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Abstract 

In order to further reduce the size of today’s power converters, wide bandgap 

semiconductor technologies are being explored. These devices, such as silicon carbide (SiC), have 

been shown to outperform their silicon counterparts when used in high frequency switching, high 

temperature, and high voltage applications. These properties make them highly desirable in the 

bidirectional dual active bridge power converter. Being an isolated converter topology, the dual 

active bridge employs a transformer to provide step-up/step-down functionality and galvanic 

isolation for the converter. Transformers, as well as other passive components such as inductors 

and capacitors may be reduced in size when higher switching frequencies are employed. SiC 

devices used in this application can in turn provide a means to shrink overall system size and 

increase the power density of the converter, proving further the viability of power electronic 

systems in applications that require compactness and high efficiency. The aim of this thesis is to 

demonstrate the performance benefits of SiC MOSFETs in the dual active bridge topology. A 

justification for the choice of topology is included in this work, along with all of the appropriate 

design considerations and analysis, leading to the design of a 2kW dual active bridge converter. 

Modern modeling techniques are also explored and used to develop an enhanced digital controller, 

implemented in a DSP, for steady state reference tracking and load disturbance rejection. A 

demonstration of the designed converter verifies the analysis techniques explained therein. 
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1. INTRODUCTION 

1.1 Problem: Intelligently Interfacing Solar Power and Battery Storage with Grid 

 Demand for sustainable electric power has never been higher. In order to meet this demand, 

electric power systems must evolve to allow for integration of renewable energy sources, such as 

wind and solar, and to also provide high capacity battery backup under blackout conditions. One 

proposed solution is the smart green power node (SGPN), a modular intelligent power flow 

controller that interfaces solar panels and battery storage with the utility grid at the residential load 

level. Not only does the SGPN present a means for individual households to use solar power, but 

it also facilitates an unprecedented level of user control via its intelligent load forecasting and 

reporting.  
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1.2 Thesis Statement 

At the heart of the SGPN are the power electronic systems, which enable the employment 

solar panels and battery storage elements. Prior research has been conducted on such power 

converters using silicon semiconductor devices, and found to be quite large do to their excessive 

losses and relatively low switching frequency. Modern wide bandgap semiconductor devices, such 

as silicon carbide (SiC), present many desirable dynamic characteristics that apply to medium and 

high power switching converter systems. This research seeks to demonstrate the size and efficiency 

benefits of SiC based converter systems as they are applied to the SGPN technology. This will be 

validated through the development of the system’s bidirectional dc-dc converter, which acts as the 

interface between residential dc loads, a solar and battery fed low voltage bus, and a high voltage 

dc bus feeding a grid-tied inverter. Results will be presented that either support or refute the claim 

for potential of next generation SiC devices to replace pre-existing silicon based converter systems 

as the norm. 
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1.3 Approach 

 In developing modern power electronic converters, several design considerations come 

into play. System level specifications must first be identified based on power rating and bus 

voltages, which coincide with ancillary power electronic systems (i.e. grid-tied inverters, battery 

charge converters, etc.). A converter topology must then be selected and designed to meet the 

aforementioned requirements. Advanced modeling techniques must be applied in order to develop 

appropriate control schemes, which stabilize the converter and enable intelligent power flow. 

Finally, a working system must be constructed and tested using selected components and a digital 

controller. 
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1.4 Potential Impact 

 Operating switching converters at higher frequencies will reduce overall system size, 

which will make new applications for such converters more feasible. However, current silicon 

based designs are limited in their frequency of operation capabilities due to the excessive losses 

they incur during hard switching phases. Silicon carbide semiconductor devices exhibit material 

properties, which make them an optimal choice when high frequency operation is desired. When 

these devices are employed, higher density power converters can be realized. Applications for such 

converters include distributed generation in the future smart grid, plug-in electric vehicles, space 

exploration, and various extreme environment electronic systems. 
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1.5 Organization of Thesis 

 This thesis is organized into seven chapters. The first chapter is an introductory chapter 

that introduces the thesis topic and includes reasoning behind the proposed research. The second 

chapter briefly introduces the smart green power node system model and discusses which 

subsystems are at play, specifically the bidirectional dc-dc converter that will be explored in more 

depth. The third chapter develops the fundamental principles of operation of the dual active bridge, 

the selected dc-dc converter, and its related design considerations. The fourth chapter covers the 

controller design for the dual active bridge, which will include the construction of an optimal 

system model, controller type selection, load disturbance considerations, and digital 

implementation. Chapter Five will provide details on auxiliary electronics systems needed to 

operate the convert. These subsystems include feedback sensors and signal conditioning, power 

supplies, and signal isolators. The sixth chapter will outline testing procedures used to validate 

converter operation and the resulting measurements. Closing in the seventh chapter, a discussion 

of results will be presented as well as the impacts of this work and recommended future work.  



 

University of Arkansas   Department of Electrical Engineering   6 

2. PROPOSED SYSTEM LEVEL OVERVIEW 

2.1 Smart Green Power Node 

The proposed smart green power node (SGPN) interfaces battery storage and solar power 

elements with residential dc loads and the utility grid. The system consists of several 

interconnected power electronic converters, such as those that connect the batteries and solar 

panels with a low voltage bus, the isolated dc-dc converter that steps up the low voltage bus and 

controls power flow, and the grid-tied inverter. 

 The work of this thesis will be centered on the design of the isolated dc-dc converter that 

interconnects the low voltage and high voltage busses. The dual active bridge is selected based 

upon its desirable characteristics, such as its symmetry, reduced filter size, and its ability to more 

easily realize soft switching [1][2]. Additionally, because the DAB utilizes eight switching 

devices, as opposed to the 4-switch Dual-Half Bridge converter, it’s effective power rating can be 

pushed much higher. 

 
FIGURE 1: SMART GREEN POWER NODE SYSTEM 
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2.2 System Specifications 

In order for the converter developed in this thesis work to be compatible with previous 

versions of SGPN, it must meet standing system specifications, but with a higher target efficiency. 

System specifications for this work are given in Table I below. Those parameters that specifically 

apply to the dual active bridge are bolded. 

Table I. SMART GREEN POWER NODE SYSTEM SPECIFICATIONS 
Parameter Value 

Grounding Configuration 240 V to ground 
Maximum load tested 2 kVA 

Transformer turns ratio 1:4 
Primary side DC voltage (RMS) input 95 V 

Secondary side DC voltage (RMS) input 380 V 
AC voltage (RMS) output 240 +/ 1.2 VAC 

Inverter frequency output 60 +/ 0.3 Hz 
AC current (RMS) output 8.34 A 

System efficiency > 95% 
Voltage output THD+N < 5% 
Current output THD+N < 5% 
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3. DUAL ACTIVE BRIDGE CONVERTER 

3.1 Topology 

 The dual active bridge is a bidirectional, controllable, dc-dc converter that has high power 

capabilities comprised of eight semiconductor devices, a high frequency transformer, energy 

transfer inductor, and dc-link capacitors. The converter can be more simply described as a more 

common full-bridge with a controllable rectifier. Due to the symmetry of this converter, with 

identical primary and secondary bridges, it is capable of bidirectional power flow control, and the 

reason why it is selected for the smart green power node application.  

The topology is shown in Fig. 2, where 𝑉𝑖𝑛 and 𝑉𝑜𝑢𝑡 are the dc-link voltages, 𝐿𝑘 is the 

leakage inductance of the transformer plus any necessary external energy transfer inductance, and 

𝑆1−8 are the controllable semiconductor switches. The dual active bridge has been studied 

extensively previously in similar applications [1],[2],[3]. In previous years, in order to 

accommodate high dc-link voltages (>300V), insulated gate bipolar transistors (IGBTs) have been 

commonplace [3]. As such, 𝑆1−8 switching cells have been traditionally implemented with anti-

parallel diodes and snubber capacitors in order to direct current commutation on switching events 

and to allow for zero voltage switching (ZVS) through the snubber capacitor and energy transfer 

inductance resonance. The motivation for developing high voltage MOSFETs is because these 

devices host an intrinsic body diode and drain-to-source output capacitance, which take the place 

of these external components and reduces the part count of the converter.  Wide bandgap materials, 

such as silicon carbide (SiC), have been topics of research in the areas of power electronics because 

of their higher voltage and thermal ratings, as well as their lower turn on energy, making them 

ideal for high frequency switching converter applications.  
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FIGURE 2: DUAL ACTIVE BRIDGE TOPOLOGY 
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3.2 Power Flow Analysis 

 Each full-bridge consists of two totem-poled switching devices, which are driven with 

complimentary square-wave pulses. The switching frequency of these complimentary devices is 

referred to as the switching frequency of the converter (𝑓𝑠). In this application, in order to reduce 

the size of passive components and to leverage SiC’s superior physical properties, high frequency 

switching will be employed. At high frequencies, the isolation transformer’s magnetizing 

inductance becomes negligible and the transformer can be modeled only by its leakage inductance. 

Fig. 3 reflects an equivalent system, which will be used to derive the power equation for the 

converter. The two full bridges invert both dc bus voltages, represented as square waves 𝑉𝑝𝑟𝑖 and 

𝑉𝑠𝑒𝑐, and apply them to the terminals of the high frequency transformer (HF-XFMR).  

 

FIGURE 3: HIGH FREQUENCY EQUIVALENT DUAL ACTIVE BRIDGE 
Power flow in the dual active bridge can be directed by phase-shifting the pulses of one 

bridge with respect to the other. This form of control, called phase shift modulation (PSM), directs 

power between the two dc busses such that the leading bridge delivers power to the lagging bridge 

[4]. This concept is illustrated in Fig. 4 in which the applied square waves create a voltage 

differential across the leakage inductance and direct its stored energy. 

Considering the control pulses for switches 𝑆1,4 of the primary bridge and 𝑆5,8 of the 

secondary bridge, shifting the secondary bridge pulses by +𝛿 instantiates power delivery from the 
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primary bridge to the secondary bridge. Similarly, shifting the secondary bridge by – 𝛿, making it 

the leading bridge, causes power to be delivered to the primary bridge. 

 

FIGURE 4: DUAL ACTIVE BRIDGE WAVEFORMS 

 The symmetry of the current waveform 𝑖𝑙𝑘 through the leakage inductance allows for the 

following power flow analysis to be developed using a half switching period. The inductor current 

waveform can be expressed as: 

 
𝑑𝑖𝑙𝑘(𝑡)

𝑑𝑡
=

𝑉𝑝𝑟𝑖(𝑡)−𝑉𝑠𝑒𝑐(𝑡)
𝐿𝑘

 (1) 

 Each half cycle can be divided into two intervals: Interval 1 occurs between (0 < 𝜃 < 𝛿) 

and interval 2 is defined as (𝛿 < 𝜃 < 𝜋). Considering the depiction of the current waveform in 

Fig. (4), solving for (1) gives the following expressions during the two time durations. 

 
 𝑉𝑖𝑛 + 𝑉𝑜𝑢𝑡

𝑛
= 𝐿𝑘

𝐼1+𝐼2
𝑑𝑇

 ,   for 0 < 𝑡 < 𝑑𝑇 (2) 

   
During interval 2, the inductor current is: 
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 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡

𝑛
= 𝐿𝑘

𝐼1+𝐼2
(1−𝑑)𝑇

 ,    for 𝑑𝑇 < 𝑡 < 𝑇 (3) 

   
With 𝑛 being the turns ratio of the transformer, 𝑇 being the duration of a half-cycle of the period, 

𝐼1 and 𝐼2 being the inductor current during switching instances, and 𝑑 being the phase shift duty 

percentage of the two bridges, which will be referred to as the duty cycle of the converter. 

 Averaging (2) and (3), as shown in [5], yields an expression for the average output current 

of the converter: 

 
 𝐼𝑜𝑢𝑡 =

(1 − |𝑑|)𝑑𝑇𝑉𝑖𝑛

𝑛𝐿𝑘
 (4) 

   
From this the average output power can be derived: 

 
 𝑃 = 𝑉𝑜𝑢𝑡𝐼𝑜𝑢𝑡 =

(1 − |𝑑|)𝑑𝑇𝑉𝑖𝑛𝑉𝑜𝑢𝑡

𝑛𝐿𝑘
 (5) 

   
 This expression shows a relationship between the power delivered to the output as a 

function of the duty cycle (phase shift) between the two bridges, the switching frequency of the 

converter, and the energy transfer inductance. Additionally, (5) also indicates that a negative duty 

cycle (or phase shift) between bridges will cause power to be drawn from the output and delivered 

to the input dc bus. Fig. 5 shows the power transfer per unit vs. the duty cycle of the two bridges. 

These parameters must be balanced in order to design a functioning converter to suite a particular 

application’s needs. 



 

University of Arkansas   Department of Electrical Engineering   13 

 

FIGURE 5: DUAL ACTIVE BRIDGE POWER TRANSFER CHARACTERISTIC 
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3.3 Preliminary Design Considerations 

 For the SGPN application, reliability across a wide power range must be met. To do so, 

several major converter components must be selected to withstand maximum anticipated current 

and voltage stresses and to facilitate desired power flow control. The critical components of the 

dual active bridge are the HF-XFMR, external energy transfer inductor, MOSFETs, and dc-link 

capacitors. Additionally, all design criteria will be met operating at switching frequencies greater 

than 100 kHz. It will be shown in the design process that 250 kHz operation is not only feasible, 

but is also necessary in order to achieve optimal system size reduction while meeting converter 

efficiency requirements. The following analysis will outline key system parameters that will be 

used for component selection. 
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3.4 Inductor Sizing 

 As a reactive component, inductor sizes are dependent on frequency. From (5) it is shown 

that with fixed dc bus voltages, varying either the switching frequency or energy transfer 

inductance will alter the power handling capabilities of the converter. Along with the switching 

frequency, the maximum desired power must be placed at an optimal duty cycle. [6] and [7] 

explore the design of high frequency dual active bridge and the optimal placement of the maximum 

power on the power transfer curve. Generally, maximum power of the dual active bridge should 

be placed between 30% and 40% duty cycle because it remains mostly linear in this region, which 

makes future current controller development much easier. Additionally, by designing for extra 

headroom at the top of the curve gives the converter extra current delivery capabilities, which will 

be needed to respond to load steps. 

 An optimal inductor value is selected by solving (5) for the energy transfer inductance and 

sweeping key system parameters, such as the switching frequency 𝑓𝑠 and maximum power duty 

cycle 𝑑. The expression for the energy transfer inductance is: 

 
 𝐿𝑘 =

(1 − |𝑑|)𝑑𝑉𝑖𝑛𝑉𝑜𝑢𝑡

2𝑓𝑠𝑛𝑃𝑚𝑎𝑥
 (6) 

   
Note that the half cycle period 𝑇 has been expressed in terms of the switching frequency of the 

converter to provide context for future discussion and graphical illustration. Fig. 6 shows the 

energy transfer inductance across varying switching frequencies with the maximum power placed 

at different duty cycles. As can be seen, increasing the switching frequency drastically reduces the 

size of the total inductance need to facilitate maximum power transfer. Similarly, the duty cycle 

affects the inductance value, but becomes less noticeable at higher frequencies. Due to diminishing 

returns of reduced inductor size at frequencies greater than 250 kHz, this switching frequency and 

a duty cycle of 35% are selected for this converter design. 
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FIGURE 6: INDUCTOR SIZING 
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3.5 Switching Devices 

 A key component of the dual active bridge is the switching devices themselves. As shown 

in Section 3.4, operation at higher switching frequencies greatly reduce the size of the energy 

transfer inductor. In order to operate at such high switching frequencies with minimal switching 

losses, SiC MOSFETs must be employed. The SiC material and the process used to manufacture 

devices from it yield devices with high band gap energy, high thermal conductivity, and high 

critical electric field. These intrinsic device properties make them ideal for high voltage, high 

frequency converter applications [7]. Primarily, the relatively low turn on energy of the device 

gate and the lower output capacitance are what allows for these SiC devices to be switched at high 

speeds (>50 kHz) while remaining power efficient. Additionally, their superior thermal 

conductivity and small die size make them ideal for extreme environment and highly dense power 

converter applications, of which the dual active bridge for the SGPN must meet high power density 

standards. 
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3.6 Gate Driver 

 SiC gate driver design presents many unique considerations due to the high 

transconductance of the devices. As opposed to Si insulated gate bipolar transistor (IGBT) devices, 

SiC MOSFETs require tight gate regulation to keep the device in the saturation region [9]. This is 

made even more difficult to achieve if one is to implement these devices in high frequency 

switching circuits, in which parasitic inductances cause excessive ringing in the gate drive loop. 

Because of SiC MOSFET’s larger transconductance, the defining line between the triode and 

saturation region is blurred, making it act more as a voltage-controlled resistance than a voltage-

controlled current source. Fig. 7 depicts typical I-V curve transconductance characteristics of the 

SiC MOSFET and the Si IGBT. As can be seen, when the IGBT collector to emitter voltage reaches 

sufficiently large value, with different gate to emitter voltages, the device constricts current flow 

and behaves as a constant current source. Opposite of this, the SiC MOSFET never reaches a clear 

saturation point. This is directly due to its larger intrinsic transconductance, which makes its I-V 

characteristic more linear. 

 

FIGURE 7: SIC MOSFET VS. SI IGBT I-V TRANSCONDUCTANCE CURVE (CREDIT: CREE [9]) 
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 Keeping this in mind, when high frequency operation is desired, SiC MOSFET gate drivers 

must be capable of large peak drive currents in order to push the device past the Miller plateau. 

Additionally, the gate driver must be capable of providing both a positive turn-on voltage and 

negative turn-off voltage (typically +20V/-5V for Cree’s standard line of SiC MOSFETs) [10]. 

Finally, the gate driver must be placed as close to the device as possible in order to minimize trace 

inductance and excessive ringing in the circuit. These are all key in ensuring the SiC devices can 

be turned on and off at will with no issues. 

  



 

University of Arkansas   Department of Electrical Engineering   20 

3.7 Transformer Design 

 After the inductor has been sized and the converter power rating has been selected, the HF-

XFMR must be designed to withstand current voltage stresses. Referring back to Fig. 4, which 

depicts typical DAB waveforms, the peak currents 𝐼1 and 𝐼2 through the transformer occur at the 

switching instances of each bridge. Rearranging (2) and (3): 

 
 𝐼1 =

𝑇
2𝐿𝑘

(2
𝑉𝑜𝑢𝑡

𝑛
𝑑 + 𝑉𝑖𝑛 −

𝑉𝑜𝑢𝑡

𝑛
) (7) 

   
 
 𝐼2 =

𝑇
2𝐿𝑘

(2𝑉𝑖𝑛𝑑 − 𝑉𝑖𝑛 +
𝑉𝑜𝑢𝑡

𝑛
) (8) 

   
In the case where the primary reflected output voltage is equal to the input voltage, (7) and (8) can 

be further simplified to: 

 
 𝐼1 =

𝑇
2𝐿𝑘

(2
𝑉𝑜𝑢𝑡

𝑛
𝑑) (9) 

   
 
 𝐼2 =

𝑇
2𝐿𝑘

(2𝑉𝑖𝑛𝑑) (10) 

   
 
 ∴ 𝐼1 = 𝐼2 (11) 

   
If a zero-error controller in used, and the turns ratio of the transformer satisfies the input to output 

voltage conversion ratio, then this assumption is valid. Using (4), (5), (9), and (10), a compilation 

of the dual active bridge’s power flow parameters can be calculated. Results for the current design 

are show in the following table. Recall that maximum power transfer of 2kW was designed to 

occur at a duty cycle of 35%, which is shown in red.  
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Table II. DUAL ACTIVE BRIDGE SYSTEM  

Duty Cycle / 
Phase Shift 

Input 
Current (A) 

Output 
Current (A) 

Primary 
Peak 

Current (A) 

Secondary 
Peak 

Current (A) 

Output 
Power (W) 

0.05 4.40 1.10 4.63 1.16 417.58 
0.10 8.33 2.08 9.25 2.31 791.20 
0.15 11.80 2.95 13.88 3.47 1120.87 
0.20 14.81 3.70 18.51 4.63 1406.58 
0.25 17.35 4.34 23.13 5.78 1648.34 
0.30 19.43 4.86 27.76 6.94 1846.14 
0.35 21.05 5.26 32.39 8.10 1999.99 
0.40 22.21 5.55 37.02 9.25 2109.88 
0.45 22.90 5.73 41.64 10.41 2175.81 
0.50 23.13 5.78 46.27 11.57 2197.79 

 

 The analysis indicates that the HF-XFMR must be capable of handling approximately 

48A/12A peak primary and secondary currents, as well as being rated for at least 2.2 kW. The 

design of the transformer will not be covered in this work and a functioning transformer was 

ordered from Payton Group Magnetics. The transformer’s specifications are included in Appendix 

A. 
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3.8 Zero Voltage Switching Operation 

 The principle of zero voltage switching (ZVS), also called soft-switching, is based upon 

the resonant relationship between the snubber capacitance across each device and the equivalent 

inductance of the circuit during different switching intervals. Essentially, during switching events, 

the current through one of the complimentary devices is interrupted, but due to the energy transfer 

inductance, current is supplied through the snubber capacitor and forced through the anti-parallel 

diode of the device. This is referred to as current commutation and is a fundamental component of 

many power electronic converters. A simple resonance relationship between the snubber 

capacitance and the circuit inductance is 

 
 

𝑓𝑟 =
1

2𝜋√𝐿𝑘𝐶𝑆
 (12) 

   
where 𝑓𝑟 is the resonant frequency and 𝐶𝑠 is the snubber capacitance. The instantaneous current 

flow through the capacitance is given by: 

 
 𝐼𝐶𝑆 = 𝐶𝑆

𝑑𝑉𝐶𝑆

𝑑𝑡
 (13) 

   
Because the equivalent capacitance seen by the inductor during switching intervals is double that 

of a single snubber capacitor due to the complimentary transistor pair, the total inductor current 

can be written as: 

 
 𝐼𝐿𝑘 = 2𝐼𝐶𝑆 = 2𝐶𝑆

𝑑𝑉𝐶𝑆

𝑑𝑡
 (14) 

   
Thus, the amount of energy stored in the inductor must be equal to or greater than, the total energy 

required to fully charge/discharge the snubber capacitors in order to realize ZVS operation. 

 Considering this, it is clear that the inductor current during transition periods must be both 

greater than zero and capable of transferring/drawing enough energy to adequately charge and 
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discharge the equivalent capacitances in the devices. In ideal cases, this is guaranteed when the 

voltage transfer ratio (𝑀) is equal to one [5], or in other words that the voltage conversion is 

entirely handled by the turns ratio of the transformer.  

 
 

𝑀 =
𝑉𝑜𝑢𝑡

𝑛𝑉𝑖𝑛
 (15) 

   
 Conveniently, the expressions (7) and (8) for peak currents through each switch can be 

rewritten in terms of the voltage conversion ratio, which will be used for determining the ZVS 

boundary of each device. In this work, the transformer will be designed such that this condition is 

met. 

 
 𝐼1 =

𝑇𝑉𝑖𝑛

2𝐿𝑘
(2𝑀𝑑 + 1 − 𝑀) (16) 

   
 
 𝐼2 =

𝑇𝑉𝑖𝑛

2𝐿𝑘
(2𝑑 − 1 + 𝑀) (17) 

   
 However, not only must the inductor current at switching instances be greater than zero, 

but the energy stored in the inductor must be greater than or equal to the energy stored in the 

equivalent output capacitances of the devices such that: 

 
 𝐸𝐿𝑘 ≥ 𝐸𝐶𝑠 →

1
2

𝐿𝑘𝑖𝑙𝑘
2 ≥ 4 (

1
2

𝐶𝑠𝑉𝐶𝑆
2) (18) 

   
 
 𝑖𝐿𝑘 ≥ 2𝑉𝐶𝑆√

𝐶𝑠

𝐿𝑘
 (19) 

Then, writing each peak current in terms of this boundary: 

 
 𝐼1 =

𝑇𝑉𝑖𝑛

2𝐿𝑘
(2𝑀𝑑 + 1 − 𝑀) ≥ 2𝑉𝑖𝑛√

𝐶𝑠

𝐿𝑘
 (20) 

   
 
 𝐼2 =

𝑇𝑉𝑖𝑛

2𝐿𝑘
(2𝑑 − 1 + 𝑀) ≥ 2𝑉𝑜𝑢𝑡√

𝐶𝑠

𝐿𝑘
 (21) 
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Finally, the ZVS boundary conditions for the input and output bridges are given as a function of 

the voltage conversion ratio, switching frequency, inductance, and snubber capacitance. 

 
 𝑑 ≥

𝑀 − 1
2𝑀

+
2√𝐿𝑘𝐶𝑠,𝑖

𝑇𝑀
 (22) 

   
 
 𝑑 ≥

1 − 𝑀
2

+
2𝑀𝑛√𝐿𝑘𝐶𝑠,𝑜

𝑇
 (23) 

   
 In recent years, IGBT devices have been used to create high voltage switching converters, 

though they have a higher equivalent output capacitance and no intrinsic body diode. Therein lies 

the appeal of SiC MOSFETs as they exhibit a very low equivalent output capacitance, which 

removes the need for external snubber capacitance and simultaneously makes ZVS transition times 

shorter. The equivalent output capacitance of the devices (𝐶𝑒𝑞) is nonlinear in nature and should 

be found in the devices’ data sheet at the corresponding rated voltage. Additionally, SiC MOSFETs 

have an intrinsic body diode, which may act in place of the external anti-parallel diode. These 

characteristics make high frequency switching more feasible and further converter size reduction 

possible. 
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3.9 Loss Analysis 

The losses of the dual active bridge are isolated in several categories: transformer/magnetic 

losses, switching losses, and conduction losses. The loss incurred in the transformer and inductor 

is not within the context of this work, but are explored extensively in several other papers [11], 

[12], and [13]. This leaves switching losses and conduction losses for consideration in this design 

work, both of which rely heavily on the selection and utilization of the semiconductor devices in 

the converter. As stated in section 3.8, by selecting SiC MOSFETs as the key-switching component 

of the high voltage bridge, and by designing the transformer turns ratio to facilitate the voltage 

conversion, the switching losses can be ideally omitted. 

Conduction losses are the simplest to understand and predict, as they are a function of the 

RMS current (𝐼𝑅𝑀𝑆) through each bridge of the converter and the selected device’s drain-to-source 

on resistance (𝑅𝑑𝑠). As such, the conduction losses can be calculated by using Ohm’s Law [14]. 

Using (9) and (10) to find the peak bridge currents, the RMS current through each device can be 

calculated beginning with the peak current. 

 
 𝐼𝑆𝑃𝑒𝑎𝑘,𝐿𝑉 =

𝑇
2𝐿𝑘

(2
𝑉𝑜𝑢𝑡

𝑛
𝑑) (24) 

   
Then, the RMS current of the primary side current can be found, followed by the losses per device. 

 
 𝐼𝑆𝑅𝑀𝑆,𝐿𝑉 =

𝐼𝑆𝑃𝑒𝑎𝑘,𝐿𝑉

√2
 (25) 

   
 𝑃𝑐𝑜𝑛𝑑,𝑠𝑤 = 𝑅𝑑𝑠𝐼𝑆𝑅𝑀𝑆,𝐿𝑉

2  (26) 
   

More precisely, because there are four devices per bridge that conduct the RMS current per half 

switching cycle: 

 𝑃𝑐𝑜𝑛𝑑,𝑏𝑟𝑖𝑑𝑔𝑒 = 4𝑃𝑐𝑜𝑛𝑑,𝑠𝑤 = 4𝑅𝑑𝑠𝐼𝑆𝑅𝑀𝑆,𝐿𝑉
2  (27) 

4. CONTROL & FEEDBACK 
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4.1 Phase Shift Control 

A variety of control schemes for the dual active bridge have been studied. Most common 

of these is the phase shift modulation (PSM) method, which directs power flow by shifting the 

leading edges of each complimentary pair of devices, both high- and low-side switches. Single 

phase shift modulation (SPSM) is the most simple to implement and follows exactly the power 

flow derivation described in section 3.2. Refer to Fig. 4 again for an illustration of this method. 

Other methods, such as dual phase shift modulation, hybrid phase shift modulation, and triple 

phase shift modulation have been studied and compared [15] and [16]. These variations on the 

PSM method offer many benefits, but their controller design and implementation are much more 

sophisticated. This work will utilize the SPSM method, with measurement and control signal flow 

provisions made for future control method comparisons. 
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4.2 Converter Modeling 

 Modeling the dynamics of the dual active bridge have been the topic of recent research 

[17], through which accurate converter transfer functions are derived. A model developed around 

the Fourier expansion of the switching functions is of particular interest because of its 

demonstrated ability to accurately model the dual active bridge across a wide range of power 

delivery. Developed in [17], this converter model begins with defining the input and output 

voltages as functions of the switch states and the primary and secondary voltages. 

 
 𝑉𝑝𝑟𝑖 = 𝑉𝑖𝑛{𝑆1 − 𝑆2} (28) 

 
 
 

𝑉𝑠𝑒𝑐 = 𝑉𝑜𝑢𝑡{𝑆5 − 𝑆6} (29) 

   
A full model cannot be developed without a current based expression for the output voltage. 

Therefore, KCL analysis of the output node of the converter must be completed, wherein the 

current injected by the output bridge (𝑖𝑑𝑐) and the output capacitor (𝑖𝑐) comprise the elements of 

the load current (𝑖𝑜𝑢𝑡). 

 
 𝑖𝑐 = 𝑖𝑑𝑐 − 𝑖𝑜𝑢𝑡 (30) 

 

Table III. SWITCHING 

STATES OF OUTPUT BRIDGE 

𝑺𝟓 𝑺𝟔 𝒊𝒅𝒄 

0 0 0 

0 1 −𝑖𝑙𝑘 

1 0 𝑖𝑙𝑘 

1 1 0 

 

From (22) and Table III, the time domain expression for (19) can be obtained. 
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 𝑖𝑑𝑐 = 𝑖𝑙𝑘{𝑆5 − 𝑆6} (31) 

   
Now, to put combine these systems of equations, a closed KVL loop must be defined for the inner 

loop comprised of the inductor current, load, and respective bridge voltages. 

 
 𝑉𝑝𝑟𝑖 −

𝑁𝑝

𝑁𝑠
𝑉𝑠𝑒𝑐 − 𝑅𝐿𝑖𝑙𝑘 − 𝐿𝑘

𝑑𝑖𝑙𝑘

𝑑𝑡
= 0 (32) 

   
Now, substituting (28) and (29) into (32), a final expression of the voltage characteristic as a 

function of the selected energy transfer inductance and switching states is complete. 

 
 𝑅𝐿𝑖𝑙𝑘 + 𝐿𝑘

𝑑𝑖𝑙𝑘

𝑑𝑡
= 𝑉𝑖𝑛{𝑆1 − 𝑆2} −

𝑁𝑝

𝑁𝑠
𝑉𝑜𝑢𝑡{𝑆5 − 𝑆6} (33) 

   
 The switching functions 𝑆1, 𝑆2, 𝑆5, and 𝑆6 may be expanded using the Fourier transform in 

order to convert them to time-domain expressions. Being that they are all square waveforms, their 

Fourier series expansion can be expressed as: 

 
 𝑆𝑘 =

1
2

+
2
𝜋

∑
sin([2𝑛 + 1]{𝜔𝑠 − 𝛼𝑘})

[2𝑛 + 1]

𝑁

𝑛=0

, 𝑁 ≥ 0, 𝑘 = 1,2,3 … (34) 

   
where 𝑁 is the number of considered decomposed harmonics of the switching functions. The series 

summation of these harmonics yields a representation of the original square waveform, where the 

higher number of harmonics included yields increasingly better representations of the original 

switching waveform. 
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FIGURE 6: FOURIER EXPANSION OF SWITCHING WAVEFORM 

Applying this expression of the switching function to MOSFETs of importance yields the 

following: 

 
 𝑆1 =

1
2

+
2
𝜋

∑ [
sin([2𝑛 + 1]{𝜔𝑠𝑡})

[2𝑛 + 1] ]
𝑁

𝑛=0

, 𝑁 ≥ 0, 𝑘 = 1,2,3 … (35.a) 

 
 𝑆2 =

1
2

+
2
𝜋

∑ [
sin([2𝑛 + 1]{𝜔𝑠 − 𝜋})

[2𝑛 + 1] ]
𝑁

𝑛=0

, 𝑁 ≥ 0, 𝑘 = 1,2,3 … (35.b) 

 
 𝑆5 =

1
2

+
2
𝜋

∑ [
sin([2𝑛 + 1]{𝜔𝑠 − 𝛿})

[2𝑛 + 1] ]
𝑁

𝑛=0

, 𝑁 ≥ 0, 𝑘 = 1,2,3 … (35.c) 

 
 
 

𝑆6 =
1
2

+
2
𝜋

∑ [
sin([2𝑛 + 1]{𝜔𝑠 − 𝛿 − 𝜋})

[2𝑛 + 1] ]
𝑁

𝑛=0

, 𝑁 ≥ 0, 𝑘 = 1,2,3 … (35.d) 

   
 The foundational analysis outlined above is applied in [17] to define a standard expression 

of the transfer function. Recombining equations and rearranging obtain the following nonlinear 

model: 
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𝑑𝑉𝑜𝑢𝑡

𝑑𝑡
= 𝑓(𝑉𝑜𝑢𝑡, 𝛿) = −𝑖𝑙𝑜𝑎𝑑

+
8

𝐶𝑜𝑢𝑡𝜋2
𝑁𝑝

𝑁𝑠
∑ [

1
[2𝑛 + 1]2 × {

𝑉𝑖𝑛
|𝑍[𝑛]| cos([2𝑛 + 1]𝛿 − 𝜑𝑧[𝑛]) −

𝑁𝑝

𝑁𝑠

𝑉𝑜𝑢𝑡
|𝑍[𝑛]| cos(𝜑𝑧[𝑛])}]

𝑁

𝑛=0

 
(36) 

  

Where 𝑍[𝑛] = √𝑅𝐿
2 + (2𝜋𝑓𝑠[2𝑛 + 1]𝐿𝑘) and 𝜑𝑧[𝑛] = tan−1 (2𝜋𝑓𝑠[2𝑛+1]𝐿𝑘

𝑅𝐿
). A standard linearization 

technique based on the small-signal analysis is then applied to derive a linearized model. 

𝑑(𝑉𝑜𝑢𝑡 + Δ𝑉𝑜𝑢𝑡)
𝑑𝑡

≈ 𝑓(𝑉𝑜𝑢𝑡0, 𝛿0, 𝑖𝑙𝑜𝑎𝑑0) +
𝜕𝑓

𝜕𝑉𝑜𝑢𝑡
|

0
Δ𝑉𝑜𝑢𝑡 +

𝜕𝑓
𝜕𝑖𝑙𝑜𝑎𝑑

|
0

Δ𝑖𝑙𝑜𝑎𝑑 +
𝜕𝑓
𝜕𝛿

|
0

Δ𝛿 (37) 

  
Finally, combining like terms and putting into the standard 1st order format, the fully linearized 

expression for the rate of change in the output voltage is: 

   
 
 

𝑑Δ𝑉𝑜𝑢𝑡

𝑑𝑡
= 𝐴Δ𝑉𝑜𝑢𝑡 + 𝐵𝛿Δ𝛿 + 𝐵𝐼Δ𝑖𝑙𝑜𝑎𝑑 (38.a) 

 
 𝐴 =

−8
𝐶𝑜𝑢𝑡𝜋2 (

𝑁𝑝

𝑁𝑠
)

2

∑
cos(𝜑𝑧[𝑛])

[2𝑛 + 1]2|𝑍[𝑛]|

𝑁

𝑛=0

 (38.b) 

 
 𝐵𝛿 =

−8
𝐶𝑜𝑢𝑡𝜋2

𝑁𝑝

𝑁𝑠
∑ [

sin(𝜑𝑧[𝑛] − [2𝑛 + 1]𝛿0)
[2𝑛 + 1]|𝑍[𝑛]| ]

𝑁

𝑛=0

 (38.c) 

 
 𝐵𝐼 = −

1
𝐶𝑜𝑢𝑡

 (38.d) 
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4.3 Controller Design 

 Switching converter control methods range in capabilities and sophistication. Of these, the 

most common are those that monitor and regulate a single input/output or variable via a negative 

feedback loop, and are referred to as single-input single-output (SISO) systems. In the case of the 

dual active bridge feeding a grid-tied inverter, the output voltage must be regulated in order to 

ensure compatibility with other electronic devices, downstream dc loads, and to avoid backward 

power flow through the converter when it is undesired. Additionally, because of the symmetry of 

the converter and its bidirectional power flow capabilities, a control system may be developed for 

one side of the converter and simply mirrored to the other side when the power flow direction is 

reversed during battery charging intervals.  

 The standard feedback control loop of a power converter is shown in Fig. 9, where 𝐺(𝑠) is 

the plant function, or converter model, 𝐶(𝑠) is the controller, 𝑉𝑜𝑢𝑡 is the measured output voltage, 

and 𝑉𝑟𝑒𝑓 is a reference signal that commands the controller to track. In this case, the output voltage 

is the controlled system variable. In the closed loop form, the output is sampled and compared to 

the reference signal, which generates an error signal. The controller function forcibly applies 

control signals to the plant function and is often times designed to eliminate the error between the 

sampled output and reference input, effectively realizing zero steady-state error. 

 

FIGURE 7: CLOSED LOOP FEEDBACK CONTROLLER 
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 From the system model developed in section 4.2, a plant function can be obtained. This is 

accomplished by deriving the s-domain expression using the Laplace transform. Initially, the load 

current disturbance will be ignored. This will greatly simplify the design of a steady-state tracking 

controller. Applying the Laplace transform to (38) and rearranging gives: 

 
 𝐺(𝑠) =

𝐵𝛿

𝑠 − 𝐴
 (39) 

   
 Since the plant function is 1st order, a proportional-integral (PI) controller would be an 

ideal controller to implement, as it produces zero steady-state tracking error [18] and [19]. The 

transfer function of the PI controller is: 

 
 𝐺(𝑠) = 𝐾𝑝 +

𝐾𝑖

𝑠
 (40) 

   
where 𝐾𝑝 is the proportional term gain and 𝐾𝑖 is the integral term gain. 

 Now, with the plant and controller transfer functions defined, the final input-to-output 

characteristic can be written as: 

 
 𝐹(𝑠) = 𝐶(𝑠)𝐺(𝑠) = (𝐾𝑝 +

𝐾𝑖

𝑠
) (

𝐵𝛿

𝑠 − 𝐴
) (41) 
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4.4 Digital Controller 

 Modern power converter control systems are implemented using digital signal processors 

(DSP). This poses a challenge for controller design, as a continuous time controller, such as the PI 

controller explained in section 4.3, cannot be implemented in this format. They must be converted 

to a discrete-time representation of their continuous-time counterparts in order to be implemented 

in DSP controllers.  

 Though the conversion of continuous-time controllers into discrete-time controllers 

produces a mathematical expression that is considerably different, it is still possible to construct 

the controller using the continuous-time variables such as the PI controller gains 𝐾𝑝 and 𝐾𝑖. This 

makes it possible to design the controller using continuous time models. However, at least one 

new controller variable must be introduced in order to accurately model the continuous-time 

expression, and that is the sampling delay time 𝑇𝑠. The sampling time variable first appears when 

the continuous-time controller function is transformed into the discrete domain by way of the Z-

transform. For illustration purposes, the following conversion will be performed on the 

proportional-integral-derivative (PID) controller transfer function and later boiled down to the PI 

controller from [20]. 

 
 𝑃𝐼𝐷(𝑠) = 𝐾𝑝 +

𝐾𝑖

𝑠
+ 𝐾𝑑𝑠 ↔ 𝑃𝐼𝐷(𝑧) = 𝐾𝑝 +

𝐾𝑖𝑇𝑠𝑧
𝑧 − 1

+
𝐾𝑑𝑁(𝑧 − 1)

(1 + 𝑁𝑇𝑠)𝑧 − 1
 (42) 

   
 Though (38) is now in a discrete format, it still needs to be reduced to a difference equation 

so that it may be implemented in the DSP source code. Difference equation formats (43) are a 

version of discrete-time system representation that is constructed solely from the summation of 

gain-weighted sampled measurements. In this format, 𝑥(𝑘) is the output control variable, which is 

the sum of gain-weighted past values of itself and another sampled measurement 𝑦(𝑘). 
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 𝑥(𝑘) = ∑ 𝐴𝑘𝑥[𝑘 − 𝑛] + 𝐵0𝑦[𝑘] + ∑ 𝐵𝑘𝑦[𝑘 − 𝑛]

𝑁

𝑛=1

𝑁

𝑛=1

 (43) 

   
 The controller’s transfer function is essentially an error-to-control variable function, so 

translation of the discrete-time controller to its respective difference equation will begin with this 

observation. First, (42) is rewritten into a standard form (44). 

 
 𝑃𝐼𝐷(𝑧) =

𝛿(𝑧)
𝑒(𝑧) =

𝑏0 + 𝑏1𝑧−1 + 𝑏2𝑧−2

𝑎0 + 𝑎1𝑧−1 + 𝑎2𝑧−2 (44.a) 

 
 𝑏0 = 𝐾𝑝(1 + 𝑁𝑇𝑠) + 𝐾𝑖𝑇𝑠(1 + 𝑁𝑇𝑠) + 𝐾𝐷𝑁 (44.b) 

 
 𝑏1 = −(𝐾𝑝(2 + 𝑁𝑇𝑠) + 𝐾𝑖𝑇𝑠 + 2𝐾𝑑𝑁) (44.c) 

 
 𝑏2 = 𝐾𝑝 + 𝐾𝑑𝑁 (44.d) 

 
 𝑎0 = (1 + 𝑁𝑇𝑠) (44.e) 

 
 𝑎1 = −(2 + 𝑁𝑇𝑠) (44.f) 

 
 𝑎2 = 1 (44.g) 

   
Which can then be expressed in its difference equation form: 

 
 𝛿[𝑘] =

−𝑎1

𝑎0
𝛿[𝑘 − 1] −

𝑎1

𝑎0
𝛿[𝑘 − 2] +

𝑏0

𝑎0
𝑒[𝑘] +

𝑏1

𝑎0
𝑒[𝑘 − 1] +

𝑏2

𝑎0
𝑒[𝑘 − 2] (45) 

   
This form, as shown in (41), is simple to implement in the DSP source code, which controls the 

converter.  
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4.5 Load Disturbance Mitigation  

 In the case of switching converters, especially those operating at high frequencies, the 

response of the PID controller is slow with respect to the bandwidth of the converter. This makes 

the converter susceptible to load disturbances. Referring back to (34), the converter model 

explicitly demonstrates a direct relationship between changes in load current to the output voltage, 

such that load steps would cause a voltage sag or spike at the output of the converter. This may be 

handled in one of two ways: either the output capacitor must be made sufficiently large to supply 

the instantaneous current required to drive a load transition, or the controller must be equip to 

responded to load steps quickly.  

 As mentioned, the PID controller offers many benefits, namely it’s zero steady-state 

tracking error, but can only be made to respond so fast while minimizing overshoot oscillations. 

This fact makes it alone unsuitable for responding to load disturbances. Instead, a feed-forward 

path may be added to the controller, which gives an instantaneous estimate of the control variable 

based on input and output samples. Solving (46), which is a rewrite of the power transfer equation 

in terms of the input voltage and output current, for the phase shift between the bridges is the best 

way to give this immediate response. 

 
 

𝑖𝑙𝑜𝑎𝑑

𝑉𝑖𝑛
=

8
𝜋2

𝑁𝑝

𝑁𝑠
∑ (

1
[2𝑛 + 1]3

𝑠𝑖𝑛([2𝑛 + 1]𝛿)
2𝜋𝑓𝑠𝐿𝑘

)
𝑁

𝑛=0

 (46) 

   
 However, due to the complexity of this equation, solving for the phase shift in real-time is 

impossible. Therefore, a lookup table must be used in order to provide the approximation, as shown 

in Fig. 10. When this approximation is summed with the output of the controller, it reduces the 

stress on the controller to compensate for load current disturbances. 
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FIGURE 8: CONTROLLER WITH FEED-FORWARD PATH 
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5. CONVERTER DESIGN & PCB 

5.1 Dual Active Bridge 

 Following the analysis outlined in chapter 3, and to meet the converter specifications in 

Table I, critical converter parameters/components may be selected. Referring to Fig. 6, it is shown 

that the primary reflected energy transfer inductance needed to facilitate a minimum 2 kW power 

capacity shrinks drastically in size at frequencies greater than 100 kHz. However, the inductance 

vs. frequency plot is logarithmic in nature and diminishing returns in size reduction are seen at 

frequencies greater than 250 kHz. Therefore, 250 kHz is tentatively selected as the converter 

switching frequency, keeping in mind that the design process is an iterative one. Furthermore, 

recognizing the importance of leaving the converter a fair amount of headroom so that the 

controller may respond to load disturbances, the optimal phase shift duty percentage is defined at 

35%. According to Fig. 6, this would require a total energy transfer inductance less than 2.053 μH 

(primary reflected). 

 Selecting the switching devices is less straightforward, in that they require no mathematical 

analysis to select, but rather best judgment must be applied. Contributing factors to switching 

device include MOSFET’s on resistance, peak voltage and current ratings, and the stresses they 

must withstand. Table II holds values for peak primary and secondary currents with the selected 

energy transfer inductor, which puts constraints on the both the current carrying capabilities of the 

selected devices and the on resistance that they must have in order to minimize losses. Naturally, 

the low voltage side of the converter conducts higher peak currents and will therefore exhibit 

higher conduction losses through each device. Unfortunately, available discrete packaged SiC 

MOSFETs do not have a low enough on resistance to conduct these high currents without 

sustaining losses that would greatly inhibit the efficiency of the converter. Therefore, a high power 
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Si MOSFET must be selected, taking care to select a device with the lowest possible turn-on energy 

and output capacitance so that it may closely match the performance of the SiC devices. 

 As a key component in the dual active bridge, the transformer must also be selected 

carefully. The design of the transformer is beyond the scope of this work, so its specifications must 

be determined for a professional manufacturer to produce. Again, referring to Table II, the peak 

primary and secondary currents are approximately 48 A and 12 A, respectively. Additionally, its 

equivalent primary leakage inductance must not be greater than 2.053 μH, or else the converter 

will not be able to operate at 2 kW power. It is also important that it have a turns ratio of 1:4 so 

that the voltage conversion ratio is equal to one and ZVS is easier to achieve. 

 Finally, a gate driver for the switching devices must be selected. The Texas Instruments 

UCC27531 is chosen based on its ability to source and sink gate current through two separate IC 

pins, which allows for separate tuning of turn-on and turn-off characteristics. Essentially, two 

separate gate resistances may be applied; one for turn-on and one for turn-off, allowing the gate 

driver to source/sink different peak currents for driving the device. This is desirable for the SiC 

MOSFETs because of their high transconductance, which makes their turn-off transition critical 

to ensuring that gate jitter does not occur. 

Table IV. DUAL ACTIVE BRIDGE COMPONENTS AND PARAMETERS 
Component/Parameter Value/Part 

HV Side MOSFET Cree C3M0065090D SiC MOSFET 
LV Side MOSFET International Rectifier IRFP4668PBF Si MOSFET 

Transformer Payton Planar Transformers Model 58913 
Energy Transfer Inductor 

(Secondary Reflected) 24.3 μH EC96 ER31/6/25 Ferrite Core 

DC-link capacitors Kemet C4AEJBW5300A3LJ 30 μF Film 
Gate Driver IC Texas Instruments UCC27531 2.5A/5A Gate Driver 
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 The design of the dual active bridge and its performance across varying load conditions is 

verified through LTspice simulations.  

 

FIGURE 9: INDUCTOR CURRENT (BLUE) & VOLTAGE (GREEN): 2 KW LOAD, D= 0.35 

 

FIGURE 10: CAPACITOR CURRENT: 2 KW LOAD, D = 0.35 
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FIGURE 11: OUTPUT CURRENT (BLUE), POWER (RED), & VOLTAGE (GREEN): 2 KW LOAD, D = 
0.35 

 

FIGURE 12: INDUCTOR CURRENT (BLUE) & VOLTAGE (GREEN): 1 KW LOAD, D =0.131 
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FIGURE 13: CAPACITOR CURRENT: 1 KW LOAD, D = 0.131 

 

FIGURE 14: OUTPUT CURRENT (BLUE), POWER (RED), & VOLTAGE (GREEN): 1 KW LOAD, D = 
0.131 
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FIGURE 15: SIC MOSFET TURN-ON GATE CURRENT (GREEN), GATE-TO-SOURCE (RED), & 
DRIVE VOLTAGE (BLUE): RG,ON = 10 Ω 

 

FIGURE 16: SI MOSFET TURN-ON GATE CURRENT (GREEN), GATE-TO-SOURCE (RED), & DRIVE 
VOLTAGE (BLUE): RG,ON = 5 Ω 
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FIGURE 17: SIC MOSFET TURN-OFF GATE CURRENT (GREEN), GATE-TO-SOURCE (RED), & 
DRIVE VOLTAGE (BLUE): RG,OFF = 1 Ω 

 

FIGURE 18: SI MOSFET TURN-OFF GATE CURRENT (GREEN), GATE-TO-SOURCE (RED), & DRIVE 
VOLTAGE (BLUE): RG,OFF = 5 Ω 

 Fig. 11-20 demonstrate the converter’s steady-state operation under 1 kW and 2 kW loads 

with matched phase shift. In simulation, peak current and voltage values match those calculated 

from the analysis techniques developed in Chapter 3. The gate driver currents also do not eclipse 

the peak drive current capabilities of the TI UCC27531 device, thus verifying the design process. 
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5.2 Digital Controller 

 Using the component values listed in Table IV and applying the control scheme developed 

in Chapter 4, analysis of the converter operation in closed-loop may be completed. 

Matlab/Simulink is utilized to simulate the converter with its appropriate controller. Additionally, 

because the optimal selection of controller gains is beyond the scope of this work, the SISO tool 

in Matlab is employed to derive the desired controller gains.  Beginning with only the PI controller, 

Fig. 21 depicts the converter simulation schematic under test with the digital PI controller. Fig. 22 

shows the converter response upon start-up to a voltage reference of 380 V, while Fig. 23 shows 

the controller’s calculated control variable. The results show that the converter reaches a steady-

state voltage of 380 V within 50 ms and the control variable does not saturate. 

 

FIGURE 19: SIMULINK CONTROLLER SIMULATION: DIGITAL PI CONTROLLER 

 
Discrete PID Controller Æ 
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FIGURE 20: CONVERTER OUTPUT VOLTAGE RESPONSE: DIGITAL PI CONTROLLER 

 

FIGURE 21: CONTROLLER RESPONSE: DIGITAL PI CONTROLLER 
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 Next, the PI controller is tested against a load step (50%-100% and 100%-50% 

respectively). Fig. 24 shows the converter reaching steady state under the PI control at 1 kW load. 

When the load is stepped up from 1 kW to 2 kW (50%-100%), the voltage at the output sags 100V 

for 250ms due to the rapid discharge of the capacitor to supply the increase load current demand. 

 

FIGURE 22: CONVERTER OUTPUT VOLTAGE - 50%-100% LOAD STEP: DIGITAL PI 
CONTROLLER 

 Fig. 25 shows the converter reaching steady state under the PI control under 2 kW load. 

When the load is stepped down from 2 kW to 1 kW (100%-50%), the voltage at the output spikes 

150 V for 100 ms. 

 

FIGURE 23: CONVERTER OUTPUT VOLTAGE - 100%-50% LOAD STEP: DIGITAL PI 
CONTROLLER 
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 As described in section 4.5, the effects of load disturbances may be mitigated by 

implementing a feed-forward path in the control scheme, which estimates the control variable 

based on output current and input voltage measurements. This, again, allows for near instantaneous 

response to such disturbances. The feed forward path is implemented in the same Simulink model 

shown in Fig. 21 using a lookup table as described in section 4.5, as shown in Fig. 26. This forward 

path is summed with the controller calculation and then applied to the dual active bridge phase 

shift register. Fig. 27 and 28 show the controller’s response to the same load steps as Figs. 24 and 

25 with a 100 μF capacitor dc-link capacitor. 

 

FIGURE 24: SIMULINK CONTROLLER SIMULATION: DIGITAL PI CONTROLLER PLUS FEED 
FORWARD 

 

Feed Forward 
Lookup Table 
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FIGURE 25: CONVERTER OUTPUT VOLTAGE - 50%-100% LOAD STEP: DIGITAL PI 

CONTROLLER PLUS FEED FORWARD – 100 μF DC-LINK CAPACITOR 

 

FIGURE 26: CONVERTER OUTPUT VOLTAGE - 100%-50% LOAD STEP: DIGITAL PI 
CONTROLLER PLUS FEED FORWARD – 100 μF DC-LINK CAPACITOR 

Though the effects of the load disturbances are not completely nullified, they are less severe than 

the effects without the feed forward path; only sagging 20 V for 100 ms and spiking 80 V for 100 

ms, respectively. 

 Further simulations with different output capacitances shows that the lower the dc-link 

capacitance, the faster the response time of the controller. Figs. 29 and 30 show the response of 

the controller under the same load step conditions as presented before, but with a 25 μF dc-link 

capacitance. The results show a 20 V sag for 50 ms and 50 V spike for 30 ms and suggest that 
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selecting a dc-link capacitor close to this value will yield optimal steady state tracking and allow 

the controller to respond quickly to load disturbances. 

 

FIGURE 27: CONVERTER OUTPUT VOLTAGE - 50%-100% LOAD STEP: DIGITAL PI 
CONTROLLER PLUS FEED FORWARD – 25 μF DC-LINK CAPACITOR 

 

FIGURE 28: CONVERTER OUTPUT VOLTAGE - 100%-50% LOAD STEP: DIGITAL PI 
CONTROLLER PLUS FEED FORWARD – 25 μF DC-LINK CAPACITOR 
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5.3 DSP and Sensors 

 Control of the converter is accomplished through the use of a DSP with appropriate sensing 

and feedback circuitry. The DSP used is a Texas Instruments TMS320F28335, which boasts a 150 

MHz clock, 32-bit floating-point processor with six individually controllable ePWM channels and 

a 16 channel, 12-bit ADC. For the developed prototype, the control card version of the DSP is 

chosen. The selected controller as described in section 5.2, requires several converter parameters 

to be sensed and fed back to the DSP. The PI controller requires the output voltage to be sensed, 

while the feed-forward path requires that the input voltage and output current be sensed.  

 A differential, high-impedance resistor divider circuit is employed to sense the dc-link 

voltages at the input and output of the converter. This configuration isolates the sampled voltage 

from the converter ground node and references it to the analog ground reference of the DSP and 

other signal conditioning circuitry. It also scales down the sensed voltage to a 0-3 V range to be 

sampled by the analog-to-digital converter (ADC) of the DSP. After scaling the voltage, it must 

be filtered to remove all high-frequency content in the signal so that only the dc component is 

measured. A Sallen-Key filter with an instrumentation amplifier buffer front-end is selected to 

perform this function for all sensed signals in this converter because of its second order cutoff 

characteristic and ease of use. 

 

FIGURE 29: VOLTAGE SENSING NETWORK 
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 This sensing network is applied to the LV and HV dc busses and will need to be designed 

for each application. Selecting voltage divider resistors is contingent upon the bus voltage, while 

a single Sallen-Key filter design works for both busses. Simulating the above network as it is 

applied to each respective bus verifies the design. 

 

FIGURE 30: LOW VOLTAGE SENSING NETWORK: LV BUS (GREEN), RESISTOR DIVIDER (BLUE), 
PRE-FILTER (RED), ADC (LIGHT BLUE) 

 

FIGURE 31: HIGH VOLTAGE SENSING NETWORK: HV BUS (GREEN), RESISTOR DIVIDER (BLUE), 
PRE-FILTER (RED), ADC (LIGHT BLUE) 

 Sampling the input and output current is more involved and has many possible solutions. 

For ease of implementation, the Allegro ACS712ELC-30 A Linear Hall-Effect IC is selected to 

measure these currents. It is capable of sensing +/-30 A with a ratiometric output from 0-5 V 
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centered at 2.5 V. Again, this voltage is incompatible with the ADC and must be scaled using a 

resistor divider. As an extra measure against noise pollution on the sensing line, a Sallen-Key filter 

is used to remove any harmonic content from the sensed signal. This configuration is shown in 

Fig. 34 and simulation/verification of the design is shown in Fig. 35 and Fig. 36. 

 

FIGURE 32: CURRENT SENSING NETWORK 

 

FIGURE 33: CURRENT SENSING NETWORK: ACS712ELC-30A (GREEN), PRE-FILTER (BLUE), ADC 
(RED) 
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FIGURE 34: CURRENT RIPPLE REDUCTION AFTER FILTER: PRE-FILTER (BLUE), ADC (RED) 
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5.4 PCB Layout and Stack-up 

Multi-layer printed circuit boards (PCB) are expensive and can quickly blow a budget when 

prototyping. However, it is possible to create a stack-up of a system, in which different components 

or subsystems are placed on different PCBs and stacked on top of one another. This technique 

allows for smaller boards to be fabricated, which are often cheaper. This method also holds the 

additional benefit of increasing system compactness and power density, though it comes with its 

own set of challenges.  

 

FIGURE 35: DUAL ACTIVE BRIDGE STACK-UP 
High frequency operation of switching converters can lead to increased parasitic 

interference along high frequency signal carrying traces. In the case of this design, high frequency 

switching signals generated by the DSP must travel relatively long distances before they reach 

their respective switching devices. In order to mitigate the effects of trace inductance, differential 

line drivers and receivers are employed to reject any common-mode noise that is generated along 

the signal path. This upholds control signal integrity and reduces the chance of false switching on 
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any one device. In any switching bridge topology, this is very important, as shoot-through 

conditions will short out whole dc busses.  

Another challenge of the using a stack-up design comes with the actual PCB layouts and 

where components and connectors are placed. Stack-ups, as opposed to single board solutions, are 

three-dimensional and this third dimension becomes another layout consideration. There is no right 

or wrong way to design the third dimension, but extra care must be taken in ensuring that any 

board-to-board connectors are aligned and can be easily connected. Additionally, standoff posts 

must be used and the alignment of these postholes must be taken into account as well. 

For this stack-up the LV and HV bridges are placed on two separate PCBs, with the LV 

board also hosting the DSP and the HV board hosting the high frequency transformer and energy 

transfer inductor. Standard 4-layer PCBs are used in order to accommodate the large number of 

control signals and to add extra copper layers for high current carrying capacity in the LV bridge. 

Figs. 38-43 show the final layout and layers of the HV bridge PCB and Figs. 44-49 show the final 

layout and layers of the LV bridge PCB. 

 
FIGURE 36: HV PCB - FULL LAYOUT 
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FIGURE 37: LV PCB - COMPONENT PLACEMENT/SILKSCREEN 

 
FIGURE 38: LV PCB - TOP LAYER 
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FIGURE 39: LV PCB - LAYER 2 

 
FIGURE 40: LV PCB - LAYER 3 
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FIGURE 41: LV PCB - BOTTOM LAYER 

 
FIGURE 42: HV PCB - FULL LAYOUT 
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FIGURE 43: HV PCB - COMPONENT PLACEMENT/SILKSCREEN 

 
FIGURE 44: HV PCB - TOP LAYER 

 



 

University of Arkansas   Department of Electrical Engineering   60 

 
FIGURE 45: HV PCB - LAYER 2 

 
FIGURE 46: HV PCB - LAYER 3 
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FIGURE 47: HV PCB - BOTTOM LAYER 

 

FIGURE 48: DUAL ACTIVE BRIDGE STACK-UP DIMENSIONS 
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6. TESTING AND RESULTS 

 In order to test the dual active bridge’s functionality and to gauge its performance, several 

key pieces of equipment must be used. For one, the on board electronics must be powered via a 24 

V bus. In the full SGPN system, this will be provided via a regulated bus that is pulled from the 

four 12 V batteries by tapping across two of the cells. However, for initial testing, a standalone 

Agilent E3620A dc supply is used. Another dc supply is used to emulate the low voltage dc bus at 

the input of the dual active bridge. To accommodate a wide power range, a 600V/20A DHP 

Sorensen dc power supply is selected. Measurement equipment includes a Tektronix MDO3024 

Mixed Domain Oscilloscope with isolated voltage and current probes for waveform capture and a 

Hioki 3193 power analyzer for input/output and efficiency measurements. Finally, for variable 

load control, a switched matrix resistive load bank is utilized. All of the above mentioned testing 

equipment, except the load bank, is housed inside a large server rack with blast shields for safety 

purposes. Additionally, all testing above 50 V or 20 W is conducted with a safety observer. 

 

FIGURE 49: SORENSEN DHP SERIES 600V/20A DC SUPPLY 
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FIGURE 50: TEKTRONIX MDO3024 OSCILLOSCOPE (TOP) AND HIOKI 3193 POWER ANALYZER 

 

FIGURE 51: SWITCHED MATRIX RESISTIVE LOAD BANK 
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FIGURE 52: TEST BED HOUSED IN SERVER RACK 
 Key measurements include the energy transfer inductor voltage (𝑣𝑙𝑘) and current (𝑖𝑙𝑘), 

along with the gate signals of the leading high-side switches of each bridge (𝑆1 and 𝑆5) as they are 

shown ideally in Fig. 2. Observing these waveforms will demonstrate the dynamic characteristics 

of the dual active bridge. The digital display of the Hioki power analyzer will feedback real time 

input/output voltages, currents, and efficiency, making it unnecessary to measure these values with 

the oscilloscope.  

 Testing across a wide range of voltages and power levels is necessary in order to maintain 

safety and to give an accurate measurement of performance. In conjunction with this, open loop 

testing of the converter is completed first before applying a closed-loop control. It should be stated 

at this time that a closed loop control method as described in Chapter 4 is not subjected to testing 
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in this work, but is recommended as the next step in future works and continued development of 

the SGPN system.  

 Beginning with low voltage levels (~10 V), the converter is first tested to ensure energy 

transfer from one bridge to the next. After the functionality of the converter is confirmed, a steady 

step increase of the input voltage up to the ideal 95 V input is completed in order to avoid a 

catastrophic failure at higher voltages. Again, this is done for safety reasons. All throughout this 

process, load changes are made in order to keep the power levels in line with the voltage increases, 

and this includes calculating open loop duty percentages for each test in order to guarantee the 

load is matched to the power delivery. Additionally, a parameter of the switching waveforms, the 

space between gate pulses (dead time), is varied to show its effects on converter efficiency and to 

accommodate the nonlinear effects of the input capacitance of the Si MOSFET devices. Tabulated 

results of 10 tests with varied system parameters are shown in Table V. 

 Waveforms captured during testing show the inductor current and voltage as similar to 

those outlined in section 3.2, though with excessive ringing. This is because of the non-ideal nature 

of implemented power converters, especially those operating at high frequencies. In addition to 

the intangibles associated with real world high frequency power converters, planar transformers 

are known to be exceptionally noisy compared to their wound transformer counterparts [21]. There 

is indeed a tradeoff between compactness and dynamic performance when considering 

transformers for these applications. Taking note of the excessive ringing, and to offer an argument 

for the differences between planar and wound transformers, a low power test was performed with 

a ferrite 3C96 magnetic core hand wound transformer in place of the planar transformer. 

Waveforms associated with all 10 tests using the planar transformer are shown in Figs. 55-64, 
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while the one low power test using the hand wound transformer is shown in Fig. 65. In all 

waveforms: yellow - 𝑆1, blue - 𝑆5, purple - 𝑣𝑙𝑘, and green - 𝑖𝑙𝑘, unless otherwise stated. 
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FIGURE 53: DUAL ACTIVE BRIDGE TEST #1 

 

 
FIGURE 54: DUAL ACTIVE BRIDGE TEST #2 

 

 
FIGURE 55: DUAL ACTIVE BRIDGE TEST #3 

 

 
FIGURE 56: DUAL ACTIVE BRIDGE TEST #4 

 

 
FIGURE 57: DUAL ACTIVE BRIDGE TEST #5 

 

 
FIGURE 58: DUAL ACTIVE BRIDGE TEST #6 

 

 
FIGURE 59: DUAL ACTIVE BRIDGE TEST #7 

 

 
FIGURE 60: DUAL ACTIVE BRIDGE TEST #8 
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FIGURE 61: DUAL ACTIVE BRIDGE TEST #9 

 

 
FIGURE 62: DUAL ACTIVE BRIDGE TEST #10 

 

 
FIGURE 63: DUAL ACTIVE BRIDGE TEST - WOUND TRANSFORMER – Transformer Primary 

(Yellow), Transformer Secondary (Blue), Voltage Output (Purple), Inductor Current (Green)  
 

 These tests reveal that the dual active bridge does indeed transfer power from one bridge 

to the other and is capable of handling power capacities up to 1.75kW. However, the efficiency is 

below specification, with peak efficiencies of ~88%, not including the power required to operate 

the gate drivers and ancillary circuitry. Reevaluating the test bench using a thermal camera to 

search for heat losses revealed that the pair of board to board connectors that connect the inverted 

LV signal to the input of the transformer on the HV board was heating to temperatures in excess 

of 100 °C. The contact points where not of sufficient size to handle the larger currents on the LV 

side of the converter and were replaced with larger circle connectors. For direct comparison, test 

10 is repeated at the calculated ideal 2050 W in order to observe the results of replacing the 

connector. Fig. 66 shows the waveforms resulting from this test. As can be seen, the ringing in the 

inductor voltage is greatly reduced and more closely matches the ideal case shape of the inductor 

voltage. Additionally, the efficiency is increased from ~84% to ~88%, as calculated by the Hioki 
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power analyzer (Fig. 67), along with a substantial increase in the observed output voltage. It is 

truly amazing how much the tiniest of details in converter design and builds can have the largest 

of impacts in overall system performance.  

 It is also worth noting that the output voltage of each measurement does not match directly 

with the 1:4 turns ratio of the transformer. This is because of the large dead times used in these 

preliminary tests in order to observe certain safety precautions and potential hazards with shoot 

through currents. 

 
Figure 64: DUAL ACTIVE BRIDGE TEST (WAVEFORMS) - REPLACED CONNECTOR 

 
Figure 65: DUAL ACTIVE BRIDGE TEST (HIOKI) - REPLACED CONNECTOR 
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7. CONCLUSIONS 

 In this work, a dual active bridge is identified as a preferred power converter for interfacing 

the low voltage and high voltage dc busses of the Smart Green Power Node system due to its 

potential high power capacity and bidirectional power flow capabilities. An overview of the dual 

active bridge converter principle of operation, bidirectional power flow capability, and dynamic 

characteristics were discussed in Chapter 3. Converter modeling and control methods are 

developed in Chapter 4 based upon an enhanced Fourier series based model of the switching 

actions of the converter. Chapter 4 also demonstrates the feasibility and desirable results of 

applying a PI controller for matched steady state tracking of a reference output voltage. In 

conjunction with the feed forward control path, this control scheme facilitates optimal converter 

operation and performance, even accounting for load disturbances. Matlab/Simulink simulations 

verify this control scheme’s quality. Chapter 5 discusses more in depth the design of a 2 kW, 

95V/380V, bidirectional dual active bridge converter. Sizing of the energy transfer inductor, peak 

specifications of the high frequency transformer, selection of controller parameters, design of 

adequate feedback signal conditioning networks, and converter stack-up are all covered. Finally, 

chapter 6 presents results from preliminary testing of the converter up to 1.75 kW with peak 

efficiencies of ~88%.  

 The resulting converter from this work will require further work in order to meet all desired 

specification of the SGPN system. This future work will include further investigation of losses in 

the converter and testing of the digital controller under load disturbance scenarios. Tuning of the 

dead time could lead to increased efficiency, but will certainly lead to a better voltage conversion 

ratio as the dead time reduces the effective pulse width of each gate signal and reduces the average 

voltage delivered to the primary of the transformer. 
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 Overall, the design and demonstration of this converter yielded a power electronic interface 

capable of operating up to 1.75 kW, with a power capacity of 0.814 W/cm3 with an incredibly low 

mass of 1 kg. By increasing the switching frequency of the dual active bridge converter and 

utilizing advanced wide bandgap SiC semiconductor devices, many external passive components 

were greatly reduced in size compared to previous versions of the SGPN. One point of comparison 

lies within the size of the planar transformer, in which the one used in this build is 66% smaller 

than transformer used in previous builds. It was found that planar transformers are noisier at high 

frequency than their wound counterparts, as can be seen when comparing the switching waveforms 

of Fig. 65 and any of the 10 tests conducted using the planar transformer. Another size reduction 

opportunity was shown through the simulations of the digital controller, in which lower output 

capacitances allowed the controller to respond more quickly to load disturbances.  

 The knowledge and experience acquired in this work will be further developed in future 

work, both academic and professional. Implementing a full power converter system requires 

attention to more details than presented in the classroom. Subsystems within the converter, 

including feedback networks, controller design and digital implementation, gate driver circuitry, 

PCB layout and system stack-up, and safe testing best practices were all developed further in the 

student who completed this work. It is the student’s desire to continue to build upon the successes 

of this thesis work and to push the boundaries of high-density high frequency power converter 

design through continued study of wide bandgap semiconductor devices and their benefits in 

systems like the smart green power node. 
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APPENDIX A - DSP CODE 

/* 
 * main.c 
 */ 
 
// ========================================================================== 
// =================                                     ==================== 
// =================        Global Definitions           ==================== 
// =================                                     ==================== 
// ========================================================================== 
 
// Include header files 
#include "DSP28x_Project.h"     // Device Headerfile and Examples Include File 
#include <stdio.h> 
#include <math.h> 
 
// Interrupt Definition 
__interrupt void adc_isr(void); 
 
// Function Definitions 
void SystemStart(void); 
void PID(void); 
 
// Timer/ePWM Variables 
#define PI 3.141592654 
#define PWMCARRIER 250E3 /*PWM FREQ = 250kHz*/ 
#define SYSCLK 150E6 /* 150MHz */ 
#define TBCLK 150E6 /* 150MHz */ 
#define ADC_MODCLK 0x3 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 150/(2*3)   = 25.0 MHz 
Uint16 EPwm_TBPRD = (TBCLK/PWMCARRIER)/2; 
float PI_INV = 1/PI; 
float phase = 0; 
float duty = 0; 
 
// PID Variables 
float reference = 380; // reference voltage 
#define Kp  0.11173*0.015 // proportional gain 
#define Ki  0.11173 // integral gain 
#define Kd  0 // derivative gain 
#define N  0 // derivative filter coefficient (equal to 0 when using PI control vs. PID control) 
#define cycledelay  2 // number of pwm cycles per sample 
 
 
// PID Variables 
float Ts = 0;// Ts = cycledelay/PWMCARRIER (example: cycledelay = 5, PWMCARRIER = 250kHz --> Ts 
= 5/250000 = 20us) 
float b0 = 0; 
float b1 = 0; 
float b2 = 0; 
float a0 = 0; 
float a1 = 0; 
float a2 = 0; 
float A1 = 0; 
float A2 = 0; 
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float B0 = 0; 
float B1 = 0; 
float B2 = 0; 
 
float x = 0; // computational variable 
float delta0 = 0; // delta[k] 
float delta1 = 0; // delta[k-1] 
float delta2 = 0; // delta[k-2] 
float error0 = 0; // error[k] 
float error1 = 0; // error[k-1] 
float error2 = 0; // error[k-2] 
 
 
 
 
// ADC Variables 
float ADC2Bit = 1/1365; // 3V/4095bit = 732.6uV 
float V_HV = 0; 
float V_LV = 0; 
float I_HV = 0; 
float I_LV = 0; 
float test0 = 0; 
float test1 = 0; 
float test2 = 0; 
float a = 0; 
float b = 0; 
float c = 0; 
float d = 0; 
 
// Control Variables 
 
int main(void) 
{ 
 
 
 // Initialize System Control: 
     InitSysCtrl(); 
 
 // Clock Setting 
     EALLOW; 
     SysCtrlRegs.HISPCP.all = ADC_MODCLK; // HSPCLK = SYSCLKOUT/ADC_MODCLK 
     EDIS; 
 
 // Define GPIO for use as EPWM and ADC SOC 
     InitEPwm1Gpio(); 
     InitEPwm2Gpio(); 
     InitEPwm3Gpio(); 
     InitEPwm4Gpio(); 
     InitEPwm6Gpio(); 
 
 
 // Clear all interrupts and initialize PIE vector table: 
 // Disable CPU interrupts 
     DINT; 
 
 // Initialize the PIE control registers to their default state. 
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     InitPieCtrl(); 
 
 // Disable CPU interrupts and clear all CPU interrupt flags: 
     IER = 0x0000; 
     IFR = 0x0000; 
 
 // Initialize the PIE vector table with pointers to the shell Interrupt 
 // Service Routines (ISR). 
     InitPieVectTable(); 
 
 // Interrupts that are used are re-mapped to 
 // ISR functions found within this file. 
     EALLOW;  // This is needed to write to EALLOW protected register 
     PieVectTable.ADCINT = &adc_isr; 
     EDIS;    // This is needed to disable write to EALLOW protected registers 
 
//########################################################################### 
//                         GPIO Setup 
 // Testing Pin 
     EALLOW; 
     GpioCtrlRegs.GPAPUD.bit.GPIO8 = 0;   // Enable pullup on GPIO2 
     GpioDataRegs.GPASET.bit.GPIO8 = 1;   // Load output latch 
     GpioCtrlRegs.GPAMUX1.bit.GPIO8 = 0;  // GPIO2 = GPIO 
     GpioCtrlRegs.GPADIR.bit.GPIO8 = 1;   // GPIO2 = output 
     GpioDataRegs.GPACLEAR.bit.GPIO8 = 1; // Initalize LOW 
     EDIS; 
 
 
   // Initialize all the Device Peripherals: 
     InitAdc();  // For this example, init the ADC 
 
 
 // Enable ADCINT in PIE 
     PieCtrlRegs.PIEIER1.bit.INTx6 = 1; 
     IER |= M_INT1; // Enable CPU Interrupt 1 
     EINT;          // Enable Global interrupt INTM 
     ERTM;          // Enable Global realtime interrupt DBGM 
 
   // Configure ADC 
     AdcRegs.ADCMAXCONV.all = 0x0001;       // Setup 2 conv's on SEQ1 
     AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0; // Setup ADCINA0 as 1st SEQ1 conv. 
     AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x1; // Setup ADCINA1 as 1st SEQ1 conv. 
     AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 0x2; // Setup ADCINA2 as 1st SEQ1 conv. 
     AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 0x3; // Setup ADCINA3 as 1st SEQ1 conv. 
     AdcRegs.ADCTRL2.bit.EPWM_SOCA_SEQ1 = 1;// Enable SOCA from ePWM to start SEQ1 
     AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 1;  // Enable SEQ1 interrupt (every EOS) 
   //AdcRegs.ADCTRL3.bit.SMODE_SEL = 1;   // Simultaneous sample mode 
 
     EALLOW; 
     SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0; 
     EDIS; 
 
 
   // EPWM Module 1 config 
     EPwm1Regs.TBPRD = EPwm_TBPRD; // Period = 900 TBCLK counts 
     EPwm1Regs.TBPHS.half.TBPHS = 0; // Set Phase register to zero 
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     EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Symmetrical mode 
     EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Master module 
     EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1;       // Clock ratio to SYSCLKOUT  // 
HSPCLKDIV = (1 -- 0b000) 
     EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV1;        // CLKDIV = (1 -- 0b000) 
     EPwm1Regs.TBCTL.bit.PRDLD = TB_SHADOW; 
     EPwm1Regs.TBCTL.bit.SYNCOSEL = TB_CTR_ZERO; // Sync down-stream module 
     EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; 
     EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW; 
     EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // load on CTR=Zero 
     EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; // load on CTR=Zero 
     EPwm1Regs.AQCTLA.bit.CAU = AQ_SET; // set actions for EPWM1A 
     EPwm1Regs.AQCTLA.bit.CAD = AQ_CLEAR; 
     EPwm1Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE; // enable Dead-band module 
     EPwm1Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC; // Active Hi complementary 
     EPwm1Regs.DBFED = 100; // FED = 20 TBCLKs 
     EPwm1Regs.DBRED = 100; // RED = 20 TBCLKs 
   // EPWM Module 2 config 
     EPwm2Regs.TBPRD = EPwm_TBPRD; // Period = 900 TBCLK counts 
     EPwm2Regs.TBPHS.half.TBPHS = EPwm_TBPRD; // 
     EPwm2Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Symmetrical mode 
     EPwm2Regs.TBCTL.bit.PHSEN = TB_ENABLE; // Slave module 
     EPwm2Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1;       // Clock ratio to SYSCLKOUT  // 
HSPCLKDIV = (1 -- 0b000) 
     EPwm2Regs.TBCTL.bit.CLKDIV = TB_DIV1;        // CLKDIV = (1 -- 0b000) 
     EPwm2Regs.TBCTL.bit.PHSDIR = TB_DOWN; // Count DOWN on sync (=120 deg) 
     EPwm2Regs.TBCTL.bit.PRDLD = TB_SHADOW; 
     EPwm2Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; // sync flow-through 
     EPwm2Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; 
     EPwm2Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW; 
     EPwm2Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // load on CTR=Zero 
     EPwm2Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; // load on CTR=Zero 
     EPwm2Regs.AQCTLA.bit.CAU = AQ_SET; // set actions for EPWM2A 
     EPwm2Regs.AQCTLA.bit.CAD = AQ_CLEAR; 
     EPwm2Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE; // enable Dead-band module 
     EPwm2Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC; // Active Hi Complementary 
     EPwm2Regs.DBFED = 100; // FED = 20 TBCLKs 
     EPwm2Regs.DBRED = 100; // RED = 20 TBCLKs 
// EPWM Module 3 config 
     EPwm3Regs.TBPRD = EPwm_TBPRD; // Period = 900 TBCLK counts 
     EPwm3Regs.TBPHS.half.TBPHS = EPwm_TBPRD*0.5; // Set Phase register to zero 
     EPwm3Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Symmetrical mode 
     EPwm3Regs.TBCTL.bit.PHSEN = TB_ENABLE; // SLAVE module 
     EPwm3Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1;       // Clock ratio to SYSCLKOUT  // 
HSPCLKDIV = (1 -- 0b000) 
     EPwm3Regs.TBCTL.bit.CLKDIV = TB_DIV1;        // CLKDIV = (1 -- 0b000) 
     EPwm3Regs.TBCTL.bit.PRDLD = TB_SHADOW; 
     EPwm3Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; // sync flow-through 
     EPwm3Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; 
     EPwm3Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW; 
     EPwm3Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // load on CTR=Zero 
     EPwm3Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; // load on CTR=Zero 
     EPwm3Regs.AQCTLA.bit.CAU = AQ_SET; // set actions for EPWM1A 
     EPwm3Regs.AQCTLA.bit.CAD = AQ_CLEAR; 
     EPwm3Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE; // enable Dead-band module 
     EPwm3Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC; // Active Hi complementary 
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     EPwm3Regs.DBFED = 100; // FED = 20 TBCLKs 
     EPwm3Regs.DBRED = 100; // RED = 20 TBCLKs 
// EPWM Module 4 config 
     EPwm4Regs.TBPRD = EPwm_TBPRD; // Period = 900 TBCLK counts 
     EPwm4Regs.TBPHS.half.TBPHS = EPwm_TBPRD*0.5 + EPwm_TBPRD - 1; // 
     EPwm4Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Symmetrical mode 
     EPwm4Regs.TBCTL.bit.PHSEN = TB_ENABLE; // Slave module 
     EPwm4Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1;       // Clock ratio to SYSCLKOUT  // 
HSPCLKDIV = (1 -- 0b000) 
     EPwm4Regs.TBCTL.bit.CLKDIV = TB_DIV1;        // CLKDIV = (1 -- 0b000) 
     EPwm4Regs.TBCTL.bit.PHSDIR = TB_DOWN; // Count DOWN on sync (=120 deg) 
     EPwm4Regs.TBCTL.bit.PRDLD = TB_SHADOW; 
     EPwm4Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; // sync flow-through 
     EPwm4Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; 
     EPwm4Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW; 
     EPwm4Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // load on CTR=Zero 
     EPwm4Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; // load on CTR=Zero 
     EPwm4Regs.AQCTLA.bit.CAU = AQ_SET; // set actions for EPWM2A 
     EPwm4Regs.AQCTLA.bit.CAD = AQ_CLEAR; 
     EPwm4Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE; // enable Dead-band module 
     EPwm4Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC; // Active Hi Complementary 
     EPwm4Regs.DBFED = 100; // FED = 20 TBCLKs 
     EPwm4Regs.DBRED = 100; // RED = 20 TBCLKs 
 
     EPwm1Regs.CMPA.half.CMPA = EPwm_TBPRD/2; // adjust duty for output EPWM1A 
     EPwm2Regs.CMPA.half.CMPA = EPwm_TBPRD/2; // adjust duty for output EPWM2A 
     EPwm3Regs.CMPA.half.CMPA = EPwm_TBPRD/2; // adjust duty for output EPWM1A 
     EPwm4Regs.CMPA.half.CMPA = EPwm_TBPRD/2; // adjust duty for output EPWM2A 
//========================================================================= 
   //                         ePWM Setup (ADC SOC Trigger) 
   // Triggers ADC at 250kHz 
 
   // Configure ePWM6 for ADC SOC 
     EPwm6Regs.ETSEL.bit.SOCAEN = 1;        // Enable SOC on A group 
     EPwm6Regs.ETSEL.bit.SOCASEL = 4;       // Select SOC from time-based counter equal to 
zero 
     EPwm6Regs.ETPS.bit.SOCAPRD = 1;        // Generate pulse on 1st event 
 
   // EPWM Module 6 config 
     EPwm6Regs.TBPRD = EPwm_TBPRD*cycledelay; // Period = 900 TBCLK counts 
     EPwm6Regs.CMPA.half.CMPA = 30;   // Set compare A value 
     EPwm6Regs.TBPHS.half.TBPHS = (EPwm_TBPRD*cycledelay*0.5); // 
     EPwm6Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Symmetrical mode 
     EPwm6Regs.TBCTL.bit.PHSEN = TB_ENABLE; // Slave module 
     EPwm6Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1;       // Clock ratio to SYSCLKOUT  // 
HSPCLKDIV = (1 -- 0b000) 
     EPwm6Regs.TBCTL.bit.CLKDIV = TB_DIV1;        // CLKDIV = (1 -- 0b000) 
     EPwm6Regs.TBCTL.bit.PHSDIR = TB_DOWN; // Count DOWN on sync (=120 deg) 
     EPwm6Regs.TBCTL.bit.PRDLD = TB_SHADOW; 
     EPwm6Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; // sync flow-through 
     EPwm6Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; 
     EPwm6Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW; 
     EPwm6Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // load on CTR=Zero 
     EPwm6Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; // load on CTR=Zero 
     EPwm6Regs.AQCTLA.bit.CAU = AQ_SET; // set actions for EPWM2A 
     EPwm6Regs.AQCTLA.bit.CAD = AQ_CLEAR; 
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   // Action Qualifiers 
     //EPwm6Regs.AQCTLA.bit.PRD = AQ_SET; 
     EPwm6Regs.AQCTLA.bit.CAU = AQ_SET; 
     EPwm6Regs.AQCTLA.bit.CAD = AQ_CLEAR; 
     EPwm6Regs.TBCTL.bit.CTRMODE = 2;    // count up mode 
 
   // PID Constants 
     Ts = cycledelay/PWMCARRIER; 
     b0 = Kp*(1+N*Ts) + Ki*Ts*(1+N*Ts) + Kd*N; 
     b1 = -(Kp*(2+N*Ts) + Ki*Ts + 2*Kd*N); 
     b2 = Kp + Kd*N; 
     a0 = 1+N*Ts; 
     a1 = -(2+N*Ts); 
     a2 = 1; 
     A1 = -(a1/a0); 
     A2 = -(a2/a0); 
     B0 = b0/a0; 
     B1 = b1/a0; 
     B2 = b2/a0; 
 
 
     EALLOW; 
     SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1; 
     EDIS; 
 
 
 // Wait for ADC interrupt 
     for(;;) 
     {} 
 
} 
 
 
__interrupt void adc_isr(void) 
{ 
 
 
//  GpioDataRegs.GPASET.bit.GPIO8 = 1; 
 
  // Take ADC Measurements 
  V_HV = (a = AdcRegs.ADCRESULT0>>4 , a = a * 0.1172161172); 
  V_LV = (b = AdcRegs.ADCRESULT1>>4 , b = b * 0.0293); 
  I_HV = (c = AdcRegs.ADCRESULT2>>4 , c = c - 2275 , c * 0.0164835165); 
  I_LV = (d = AdcRegs.ADCRESULT3>>4 , d = d - 2275 , d * 0.0164835165); 
   
  // Call PID controller 
  //GpioDataRegs.GPASET.bit.GPIO8 = 1; 
  PID(); 
  //duty = delta0 * PI_INV; 
  //GpioDataRegs.GPACLEAR.bit.GPIO8 = 1; 
 
 
 
  // Load new phase values 
  EPwm3Regs.TBPHS.half.TBPHS = delta0*PI_INV*EPwm_TBPRD; // 
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  EPwm4Regs.TBPHS.half.TBPHS = delta0*PI_INV*EPwm_TBPRD + EPwm_TBPRD - 1; // 
  EPwm6Regs.TBPHS.half.TBPHS = (EPwm_TBPRD*cycledelay*0.5 + delta0*PI_INV*EPwm_TBPRD); // 
 
  GpioDataRegs.GPACLEAR.bit.GPIO8 = 1; 
 
 
  //phase = delta0 * PI_INV * EPwm_TBPRD; 
  // Reinitialize for next ADC sequence 
  AdcRegs.ADCTRL2.bit.RST_SEQ1 = 1;         // Reset SEQ1 
  AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1;       // Clear INT SEQ1 bit 
  PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;   // Acknowledge interrupt to PIE 
 
  return; 
} 
 
 
void SystemStart() 
{} 
 
void PID() 
{ 
 error0 = reference - V_HV; 
 delta0 = A1*delta1 + A2*delta2 + B0*error0 + B1*error1 + B2*error2; 
 if (delta0 >= PI*0.5) 
 { 
  delta0 = PI*0.5; 
 } 
 if (delta0 <= 0) 
 { 
  delta0 = 0; 
 } 
 error1 = error0; 
 error2 = error1; 
 delta1 = delta0; 
 delta2 = delta1; 
} 
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APPENDIX B – PLANAR TRANSFORMER SPECIFICATIONS 

Functional specs 

1. Generic Type                             :  T250-4-16. 
 
2. Total output power range    :  2000W (380Vdc /5.5Adc).  
                                                                           4560W (380Vdc/12Adc - 95Vdc/48Adc) 
3. Operating frequency of transformer           :  250 kHz. 
 
4. Output ripple frequency                              :  500 kHz 
 
5. Input voltage of power stage                   :  90 y 100Vdc link. 
 
6. Input voltage of transformer                   :  95Vpeak, Bipolar Square waveform.     
 
7. Topology                                :  Full Bridge, ZVT. 
 
8. Operating duty cycle, max.   :  1.0 
                         
9. Volt-second product, max.   : 380V-µsec  
 
10. Pri. Sec. ratio                          :  4 : 16  
                                                                          
11. Primary current, max                                :  23Arms. – nominal output; 
    (for 92% power supply effic.)                       48Arms – overload. 
12. Secondary current, max                            :  5.5Arms. – nominal output;  
                                                                           12Arms – overload. 
13. Dielectric strength                      
          (Pri. to Sec.)                                     :  1500Vdc. 
          ( Pri., Sec. to Core)                         :  1000Vdc. 
 
14. Ambient temperature range              :  -5 y 45°C. 
     
15. Estimated power losses   :  16W – nominal output;  
                                                                           40W – overload, continuous.   
 
16. Estimated hot spot temperature  :   90°C – nominal output; 
   (with 60°C heat sink)                                     130°C – overload, continuous.   
 
17. Mechanical dimensions                         :  Length - 67 mm. 
        (for reference only)                         :  Width  - 65 mm. 
        :  Height – 36 mm. 
 
 
 



 

University of Arkansas   Department of Electrical Engineering   85 

Payton P.N. :  58913 Issue : A        Rev. : 00 Page : 1     of : 2 
 
 
 
 

 
Functional specs 
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Electrical  diagram. 
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 Terminals layout sketch (preliminary; side & top view; not to scale). 
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