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Abstract 

 Portfolio optimization techniques are methods used to determine the best set of stocks in 

which to invest.  Mean-variance optimization, one method of portfolio optimization, attempts to 

find the set of portfolios that have the maximum expected return at each level of risk (Jorion, 

1992).  Another technique, Monte Carlo simulation, uses random number generation to create a 

probability distribution of potential returns (Kwak & Ingall, 2007).  This can be used to 

determine the risk of potential investments not returning a certain desired amount (Thompson & 

McLeod, 2009).   Though traditionally used in the world of finance, these tools can also be 

utilized by professional sports teams, such as those in Major League Baseball, to make more 

efficient investments in personnel and increase their likelihood of reaching the postseason. 

This research effort explores strategies to optimize the allocation of a baseball team’s 

resources in the free agent market.  In this effort, we use a portfolio optimization approach and 

explore a variety of baseball performance metrics.  A prototype optimization model is created 

and evaluated.  This model is designed to assemble the team with the highest likelihood of 

making the playoffs while accounting for various budget and roster constraints faced by Major 

League Baseball teams.  The prototype is utilized to create an optimized 2015 roster for three 

teams: the Boston Red Sox, Kansas City Royals, and San Diego Padres.  These optimized rosters 

are then compared to each team’s actual 2015 opening day roster.  Several iterations of this 

model are discussed in an attempt to find the option that returns the most value.  After multiple 

alternatives are analyzed, three different options are identified that compare favorably to the 

teams’ actual opening day rosters with regards to 2015 performance of the players selected.  

Weaknesses of the model are then discussed, as well as ways in which it can be improved. 

Keywords: portfolio optimization, mean-variance optimization, Monte Carlo simulation, 

expected returns, risk, performance metrics, stochastic optimization, linear optimization  
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Introduction 

Professional sports have always involved high financial stakes, and those stakes have 

only grown in the modern era of televised sporting events and expanded media coverage.  From 

the beginning of professional sports, teams have faced a large degree of risk in signing athletes to 

expensive contracts due to the variable and unpredictable nature of athletics.  However, as these 

contracts have continued to grow, they have had a tendency to morph from a slight risk to a 

dangerous gamble that can lead to the financial success or failure for an organization over the 

foreseeable future.  Major League Baseball, in particular, has seen a rapid increase in money 

spent by franchises trying to assemble competitive teams in recent years.  This increase in 

spending is illustrated by the change in the average Major League Baseball player’s salary, 

which has increased from $578,930 in 1990 all the way up to $3,440,000 in 2012 (CBS Sports). 

With such a large amount being spent on players, it is necessary to use a disciplined and 

strategic approach when investing money in order to best utilize a team’s resources.  This 

problem is further complicated by the large degree of uncertainty in the return on investment of a 

large baseball contract.  Some of this uncertainty is essentially unavoidable due to the inherent 

unpredictability of athletes and sports in general, which further emphasizes the need for a 

structured approach that accounts for uncertainty in constructing a MLB roster.  Organizations 

must be careful to balance the risk of a large and expensive contract with the potential benefit of 

additional wins that a new player can bring to their team.  The most efficient way to construct a 

roster is constantly changing due to the conditions of the free agent market and the needs of 

specific teams.  It is helpful to create a mathematical approach to aid in the process that is less 

susceptible to bias and can more easily adjust to particular scenarios than the approach of solely 

relying on personal judgement.  One way this scenario can be modeled mathematically is to look 
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at the free agent market as a group of potential stocks and then use a portfolio optimization 

approach to determine the best combination of players to maximize the likelihood of having a 

successful team. 

The purpose of this research is to describe current portfolio optimization techniques and 

discuss how they might be used in player investment decisions, as well as the most effective 

publicly available metrics to determine a baseball player’s overall contribution to his team’s 

performance.  Finally, we will demonstrate how portfolio optimization can be applied to the 

construction of a professional baseball roster using examples. 

Research Methodology 

 According to Speidell, Miller, and Ullman, portfolio optimization, at its simplest form, 

“is a procedure for measuring and controlling portfolio risk and expected return” (Speidell, 

Miller, & Ullman, 1989).  With regards to stock portfolios, risk is defined as the amount of 

deviation or variance from the expected market return.  Investments with a relatively high 

amount of standard deviation of potential returns are considered to have a large degree of risk 

(Speidell et al., 1989).  One of the basic underlying assumptions of portfolio optimization is that, 

as the expected return of a portfolio increases, the risk increases as well.  The goal of portfolio 

optimization is to ensure that an investor is achieving the highest amount of expected returns 

possible at whatever level of risk they deem acceptable (Speidell et al., 1989).  At each level of 

risk, there is one portfolio with the highest expected return.  Together, this set of portfolios make 

up what is known as the efficient set, which represents the highest level of expected returns that 

can be obtained at any particular risk level (Jorion, 1992). 

This approach, invented by Harry Markowitz, is known as mean-variance optimization 

(Jorion, 1992).  Because traditional mean-variance optimization creates an optimal portfolio at 
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each level of risk, it is reliant on the optimizer to determine the ideal level of risk based on their 

personal preference (Speidell et al., 1989).  As the investor does not always know the best level 

of risk for a particular scenario, this can sometimes cause problems as the investor may make a 

subjective or poor decision that leads to worse returns than could have been obtained at other 

levels of variance. 

One technique that can be used to help address the issue of ideal risk is that of Monte 

Carlo simulation.  At its most basic form, Monte Carlo simulation is simply the use of random 

number generation to determine a range of outcomes from a system of probability distributions 

(Kwak & Ingall, 2007).  The concept is described in more detail by Young Hoon Kwak and Lisa 

Ingall: 

“A model or a real-life system or situation is developed, and this model contains certain 

variables.  These variables have different possible values, represented by a probability 

distribution function of the values for each variable.  The Monte Carlo method simulates the full 

system many times (hundreds or even thousands of times), each time randomly choosing a value 

for each variable from its probability distribution.  The outcome is a probability distribution of 

the overall value of the system calculated through the iterations of the model” (Kwak & Ingall, 

2007). 

With regards to portfolio selection, this method can be used to determine the likelihood 

that a particular set of securities loses money or returns less than a certain specified benchmark 

(Thompson & McLeod, 2009).  With only a probability density function of each security in a 

potential portfolio, an investor can use Monte Carlo simulation to receive a distribution of the 

different potential returns, along with the likelihood of each scenario occurring (Kelliher & 

Mahoney, 2000). 
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Analysis of Applicable Research 

 In order to determine how to best model the selection of a professional baseball team, 

several articles were analyzed to see if they could be applied to this particular problem.  The 

search for articles was focused on papers that included the phrases “Portfolio Optimization”, 

“Mean-Variance Optimization”, or “Monte Carlo Simulation.” 19 total articles regarding 

methods of portfolio optimization were read.  The title and author of all these articles are listed in 

Appendix A.  Together, they are able to capture both the key concepts in portfolio selection as 

well as a wide variety of creative and interesting attempts to create improved models. 

 In order to effectively model the creation of a baseball team as a portfolio model, it is 

necessary to determine how the returns on an investment will be measured.  While the goal of a 

traditional investment is to return monetary value, the goal of a baseball team is ultimately to win 

games.  Therefore it makes sense to determine a baseball player’s return on investment by his 

contributions towards helping the team win games.  Unfortunately, there is not a large degree of 

academic research with regards to the use of portfolio optimization in baseball roster creation.  

The baseball blog “Beyond the Box Score” did post an article in May 2015 discussing how the 

principles of Modern Portfolio Theory, particularly investment diversification, can be used by 

Major League Baseball teams.  However, the article does not describe the creation of an actual 

mathematical model or metrics that could be used to determine return on investment (Lampe, 

2015).  

 Fortunately, the baseball website “Fangraphs” has a large amount of publicly available 

research discussing performance metrics that can be used to describe a player’s contribution to 

his team both in terms of runs and wins contributed.  Among these are several statistics that 
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break down a player’s impact by batting, base running, fielding, and pitching, using a scale of 

runs above or below average (Fangraphs, c). 

Literature Review Analysis 

 Of the 19 portfolio optimization articles analyzed, 13 proposed specific models to aid in 

the problem of portfolio selection, while the others described the overarching concepts used in 

portfolio modeling.  These papers ranged in date from as recently as 2012 all the way back to 

1952.  Out of the 19 papers, 11 were found using ProQuest and the other 8 were found from 

JSTOR.  One interesting note is that the ProQuest articles analyzed tended to be more recent than 

those viewed from JSTOR.  This point is demonstrated in Figure 1 below, which shows the 

breakdown of articles by year and location where they were found. 

 

Figure 1: Portfolio Optimization Articles Analyzed 

One extremely interesting work that was read is “Portfolio Selection” by Harry 

Markowitz.  In this paper, Markowitz introduces the concept of an efficient set of portfolios 

based on maximizing the expected returns and minimizing the variance (Markowitz, 1952).  This 

paper would become the foundation of mean-variance optimization, a concept that is still integral 
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to the process of portfolio optimization today (Kritzman, 2011).  The importance of “Portfolio 

Selection” by Markowitz is best illustrated by its usage in other academic literature.  According 

to Google Scholar, it has been cited a total of 22,017 times, while all other portfolio optimization 

articles analyzed for this paper have been cited a combined total of 1,648 times (Google 

Scholar). 

Another relevant and interesting article is “Using Monte Carlo Simulation to Improve 

Long-Term Investment Decisions” by Kelliher and Mahoney, which discusses how Monte Carlo 

simulation can be leveraged to make decisions about future investments, using any type of 

probability distribution to describe expected returns.  Although the paper uses a real estate 

investment as its example, the principles discussed can be applied to essentially any decision 

where capital is being invested with a variable distribution of potential returns (Kelliher & 

Mahoney, 2000). 

 Several different sites were utilized to determine the necessary statistics to 

calculate the expected value of baseball players and the variance of that expected value.  In total, 

21 different articles were analyzed in order to gain an accurate view of the different metrics that 

should be included to capture a player’s value in all aspects of the game.  The majority of these 

articles were found on Fangraphs, with the site accounting for 16 of the 21 resources used.  The 

other 5 articles are from a variety of sources, including several baseball blogs and one book.  The 

title and author of each paper is listed in Appendix B.  The sources are also broken down by 

origin in Figure 2. 
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Figure 2: Baseball Performance Metric Articles by Origin  

 Fangraphs does calculate an overarching statistic designed to compile a player’s total 

value in one number, called Wins Above Replacement (WAR).  For position players, WAR 

essentially attempts to add up contributions from hitting, base running, and fielding into one 

number that expresses the player’s total value. For pitchers, WAR is calculated solely by looking 

at their pitching contributions to the team (Fangraphs, h).  Because WAR is composed of several 

different categories with different sample sizes and potential ranges of outcomes, WAR can be 

conceptually challenging to understand.  While WAR values are given relative to a replacement 

level player, WAR component categories are analyzed on a runs above or below average scale.  

Fortunately, each athlete’s component category statistics are also available on Fangraphs 

(Fangraphs, c).  These component statistics are briefly described below in an attempt to make 

WAR slightly easier to understand. 

 Batting contributions are calculated from a statistic called Weighted Runs Above 

Average (wRAA).  wRAA is based on a metric known as Weighted On-Base Average (wOBA) 
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(Fangraphs, j).  According to Fangraphs, “Weighted On-Base Average (wOBA) is a rate statistic 

which attempts to credit a hitter for the value of each outcome (single, double, etc) rather than 

treating all hits or times on base equally” (Fangraphs, i). 

 Base running value is based on three different statistics: Weighted Stolen Base Runs 

(wSB), Ultimate Base Running (UBR), and Weighted Grounded Into Double Play Runs 

(wGDP).  wSB simply calculates the amount of runs a player adds to his team relative to an 

average player by stealing bases or being caught stealing.  UBR computes the amount of runs a 

player contributes above or below average based on their ability or failure to advance bases 

compared to the average.  wGDP determines the amount of runs a player costs or saves his team 

based on the frequency in which he hits into double plays (Fangraphs, a). 

 Because of their vastly different role than other defensive positions, defensive value is 

calculated differently for catchers than it is for other defensive positions.  For non-catchers, 

defensive runs are computed by adding a player’s Ultimate Zone Rating (UZR) to a positional 

adjustment.  The positional adjustment attempts to credit athletes who play a more demanding 

position, while debiting those who play an easier position (Fangraphs, g). UZR is calculated by 

adding Outfield Arm Runs (ARM), Double-Play Runs (DPR), Range Runs (RngR), and Error 

Runs (ErrR). Outfield Arm Runs are the amount of runs an outfielder saves relative to the 

average by preventing base runners from advancing.  Double-Play Runs, as the name implies, are 

the amount of runs an infielder contributes above or below average by turning double plays.  

Range Runs are the amount of runs saved or cost by a fielder’s ability to reach more or less 

batted balls than the average fielder.  Error runs is simply a run value based on the amount of 

errors that the fielder commits (Fangraphs, e).  The defensive value of catchers is computed by 

adding their Stolen Base Runs (rSB) and Runs Saved on Passed Pitches (RPP) to their positional 
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adjustment (Fangraphs, g).  Stolen Base Runs measures the amount of runs added by a catcher 

throwing out base runners who attempt to steal a base or keeping runners from attempting to 

steal.  Runs Saved on Passed Pitches calculates the amount of runs relative to the average that a 

catcher contributes by blocking potential passed balls (Fangraphs, b). 

 As the various component metrics that sum up to encompass a player’s total value can be 

confusing and difficult to remember, the following table has been included to summarize the 

different statistics and the aspect of the game they are designed to measure. 

Statistic Name Abbreviation Aspect of Game Measured 

Weighted Runs Above Average wRAA Batting 

Weighted Stolen Base Runs wSB Base Running 

Ultimate Base Running UBR Base Running 

Weighted Grounded Into Double Play 
Runs wGDP Base Running 

Positional Adjustment Pos Defense 

Outfield Arm Runs ARM Non-Catcher Defense 

Double-Play Runs DPR Non-Catcher Defense 

Range Runs RngR Non-Catcher Defense 

Error Runs ErrR Non-Catcher Defense 

Stolen Base Runs rSB Catcher Defense 

Runs Saved on Passed Pitches RPP Catcher Defense 

 

Figure 3: Positon Player Component Statistics (Fangraphs, g) 

 Determining pitcher value is much easier to compute than the method used for position 

players.  Pitchers’ contributions to their teams are based on a single statistic known as Fielding 

Independent Pitching (FIP) (Fangraphs, f).  FIP is best described in the following paragraph from 

Fangraphs: 

 “Fielding Independent Pitching (FIP) is a statistic that estimates a pitcher’s run 

prevention independent of the performance of their defense.  FIP is based on outcomes that do 

not involve defense; strikeouts, walks, hit by pitches, and home runs allowed.  FIP uses those 

statistics and approximates a pitcher’s ERA assuming average outcomes on balls in play.  While 
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it is not a complete accounting of pitcher performance, it is generally a better representation of 

performance that ERA” (Fangraphs, d). 

 While it is useful to understand the context and methodology behind the various 

performance metrics, they are all already calculated by Fangraphs and therefore do not to be 

computed individually (Fangraphs, c). 

Discussion 

 Reviewing the articles and papers describing portfolio optimization and baseball 

performance metrics has led to several key discoveries regarding the creation of an optimization 

model to describe baseball roster construction.  The first of these findings is that, though 

portfolio optimization research has been around for over 60 years, it is still a relevant research 

topic.  In fact, ten of the nineteen articles analyzed have been written in the past ten years.  

Another key observation was made specifically regarding the application of optimization 

techniques to professional baseball.  Though there was an article from “Beyond the Box Score” 

stating that treating player contracts like portfolio investment decisions could be used to reduce 

risk, there were no articles found that described the creation of a specific model to analyze the 

optimal roster construction of a Major League Baseball team.  Of the models that were analyzed, 

all measured expected returns using the measurement unit of dollars.  The proposed baseball 

optimization model utilizes wins contributed relative to a replacement player as the unit of 

expected returns instead of a monetary amount, which is unique from the models that were 

studied.  One other key observation was that there are already a wide variety of publicly 

available metrics that assess a player’s value to his team.  This vastly simplifies the modeling 

process, as these values can be used to determine expected returns of potential investments. 

Future Research 
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 One of the most basic factors that make optimizing a baseball lineup different than a 

financial portfolio is the goal of the investor.  In financial portfolio optimization, the goal is to 

maximize your expected returns while minimizing the risk of losing money.  In creating a 

baseball lineup, the goal is to create a roster that wins enough games to win the team’s division, 

or at least make the playoffs.  While this seems like a relatively simple and arbitrary difference, 

it has a major factor on the method used to model each scenario.  It does not matter if the 

baseball team fails to reach the postseason by one game or by twenty; the result of each season is 

essentially the same.  Therefore, it makes sense that a model analyzing the construction of a 

baseball roster should vary slightly from that of a financial model.  The proposed baseball model 

should use mean-variance optimization to determine an efficient set of potential rosters, and then 

Monte Carlo simulation to determine which of the options has the highest probability of 

generating enough wins to reach the postseason.  The roster with the highest probability of 

reaching the postseason should then be selected.  This varies from Monte Carlo simulation use 

for financial modeling where, in most of the articles analyzed, Monte Carlo simulation was 

utilized to determine the risk of losing money, or the probability of certain worst case scenarios.  

In the proposed baseball model, Monte Carlo simulation will be used to calculate the probability 

of certain best case scenarios. 

 Another potential area of future research that will not be analyzed in this paper is the 

improvement of the metrics used to determine player value.  Though the current metrics are 

generally very accurate and effective at measuring each player’s contributions, they are certainly 

not perfect.  Improving the metrics used to value players would vastly improve the quality of any 

model using the metrics.  Kritzman discusses this concept in his defense of mean-variance 

optimization, where he states that it is not possible to create an accurate model if the expected 



14 
 

returns used in the model are inaccurate (Kritzman, 2011).  That being said, the current statistics 

should be effective enough so as to not significantly limit the accuracy of the model. 

Performance Metric Utilized 

 As previously discussed, there are a large number of metrics that can be used to assess 

the performance of baseball players.  After looking at all the different statistics available, we 

eventually made the decision to solely use Wins Above Replacement (WAR) in the optimization 

model.  WAR attempts to combine a player’s total impact into one metric that represents the total 

amount of wins a player contributes to his team.  This win value is given relative to that of a 

replacement player who can easily be acquired for a negligible cost.  This theoretical 

replacement player is expected to be worth a winning percentage of 0.294, which means a team 

composed solely of replacement players would win 47.7 games over the course of a MLB 

season. Therefore, just as the name implies, WAR represents the amount of wins a player 

contributes to his team above those that would have been provided by a replacement level player 

(Fangraphs, h).  The fact that WAR is an all-encompassing statistic that attempts to factor in 

almost every aspect of a baseball game makes it an appealing choice to use as the metric in our 

model.  It also helpful that WAR is measured in wins, as wins are the values upon which the 

success of a baseball team’s season is determined.  Though multiple different metrics could have 

been included to factor in various aspects of the game, this would have made the model more 

difficult to understand and likely increased the necessary computing time by making the model 

more complicated.  WAR, though imperfect, is able to describe virtually the same skills as a set 

of multiple metrics, but is able to do so while streamlining the model and vastly simplifying the 

process. 
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 After making this decision, WAR values were recorded for every player in the model 

going back five seasons.  Because we were looking at the 2014-2015 offseason, WAR was 

recorded for the 2010-2014 seasons.  Statistics were recorded for five seasons in order to get a 

more complete picture of a player’s ability rather than just looking at one or two seasons, but still 

keeping the seasons considered limited to those that are fairly recent.  In addition to WAR 

values, plate appearances (PA) for position players and innings pitched (IP) for pitchers were 

recorded for each season under consideration.  After determining the metric to be utilized, the 

next step was to calculate the expected WAR and standard deviation of expected WAR for each 

player in the model.  Because WAR is a counting statistic, not a rate statistic, athletes with more 

playing time in a particular season are likely to have accumulated more WAR, even if their 

performance was not as good relative to the average as players with less plate appearances or 

innings pitched.  This can be both a good thing and a bad thing, as durable players who are able 

to stay healthy throughout an entire season and accumulate a large amount of WAR should be 

rewarded in their expected WAR values.  However, some players included in the model were 

called up from the minor leagues towards the end of the season, or simply stuck as a backup 

behind a very good player.  They should not be penalized for aspects outside of their control.  In 

order to account for this, the equation for expected WAR values utilized a weighted mean, 

weighting by plate appearances in each season for position players and innings pitched for 

pitchers, respectively.  The equation for the weighted mean is shown below in Figure 4. 

𝑥𝑤̅̅̅̅ =
∑ (𝑤𝑖𝑥𝑖)

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

 

Figure 4: Weighted Mean Formula (Mathematics Stack Exchange) 

 To create a probability distribution of Wins Above Replacement, expected WAR values 

were assumed to be normally distributed.  In order to test this assumption, a Kolmogorov-
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Smirnov test was performed on WAR values for five different players with a relatively large 

amount of Major League Baseball playing experience.  For all five of these tests, we failed to 

reject the null hypothesis of a normal distribution at a significance level of α=0.01.  At a 

significance level of α=0.05, we failed to reject the null hypothesis of a normal distribution for 

four of the five samples (see Appendices C-G).  The following formula was used to calculate the 

standard deviation of the weighted mean: 

𝑠𝑑𝑤 = √
∑ 𝑤𝑖(𝑥𝑖 − 𝑥̅𝑤)2𝑛

𝑖=1

(𝑛′ − 1)∑ 𝑤𝑖
𝑛
𝑖=1

𝑛′

 

Figure 5: Standard Deviation of Weighted Mean (Dataplot Reference Manual, 1996) 

Because it is not possible to compute a standard deviation value for a player with only 

one year of experience, a sample standard deviation had to be used.  For those players with only 

a year of experience, a random sample of 15 players at that particular athlete’s position were 

taken, and the average standard deviation from the random set of players was used as the 

standard deviation. 

Pool of Players 

 In order to create a pool of potential free agents to use in the model, MLB Trade Rumors’ 

Free Agent Tracker was used to create a list of free agents for the 2014-2015 offseason (MLB 

Trade Rumors).  The main source to determine each player’s 2015 salary was the website Cot’s 

Baseball contracts (Baseball Prospectus).  In cases where there was confusion over what a 

particular player was being paid, the website Baseball Reference was used as well (Baseball 

Reference).  Players who were unsigned or signed to minor league contracts were assumed to be 

making the major league minimum of $507,500 if signed to a major league contract (Major 



17 
 

League Baseball Players Association).  The website Fangraphs was primarily used to classify the 

various positions that each player is capable of playing (Fangraphs, c). 

Model Concepts 

 The primary concept of the optimization model was to use Monte Carlo simulation and 

each player’s WAR probability distribution to choose the roster with the highest probability of 

making the playoffs.  In order to achieve this, 1000 “seasons” were simulated, with the objective 

to maximize the percent of seasons with WAR totals above an arbitrary value that was deemed 

necessary to make the playoffs. 

 In order to determine whether or not a season reached the necessary win total, each player 

was modeled as a binary integer variable, and given a value of “1” if they were selected for the 

roster and a value of “0” if not.  For each season simulated, a random number generation was run 

for each player using their expected WAR mean and standard deviation using the assumption 

that WAR follows a normal distribution.  Each of these seasons were then multiplied by the 

binary variables representing which players were on the roster, so that only the selected players 

were included in the team’s win total.  The individual WAR values for each season were then 

added together, giving 1000 different team WAR values.  The number 47.7 was then added to 

each team WAR to represent the replacement level win total.  This essentially changed the scale 

from Wins Above Replacement simply to wins.  The final step was to calculate the proportion of 

the 1000 seasons that had a win total above the predetermined amount considered necessary to 

qualify for the postseason.  This final proportion represented the theoretical likelihood that the 

specific roster would make the playoffs. 

 In addition to maximizing the objective function value, there were several constraints that 

each potential roster was required to meet.  The first of these was a budget constraint.  In order to 
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determine a team’s budget, their 2015 opening day payroll was first considered.  The 2015 

salaries of players already under contract with the team were considered a sunk cost, and 

therefore subtracted from the team’s actual 2015 opening day payroll.  The remaining amount 

was determined to be the team’s available budget to spend on free agents.  The sum of 2015 

salaries for all free agents signed by the team was required to be less than or equal to the 

available budget.  There were also several roster constraints, based on the number of players at 

each position, included in order to ensure that the team was able to field a valid lineup.  The 

complete mathematical formulation for the model is shown on the following pages. 

 

Figure 6: Optimization Model Sets, Parameters, and Variables 

Sets

Parameters

Variables

xp = 1 if player p is selected for roster; 0 otherwise

SPp = 1 if player p is a starting pitcher; 0 otherwise

RPp = 1 if player p is a relief pitcher; 0 otherwise

Pp = 1 if player p is a pitcher; 0 otherwise

Cp = 1 if player p is a catcher; 0 otherwise

1Bp = 1 if player p is a first baseman; 0 otherwise

2Bp = 1 if player p is a second baseman; 0 otherwise

SSp = 1 if player p is a shortstop; 0 otherwise

3Bp = 1 if player p is a third baseman; 0 otherwise

LFp = 1 if player p is a left fielder; 0 otherwise

CFp = 1 if player p is a center fielder; 0 otherwise

B = team budget to spend on free agents

OFp = 1 if player p is an outfielder; 0 otherwise

IFp = 1 if player p is an infielder; 0 otherwise

P = set of players

Wp = wins above replacement contributed by player p

μp = expected wins above replacement contributed by player p

sp = salary of player p

T = total wins above replacement needed to qualify for postseason

σp = standard deviation of expected wins above replacement contributed by player p
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Figure 7: Optimization Model Mathematical Formulation 

 Because the objective function is not linear, the simplex method or other traditional linear 

optimization techniques could not be used to solve the problem.  Instead, an Evolutionary 
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Algorithm was utilized to find a solution.  The Evolutionary Algorithm is a genetic algorithm 

that uses random sampling in an attempt to improve the current best solution.  If the current 

solution cannot be improved in a set amount of time, it is accepted as the final solution (Frontline 

Solvers).  For this particular problem, the amount of time allotted to improve the current solution 

was set to 15 minutes.  Because the algorithm is just accepting a solution after a certain time 

period, it cannot guarantee that the solution is actually optimal.  It can only guarantee that it was 

the best solution found in the allotted time (Frontline Solvers). 

First Modeling Attempt 

 In order to test the capability and accuracy of the model, a prototype was built based on 

the 2014-2015 offseason for the Royals, Red Sox, and Padres.  A combination of the each team’s 

offseason outlook on the site MLB Trade Rumors and their actual opening day 25 man roster 

was used to project players already available on their payroll (Adams, 2014; Glaser, 2015; Links, 

2014; McAdam, 2015; Polishuk, 2014; Rieper, 2015).  Because these players’ salaries were 

considered sunk costs and already subtracted from the available budget, they were given a 2015 

salary of zero dollars in the model.  A list of 206 free agents was also created, primarily based on 

MLB Trade Rumors’ free agent tracker, with the sites Fangraphs and Baseball Reference used to 

validate the information.  The Excel solver engine only allows for 200 decision variables, 

however, so the free agents with the lowest expected performance were removed until only 200 

players remained in the model. 

 In the initial optimization attempt, the solver engine built into Excel was used with the 

evolutionary solving method selected.  The model took a large amount of computing time, 

though, and the built in solver engine was unable to find an effective solution in the time allotted.  

It was determined that, in order to improve the quality of the solution, a faster solving engine 
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than that already available in Excel needed to be utilized.  In order to solve this problem, the 

Frontline Solvers Analytic Solver Platform was downloaded and used instead.  While the 

program still limited the amount of decision variables to 200, it was able to find a much better 

solution while reducing the necessary computing time.  The initial objective function value used 

was the proportion of simulated seasons with 92 or more wins.  The results of this first 

optimization, along with the actual WAR of the each team's opening day roster, are shown in 

Figure 8. 

 

Figure 8: Initial Optimization Results 

 As evidenced by the fact that the difference between the optimized roster’s expected 

2015 WAR and actual WAR was over 25 wins for all teams, the initial values over-projected 

performance by a significant amount and were generally inaccurate.  Only one of the three 

optimized rosters, the Red Sox roster, was able to beat their corresponding opening day roster 

with regards to actual WAR. 

There are multiple reasons why this first optimization attempt was ineffective.  First, it 

did not penalize players who had missed full seasons due to injury in the past.  These players 

should have been considered injury risks that were likely to miss significant chunks of time 

again, but instead the model did nothing to account for this.  As a byproduct of weighting all 

seasons based solely on playing time without including how recently the season occurred, the 

model also over-projected players who had performed worse in more recent seasons and were 
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trending downward.  Likewise, it under-projected players who had performed better in more 

recent seasons and were trending upward.   

Modeling Adjustments 

Several adjustments were added in order to account for these inadequacies.  The first of 

these was to penalize players who had missed full seasons due to injury.  In order to account for 

this, players were given a WAR value of zero for any season in which they did not play 

following their debut during the five year period we considered.  In order to determine the 

amount of plate appearances or innings pitched to weight these seasons by, the random sample of 

15 players at each position described earlier was again considered.  The average plate 

appearances or innings pitched of the 15 players at the same position as the one missing time was 

used as the sample size for missed seasons.  This is because the amount of playing time received 

differs based on the position being analyzed.  Relief pitchers will not throw as many innings in a 

season as a starter, so the weight of a missed season by a reliever should be reflected 

accordingly.  Another key adjustment to the model was that, in addition to weighting by the 

number of PA or IP in each season, recent seasons were weighted more heavily.  Several 

different weighting iterations were used in order to find the best possible projections.  A 

summary of these different iterations is given in Figure 9.  The figure describes the amount by 

which each season was weighted in addition to PA or IP, along with the percentage of players 

whose actual 2015 performance fell within, above, or below one standard deviation of their 

expected performance at each weight. 
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Figure 9: Analysis of Weighting Alternatives 

 The alternative eventually chosen was Attempt 5, which weighted 2014 by three, 2013 by 

two, and 2012 by one, but did not consider 2010 or 2011.  Though this weighting system did not 

have the highest percentage of players within one standard deviation of expected performance, it 

had a more even distribution of players above and below the projections than any of the options 

with more players within one standard deviation.  This should lead to this method being less 

likely to systematically over-project performance.  Another key factor in the selection of Attempt 

5 is that, under the initial constraints, it performed better than any other weighting system with 

regards to actual 2015 WAR, as demonstrated in Figure 10 below. 

 

Figure 10: Performance of Weighting Alternatives Based on 2015 WAR 

It is worth noting that there is still an 11% difference between players above one standard 

deviation and those below one standard deviation, meaning the likelihood of over-projection 
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remains somewhat high.  However, it should still be able to provide relatively accurate and 

balanced projections, and was therefore the weighting system utilized for the remainder of the 

project. 

 In addition to changing the weighting system in order to improve the model projections, 

the objective function was changed from the proportion of seasons with greater than or equal to 

92 wins to the proportion of seasons with greater than or equal to 85 wins.  Though somewhat 

arbitrary in nature, the thought process was that 85 wins was a more reasonable expectation for 

an opening day roster.  It is likely that a team will need to win more than 85 games in order to 

make the playoffs, but the opening day 25 man roster shouldn’t be expected to provide all of 

those wins.  Injuries are inevitable, along with midseason trades or players being called up from 

the minor leagues, meaning that it will actually be more than 25 players that have a role in 

contributing the necessary wins to make the playoffs.  The Royals, for instance, ended up 

winning the World Series in 2015 and accrued a total of 35.7 WAR from their opening day 

roster.  Combined with the 47.7 wins that a replacement level team provides, their opening day 

roster would reach approximately 83.4 wins based on the theory used in this model.  Thus, it 

seems reasonable to conclude that a team whose opening day 25 man roster could generate the 

WAR necessary to reach 85 wins would be highly likely to make the playoffs. 

Updated Stochastic Optimization Model 

 After changing both the projection system and the objective the function, the rosters were 

again optimized, using the same sets of players already on the payroll and the best available free 

agents until the limit of 200 decision variables was reached.  The results of these optimization 

runs are shown in Figure 11. 
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Figure 11: Updated Stochastic Optimization Results 

 This time, the model generates a roster whose 2015 WAR is actually better than that of 

the corresponding opening day roster for all three teams.  This represents a vast improvement 

over the previous attempt.  However, it is still worth noting that the actual 2015 WAR of the 

optimized roster falls significantly short of the expected value in every instance.  Also, none of 

the teams actually meet their objective of 85 wins.  Adding the 36.9 WAR of the Royals’ 

optimized roster, the best of the three analyzed, to the 47.7 wins generated by a replacement 

level roster gives us a total of 84.6 wins contributed by the optimized roster.  Though a very 

good result, it still falls short of the 85 wins that the roster was supposed to have a 99.1% chance 

of reaching.  In spite of these deficiencies, the model still represents a significant success in its 

ability to beat the actual opening day roster WAR of all three teams, including the Royals, who 

finished the 2015 season with the best record in the American League (MLB.com, a). 

Other Optimization Methods 

 In addition to the stochastic optimization method described throughout this paper, three 

attempts using a linear objective function were also made in order to see how they compared to 

the stochastic results.  Because they had a linear objective function, these methods utilized the 

simplex method to reach an optimal solution instead of the evolutionary method used in the 

stochastic model.  In the first of these methods, the same projections included in the stochastic 

optimization described above were used.  The same constraints were used as in the previous 
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model.  The only difference was that the objective function was changed from maximizing the 

amount of seasons with at least 85 wins to simply maximizing the expected Wins Above 

Replacement.  The results of this optimization run are shown below, with the results of the 

previous stochastic method included for comparison. 

 

Figure 12: Linear Optimization 

 The linear optimization method fails to beat the stochastic method on the aggregate with 

regards to actual WAR.  While this is certainly favorable evidence towards the benefits of a 

stochastic method, it does not guarantee that the stochastic model is actually any better.  As 

discussed previously, the evolutionary algorithm used in the stochastic method cannot guarantee 

an optimal solution.  It simply provides the best answer it can find in the amount of time allotted 

(Frontline Solvers).  Therefore, it is very possible that, given more time to find an improved 

solution, the stochastic method would have reached the same solution as the one given by the 

linear method. 

 In addition to utilizing linear optimization with the preexisting projections, linear 

regression was also used to create new and ideally more accurate projections.  This method was 

driven by the theory that the model was still biased towards older players on the decline of their 

careers.  If age could be factored into the model, then possibly better answers could be found.  In 

order to create the equation to test this theory, the weighting system factoring in 3 seasons was 
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scaled back one year and used to find expected WAR values for the 2014 season.  Ages for each 

player in 2014 were also recorded.  A multivariate linear regression was then run with actual 

2014 WAR as the response variable and 2014 expected WAR and 2014 age as the predictor 

variables.  The results of this regression are displayed in Figure 13. 

 

Figure 13: Linear Regression Output 

 The coefficients from this equation were then applied to each player’s 2015 age and 2015 

expected WAR in order to generate a new set of projections.  With these new projections, 

another optimization run was made with the objective of maximizing the expected wins.  The 

same constraints as used previously were also included.  The outcome of this particular run is as 

follows, with the results of the previous stochastic optimization again included for comparison. 

 

Figure 14: Linear Optimization with Projections via Linear Regression 

 The optimization with projections from linear regression is higher than both the 

stochastic method and the opening day rosters with regards to total 2015 WAR generated.  It is 
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also the only method that did not over-project 2015 performance.  In fact, the model significantly 

under-projected the 2015 WAR for the Red Sox and the Royals’ rosters.  The primary weakness 

of this method is that it gives you a single estimate for performance, while the stochastic method 

gives you a distribution of potential outcomes.  However, the projections utilizing linear 

regression seem to be significantly more accurate than those that rely solely on weighting 

previous seasons. 

 In an effort to build off the success of the initial regression model, a second regression 

attempt was made with the goal of increasing the accuracy of the projections.  This attempt used 

the same methodology as the first, with age and expected WAR included as the predictor 

variables.  The only difference is that players were separated by position group, with separate 

regression equations created for each group instead of simply creating one equation to project all 

players, as was done previously.  The thought process behind this model was that players age 

differently depending on their position, and different projections should be used to account for 

the varied impact of age.  For instance, it is likely that aging will have a greater impact on an 

outfielder who has to frequently run down fly balls than it will a relief pitcher, who is often only 

in the game for one or two innings at a time. 

 In order to implement this concept, players were split into one of six position groups: 

starting pitchers, relief pitchers, catchers, corner infielders (first and third basemen), middle 

infielders (second basemen and shortstops), and outfielders.  Linear regression was then used to 

project 2014 WAR for each player, with 2014 age and expected WAR as the predictor variables.  

The results of these regressions can be seen in Appendices H-M.  The coefficients for each 

position group were then utilized, along with 2015 age and expected WAR values, to create 

WAR projections for every player.  After these new projections were created, the same 
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constraints as described in the previous model were used to create optimized rosters for each 

team.  The results of these optimizations are shown below. 

 

Figure 15: Linear Optimization with Separate Linear Regression Projections by Position 

 The results of this particular set of optimizations are very promising, but also somewhat 

inconsistent.  The total 2015 WAR of 108.9 is the highest of any of the optimization attempts, 

and the Red Sox 2015 WAR of 49 is the highest of any individual team.  However, the Royals’ 

optimized roster failed to beat their opening day roster by a significant margin, while both the 

initial regression and stochastic methods had no trouble surpassing the WAR of the Royals’ 

actual roster.  Overall, though, there does seem to be potential for a substantial amount of value 

from separating the projections by position group. 

Weaknesses of Model 

Overall, both the stochastic optimization and regression methods seem to provide very 

reasonable answers, as all three were able to beat the opening day rosters with regards to total 

2015 WAR.  This does not mean they are not without weaknesses, though.  The stochastic 

method consistently over-projects future performance, which significantly hinders its usefulness.  

In fact, the primary way to improve the model is likely to improve the quality of the projections 

used.  It does not matter how good the model is if the input data that it uses is inaccurate.  The 

model also fails to factor in the correlation of performance between players.  If you have two 
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above average position players at a position where only one of them can play at a time, the value 

of each player is significantly reduced by having to split playing time.  For instance, going into 

the 2015 offseason, the Royals already had catcher Salvador Perez on their roster, who accounted 

for 3.1 WAR in 2014 and is generally considered a well above average catcher (Fangraphs, c).  

However, the model still suggested that the Royals sign free agent catcher Russell Martin, who 

was worth 5 WAR in 2014 (Fangraphs, c).  While it would be possible to use one of the players 

as a designated hitter when not catching, only one of them would be able to play catcher at a 

time, reducing the playing time, and therefore value, of each.  In its current form, the model does 

not account for this at all.  The model is also unable to account for future payroll obligations or 

back loaded contracts, which leads to the risk of recommending players who are being paid large 

sums of money while their skills are declining.  This means that, though the players selected may 

return the most value of any potential roster in the upcoming season, their selection may 

negatively impact the team in future seasons.  In addition to this, the model is also unable to 

account for trades or include players with no major league experience, which can limit the ability 

of the model to find good solutions.  The Royals’, for example, made several trades prior to the 

trade deadline in 2015 in an attempt to improve their roster on the way to winning the World 

Series.  As a result, their World Series roster actually had a 2015 WAR of 43.2, which is higher 

than any of our optimized rosters for the team (Fangraphs, c; Pekarsky, 2015).  While the Royals 

were required to give up several of their own players in order to make these trades, this still 

demonstrates that there are other ways to create value for a team outside of the free agent market.  

The final, and potentially most important, weakness is that the model is reliant on the assumption 

that every free agent would be willing to sign a contract with the team being modeled at the price 

listed.  This assumption is not extremely realistic, as all players have different preferences on 
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where they would like to play and whether or not they would take a discount to play in certain 

cities. 

One technique that may help address some of these potential issues would be to run the 

model incrementally as players are signed or become unavailable.  In order to demonstrate this 

concept, the Boston Red Sox roster is considered along with the most recently discussed 

optimization technique that utilizes separate regression equations for each position group.  One 

of the players that the model recommends for the Red Sox in this instance is starting pitcher Jon 

Lester.  It is very possible that, as the Red Sox are attempting to reach a contract agreement with 

Jon Lester, one or more of the other recommended players would sign a contract with a different 

team.  If we assume that the Red Sox were able to sign Jon Lester on December 15, 2014, (the 

date Lester actually did sign with the Chicago Cubs), several other players would have already 

signed elsewhere.  One such player is Russell Martin, who was recommended by the model, but 

agreed to a contract with the Toronto Blue Jays on November 18 (MLB.com, b).  With Martin 

unavailable, the optimal roster the Red Sox should pursue has changed.  Therefore, it is 

necessary to adjust the model and run it again after Jon Lester is signed by the Red Sox.  In order 

to do this, Lester’s 2015 salary is subtracted from the budget and he is added to the set of players 

already available on the Red Sox payroll.  All players who have signed contracts with other 

teams are removed from the model.  The model is then run again, using the same constraints and 

objective as before.  The roster recommended by this optimization is shown in Appendix S.  It is 

interesting to note that two players recommended by the initial optimization are no longer 

recommended by the model despite the fact that they are still available.  Though it may be 

unrealistic to assume the Red Sox would just allow one of their free agent targets to join another 

team without any effort to sign him, this example is still useful in demonstrating how 
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incremental usage of the model can be leveraged to drive the highest amount of value possible in 

a dynamic free agent market that is constantly changing. 

Conclusion 

 Overall, the model was able to successfully demonstrate how a structured approach can 

be applied to the construction of a Major League Baseball team.  Using portfolio optimization 

techniques and related concepts, three different optimization methods were created that were 

able to successfully assemble rosters that returned a large amount of value while meeting several 

necessary constraints.  Though not without weaknesses, these methods were able to illustrate the 

power and usefulness of portfolio optimization methodology, and how they can be successfully 

applied to scenarios where this type of problem solving is not traditionally implemented. 



33 
 

Appendix A: Portfolio Optimization Article Summary 

Article Title Author Year 

Portfolio Selection Harry Markowitz 1952 

Portfolio Optimization: A Primer Speidell, Miller, and Ullman 1989 

Monte Carlo Simulation in Risk Analysis Hercules E. Haralambides 1991 

Global Portfolio Optimization Fischer Black and Robert Litterman 1992 

Portfolio Optimization in Practice Philippe Jorion 1992 

Using Monte Carlo Simulation to Improve Long-
Term Investment Decisions 

Charles F. Kelliher and Lois S. 
Mahoney 2000 

A Systematic Approach Integrating Risk and 
Strategy Management to Optimize Portfolios of 

Industrial Assets David A. Wood 2001 

The Problems with Monte Carlo Simulation David Nawrocki 2001 

Simulation Modeling to Optimize Stochastic 
Manufacturing Processes and Resources by a 

Dynamic Monte Carlo Method Roberto F. Lu and Guixo Qiao 2003 

A Stochastic Programming Approach to Power 
Portfolio Optimization Sen, Yu, and Genc 2006 

Exploring Monte Carlo Simulation Applications for 
Project Management Young Hoon Kwak and Lisa Ingall 2007 

Portfolio Optimization Using Stochastic 
Programming Erhan Deniz and James T. Luxhoj 2008 

Accelerated Ensemble Monte Carlo Simulation Kevin Thompson and Alistair McLeod 2009 

Multiobjective Optimization Using Differential 
Evolution for Real-World Portfolio Optimization Thiemo Krink and Sandra Paterlini 2011 

A Recommended Financial Model for the Selection 
of Safest Portfolio by Using Simulation and 

Optimization Techniques Kirti Arekar and Sanjeevani Kumar 2011 

The Graceful Aging of Mean-Variance Optimization Mark Kritzman 2011 

Portfolio Selection Under Model Uncertainty: A 
Penalized Moment-Based Optimization Approach Jonathan Y. Li and Roy H. Kwon 2012 

A Simulation Model to Analyze the Impact of Golf 
Skills and a Scenario-based Approach to Options 

Portfolio Optimization Soonmin Ko 2012 

Markowitz's Portfolio Selection Model and Related 
Problems Abhijit Ravipati 2012 
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Appendix B: Baseball Performance Metric Article Summary 

Article Title Author Location Year 

What is WAR? Fangraphs Fangraphs n.d. 

The Book: Playing Percentages in Baseball 
Tango, Lichtman, and 

Dolphin 
Potomac Books, 

Inc. 2007 

WAR for Position Players Fangraphs Fangraphs n.d. 

WAR for Pitchers Fangraphs Fangraphs n.d. 

The Relationship between WAR and Team 
Wins Sports Reference Sports Reference 2012 

The Beginner's Guide to Replacement Level Neil Weinberg Fangraphs 2015 

Ultimate Base Running Primer Mitchel Lichtman Fangraphs 2011 

wSB Fangraphs Fangraphs n.d. 

wRAA Fangraphs Fangraphs n.d. 

FIP Fangraphs Fangraphs n.d. 

Pitching and Defense: How Much Control 
Do Hurlers Have? Voros McCracken 

Baseball 
Prospectus 2001 

BsR Fangraphs Fangraphs n.d. 

UZR Fangraphs Fangraphs n.d. 

Def Fangraphs Fangraphs n.d. 

Regression to the Mean and Beta 
Distributions Kincaid 3-D Baseball 2011 

Randomness, Stabilization, & Regression Steve Staude Fangraphs 2013 

Converting Runs to Wins Graham MacAree Fangraphs n.d. 

The Fangraphs UZR Primer Mitchel Lichtman Fangraphs 2010 

Catcher Defense Fangraphs Fangraphs n.d. 

The Average Number of Pitches Thrown Per 
Game is Rising Andy Baseball-Reference 2010 

wOBA Fangraphs Fangraphs n.d. 
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Appendix C: Kolmogorov-Smirnov Test for A.J. Pierzynski Career WAR Values 
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Appendix D: Kolmogorov-Smirnov Test for David Ortiz Career WAR Values 
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Appendix E: Kolmogorov-Smirnov Test for Ichiro Suzuki Career WAR Values 
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Appendix F: Kolmogorov-Smirnov Test for LaTroy Hawkins Career WAR Values 
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Appendix G: Kolmogorov-Smirnov Test for Bartolo Colon Career WAR Values 
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Appendix H: Starting Pitcher Regression Results 
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Appendix I: Relief Pitcher Regression Results 
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Appendix J: Catcher Regression Results 
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Appendix K: Corner Infielder Regression Results 
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Appendix L: Middle Infielder Regression Results 
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Appendix M: Outfielder Regression Results 
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Appendix N: Boston Red Sox Actual 2015 Opening Day Roster 
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Appendix O: Boston Red Sox Roster via Stochastic Optimization 

 

* Indicates a player that was a free agent prior to optimization  
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Appendix P: Boston Red Sox Roster via Linear Optimization 

 

* Indicates a player that was a free agent prior to optimization   
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Appendix Q: Boston Red Sox Roster via Linear Optimization with Linear Regression 

Projections 

 

* Indicates a player that was a free agent prior to optimization 
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Appendix R: Boston Red Sox Roster via Linear Optimization with Separate Linear 

Regression Projections by Position 

 

* Indicates a player that was a free agent prior to optimization 
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Appendix S: Boston Red Sox Roster via Incremental Optimization Example 

 

* Indicates a player that was a free agent prior to optimization 
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Appendix T: Kansas City Royals’ Actual 2015 Opening Day Roster 
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Appendix U: Kansas City Royals’ Roster via Stochastic Optimization 

 

* Indicates a player that was a free agent prior to optimization 
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Appendix V: Kansas City Royals’ Roster via Linear Optimization 

 

* Indicates a player that was a free agent prior to optimization 
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Appendix W: Kansas City Royals’ Roster via Linear Optimization with Linear Regression 

Projections 

 

* Indicates a player that was a free agent prior to optimization 
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Appendix X: Kansas City Royals’ Roster via Linear Optimization with Separate Linear 

Regression Projections by Position 

 

* Indicates a player that was a free agent prior to optimization 
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Appendix Y: San Diego Padres’ Actual 2015 Opening Day Roster 
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Appendix Z: San Diego Padres’ Roster via Stochastic Optimization 

 

* Indicates a player that was a free agent prior to optimization 
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Appendix AA: San Diego Padres’ Roster via Linear Optimization 

 

* Indicates a player that was a free agent prior to optimization  
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Appendix AB: San Diego Padres’ Roster via Linear Optimization with Linear Regression 

Projections 

 

* Indicates a player that was a free agent prior to optimization  
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Appendix AC: San Diego Padres’ Roster via Linear Optimization with Separate Linear 

Regression Projections by Position 

 

* Indicates a player that was a free agent prior to optimization 
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