

 As shown in (8), the total length of the electrode that is illuminated by the incident 

light and the electrode gap are the two variables that most closely affect the photocurrent 

generation of the particular electrode architecture. It is important to understand what 

quantities affect the photocurrent generation the greatest so that devices can be created and 

tuned for particular applications/effects.  

2.3 Electrode Gap Dependence 

 2.3.1 Micro-gaps 

 

 The electrode spacing dependence was investigated for the interdigital photodetectors 

for gap values of g = 5, 10, 20, and 50 𝜇𝑚 with the incident electromagnetic wave having 

transverse polarization, ET. Experimental results were found for wavelengths in the visible 

spectrum to determine if there was a peak value for device response shown in Fig. 10(a).8,10 

The results found for both experimental response and calculated photocurrent generation for 

all electrode gaps for the peak wavelength found shown in Fig 10(b) and (c).8 
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Figure 10: Electrode gap experimental results of interdigital photodetectors shown in Figure 7 

showing (a) band gap of GaAs at 875 nm and increase in spectral response as electrode gap is reduced 

and (b) normalized spectral response at 875 nm wavelength band gap of GaAs. (c) Normalized 

computational results of the interdigital photodetectors simulation space shown in Figure 8. [8,10] 

 

 As shown, 10 (b) and (c) are the normalized results for both the experimental and 

computational results, respectively. Both graphs match very well and display the same trend 

that as the electrode gap decreases the device response increases. These results were similar 

to a previous work that was completed for another member of the research group.26 That 

particular work focused on the effect of a shrinking nanogap and the effect that the smaller 

nanogap had on the maximum optical enhancement found in said nanogap. This trend is 

shown in Figure 11. 
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Figure 11: Optical enhancements of Au nanostructure shown in (i) with gap spacing, g, variable from 

1 nm to 50 nm. (i) Au Nanostructure with constant tAu and variable gap spacing g. [26] 

 

 The device architecture is shown in 11(i) where nanostructure gap g was variable and 

the thickness of the Au slab was kept constant. Within the graph, there are electric field 

distribution images for gaps of g = 1, 5, 10, 25, and 50 nm. The color map for these images 

has a deep red color for most intense and deep blue for least intense. As the nanostructure 

gap is reduced the optical enhancement exhibited by the device increases. Traditional 

plasmonic effects are most prevalent at the nanoscale due to the lifespan of the actual 

oscillating plasmon. The similarity in trends is a major indicator that the effects being seen in 

the interdigital photodetectors is plasmonic in spite of its geometric size even if those effects 

at the microscale are small relative to nanoscale effects. Additionally, the microscale 

interdigital photodetectors display similar plasmonic hotspots at the edges of the device that 

are shown in the electric field distributions of the nanostructures shown in Fig. 11. 
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 2.3.1 Nano-gaps 

 

 Presently only microscale photodetectors have been fabricated. This work also 

examined nanostructure models for potential nanofabrication of similar structures. Much of 

this was to understand what would occur with the device at this scale and determine how the 

material components, geometrical ratios, and intrinsic properties of the materials would be 

affected when the device scaled to nanometers. The simulation space was created in the same 

fashion as previously described for the microscale devices, however, for this nanogap 

architecture, the gap size went as low as g = 25 nm. Figure 12 shows the optical enhancement 

for the nanoscale device10. 

 

 

 

 

 

 

 

 

 

Figure 12: Optical enhancement of interdigital photodetector configuration shown in (i). Optical 

enhancement is a function of electrode gap, which impacts the electrode width, and periodicity of the 

device architecture [10]. 

 

 The device architecture is shown in 12(i) where the key geometric ratio of w = 2g is 

kept constant even when the overall device size is reduced down to the nanometer range. The 

far right black diamond on the graph is the 5 𝜇𝑚  point that was the maximum optical 

enhancement value found in the computational microscale study. When the electrode gap g is 

increased to 400 nm, the optical enhancement found in the GaAs substrate is found to be 

approximately constant at a value of ~3.8 even as the electrode gap increases to the 5 𝜇𝑚 
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point. The overall trend of the optical enhancement for the nanoscale device heavily depends 

on the periodicity of the device. Where the period is Λ = 𝑤 + 2𝑔 = 3𝑔. Plasmonic gratings 

have been shown to increase optical enhancement of the device as a means to improve 

plasmonic applications.27-29 

2.4 Polarization Dependence 

 

 Polarization dependent measurements were taken to investigate the role of plasmonic 

effects enhancing the response of the device. The spectral response measurements were 

performed for an electrode gap of g = 5 𝜇𝑚 . Figure 13(a) displays these results with 

transverse ET and longitudinal EL polarizations.8,10 When the polarization was across the 

device structure, ET the device exhibited a larger spectral response; however, when the 

polarization was rotated 90°  to propagating longitudinally, EL, the spectral response was 

greatly reduced. Fig. 13(b) shows experimental polarization results in green squares and the 

calculated photocurrent found by the computational simulations in the blue circles. The 

experimental values were found using a similar setup and the inclusion of a linear polarizer; 

the full setup is described here8. A perfectly transverse incident polarization angle is given as 

0° and a perfectly longitudinal incident polarization angle is given as 90°.  
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Figure 13: (a) and (b) Polarization study of the interdigital photodetectors with electrode gap 5 μm 

showing (a) spectral study of the photodetector with peak response at 875 nm wavelength and (b) 

measured spectral response shown by the green squares and calculated photocurrent generation by the 

computation electromagnetic studies shown by the blue circles; both measured SR and calculated IP 

are shown for different incident electromagnetic wave polarizations.  [8, 10] 

 

 This result in 13(a) shows a significant dependence on electromagnetic polarization 

for device response. This polarization dependence was investigated for polarizations outside 

of perfectly transverse or longitudinal. Fig.13 (b) shows the measured spectral responses in 

green squares for a variety of incident polarization angles for a device with electrode gap g = 

5 𝜇𝑚 . Because of the displayed experimental polarization dependence, the device was 

investigated by modeling a g = 5 𝜇𝑚 electrode gap and varying the incident polarization 

angle, 𝜃 , between transverse and longitudinal polarizations every 5°  to find the optical 

enhancements and then the photocurrent generation from the process outline in Section 2.2. 

Fig. 13(c) and (d) show the optical enhancement distributions for both perfectly (c) ET and 
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(d) EL polarizations, 13(c) shows that more light is scattered into the GaAs substrate than the 

longitudinal polarization shown in 13(d). This is likely due to surface plasmonic effects at the 

edges of the Au electrode and the exhibited polarization dependence shown in Fig. 13 is 

similar to the dependence shown in other plasmonic devices.6,30-33 The calculated 

photocurrent generation results in Fig. 13(b) match well with the experimental results in Fig. 

13(a), with the ratio between longitudinal and transverse spectral response being defined by 

rS =  
ST

SL
 = 1.7 and the ratio between longitudinal and transverse photocurrent generation 

being defined by rI =
IT

IL
 = 1.5. 
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Chapter 3: Au Thin-Film Microstructure 
 

Note: This chapter is currently in preparation for publication: [23]. 

3.1 Device Architecture and Simulation Setup 

 

 The device is comprised of arrays of thin-film microstructures deposited on a semi-

insulating GaAs substrate with a titanium adhesion layer to bond the topmost gold layer to 

the GaAs substrate.23 The necessity of the titanium adhesion layer was also investigated to 

determine the viability of the photodetectors without such a layer and the impact that the 

adhesion layer would have on the spectral response and optical enhancement. The arrays are 

20 𝜇𝑚 x 20 𝜇𝑚 slabs spaced by 100 𝜇𝑚 longitudinally and 40 𝜇𝑚 transversely. This device 

is shown in schematic form in Figure 14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Microscopic views of Au thin-film microstructures device of both (a) aerial, top-down and 

(b) linear array structures with 100 micron transverse separation, 40 micron longitudinal separation, 

and 20 micron structure length [23].  

 

 The photodetector was created such that three planar gold electrodes were deposited 

on the GaAs substrate and the central-most electrode was created with a triangle base in 

order for more effective wire bonding. The process by which the device was created is 

detailed here.23 The thin-film microstructure architecture was created in the computational 
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software in a similar process that was described earlier in Chapter 2. The simulation space 

design is shown schematically in Figure 15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Simulation space creation for the thin-film microstructure device complete with: all 

material types (Au, Ti, GaAs), geometric conditions (slab width and spacing and Au and Ti 

thicknesses), electromagnetic wave polarization and poynting vector, periodic boundary conditions on 

the left and right boundaries, and perfectly matched layers on the top and bottom boundaries [23].  

 

 Both the Au slab and Ti adhesion layers are 20 𝜇𝑚  in width with 2 𝜇𝑚  slab 

separation that is held constant for this device. The thickness of both the Au slab, tAu, and Ti 

adhesion layer, tTi, were investigated for improvement factors in photocurrent generation and 

optical enhancement. Similarly to the interdigital photodetectors described in Chapter 2, the 

left and right boundaries for this simulation are periodic boundary conditions to model the 

array structure that defines the device and the top and bottom boundaries are permanently 

matched layers that prevent any reflect electromagnetic waves from causing interference in 

the simulation. Polarization dependence was not investigated for this device, only transverse, 

ET, polarization was investigated with a downward poynting vector as shown in Fig. 15. Au 
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heights of tAu = 10, 20, 30, 40, 50 𝑛𝑚 and Ti adhesion layer heights of tTi = 0, 1, 2, 3, 4 𝑛𝑚 

were investigated for this study.  

3.2 Experimental Photocurrent Generation and Calculated Optical Enhancement 

 

 The experimental photocurrent generation was measured and the methods are 

described in this work.23 The effects of altering both the Au and Ti thickness is characterized 

in Figure 16, showing both experimental improvement with the introduction of the thin-film 

microstructure in photocurrent generation and the theoretical optical enhancement exhibited 

by the device. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: (a) and (b) experimental results showing improvement in photocurrent generation of 

microstructure devices for (a) no Ti adhesion layer and variable Au thickness and (b) constant 10 nm 

Au thickness and variable Ti thickness. (c) and (d) computation results showing optical enhancement 

measured in the GaAs substrate for (c) no Ti adhesion layer and variable Au thickness and (d) 

constant 10 nm Au thickness and variable Ti thickness. [23] 

 

 Fig. 16 (a) and (c) show the improvement in photocurrent generation and optical 

enhancement, respectively, for a variable Au microstructure thicknesses only, with no Ti 
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adhesion layer. Fig 16 (b) and (d) show the improvement in photocurrent generation and 

optical enhancement, respectively, for a variable Ti adhesion thickness with a constant Au 

thickness of 10 nm. The improvement in the photocurrent generation is given by 

  𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝐼𝑃 =  
𝐼𝑃,𝑤𝑖𝑡ℎ−𝐼𝑃,𝑤𝑖𝑡ℎ𝑜𝑢𝑡

𝐼𝑃,𝑤𝑖𝑡ℎ𝑜𝑢𝑡
     (9) 

 As shown in Fig. 16, the overall results match relatively well, with both geometric 

constraints providing similar trends in device response. As the thickness of both the Au 

microstructure and Ti adhesion layer increases the response of the device decreases. This is 

not an entirely accurate portrayal of the actual response of the device though, the 

experimental measurements as shown describe an improvement in the photocurrent 

generation as compared to no Au microstructure or Ti adhesion layer being present in the 

electrode schematic; whereas, the computational results only show the optical enhancement 

for each respective tAu and tTi variable. 

3.3 Improvement Factors  

 

 In order to properly characterize the actual computational results for the introduction 

of the microstructure, improvement factors for both the experimental photocurrent generation 

and the theoretical optical enhancements had to be found and compared against one another. 

The improvement factor for the optical enhancement can be characterized by 

 

  𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 Φ =  
Φ𝑤𝑖𝑡ℎ−Φ𝑤𝑖𝑡ℎ𝑜𝑢𝑡

Φ𝑤𝑖𝑡ℎ𝑜𝑢𝑡
     (10) 

 

 Where the improvement is characterized as the percent increase in response of the 

device with and without the microstructures. This improvement is shown for both 

experimental photocurrent generation and theoretical optical enhancement in Figure 17.  
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Figure 17: Improvement in (a) and (b) spectral response and in (c) and (d) optical enhancement. 

Where (a) and (c) have no Ti adhesion layer and variable Au thickness and (b) and (d) have constant 

10 nm Au thickness and variable Ti thickness. Computation results in (c) and (d) showing 

improvement in optical enhancement as negative is indicative of no plasmonic improvement from the 

introduction of the microstructure in the device architecture. [23] 

 

 The improvement found in the optical enhancement show that there should not be any 

improvement in device response that can be attributed to plasmonic effects. As described in 

Chapter 1, these models were created using the RF module in COMSOL to simulate 

electromagnetic wave effects for the simulations and because the results in Fig. 17 (c) and (d) 

show a decrease in performance, it cannot be said that these microslab devices are improved 

because of plasmonic effects. The improvement that is shown in the photocurrent generation 

is most likely due to the excitation of hot electrons.23 

3.4 FEM Optical Enhancement Distribution 

 

 Though plasmonic effects cannot characterize the improvement in device response, 

there does appear to be plasmonic activity occurring with the microstructure architecture. 
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The optical enhancement decreasing as Au and Ti thickness increases shown in Fig. 16 (c) 

and (d) is similar to other work.29 Figure 18 shows the optical enhancement distributions for 

Au thickness of tAu = 10, 30, and 50 nm and Ti thickness of tTi = 0, 1, and 4 nm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Optical enhancement distributions for Au thin-film microstructure devices (a), (b), and (c) 

variable Au thicknesses and no Ti adhesion layer and for  (d), (e), and (f) variable Ti thickness and a 

constant 10 nm Au thickness. [23] 

 

 Fig. 18 (a)-(c) pictorially show the Au thickness variants and the device architecture 

is shown as well. As the thickness of the Au slab increases, the overall optical enhancement 

of the device decreases, graphically shown in Fig. 16(c). Fig 18 (d)-(f) shows the Ti thickness 
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variants and the device architecture, for this simulation, the Au thickness was held fixed at tAu 

= 10 nm. As the thickness of the Ti increases the overall optical enhancement of the device 

decreases, graphically shown in Fig. 16 (d). Shown in the optical enhancement distributions 

in Fig. 18 (a)-(f) there is a localized plasmonic hotspot at the edge of the Au/Ti layers at the 

interface between the metallic structure and the GaAs substrate. Also shown is an oscillation 

in the intensity of the optical enhancement for both the Au and Ti variants in Fig. 18 (a)-(f); 

this oscillation in intensity is the greatest when the thicknesses for both the Au and Ti are 

minimized. It is thought that these oscillations in intensity are pictorially manifested 

plasmonic wave oscillations. As the thickness is reduced for both Au and Ti, the wavelength 

of the plasmonic wave increases until it reaches its maximum and the wave is damped out 

when the thicknesses are increased. More work needs to be done to further analyze and 

understand exactly what is occurring with this plasmonic wave oscillation.  
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Chapter 4: Conclusion 
 

 This work focused on investigating the potential plasmonic activity occurring in 

microelectronic and photonic devices and determining if those plasmonic effects were still 

present or even improved at the nanoscale. For the interdigital photodetectors, it was 

determined that the devices do exhibit plasmonic effects both in the optical enhancement 

increase as the electrode gap decreased and also by the polarization dependence of the 

devices. In order to determine the relationship between the experimental results and the 

theoretical models, an equation describing the correlation between the optical enhancement 

and the photocurrent generation. It was determined that the two variables that most closely 

affect the photocurrent generation of the interdigital photodetectors are the overall length of 

the electrodes exposed to incident illumination and the electrode gap of the electrode. It was 

also determined that when the device architecture of the interdigital photodetectors is reduced 

to the nanoscale the plasmonic effects are still in effect, but the periodicity of the overall 

structure because integral to the plasmonic performance of the device. The investigation of 

the interdigital photodetectors at the nanoscale only focused on the transverse polarization 

and variable incident polarization angle should be examined in future works.  

 This work also investigated a new type of electrode device, one that utilized potential 

plasmonic effects to enhance the photocurrent generation of the electrodes with the 

introduction of microslabs into the device architecture. It was determined that the Au thin-

film microstructures caused both an increase in measured photocurrent generation and an 

increase in the theoretical optical enhancement simulated. However, when compared to the 

introduction of the microslabs versus the electrodes without the microstructures, the 

theoretical improvement in optical enhancement did not actually prove to be plasmonically 
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related. Experimentally, it was found that the photocurrent generation was greatly improved 

by the introduction of the microstructures; however, that was not the case for the optical 

enhancement found in the modeled simulations. This leads to the conclusion that the 

improvements by the introduction of the microstructures is not actually due to plasmonic 

effects but rather, it is caused by hot electron effects.  

 Computational modeling allows for complex geometrical, material, and physical 

properties to be simulated and examined with greater precision that previously allowed. 

These simulations provide vast amounts of information to better fabricate and design these 

photodetector devices, and through simulation work, the devices can be tuned to specific 

applications and desired optical enhancements.  
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