
University of Arkansas, Fayetteville
ScholarWorks@UARK
Electrical Engineering Undergraduate Honors
Theses Electrical Engineering

12-2015

EEG-Controlling Robotic Car and Alphabetic
Display by Support Vector Machine for Aiding
Amyotrophic Lateral Sclerosis Patients
Quang M. Le

Follow this and additional works at: http://scholarworks.uark.edu/eleguht

Part of the Electrical and Electronics Commons

This Thesis is brought to you for free and open access by the Electrical Engineering at ScholarWorks@UARK. It has been accepted for inclusion in
Electrical Engineering Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information, please contact
scholar@uark.edu.

Recommended Citation
Le, Quang M., "EEG-Controlling Robotic Car and Alphabetic Display by Support Vector Machine for Aiding Amyotrophic Lateral
Sclerosis Patients" (2015). Electrical Engineering Undergraduate Honors Theses. 44.
http://scholarworks.uark.edu/eleguht/44

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Feleguht%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/eleguht?utm_source=scholarworks.uark.edu%2Feleguht%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/eleguht?utm_source=scholarworks.uark.edu%2Feleguht%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/eleg?utm_source=scholarworks.uark.edu%2Feleguht%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/eleguht?utm_source=scholarworks.uark.edu%2Feleguht%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=scholarworks.uark.edu%2Feleguht%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/eleguht/44?utm_source=scholarworks.uark.edu%2Feleguht%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu

 i

EEG-Controlling Robotic Car and Alphabetic Display by Support Vector Machine for Aiding

Amyotrophic Lateral Sclerosis Patients

 ii

 iii

 iv

Abstract

 This thesis presents the design and experiment of a system that can detect the human

thinking such as driving directions and letters using the brainwave signals known as

electroencephalogram (EEG) and a machine learning algorithm called support vector machine

(SVM). This research is motivated by amyotrophic lateral sclerosis (ALS) disease which makes

patients seriously lose mobility and speaking capabilities. The developed system in this thesis

has three main steps. First, wearing EPOC headset from Emotiv Company, a user can record the

EEG signals when he/she is thinking a direction or a letter, and also save the data in a personal

computer wirelessly. Next, a large amount of EEG data carrying the information of different

directions and letters from this user are used to train SVM classification model exhaustively.

Finally, the well-trained SVM model will be used to detect any new thought about directions and

letters from the user. The detection results from the SVM model will be transmitted wirelessly to

a robotic car with LCD display built with Arduino microcontrollers to control its motions as well

as the alphabetic display on LCD. One of the great potential applications of the developed

system is to make an advanced brain control wheel chair system with LCD display for aiding

ALS patients with their mobility and daily communications.

Keywords: SVM (support vector machine), EEG (electroencephalogram), EPOC

headset, ALS (amyotrophic lateral sclerosis).

 v

Acknowledgement

 Firstly, I would like to say many thanks to Dr. Baohua Li, my mentor for giving me a lot

of supports not only in this research but also during my undergraduate study. Secondly, I want to

say thanks to Qing Guo, a former master student in the electrical engineering department. My

research cannot be done without learning a lot from her experience. Also, I want to thank two

freshmen students Mauricio Iglesias and Caleb Woodall, because they showed me how to use the

Emotiv Epoc device at the very beginning of the research. Then, I want to say thanks to my

girlfriend who help me to check the format and typos. Finally, I want to thank my parents for

their caring and support during my four years of Education in the U.S., and my grandmother for

being the one who always mentally supports and prays for my academic success.

 vi

Table of Contents

List of Figures ... x

List of Tables ... xiii

Chapter 1: Introduction ... 1

1.1 Background and motivation .. 1

1.2 EEG-based BCI system for robotic car and alphabetic display control 2

1.3 Thesis outline .. 4

Chapter 2: Hardware and Software for EEG-based BCI System ... 5

2.1 Hardware selection .. 5

a) Emotiv EPOC .. 5

b) Arduino board ... 7

c) Xbee board ... 8

2.2 Software selection ... 9

a) Matlab .. 9

b) EPOC Simulink EEG importer ... 9

Chapter 3 Optimization and Implementation of Support Vector Machine 11

3.1 Mathematical view of SVM classifier ... 12

a) Basic concept of SVM ... 12

b) Margin and optimization ... 13

c) Kernel functions and non-linear classification .. 14

 vii

3.2 LibSVM library and parameter optimization .. 16

a) LibSVM library ... 16

b) Optimization of the parameters C and γ .. 17

3.3 Feature as input of SVM for EEG-based BCI system ... 18

Chapter 4 Useful Self-developed Programs for EEG-based BCI System 20

4.1 EEG time domain data collection program ... 20

4.2 Conversion program for EEG data from time domain to frequency domain 23

4.3 Program for training and creating SVM model ... 25

a) Seeding analysis .. 26

b) Making predict model ... 33

4.4 Programs for controlling robot .. 36

a) Practice mode .. 37

b) Real time mode.. 42

Chapter 5 Analysis of Raw EEG Data and Feature as SVM Inputs ... 45

5.1 EEG data recording rule .. 45

5.2 EEG data recording method .. 45

5.3 Feature size for SVM input ... 47

Chapter 6 Experimental Results of SVM Models... 49

6.1 Classification of data from normal distributions ... 49

6.2 Classification of 2 directional data .. 51

 viii

6.3 Classification of 3 directional data .. 53

6.4 Classification of 4 directional data .. 55

6.5 Classification of 2 alphabetical data .. 57

6.6 Classification of 4 directional and 2 alphabetic data using the maximum frequency range 58

Chapter 7 Robot Control System Implementation and Testing .. 61

7.1 Block diagram of robot motion and alphabetic display control system 61

7.2 Setting up the Xbee antennas .. 63

7.3 Serial Mode Setup ... 64

7.4 Robot control implementation ... 65

a) Transmitter side ... 65

b) Receiver side ... 66

7.4 Testing robot control system ... 67

Chapter 8 Conclusion and Future work .. 69

8.1 Summary ... 69

8.2 Future work ... 70

References ... 72

Appendix A: Matlab Code .. 75

A.1 TakingData.m ... 75

A.2 ConvertData.m ... 79

A.3 svm_train_n_categories.m .. 84

 ix

A.4 RobotControl.m .. 97

A.5 ExampleBrainDataMaker.m ... 108

A.6 Serial mode function and run.m ... 109

a) run.m .. 109

b) setupSerial.m ... 109

Appendix B: Arduino code ... 110

B.1 Transmitter. ino .. 110

B.2 Receiver.ino .. 112

 x

List of Figures

Figure 1 Emotiv EPOC headset .. 6

Figure 2 10-10 EEG electrode system, left hemisphere, and right hemisphere 7

Figure 3 EEG EPOC control panel SDK .. 7

Figure 4 Arduino Uno R3 board .. 8

Figure 5 Xbee antenna .. 8

Figure 6 EPOC simulink signal server.. 10

Figure 7 A simple simulink model for EEG data collection ... 10

Figure 8 A simple hyperplane dividing a set of data .. 12

Figure 9 The program asks the user to input general information .. 21

Figure 10 The program asks the user to input classes' names .. 21

Figure 11 The program asks the user to use the EPOC and think for the specific class............... 21

Figure 12 The program double checks the user's feeling about the data quality 22

Figure 13 Time-domain EEG data in the working directory .. 22

Figure 14 Inserting the number of classes for conversion .. 24

Figure 15 Inserting the name of the time-domain data folders ... 24

Figure 16 Choosing the type of data to be converted into .. 24

Figure 17 New directories are created .. 25

Figure 18 The program asks the user to make choice between 2 options 26

Figure 19 The name of the text file ... 26

Figure 20 Insert the lowest bound for the output .. 27

Figure 21 The sample of an output file ... 27

Figure 22 Input number of folders, data size and number of layers ... 28

 xi

Figure 23 the layers by layers output .. 28

Figure 24 Input the channel range .. 29

Figure 25 Input frequency range ... 30

Figure 26 SVM training process ... 31

Figure 27 Layer=1 on the left dialog, Layer =4 on the right dialog ... 34

Figure 28 Choosing between 3 options ... 35

Figure 29 Inputting best C and gamma ... 35

Figure 30 Saving the final model to a location ... 35

Figure 31 Choosing the mode for the Program to run .. 37

Figure 32 Choosing a model ... 38

Figure 33 Information input for model-practice mode ... 39

Figure 34 choosing the simulink model .. 39

Figure 35 input feedback type... 40

Figure 36 collecting the "no thinking" reference .. 40

Figure 37 Colleting correlation coefficient reference data (left)-Retake data reference (right) ... 40

Figure 38 Informing the user that the EEG data with correct detection result is taken 41

Figure 39 Start training for one class .. 41

Figure 40 Start taking a piece of data ... 41

Figure 41 Three types of possible answer from program-Correct (left)-Incorrect (middle)-Retake

data (right) ... 42

Figure 42 Final result for practice mode ... 42

Figure 43 Indicating the type of signal sent to robot .. 44

Figure 44 Input used in ExampleBrainDataMaker.m for training .. 50

 xii

Figure 45 Robot motion and alphabetic display control system ... 62

Figure 46 Receiver vs Transmitter Xbee .. 63

Figure 47 The Transmitter Arduino and Xbee connection ... 66

Figure 48 The three-wheel robot ... 67

 xiii

List of Tables

Table 1 Classification result of data from normal distribution ... 50

Table 2 Left vs Right Classification Result with Frequency range 4-30Hz 52

Table 3 Individual performances of 2 directions Left vs Right 4-30Hz 52

Table 4 Left vs Right vs Forward Classification Result with Frequency range 4-30Hz 54

Table 5 Individual performances of 3 directions Left vs Right vs Forward 4-30Hz 54

Table 6 Left vs Right vs Forward vs Backward Classification Result with Frequency range 4-

30Hz .. 56

Table 7 Individual performances of 4 directions Left vs Right vs Forward vs Backward 4-30Hz

... 56

Table 8 A vs B Classification Result with Frequency range 4-30Hz ... 57

Table 9 Individual performances of 2 letters A vs B 4-30Hz ... 58

Table 10 Classification result of directional and alphabetical data for the first seed from 0 to 64

Hz .. 59

Table 11 Individual performances of directional and alphabetical data for the first seed from 0 to

64 Hz ... 60

Table 12 Signal Sequences for different characters .. 65

 1

Chapter 1: Introduction

1.1 Background and motivation

An EEG signal measures summation of electrical activities of thousands or even millions of

neurons that have the similar spatial orientation in the human brain. It can be acquired through a

small, flat electrical disk (electrode sensor) sitting directly on a location at the scalp [1] and is

normally represented as a waveform in microvolt unit. The neural populations in different brain

locations may generate EEG signals with different statistical properties when human beings are

thinking different tasks. Therefore, multi-channel EEG signals may have different patterns in

terms of tasks. From this principle, EEG pattern recognition through machine learning

algorithms will be able to identify thoughts of human beings. For example, when human beings

plan two possible driving directions which are forward and backward, the generated EEG data

can be classified using the support vector machine (SVM) [2&3] algorithm into two categories

associated with the directions. Such EEG classification outcomes with high accuracy will be able

to provide a method and technology for mobile motion control. When human beings imagine or

think English words letter by letter in minds, the EEG patterns may vary with letters and

therefore, the EEG data carrying the letter information can be even classified into different

categories by the SVM algorithm [1&2]. The accurate classification results will be able to

provide a new way for communication. In addition, for applications related to human brains,

EEG acquisition technology can be low-cost, safe, portable, and wireless compared with other

technologies such as functional magnetic resonance imaging and invasive surgery of implanting

electrodes into brain for neural spikes. In our research, EPOC package from Emotiv Company

has been used to record EEG signals.

 2

Amyotrophic lateral sclerosis (ALS) is a progressive chronic motor neuron disease to make

patients lose mobility and speaking capabilities [4]. This disease occurs when specific nerve cells

in the brain and spinal cord that control voluntary movement gradually degenerate. The loss of

these motor neurons causes the muscles under their control to weaken and waste away, leading to

paralysis and difficulty in speaking [5]. As a result, ALS patients may not be able to move or

speak normally. ALS affects about 20,000 Americans with 5,000 new cases occurring in the

United States each year. Unfortunately, the cause of this disease process is unknown, there is no

cure for ALS, and the patients may die within 5 years of the time the diagnosis of this disease is

made.

Motivated by ALS disease and properties of human brain EEG signals, our research is to develop

a EEG-based prototype system that can monitor the human brain activity, detect the human’s

thought such as moving directions and letters, and then control robotic car motion and alphabetic

display on LCD. In the research for developing the system, we use Emotiv EPOC package, a

personal computer, Matlab software, and microcontrollers (Arduino package). Such a system can

also be called a brain computer interface (BCI) system. Based on the developed system, an

application such as an advanced EEG-based brain control wheelchair with LCD display can be

further developed to improve the lift quality of ALS patients with better mobility and

communications.

1.2 EEG-based BCI system for robotic car and alphabetic display control

In this Honor thesis, we focus on creating a BCI system for controlling robotic car motion and

alphabetic display on LCD through EEG signals only. The main challenge of developing such a

system is that the data originated from the human brain are normally extremely noisy. Therefore,

we need use some special or complicated signal processing and data analysis techniques to

 3

recognize the human thought with high accuracy. For example, we use SVM, a popular

sophisticated nonlinear machine learning algorithm, to classify EEG patterns into different

classes for decoding the human thinking. The main idea of our EEG-based BCI system is as

follows. First, a user records the EEG signals when he/she is thinking a direction or a letter

through EPOC headset, and also save these time-domain data in a personal computer (PC)

wirelessly and automatically. Then, the time-domain EEG data are converted into power

spectrum density (PSD) in the frequency domain as the input of the SVM algorithm. The output

of the SVM algorithm would be the corresponding class of the input. In our research, the output

would be a direction or a letter. Before the SVM model can be used to detect any new thought

about the directions and the letters from the user, its parameters need to be optimized. To do that,

a large amount of training data which are pairs of inputs and known outputs are generated by the

user. In our project, the SVM model is extensively optimized through libSVM library [6]. After

that, the well-trained SVM model can be used to classify any new EEG trial into a direction or a

letter. The classification result from the well-trained SVM model is then sent to the robot through

Arduino board, Matlab, and Xbee to control the driving direction and LCD alphabetic display

remotely. When one EEG trial is processed completely, another EEG trial will be converted into

the PSD in the frequency domain. Then, this PSD will be input into the well-trained SVM

model. Next, the SVM output will be used to move the robot or control LCD display

accordingly.

To test the performance of the designed BCI system, we recorded 6000 EEG trials, 5 seconds

long each in two different categories: directional category and alphabetic category. In the

directional category, we focused on 4 directions: left, right, forward, and backward. We took

1000 data for each direction. Then, in the alphabetic category, we focused on 2 letters: A and B.

 4

We took 1000 data for each letter. Next, one part of these EEG trials with the corresponding

direction or letters were used to train a SVM classification model for each category. The other

parts of the EEG trials were used to show the performance of the developed BCI system.

1.3 Thesis outline

This thesis includes eight chapters. Chapter 1 presents the background and motivation for

developing an EEG-based BCI system for robot motion and alphabetic display control and

summarizes the main steps of such a system. In Chapter 2, the selected software and hardware

will be discussed. Chapter 3 focuses on the optimization and implementation of the SVM model,

which is the core of our BCI system. The details about SVM functions and their usage will be

provided. Then, Chapter 4 will show how to use the programs developed for this project step by

step. Next, Chapter 5 will discuss the rule and method of high-quality EEG data recording

through our experience and the feature chosen as the input of the SVM model. We developed the

system starting from the simple 2-class classification problem, then to the 3-class problem, then

to the complicated 4-class problem. Chapter 6 will show the experimental results about 2-class

classification, 3-class classification, and 4-class classification with different frequency ranges. In

addition, since the SVM model is the core of our BCI system, a toy classification problem is

created to verify the correction of the SVM program. Chapter 7 will show how to implement and

test the BCI system on the robotic car with LCD. Finally, Chapter 8 will draw some conclusion

of the project and propose some future work to further improve the system.

 5

Chapter 2: Hardware and Software for EEG-based BCI System

2.1 Hardware selection

a) Emotiv EPOC

The Emotiv EPOC headset as shown in Figure 1 from Emotiv Company [7] is capable of

recording human brain EEG signals. This device is chosen for two main reasons. Firstly, Emotiv

EPOC is a well-known device in the market and research filed and so it is very safe for us to do

experiment. Secondly, it is a very low cost device compared to other EEG-headsets in the market

and therefore it makes our developed system low cost. The EPOC device provides 14 channels

plus 2 references with the sampling frequency of 128 data per second. The 14 channels have the

following names: 1-AF3, 2-F7, 3-F3, 4-FC5, 5-T7, 6-P7, 7-O1, 8-O2, 9-P8, 10-T8, 11-FC6, 12-

F4, 13-F8, 14-AF4. Different channels have different characteristics, because they are

corresponding to different brain areas. The names of channels can reflect their brain areas.

Actually, F, P, O, and T represent frontal lobe, parietal lobe, occipital lobe, and temporal lobe,

receptively. However, C does not mean center lobe because there is no center lobe at all. Instead,

C means the center area of the brain. The odd numbers in the names represent left hemisphere

and the even numbers represent right hemisphere. Please refer to 10-10 EEG electrode placement

system and left and right brain hemispheres as shown in Figure 2 for specific channels and brain

areas.

 6

Figure 1 Emotiv EPOC headset
1

Emotiv EPOC package also comes with an SDK called “EPOC control panel” that allows the

user to monitor the EEG signal quality of each channel. As seen in Figure 3, channels with green

color provide good signals while yellow are for medium, orange and red are for weak signals and

black means no signal at all. This SDK is used every time the BCI is running, so that if the signal

quality is low (yellow, orange, red or black), the user has to add some moisture (saline solution)

to the channel to get green signal. This checkup may be done several times during the BCI

running process to ensure the highest quality of the data.

1
 Figure 1:http://emotiv.com/upload/media/1_big.jpg

http://emotiv.com/upload/media/1_big.jpg

 7

Figure 2 10-10 EEG electrode system, left hemisphere, and right hemisphere
 2

Figure 3 EEG EPOC control panel SDK

b) Arduino board

In this project, the Arduino Uno board as shown in Figure 4 is the main control board for the

robotic car and the wireless robot controller. This board has 14 digital input/output pins with 6

analog inputs. It also has a 16 Mhz quartz crystal, USB connection, a power-jack, and a reset

button. For this project, two Arduino boards will be needed for wireless communication between

a personal computer (PC) and the robotic car. The first board is connected directly to the

computer through a USB cable with the BCI software to create a Matlab-Arduino interface. All

2
 Figure 2: http://www.brainm.com/software/pubs/dg/BA_10-20_ROI_Talairach/nearesteeg.htm

 8

of the results calculated from Matlab programs will be sent into this first board. The first board

will be used to control a device called Xbee that can send signals wirelessly to the second board

to control the robotic car. This will be discussed in more details in Chapter 7.

Figure 4 Arduino Uno R3 board
3

c) Xbee board

Xbee board as shown in Figure 5 is a simple antenna that is used in a lot of electronics

applications. In this project, this board will serve as the main communication channel between

the BCI and the robot car.

Figure 5 Xbee antenna
4

3Figure 4: https://upload.wikimedia.org/wikipedia/commons/3/38/Arduino_Uno_-_R3.jpg

4
 Figure 5: https://cdn.sparkfun.com//assets/parts/1/8/2/0/08665-00.jpg

 9

2.2 Software selection

To build the efficient BCI system for this project, some unique software and packages are

chosen.

a) Matlab

Matlab is a multi-paradigm computing software that is used a lot in research area. The

interfacing with Matlabs program can be built based on other languages such as C, C++, Java,

and Python. It is also an open-source software that let the users adding many packages and

functions. For this project, there are two main reasons to choose Matlab. Firstly, it does support

the package from Libsvm library which is a very efficient toolbox to optimize and implement

SVM model. Secondly, although Matlab is a numerical computing language, it does have a lot of

packages that allow the user to control the hardware and microcontroller such as Arduino and

Raspberry Pi. By this advantage, we will be able to use Matlab command window to control and

send signals to an Arduino board.

b) EPOC Simulink EEG importer

In Qing Gou’s Master thesis [8], to collect the data, Qing used software from Emotiv called

“Emotiv Control Panel”. This software developed from Emotiv allows users to collect the raw

EEG data from the EPOC device and then save the data in CVS type used in Microsoft Excel. If

we use Emotiv Control Panel in this project for EEG data collection, we have to manually

convert the EEG data into Matlab format (.mat) to run the SVM algorithm. So, we could not

develop an automatic system. Instead, we used “EPOC Simulink EEG Importer” which is a

package that allows a user to collect the EEG data through Simulink into Matlab environment

automatically. This package is also very easy to use. Firstly, an exe file is run in order to connect

the headset with the Simulink as shown in Figure 6. After the connection is set, a Simulink file is

 10

called through some simple Matlab code and collect new data such as res.mat every single time

as shown in Figure 7.

Figure 6 EPOC simulink signal server

Figure 7 A simple simulink model for EEG data collection

 11

Chapter 3 Optimization and Implementation of Support Vector Machine

As briefly introduced in Chapter 1, Support vector machine or SVM is a set of machine learning

methods which are used for classifying different data features, or also regression and outliers’

detection [2]. Unlike other machine learning method such as logistic model tree (LMT) or

Quadratic classifier [9&10], SVM is a kernel based non-linear, non-parametric classification

technique which has shown good classification applications in medical analysis, character

recognition, or electric load forecasting and other classification fields. SVM shows very good

results on classifying data with large dimensionality and it can takes care of the “curse of

dimensionality” [11]. In [11], the author pointed out that “the curse of dimensionality is a well-

known but not entirely understood phenomenon. Too much data, in terms of the number of input

variables, is not always a good thing”. Also, for only one class, unknown class, or significantly

unbalanced classes, the classification problem becomes very complicated. In this thesis, although

we are not dealing with the unbalanced or one class type of classification, our problem is coming

from the credibility of the data. Since the data is EEG type, the classification problem is

normally high dimensional and complicated. Therefore, SVM method may be the optimal

solution for the problem related to EEG data.

Plenty of research has been conducted for the applications of SVM into EEG data analysis. For

instance, in [12] an experiment is set up to discriminate between imagination of right and left

hand movement. To conduct this experiment, three subjects were asked to imagine about left and

right movements for 1.5 seconds with a 10 seconds interval gap. There were 160 hand-

movements data recorded. These data were then converted to power spectrum density (PSD) and

frequency bands of 9-14 Hz are used for classification. The results showed that 80% of testing

accuracy can be achieved. This has shown the possibility of using SVM as the classifier for EEG

 12

data. However, for the statistical point of view, the small size of training set such as a set of 160

data may be not very convincing to draw any conclusion. Therefore, in this project, we will

create a large number of training data.

3.1 Mathematical view of SVM classifier

a) Basic concept of SVM

We will use linear SVM classifier of two classes to show its basic concept. A two-class SVM

classifier requires a set of training data of the input x and the output y to optimize the parameters

in the SVM model. This set has to matrix X and Y for:

𝐷 = {(𝑥𝑖, 𝑦𝑖)|𝑥𝑖 ∈ ℝ𝑛, 𝑦𝑖 ∈ {−1 ,1}}𝑖=1
𝑚 (3.1.1)

Figure 8 A simple hyperplane dividing a set of data

5

Where 𝑥𝑖 is a row vector representing a value of the input that is mapped to a label or a value of

the output 𝑦𝑖 =1 or -1. A hyper lane can be written as a set of point x satisfying that:

5
 Figure 8: http://www.jatit.org/volumes/research-papers/Vol12No1/1Vol12No1.pdf or see [9]

http://www.jatit.org/volumes/research-papers/Vol12No1/1Vol12No1.pdf

 13

{𝑥: 𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏 = 0} (3.1.2)

This hyperplane separates the data set in two different regions. The upper region covers the

positive set while the lower region covers the negative set [13] as seen in Figure 8.

b) Margin and optimization

There are many hyperplanes can be drawn to separate a set of training input xi. To decide the

optimal solution and unique hyperplane, some optimizations are needed. As seen in Figure 8, the

distance between two hyperplanes 𝑤. 𝑥 − 𝑏 = 1 and 𝑤. 𝑥 − 𝑏 = −1 is
2

|𝑤|
. As such, we want to

maximize this distance by simply minimizing the value of |𝑤| or mathematically conveniently

minimizing
1

2
||𝑤||

2
 [13] when at the same time ensuring:

 min𝑤,𝑏

1

2
||𝑤||

2
 (3.1.3)

subject to:

𝑤. 𝑥𝑖 − 𝑏 ≥ 1 𝑜𝑟 𝑤. 𝑥𝑖 − 𝑏 ≤ −1 (3.1.4)

𝑜𝑟 𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) ≥ 1 (3.1.5)

This optimization problem can be solved by the saddle point of the Lagrange’s function:

 𝐿𝑝 = 𝐿𝑤,𝑏,𝑎 =
1

2
||𝑤||

2
− ∑ 𝜆𝑖[𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) − 1] (3.1.6)

𝑚

𝑖=1

To solve the extrema problem, we take the partial differentiation of L with respect to w and b.

First for w, we have

𝑑

𝑑𝑤
𝐿𝑤,𝑏,𝑎 = 𝑤 − ∑ 𝜆𝑖𝑦𝑖𝑥𝑖 = 0 (3.1.7)

𝑚

𝑖=1

 14

which gives us:

 𝑤 = ∑ 𝜆𝑖𝑦𝑖𝑥𝑖 (3.1.8)𝑚
𝑖=1

Then, taking the partial differentiation with respect to b leads to:

𝑑

𝑑𝑏
𝐿𝑤,𝑏,𝑎 = ∑ 𝜆𝑖𝑦𝑖 = 0 (3.1.9)𝑚

𝑖=1

Plugging (3.1.8) and (3.1.9) in (3.1.6) gives us the extrema solution:

 𝑚𝑎𝑥𝜆 ∑ 𝜆𝑖 −
1

2
∑ 𝑚

𝑖=1 ∑ 𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝑥𝑖
𝑇𝑥𝑗

𝑚
𝑗=1 (3.1.10)𝑚

𝑖=1

where:

 0 ≤ 𝜆𝑖 ≤ 𝐶 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑚. (3.1.11)

Note that choosing the value of the penalty factor 𝐶 is important as stated in [14]. If it is too

large, we have a high penalty for no separable points and we may store many support vectors to

cause the overfitting problem. If the penalty factor 𝐶 is too small, we may have the under fitting

problem.

When the optimized 𝜆 is solved, we can get the decision function as follows:

 𝑓(𝑥) = 𝑠𝑔𝑛(∑ 𝜆𝑖𝑦𝑖𝑥𝑖
𝑇𝑥 + 𝑏𝑚

𝑖=1) (3.1.12)

Using (3.1.12), we can map any value of x into either 1 or -1.

c) Kernel functions and non-linear classification

For some complicated problem, the training data cannot be simply classified by a linear SVM

classifier. In order to solve such problems, the input 𝑥 can be mapped into higher dimensional

space by the kernel function Φ. Then, by SVM we will find how to select a linear hyperplane

 15

with the maximal margin in this new dimensional space. There are many popular kernal

functions. For example:

 𝐿𝑖𝑛𝑒𝑎𝑟 𝐾𝑒𝑟𝑛𝑒𝑙: 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗 (3.1.13)

𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝐾𝑒𝑟𝑛𝑒𝑙: 𝐾(𝑥𝑖 , 𝑥𝑗) = (𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟)

𝑑
 𝑓𝑜𝑟 𝛾 > 0 (3.1.14)

𝑅𝐵𝐹 𝐾𝑒𝑟𝑛𝑒𝑙: 𝐾(𝑥𝑖, 𝑥𝑗) = exp (−𝛾 ||𝑥𝑖 − 𝑥𝑗||
2

) , 𝑓𝑜𝑟 𝛾 > 0 (3.1.15)

The RBF Kernel will be used in this thesis for the following main reasons:

1. The samples will be mapped to a higher dimensional space;

2. It is less computationally expensive compared to Polynomial Kernel since less

parameters need to be found

3. It is the best Kernel that can deal with the “curse of dimensionality” problem.

In (3.1.10), the Linear Kernel is used. By simply switching this Kernel with (3.1.15), we have:

 𝑚𝑎𝑥𝜆 ∑ 𝜆𝑖 −
1

2
∑ 𝑚

𝑖=1 ∑ 𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗 exp (−𝛾 ||𝑥𝑖 − 𝑥𝑗||
2

)𝑚
𝑗=1 (3.1.16)𝑚

𝑖=1

where:

 0 ≤ 𝜆𝑖 ≤ 𝐶 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑚. (3.1.17)

To calculate the extrema solution of (3.1.16), first we need to find the optimal parameters 𝛾 and

𝐶. It is normally time consuming and computationally expensive to find both optimal parameters.

We will be discussed the method for finding them in Section 3.2.

 16

3.2 LibSVM library and parameter optimization

a) LibSVM library

LIBSVM is a library for Support Vector Machines (SVMs). This library has been developed

since the year 2000. The main goals are to help users to apply SVM to their applications

conveniently. This section will briefly present the usage of LibSVM in solving SVM problems.

In this thesis, libsvm version 3.18 will be used [6].

LibSVM provides two most important functions in Matlab environment named as “svmtrain”

and “svmpredict”. First, we will introduce svmtrain function. A typical way to use this function

is shown as follows:

 model = svmtrain(y_train, x_train, Parameters)

This function will help us to generate a classification model, given the training data x_train and

y_train and parameters, where x_train is a 𝑚 × 𝑛 matrix and y_train is a 𝑚 × 1 vector with each

component corresponding to one row vector of x_train. The parameter has its own form as

follows:

Parameters = ['-c ' C_value ' -g ' gamma_value '-w1 ' w1_val '-w2 ' w2_value '-b 0'];

C_value and gamma_value represent the values of the parameters 𝐶 and 𝛾 which we choose.

(As discuss in 3.1, the RBF Kernel will be used in this project for the SVM classification

method.) w1 and w2 are the weight of the classes. Usually, if there are 2 classes and the number

of data in each class is the same, w1 and w2 are equal to 0.5. In this thesis, we only consider the

case that each class has the same number of training data, i.e. the data set is balanced. As such,

the weight values are all equal to each other using the rule 𝑤𝑖 =
1

𝑛
 𝑓𝑜𝑟 (𝑖 = 1, … , 𝑛) where 𝑛 is

the number of all possible values of y or the number of the classes. '-b' is the probability estimate

 17

option and the default value is 0, which means we do not output any probability of each class in

this thesis. Now, we will introduce svmpredict function. A typical way to use this function is

shown as follows:

[group_train, acc_train, val_train] = svmpredict(y, x, model,'-b 0');

In this function, “model” has been obtained from svmtrain function. This function is used to

calculate which class a row vector in matrix x belongs to. If the true values of the output y are

available, this function can also provide the accuracy result by the number of correctly classified

rows in matrix x divided by the total number of data.

b) Optimization of the parameters 𝑪 and 𝜸

As discussed both in Dr Lin’s paper [6] and Qing’s thesis [8], to have a higher classification

accuracy, we have to optimize the parameters 𝐶 and 𝛾 before we optimize 𝜆 in the SVM model.

It would be computationally expensive if we want to find the optimal 𝐶 and 𝛾. To balance the

computation amount and higher classification accuracy, we will use grid searching method five

times for best C and 𝛾 in a range. Grid searching starts with a coarse set:

 For 𝐶 : {2−5, 2−5+ℎ, … . , 2−5+20ℎ}

 For 𝛾: {2−10, 2−10+ℎ, … . , 2−10+15ℎ}

Where h is the step size and it is equal to 1 at the beginning. At each time of search, a five-fold

cross validation procedure is used to evaluate a pair of 𝐶 and 𝛾. In the cross validation, the total

training data are partitioned into five folds. Any four folds out of them are used to train the

model while the remaining one fold is used to test the model under the given pair of 𝐶 and 𝛾.

Therefore, we have five testing accuracies and we take the average of them. To optimize the

parameters and reduce computation cost, a bound value of training accuracy is set to be 80%. If

the training accuracy of a pair of 𝐶 and 𝛾 is less than this value, this pair cannot be best and we

 18

just discard this pair. At each time of searching, the best pair of 𝐶 and 𝛾 with the highest average

testing accuracy is picked out. After one search, the step size h is divided by two and thus a finer

grid searching at next time can be made within ten steps around 𝐶 and 𝛾 obtained from the

previous searching. Finally, the best pair of 𝐶 and 𝛾 is found after five searches.

3.3 Feature as input of SVM for EEG-based BCI system

In our developed EEG-based BCI system, the feature or the input directly going into the SVM

model is not time-domain EEG signals. Instead, we convert these signals into power spectrum

density (PSD) in the frequency domain as the feature for classification. The typical algorithm

used for this conversion from time domain to frequency domain is fast Fourier transform (FFT).

Actually, FFT is an algorithm to calculate the discrete Fourier transform (DFT) [16]. It can

reduce the computations order from 2𝑁2 to 2𝑁𝑙𝑜𝑔2(𝑁), where N is the number of computations

needed.

The function below shows the DFT:

 𝑋(𝑘) = ∑ 𝑥[𝑛]𝑒−𝑗𝜔𝑘𝑛

𝑁

𝑛=1

 (3.3.1)

while

 𝜔𝑘 =
2𝜋

𝑁
𝑘 (3.3.2)

PSD represents the power of the time-domain signal in different frequencies. The equation to

compute the PSD of a discrete time signal is:

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://en.wikipedia.org/wiki/Discrete_Fourier_transform

 19

𝑆𝑥𝑥(𝑘) =
(Δ𝑡)2

𝑇
|∑ 𝑥[𝑛]𝑒−𝑗𝜔𝑘𝑛

𝑁

𝑛=1

|

2

=
Δ𝑡

𝑁
|∑ 𝑥[𝑛]𝑒−𝑗𝜔𝑘𝑛

𝑁

𝑛=1

|

2

 =
1

𝐹𝑠 ∗ 𝑁
|∑ 𝑥[𝑛]𝑒−𝑗𝜔𝑘𝑛

𝑁

𝑛=1

|

2

 =
1

𝐹𝑠 ∗ 𝑁
|𝑋(𝑘)|2 (3.3.3)

where 𝑥[𝑛] = 𝑥(𝑛 ∗ Δ𝑡), 𝑇 = 𝑁 ∗ Δ𝑡, 𝐹𝑠 = Δ𝑡

Equation (3.3.3) will be used in Matlab coding in Section 4.2 for FFT computation. The

rectangular window is used in the above FFT computation. However, to avoid the power leakage

in calculation, the hamming window will be used instead in our research, which has the function:

 ℎ(𝑛) = 0.54 − 0.46 cos (2𝜋
𝑛

𝑁
) (3.3.4)

 20

Chapter 4 Useful Self-developed Programs for EEG-based BCI System

4.1 EEG time domain data collection program

In our research, a program is created for automatically collecting high-quality EEG time-domain

data from EPOC headset to PC with the format compatible with Matlab. First, the raw EEG data

is taken from EPOC headset. After the EPOC headset is connected to the EPOC Simulink Signal

Sever. A Matlab program “TakingData.m” (see Appendix A) is run to start the data collecting

process. Depending on where this program locates, it can automatically change the working

directory into the directory of the folder that contains it. Firstly, the user will be asked to input

some general information about the data type. The information includes: the number of training

items, the number of data type, and the time in second for each data type. The code will then call

the Simulink model as shown in Figure 7 and run the Simulink model for the same training time

input from the user as seen in Figure 9. The training time for one data will be one second in the

example in this figure. Depending on the number of classes, the user will be asked to input

different names for classes (e.g. left, right) as seen in Figure 10. If the folders with the same

names of these classes’ names do not exist in the working directory, new folders will be created.

The program will then ask the user to prepare to take the data in the random manner. For example,

if there are two classes of the letters A and B, the program will ask the user to think for A and B

randomly and pop up a message dialog as seen in Figure 11. After the user has thought about a

class for a specific time, the program will double check the user’s feeling about the data quality

by using the question dialog as seen in Figure 12. If the answer is ‘Yes’, the program will collect

the specific data and put it in a specific folder. However, if the answer is ‘No’, the program will

ask the user to retake the specific data by calling the message box shown in Figure 11. The data

corresponding to the folder name will be named in a numerical order (e.g. ‘Time_dataLeft0’ if the

 21

class name is ‘Left’). By counting the number of files in each folder every time, the program will

keep track of the numerical order. Even when the user closes the program to take a rest, the next

time he or she wants to take new data, the program will resume the numerical order of the new

data’s name. This will avoid overlapping which leads to losing data. An example of the data taken

for the letters A and B in their working directories is shown in Figure 13.

Figure 9 The program asks the user to input general information

Figure 10 The program asks the user to input classes' names

Figure 11 The program asks the user to use the EPOC and think for the specific class

 22

Figure 12 The program double checks the user's feeling about the data quality

Figure 13 Time-domain EEG data in the working directory

 23

4.2 Conversion program for EEG data from time domain to frequency domain

As discussed in Chapter 3, in this thesis, the EEG data will be converted into PSD format. To do

this, the FFT function as shown in section 3.3 is used. In order to make the brain data converting

job easier, the Matlab program “CovertData.m” (see Appendix A) is developed. The purpose of

the code is converting all of the time domain data that is previously saved in the work directory to

PSDs in the frequency domain. First of all, the user needs to place this Matlab code in the same

directory where the time domain data locates. When the code is running, an input dialog will pop

up and ask the user to input the number of classes as shown in Figure 14. Then, the user need to

input the name of the folders where the time data are contained as shown in Figure 15. Here, “A”

and “B” will be input here as an example. Note that “A” and “B” represent two folders that

contain the time-domain EEG data for the letters A and B and locate in the same working

directory. If these folders are not in the working directory, the program will show errors and close.

Then another dialog will pop out and explain the user what to do next. At this point, just hit ‘OK’

to proceed. Another input dialog will appear as shown in Figure 16. Here, if the user changes the

value of the input from 0 to 1, it means the user wants to convert the time-domain data into that

specific data type. There are two type choices for data conversion available: “PSD data in Db”

and “PSD data in uW” where the PSD data in Db is basically 10log10 of PSD data in uW. This

input dialog serves for the same purpose as the check box, which is not included in Matlab basic

dialog’s models. For this project, since all data are 5 seconds long, this program will serve for

these data only. After the type of the converted data is chosen, the program will start running.

Firstly, it will create the new directories as shown in Figure 17. For example, if “A” and “B” are

the name of the folders containing time-domain data and the user wants to convert it into PSD

 24

data in uW, there will be 10 new directories created APSD_uW1s-APSD_uW5s and

BPSD_uW1s-BPSD_uW5s. These are where the PSD data from 1s-5s for each time-domain data

locates. This will be done by looping 5 times to create five different hamming windows and

chopping down different information from one piece of time data. To be more specific, the 1s

PSD data is converted from 0-1s time-domain data, the 2s PSD data is converted from 0-2s time-

domain data until 5s PSD data is converted from 0-5s time-domain EEG data. Before converting

data, the program will keep track of how many data are in each directory already. This will help

the program to avoid calculating existed PSD data and thus saving a lot of time. The process of

converting data normally takes about 15 minutes for 1000 time-domain data trials.

Figure 14 Inserting the number of classes for conversion

Figure 15 Inserting the name of the time-domain data folders

Figure 16 Choosing the type of data to be converted into

 25

Figure 17 New directories are created

4.3 Program for training and creating SVM model

In this project, the most critical program is the one which can solve multi-class classification

problems. We will present such a program in this section. This program is named

“svm_train_n_categories.m” which is shown in Appendix A. First, since in our project, each class

has the same amount of data, i.e. the data set is balanced, our program is developed to be capable

of doing multiple-classes classification for this case. The program has two main functions. The

first function is to train the SVM model by training data and output the training result in a text

file. The second function is to create the well trained SVM model and save it into .mat format.

This well-trained model can be used later to control the robot car. When the user runs this

program, the dialog below will pop up. The first choice “seeding analysis” is for SVM training,

while the second choice “Making predict model” is used to generate the well-trained SVM model.

Next, we will describe these two choices

 26

Figure 18 The program asks the user to make choice between 2 options

a) Seeding analysis

If the user chooses “Seeding Analysis” from the dialog, the new dialog will pop up, asking for

the name of the text file (Figure 19). This text file is located in the same working directory where

the program is located and the result of the SVM training is stored. By default, the text file will

be automatically generated based on the date and time of the simulation; the users can change the

name if they wish to. When “Ok” button is hit, the text file will be generated in the working

directory, the program will then ask for some information before the training process is run.

Figure 19 The name of the text file

First, the program will ask for the testing accuracy bound that the user wants to see

(Figure 20). If the testing accuracy of a pair of 𝐶 and 𝛾 pair is lower than this bound, it will not

show up in the text file (Figure 21). The output text file showed in Figure 21 has 6 columns.

From right to left are the values of seed, best C parameter, best gamma parameter, training

accuracy, testing accuracy, and finally the number of support vectors. In this sample output, only

a few seeds which have the testing accuracy greater than 50% will be showed. Any results less

than or equal to 50% will be ignored.

 27

Figure 20 Insert the lowest bound for the output

Figure 21 The sample of an output file

Then, the program will ask for the numbers of classes for training. The user needs to input the

information as follow: number of folders (classes), data size (numbers of data in each folder) and

number of layers (Figure 22). By default, the number of layers will be 1 which means that all of

the data will be used for training. When the number of layers is changed, the data set will be

divided into different groups. For example, if the data size is 1000, and the number of layers is

10, then for each layers there will be 100 data only. These 10 layers will be used to train SVM

model separately, so that the user can compare the quality of data in each layer. This is important

because in reality, it is hard to know if the brain data taken is good for the training or not. The

user only knows the quality of his or her data after the training is done, which might take a lot of

time. For example, it might take at least 4 hours to train the SVM model by the Left versus Right

data, which are high quality data. If the quality of the data is low, it might take about 1 day of

 28

running to have one result. By running the SVM algorithm layers by layers, the user can have a

better feeling about the data and remove a section of bad-quality data if necessary. Figure 23

shows the output file if the user chooses the number of layers different from 1. As seen in Figure

23, the first and second layers both have similar testing accuracy of 75-85% which means they

are good data. Normally, the running time to get this output file is much shorter (1-2 hours)

compared to the running time for the full data size (1000 data in this case).

Figure 22 Input number of folders, data size and number of layers

Figure 23 the layers by layers output

After the user hits “Ok” to proceed, the program will pop up the same dialog as seen in Figure

15. The user will need to input the name for the training data set which is PSD format data in our

project. The program will then ask for the channel choices (Figure 24). Numbering from 1 to 14

are 14 physical channels on the EPOC headset. In the processes of data being taken and being

 29

converted, the raw EEG data from EPOC is used as input. As such, the information for all 14

channels is still contained in the PSD data but in frequency domain. To choose different channels

for the training data set, the user need to place the dash “-“ between the number, the program will

convert this string to the integers and take out the selected channels for the SVM training. The

inputs have to be between 1 and 14 only; if the user input is out of range, the program will report

error and ask for the channel selection again. Finally, the program will then ask for the frequency

range. In this project, since the EPOC with 128 sample rate is used, only 64 frequencies from 0

to 64 Hz will be analyzed. The dialog in Figure 25 will ask the user to input the start and stop

frequencies to form the training data set. The inputs have to be between 0 and 64 Hz, if they are

out of bound, the program will again report errors and ask for new inputs. Both of the options for

channels and frequency range give the user flexibility in research. The user can compare testing

accuracies o select the optimal frequency range and channels. Hitting “Ok” to proceed, the

program will create the training data set and start training. The training process is shown in the

block diagram below (Figure 26).

Figure 24 Input the channel range

 30

Figure 25 Input frequency range

 31

Figure 26 SVM training process

 The PSD data is saved in the form of a 𝑚 × 𝑛 matrix where the rows 𝑚 is the number of

the channels and the columns 𝑛 is the number of the discrete frequencies from 0 to 64Hz. As

discussed in section 3.3, each input in the training data has to be in a row vector. This vector will

be formed as a 1 × (𝑚 × 𝑛) row vector by placing each rows of the matrix next to each other.

 32

Each of this data row will correspond to a label. This label is automatically generated depending

on the number of classes. The labels will depend on the order of the inputs, the first input is

always mapped to 1 then the label will increase by 1 for the next classes. For example, as seen in

Figure 15, class A will be mapped to label 1 and class B will be mapped to label 2. If there are C,

D, and E, they will be mapped to labels 3, 4, and 5, respectively. The data will be then

randomized using seeds’ value from 1 to 100 (which can be changed in the code). The reason

why the seeds are used is as follow: assume we have a data set of 1000 data, where only 80% of

this data (800) is chosen for SVM training. To calculate all the possible cases to form this 800

data out of the total 1000 data set, we will use the combination equation:

(
1000

800
) =

1000!

800! ∗ 200!

 where both 1000! and 800! are too big to calculate in Matlab, and the result could also be a large

number. As a result, it is practically impossible to check all these cases and we need to

randomize the data many times to get a best result out of all trials. The use of seeds in Matlab

will help us to control the randomization and as such can reform the training data set for a given

seed. The C and gamma searching will be done as discuss in Section 3.2. One problem here is

the function “svmtrain” requires a string as its parameters. This string is written differently

depending on the number of classes. To do this, normally we need to change this single line of

code manually and this will reduces the flexibility of the program. The solution for this is to let

the program write these lines of code itself. These special lines of the code are written in three

other Matlab file named as writeFPara.m, writePara.m and writeweight.m. These files will be

changed many times in the training process depending on the number of class, C value and

gamma value. After the best C and Gamma parameters are found, the program will use these

 33

parameters for the final testing data set (20% of the data). If the testing accuracy is greater than

the wished testing accuracy (Figure 20), this result will be printed to the text file. The program

will proceed to the next seed and redo all of the above steps. The training will be finished after

all the seeds are used. Practically, for some type of data, the time for training 1 seed might be

hours or days. As such, the user need to control this manually by changing MySeed parameters

in the code (Appendix A).

b) Making predict model

If the user chooses “Making Predict Model” from the dialog in Figure 18, the same dialog as

seen in Figure 24 will pop out. The program will then ask for the folders where the data locate

(Figure 15). Next, the program will ask for the seed used for each layer. If the layer value input is

1, only 1 seed is needed. However if layer value is a number n, more than 1, the user will be

asked to input n seeds (Figure 27). This seed(s) is used to reconstruct the training data set as

discuss in the previous section. If this is a multilayer analysis, the best data in each layer will be

taken out to form the training set. This is an extra implemented function but not necessarily used

for this research.

 34

Figure 27 Layer=1 on the left dialog, Layer =4 on the right dialog

Then, the same dialogs in Figures 24 and 25 will show up. The user will input the same

information that he or she uses for the seeding analysis case to reform the training data structure.

It will take 1 to 2 minutes for the data reconstruction, depending on the data size. The program

will then show three possible options (Figure 28). The first option C optimizer is used when the

user knows the best value of gamma and search for C only. Conversely, the gamma optimizer is

used when the user knows the best result for C and search for gamma. Again, these 2 options are

built in this program but not used for this research. The last option “Making a model” will then

ask the user to input the values for both best C and gamma parameters (Figure 29). These are the

values shown in column 2 and 3 of the text file output (Figure 21). Hitting “Ok” to proceed, the

program will start to recreate the well-trained SVM model which have the same training and

testing accuracy shown in the text file. It would take several seconds to one minute for the model

to be recreated. Finally, the program will ask the user to save the model in a desired directory

(Figure 30). The default directory will be the Parameters folder located in the same working

directory.

 35

Figure 28 Choosing between 3 options

Figure 29 Inputting best C and gamma

Figure 30 Saving the final model to a location

 36

4.4 Programs for controlling robot

In this section, we will show the program “RobotControl.m” (see Appendix A) for establishing

the interface between the computer and the robot. To do this, we need to use some of Matlab

packages dealing with serial communication as well as Arduino control. Unlike other data types,

creating a real time system for EEG is hard because there is no feedback between the user and

the system. For example, in [16], the authors presented a method using libsvm for real time facial

emotion detection. It has the similar purpose of our project which is to create a real time system

for EEG signal detection. However, for facial recognition, the users can have the feedbacks (real-

time webcam images) from the system and at the same time the results from the classifications.

Thus, the users can have a way to control their facial emotion to get the good classification

result. This is not the case for the EEG signal. Since there is no way to monitor the brain states at

the same time controlling the robot, this model is just an open loop controller with no feedbacks.

As such, it is very challenging to control the robot to move in a desired direction or control LCD

to display a desired letter. Although the average classification accuracy is relatively high, there is

mismatching between the individual performances of each class. For example, the robot always

prefers to get to the direction with the highest individual performance. To solve this, we have

two methods. The first method is to ask the user to firstly think “nothing” for about 20s before

running the robot. Using this information as a reference, if the mean power of a thought is less

than the mean of this reference value, the robot will stop. This will eliminate some of the

misclassification for some data that is not related to directional or alphabetical categories and

thus increase the number of correct guesses. The second method is using the correlation

coefficient to eliminate bad EEG data. Depending on the modes chosen by the user, the program

 37

will calculate the correlation coefficient before or after the output from the model. The program

will have two modes: practice mode and real time running mode (Figure 31).

Figure 31 Choosing the mode for the Program to run

a) Practice mode

In this mode, the program will help the user to get familiar with the SVM model. Firstly, the

program will automatically open the Epoc control panel and EEG Simulink importer which are

normally located in the Program Files of the computer. After the user put the head set on and

make sure all of the sensors are in good condition (all green), the program will then ask the user

to choose the well trained SVM model which is saved in the Parameters folder (figure 32). This

is the same folder mentioned in Figure 30 above. The input dialog (Figure 33) will pop up,

asking for general information before the training begins. The first three inputs have to be the

same as the inputs while the model is created. For example, a model guessing 2 directions with

1000 data of 5 seconds long each is shown in the picture below. The points of input represents

the least number of trials the program will run for each class. After the user hits “OK”, a dialog

as seen in Figure 16 will appear, asking the user to provide the names of the PSD data folder.

The reason why we need to take this information for the real time is because in the training

process, the libsvm function requires all of the data to be normalized in the range between -1 and

1. Therefore, a single input by its own has no meaning to the real time detection. To solve this

problem, we have to recall the training folders to calculate the normalized data. For example, if

 38

there is a total of N data in the training set, the new data will be then added into the group. The

normalization of N+1 data is calculated and only the result for the real time data will be picked

out. In fact, this calculation will reduce the response time of the system greatly since the

normalized data will be recalculated every time the new data is input. To solve this problem, we

only calculate the normalized data for N data and save the important values. These values

include the array with the minimum value and the range (max-min). The new normalization of

the single data will be calculated as followes:

𝑟𝑒𝑎𝑙𝑡𝑖𝑚𝑒_𝑛𝑜𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑟𝑒𝑎𝑙𝑡𝑖𝑚𝑒−min

max−min
 (4.4.1)

Figure 32 Choosing a model

 39

Figure 33 Information input for model-practice mode

Figure 34 choosing the simulink model

After the data folders are chosen, the user will set up the data size identical to the training data of

the model. This includes choosing the frequency range (Figure 25) and channel range (Figure

24). After the information is taken, the user has to choose the Simulink model to take the data.

This will be varied depending on the Matlab version in use. As seen in Figure 34

“EmotivEpocEEG_testmodel2011a.mdl” will be used. Then the program will ask the user to

choose the feedback type (Figure 35). There are 2 options available in which the first will

calculate the correlation coefficient only and the second one will calculate both the correlation

coefficient and the reference power.

 40

Figure 35 input feedback type

If the reference power is chosen, the program will ask the user to clear his or her mind for 20s

and take this data (Figure 36). After the reference data is taken, it will be converted into PSD and

the mean value of this PSD is also calculated. Then, the program will ask the user to take the

reference data for the correlation coefficient calculation for each class. For example, if there are

2 classes left and right, 2 references will be asked to take. In taking the reference data, the

program will use the model and ask the user to think a specific thought for 5s (Figure 37). If the

detection result from the SVM model is correct, the program will use this as the reference for

that class; if not, the program will ask the user to try again until one EEG trial with the correct

detection result is obtained (Figure 38).

Figure 36 collecting the "no thinking" reference

Figure 37 Colleting correlation coefficient reference data (left)-Retake data reference (right)

 41

Figure 38 Informing the user that the EEG data with correct detection result is taken

The program will inform the user to begin the practice (Figure 49). Using the correlation

references taken before, the program will calculate the correlation coefficient. If the result is less

than 85% or the mean power of the input data is less than the reference mean (thinking nothing),

the program will ask the user to retake the data (Figure 41). If both of the tests are passed, the

model will classify the data into correct or incorrect answer (Figure 41). If it is the same with the

test case (left or right), one point will be added to the total points. If not, the program will keep

running.

Figure 39 Start training for one class

Figure 40 Start taking a piece of data

 42

Figure 41 Three types of possible answer from program-Correct (left)-Incorrect (middle)-Retake data (right)

The dialogs in Figures 40 and 41 will keep showing up until the user gets all the points they

indicate in the inputs. The total number of trials will be tracked so that the final accuracy can be

calculated (Figure 42). In this mode, the results will not be illustrated on the robot car yet. When

the user feels confident enough with the result, he or she can rerun the program and choose real

time mode where the motion of the robot car will be controlled.

Figure 42 Final result for practice modeb) Real time mode

In this mode, before the data taking begins, the user has to set up the BCI. The transmitter circuit

(Arduino board) will be first connected to the computer, and the robot car power source will also

be turned on. Then the steps from Figures 34 to 39 will be the same in the real time mode. After

the references are taken, the user has to indicate the data type he or she wants to send to the

robot. This is important because by default the directional SVM model will classify input PSD

data into 4 integers (1-4) and the alphabetical SVM model will classify input PSD data into 2

integers (1-2). The answer the user has in this question dialog (Figure 44) will help the program

 43

to distinguish between the output data of alphabetical or directional type. The program will start

taking the brainwave data and informing the user with the dialog in Figure 40. The EEG data

taken is converted to PSD and then sent to the well-trained SVM model to do the classification.

Then, depending on the classification output, the program will compare the classification result

with a corresponding correlation reference. If the result is greater than 85%, this is a correct

result and will be sent to the robot. To send the signal to the robot, the program has to set up the

serial communication between Matlab and Arduino board. Its code is shown in “run.m” in

Appendix A. The user has to manually change the ComPort variable in order to have the

program function correctly. To figure out the right Comport, the user has to open “Device

Manager” in Window and check for the usb connection tab. This will indicate which Comport

the Transmitter Arduino is connected to. After the connection is set up correctly, Matlab’s

command window will now be in serial mode with the Arduino board. Anything printed on this

command window will be sent to the Arduino board. We will have 6 different signals in

character type using the first letter of each classs. These signals are: ‘l’- Left, ‘r’ – Right, ‘f’-

Forward, ‘b’-Backward, ‘A’- letter A and ‘B’-letter B. Depending on the classification result,

these characters will be printed on the command window to send the signal to the board. The

transmitter board will then send this information through Xbee to the robot. After each

transmission, the serial connection will be closed between Matlab and Arduino, giving back the

computational ability for Matlab.

 44

Figure 43 Indicating the type of signal sent to robot

 45

Chapter 5 Analysis of Raw EEG Data and Feature as SVM Inputs

5.1 EEG data recording rule

In order to have the classifiable data set, the user has to follow a strictly rule for recording every

single data. The thesis writer was the subject for the experiment in this project. The tricky part

about taking EEG data in this research is the subject has to mimic the condition of an ALS

patient. He has to limit his body motions and try to stay still. For each of directional EEG data

taking, the subject will imagine visually there is an object on the corresponding direction and

also think about the meaning of the direction verbally in his language. The subject has to close

his eyes to reduce the eye movement artefacts. For the alphabetical EEG data, the subject will

also think about the letter visually in mind at the same time thinking how to pronounce the letter.

To increase the quality of both data types, after taking every 100 data, the subject will take a rest

and let his mind relax. In total, there will be 6000 5-seconds EEG data taken for 6 different

classes. In estimation, it would take at least 4 hours to complete 1000 data taking which leads to

the total of 24 hours for 6 classes.

5.2 EEG data recording method

To control the robot using BCI, normally, the user may think about any possible directions at any

time to get the robot to a desired destination. As such, when the data recording program (Chapter

4) was developed, it was implemented so that the user can take the EEG data both randomly and

continuously. If the user decides to take all time-domain data in different classes at the same

time, the program will create a random list of labels and ask the user to think differently each

time. The user can also decide to take the data continuously by choosing to take data for one

class each time. At first, we thought that taking data randomly was a better approach since it can

 46

gives the user the same feeling as if they are controlling the robot. To test our idea with this

approach, 100 5-second EEG data of 2 directions (Left and Right) were taken. The data was then

converted to PSD format and going through the SVM training and testing procedure. The best

testing accuracy was 70% with 92% of the training accuracy. This was an acceptable result for a

small data set so we decided to run the training process with more data. 1000 5-second EEG data

of 2 directions (Left and Right) were used for SVM training and testing. The best result however

was only 55% for testing and around 90% for training. The libsvm used 1280 support vectors out

of 1280 training vectors to create the SVM model, which means overfitting (also known as curse

of dimensionality) has happened. This is normally because the data size (the dimension of each

training vector) is too big, and the libsvm classifier will try to find the optimal model

exhaustively which then leads to the overfitting problem. To solve this, we try to reduce the data

size by reducing the channel range. We picked only 8 channels for the last training and see if the

classification results could improve. However, the result ended up to be only 60% for testing and

around 91% for training. The number of support vectors for this training is about 1000 which

was still a high number. At this point, we decided to restart from data recording process, 100 5-

second EEG data of Left and Right directions were taken continuously. After the first training

process, both of the testing accuracy and training accuracy were above 90% which are very

good. We continued to take 1000 5-seconds-data of each class in the same manner. For the first 8

seeds, the results are shown in Table 2 in Chapter 6. The best result showed that the test accuracy

can be as high as 83 %. The number of support vectors corresponding to the best result is only

912 out of 1280 training data. This is a very good result which shows the model are well trained

and good models for the real time testing. The same methods are used for 3 and 4 directional as

 47

well as 2 alphabetic classifications. The results for these classifications will be shown in Section

6.2 to 6.5 of Chapter 6.

5.3 Feature size for SVM input

The feature as the input of the SVM model in our research is PSD in the frequency domain. The

size of this feature is decided by the selected frequencies and channels. The Matlab programs

introduced in Chapter 4 give us the flexibility in choosing the frequency range as well as channel

range for the PSD data. The EPOC headset used in this project has the sample rate of 128

samples per second. As such, after being converted into the frequency domain, there are 64

different frequencies ranging from 0-64 Hz. This range can be cut down into 5 different bands:

Delta band (1-3 Hz), Theta band (4-7 Hz), Alpha band (8-12 Hz), Beta band (13-30 Hz), and

Gamma band (30-100 Hz) [17]. Some researchers only chose specific frequency bands to do the

classification. For example in “EEG-based discrimination between imagination of right and left

hand movement” [12], the authors found out that different frequency components in alpha (8-12

Hz) and beta bands (13-30Hz) provided best discrimination between left and right hand

movement imagination. The classification results can reach to approximately 80 %. Another

paper has also pointed out the EEG activity on theta band (4-7 Hz) in virtual maze navigation

[18]. This research shows the important role of theta oscillators in human spatial navigation.

Considering the alphabetical and language analysis, in [19] a broad analysis of different EEG

frequency band can show different approaches to the language analysis. Specifically, Delta (1-4

Hz), Theta (4-7 Hz) and Alpha (8-12 Hz) band shows a respectful effect on auditory and visual

of language perceptions. The nouns or verbs are then compared in two bands Alpha (8-12Hz)

and Beta (13-30 Hz) to see their performances. This result is not very useful in this case since

only alphabetical (A or B) data is analyzed in this paper. However, these papers pointed out a

 48

good frequency band (from Theta to Beta) and can help to lower the PSD data size concerned in

this research. We decided to run 2 different trainings. In the first training, we only used

frequency range from 4-30Hz and in the second we use all the possible frequency range from 0-

64Hz.We tried to run the classification using all frequencies (0-64 Hz). This in fact increased the

testing results for approximately 10% in each classification. However, the big drawback was the

time for training SVM model has increased to as low as 30 hours to as high as 96 hours for each

classification (depending on data type and the number of class). As such, only 1 seed for each

classification will be shown in the experimental result in Section 6.6.

 49

Chapter 6 Experimental Results of SVM Models

In this chapter, we will summarize the results of the SVM models for different classification

problems. First we will give the result of a very simple classification problem to verify the

correctness of the SVM program since it is the core of our developed BCI system. And then, we

will show the results of classifying directional and alphabetic EEG signals. Finally, we will

present some classification results using the whole frequency range.

6.1 Classification of data from normal distributions

Since the SVM program “svm_train_n_catefories.m” is extremely critical in our developed BCI

system, before using the SVM program to classify the real EEG data, we created a case to check

if the program runs correctly. To do this, we create a 14 × 64 matrix and fill the matrix with

random normal distribution data. We control the mean and standard deviation of the data so that

the data will be classifiable. For each mean value of 1 to 4, 100 of matrices are created using the

example_brain_data.m in Appendix A. This small program will let the user create the normal

distribution randomized data. The user can control the standard deviation and mean values by

modifying the inputs showed in Figure 44. These data will be numerated from 1 to 100 and

pushed into folders with the same names (1, 2, 3, 4). Using the “svm_train_n_catefories.m”,

these data in the 4 folders will be classified. If the training accuracy and testing accuracy of the

classification result is high, it means that the program created is capable of classifying data

correctly. Table 1 below shows the classification results for the 4 different normal distribution

randomized data. The results are close to 100% which proves that this program is working

correctly.

 50

Figure 44 Input used in ExampleBrainDataMaker.m for training

Table 1 Classification result of data from normal distribution

Seed Best_C Best_gamma Train_acc Test_acc Total_nSV

1 0.03125 0.00097656 97.188 100 320

2 29.3441 0.00097656 100 100 316

3 0.03125 0.016317 98.125 100 320

4 19.8697 0.00097656 100 96.25 320

5 25.7678 0.00097656 100 92.5 317

6 1.4142 0.038808 100 92.5 320

7 0.03125 0.0040792 98.125 96.25 320

8 0.03125 0.0009756 97.188 100 320

 51

6.2 Classification of 2 directional data

The classification results for 2 directions (left and right) are shown in Table 2. The best one

appears at seed number 5 where the training accuracy is 98.188% and the testing accuracy is

83%. Using the training method in Figure 26, there were 1280 data (200 left, 200 right) used as

the training data set and 400 data used for the final testing, where the best model only used 912

data out of 1280 training samples as support vectors. For this 2 directional classification, the

training for each seed took at least 6 hours. The training time varied depending on the number of

support vectors needed. In general, the classification with the least number of support vectors

will take less time, but this does not always guarantee the optimal solutions. The program is

capable of running more seeds. However, only the results of the first 8 seeds are obtained since it

takes a lot of time and computational cost (running several Matlab windows at same time). Table

2 gives the overall testing accuracy at the fifth column. It is the number of EEG data classified

correctly divided by the total number of testing data. Table 3 shows the testing accuracy of

individual direction classification. For example, the second column labeled as Left is the number

of left direction data classified correctly divided by the total number of left direction data. For

most of the seeds, the individual testing accuracies are not balanced. The SVM model may detect

one direction more successfully than the other. Seed number 3 shows the most balanced

performance with the gap of only 0.5% between Left versus Right classification. However, there

is a tradeoff of 0.75% in overall testing accuracy compared to the imbalanced result of seed 5.

 52

Table 2 Left vs Right Classification Result with Frequency range 4-30Hz

Seed Best_C Best_gamma Train_acc Test_acc Total_nSV

1 29.3441 0.088388 98.313 82.75 855

2 449.6006 0.010132 94.937 79.25 675

3 6.1688 0.13053 95.75 82.25 964

4 6.7272 0.125 96.437 79.5 934

5 14.6721 0.11463 98.188 83 912

6 122.5732 0.02116 94.688 82.75 744

7 18.2206 0.125 98.938 80.5 919

8 14.6721 0.1197 98.1880.0 82.5 912

Table 3 Individual performances of 2 directions Left vs Right 4-30Hz

Seed Left Right Test_accuracy

1 84.5 81 82.75

2 80.5 78 79.25

3 82.5 82 82.25

4 75 84 79.5

5 81.5 84.5 83

6 84 81.5 82.75

7 79 82 80.5

8 80.5 84.5 82.5

 53

6.3 Classification of 3 directional data

The classification results for 3 directions (left, right, and forward) are shown in Table 4. The best

result in testing accuracy is 79.333 % for seed number 8 with the training accuracy of 95.208%.

According to the training method (Figure 26), there were 600 data in the testing pool (200 left,

200 right, and 200 forward) and 1920 data in the training pool. The best model used only 1410

data out of 1920 data as support vectors. The training time for each seed was between 10 hours

and 12 hours. So it took nearly 4 days for completing the calculation for all seeds. Table 5 then

shows the individual testing accuracies. This table shows an even more imbalanced result

compared to the 2 directional individual performances. The gap between the best and the worst

individual performances in each seed varied from 4.5% (seed 4) to 12% (seed 3). The most

balanced seed is seed number 4. However, there is a tradeoff of 5% overall accuracy compared to

the imbalance result of seed 8.

 54

Table 4 Left vs Right vs Forward Classification Result with Frequency range 4-30Hz

Seed Best_C Best_gamma Train_acc Test_acc Total_nSV

1 10.834 0.25 98.375 77.333 1644

2 5.6569 0.17678 93.042 75.833 1602

3 18.2206 0.20131 98.542 76.5 1576

4 9.5137 0.17678 95.583 74.333 1555

5 7.336 0.2394 96.583 78 1649

6 69.7925 0.065267 96.333 79 1368

7 66.8335 0.081052 97.5 75.167 1369

8 32 0.084641 95.208 79.333 1410

Table 5 Individual performances of 3 directions Left vs Right vs Forward 4-30Hz

Seed Left Right Forward Test_acc

1 80 73.5 78.5 77.333

2 79 70.5 78 75.833

3 79 67 83.5 76.5

4 72.5 73.5 77 74.333

5 77 78.5 78.5 78

6 84 71.5 81.5 79

7 75 71 79.5 75.167

8 75.5 78.5 84 79.333

 55

6.4 Classification of 4 directional data

Table 6 shows the classification results of 4 directions (left, right, forward, and backward). The

best result in testing accuracy is 72 % for seed number 11 with the training accuracy of 92.75%.

Seeds 2,4,10 are eliminated from the text file outputs since these seeds have less than 70% of

testing result. According to the training method (Figure 26) there were 800 data in the testing

pool (200 left, 200 right, 200 forward, and 200 backward) and 2560 data in the training pool.

The best model used only 2089 data out of 2560 data as support vectors. The estimated time for

training of each seed varied between 1 to 1.5 days. As such, it took approximately 2 weeks to

finish all of these calculations. Table 7 then shows the individual testing accuracy on each

directional class. This is the most imbalanced individual classification in the directional

classification. The gap between the best and worst individual performances of each seed can be

as low as 7.5% for seed 9 and as high as 19.5% for seed 3. The most imbalanced seed is number

1 where the testing accuracy is only 70.875%. There is a tradeoff of 1.125% overall accuracy

compared to the imbalance result of seed 11. In fact, during real time robot running, any

classification model that has the testing accuracy lower than 80% may not be able to control

robot well. As such, for this 4 directional classification problem, we expanded the frequency

range to 0-64Hz. These classification results are shown in section 6.6.

 56

Table 6 Left vs Right vs Forward vs Backward Classification Result with Frequency range 4-30Hz

Seed Best_C Best_gamma Train_accuracy Test_accuracy Total_SupportVectors

1 14.6721 0.1621 94.813 70.875 2229

3 15.3217 0.19278 96.219 71.125 2277

5 6.1688 0.19278 90.625 71.125 2319

6 9.5137 0.20131 94.188 71.75 2299

7 6.442 0.17678 90.281 71.75 2322

8 18.2206 0.10511 91.031 71.125 2155

9 107.6347 0.048194 93.031 71.875 1976

11 34.8962 0.081052 92.75 72 2089

Table 7 Individual performances of 4 directions Left vs Right vs Forward vs Backward 4-30Hz

Seed Left Right Forward Backward Test_accuracy

1 73.5 64 76.5 65 70.875

3 70.5 62 81.5 70.5 71.125

5 69 67.5 76 72 71.125

6 72 63.5 78 73.5 71.75

7 69 64.5 78.5 75 71.75

8 68 67 80.5 69 71.125

9 69 69 76.5 73 71.875

11 73 66 79 70 72

 57

6.5 Classification of 2 alphabetical data

Table 8 shows the classification result for 2 letters (A and B). The best result appears at seed 1

where the testing accuracy is 78.75% and the corresponding training accuracy is 92.75%. Similar

to the 2 directions classification of left versus right, this classification used 400 data in the final

testing pool and 1280 data in the training pool. The best result used 834 data out of 1280 data for

the support vectors. The training time required for each seed is a little bit longer than that of 2

directions classification. It took approximately 8 hours to complete the training for one seed

which led to the total of nearly 4 days for the program to run. Table 9 will then show the

individual testing accuracy of each letter’s detection. The most balanced result has the difference

of 1% at seed 7, while the most imbalanced result has the difference of 9.5% at seed 5. The best

model has the gap of 4.5% between A’s testing accuracy (81%) and B’s testing accuracy

(78.75%).

Table 8 A vs B Classification Result with Frequency range 4-30Hz

Seed Best_C Best_gamma Train_accuracy Test_accuracy Total_SupportVectors

1 1961.1715 0.0060243 92.75 78.75 834

2 724.0773 0.013721 95.437 73 871

3 112.4001 0.046151 97.938 71.25 966

4 304.437 0.019404 93.875 75.75 917

5 24.6754 0.068157 93.875 73.75 1033

6 38.0546 0.10066 98.75 72.25 1091

7 939.0121 0.017794 98.125 75.5 917

8 122.5732 0.017794 88.813 74.75 958

 58

Table 9 Individual performances of 2 letters A vs B 4-30Hz

Seed A B Test_accuracy

1 81 76.5 78.75

2 74.5 71.5 73

3 68.5 74 71.25

4 76 75.5 75.75

5 69 78.5 73.75

6 68.5 76 72.25

7 75 76 75.5

8 74 75.5 74.75

6.6 Classification of 4 directional and 2 alphabetic data using the maximum

frequency range

For the last training process, each classification case from 6.2 to 6.5 will have its frequency

range expanded into 0-64Hz. The reason why only the result of the first seed is shown in this

section for directional classification and alphabetic classification is that such classification

problems need much more training time. For example, it may take approximately 1 day, 2 days,

and 4 days for the 2, 3, and 4 directional classifications. For the 2 letter classification it may take

about 2 days to complete. Although the computation time was increased, the testing accuracy has

been increased approximately 4-11% in each of 4 cases. As shown in Table 10, each of the

classification was run only for the first seed. For the directional classifications, the test

accuracies for the 2, 3 and 4 directional classifications are 91.5%, 88.1667% and 81.75%

 59

respectively. There is a gain of 8.75%, 10.8337%, and 10.875% of the 2, 3, and 4 directional

classifications. Looking at the values of C and gamma parameters, we can see that the program

uses very close values of C and gamma for these three cases. This has shown that the features

with the expanded frequency range are more classifiable. For the 2 letter classification, the

testing accuracy has an increase of 4.5%. The C and gamma parameters for the 2 letter

classifications are also smaller compare to the results in the 4-30Hz frequency range. The

individual performances in Table 11 show that these models are in fact more balanced than that

of 4-30 Hz. The most imbalanced classification is the 4 directional one where the gap between

the best and the worst performances is 4.5%. The most balanced result for the directional case is

the Left versus Right classification where the gap is only 3%. This also shows that the 2

directional robot motions are easier to be controlled by EEG than 4 directional robot motion in

Chapter 7. After expanding the frequency range, all of these classification testing results are

greater than 80% which shows good SVM models for the real time testing with the robot.

Table 10 Classification result of directional and alphabetical data for the first seed from 0 to 64 Hz

Classification Best_C Best_gamma Train_acc Test_acc Total_nSV

L/R 3.668 0.10997 98.875 91.5 827

L/R/F 4.1771 0.096388 97.0833 88.1667 1385

L/R/F/B 3.5125 0.21022 98.4063 81.75 2227

A/B 14.05 0.05985 98.625 83.25 998

 60

Table 11 Individual performances of directional and alphabetical data for the first seed from 0 to 64 Hz

Classification Left Right Forward Backward A B Testing Acc

L/R 93 90 91.5

L/R/F 92 86 86.5 88.1667

L/R/F/B 79.5 82 84 81.5 81.75

A/B 84 82.5 83.25

 61

Chapter 7 Robot Control System Implementation and Testing

7.1 Block diagram of robot motion and alphabetic display control system

To control the robotic car motion and alphabetic LCD display, a lot of effort is required to

communicate between different interfaces simultaneously. As seen in Figure 45, first of all, when

a user is thinking about a direction or a letter, 14-channel EEG signals will be acquired by the

EPOC device. Through Emotiv control panel and Simulink importer, these EEG signals will be

saved with a Matlab format to be used easily in the Matlab SVM program. The parameters in the

SVM algorithm will be optimized by training process. In the SVM training process, training

data sets will be needed. Training data sets mean pairs of inputs and outputs of the SVM. EEG

signals last for 5 seconds and they will be converted in PSD data in the frequency domain in a

desirable frequency range as the feature or input of the SVM model. The output would be a

direction or a letter accordingly. To make the SVM well trained, 6000 training data for six

classes (4 directions and 2 letters), 1000 data for each class, were generated for this project. As

discussed in Chapter 3, in the training process, the cross validation and covex optimization

methods will be used to optimize the SVM parameters. With all optimal paramters, the SVM will

be well constructed and ready to classify any new EEG signals. This SVM training process and

related steps are indicated by blue line in Figure 45.

New EEG signals generated by the user when thinking about a direction or a letter will be send

to the constructed SVM model with the optimal parameters through Emotive EPOC, control

panel, and Simulink importer as shown by red line in Figure 45. The SVM output is then fed into

a control function. This function will convert the SVM output into a digital command such as

000,001,010, 011 and so on to represent each direction and letter. These digital commands will

be sent wirelessly to the Adruino microcolltroller using Xbee. If the received digital command

 62

means a direction, the Adruino microcontroller will generate a specific wave pulse to control the

servo motor to move the robotic car in the desired directions. If the received digital signal means

a letter, the microcontroller will conrol the LCD installed in the robotic car to display the letter

immediately. All steps related to new EEG signal process for conrolling robot motion and

alphabetic display are indicated by red lines in Figure 45. In the previous chapters, we mainly

focus on Steps 1-5. In the next sections of this chapter, we will focus on the remaining steps to

discuss how to build wireless communication through PC, microcontrolloers, and Xbees in more

details.

I.

Figure 45 Robot motion and alphabetic display control system

2. EPOC & Control

Panel

3. Simulink

importer
4. SVM training

process

5. Constructed SVM

with optimal

parameters

1. User thinking

direction/letter

6. Control function

7. Digital

Commands
9. Arduino

micrcontroller
10. Servo motor for

moving car

8. XBee wireless

communication

11. LCD for

displaying letters

 63

7.2 Setting up the Xbee antennas

Figure 46 Receiver vs Transmitter Xbee

In this project, we will use 2 microcontrollers and 2 Xbee antennas to realize wireless

communication between the computer and robot. First, we have to set up the connection between

2 Xbee antennas. This can be done using a program X-CTU as seen in Figure 46. This software

will help the users to set up the pan ID as well as channels of multiple Xbee antennas. To set up

the Xbee, the user needs to connect the Xbee board to the computer using a micro USB cord.

Then, by choosing the “modem configuration” tab, the user can read, write or restore the Xbee to

default set up. The window on the left hand side of Figure 46 shows the set up for the

transmitter, while the one on the right hand side is for the receiver antenna. Both of these antenna

will be connected to two Arduino boards. The first board is connected to the computer while the

second board is used to control the robot. Normally, there will be a serial mode connection

between the Xbee antenna and the Arduino board. This can be done by connecting the Tx and Rx

pins on each Arduino board to the Rx and Tx pins on the Xbees. However, since there has

 64

already been a serial mode connection between Arduino board (which controls Xbee) and the

Matlab command window (computer), these pins are always busy. We decided to use 3 pins D0,

D1, and D2 on each Xbee antenna to set up the communication. The way this communication

works is that if the Dx pin on the transmitter is high or low, the corresponding pins on the

receiver will also be in the same state. Then these pins are connected to pins on the Arduino

boards. The board will then process this 3-bit information and decide which action to perform.

7.3 Serial Mode Setup

The serial mode set up takes less than a second for each data transmission. This can be done

using the setupSerial.m and the Setup function in the transmitter.ino (Red Arduino board) shown

in Appendix A. The setupSerial function will first connect the Matlab command window with a

Comport where the Arduino is connected. Then, this function will decide the baud rate, the

number of bits and the stop bit for the communication. The baud rate is set to 9600, there will be

8 data bits in each transmission and the stop bit is assigned as 1. Then, the setupSerial function

will send a simple character to the Arduino board. The Arduino board will then take this data and

print it back on the command window. After this point, any characters printed on the Matlab

command window will be sent to the Arduino board. However, since we need the Matlab

command window to do the classification of EEG data taking continuously, after each

transmission is done, the serial mode is closed. The Matlab will then classify the incoming PSD

data using libsvm library. The new serial connection will then be opened to send the new

command to the Arduino board. This loop won’t stop until the user decided to close the program

or turn off the EPOC.

 65

7.4 Robot control implementation

The robot with LCD has two main parts, the transmitter side that sending the signals from

Matlab command window, and a receiver side that controlling the robot.

a) Transmitter side

Figure 47 shows the connection between Xbee and an Arduino board. This is the Arduino board

that is connected to the computer, taking care of the information from the Matlab command

window. There will be 5 connections between the Arduino board and the Xbee antenna. The first

2 pins provide the power connections or VCC and GND. The last 3 pins 2, 3, and 4 on the board

will be connected to D0, D1, and D2 on the Xbee board, respectively. There are 7 different

characters can be sent to the board which are ‘s’-Stop, ‘l’-Left, ‘r’-Right, ‘f’-Forward, ‘b’-

Backward, ‘A’, and ‘B’. The board will then encode these characters into 3-bit-sequences which

are then sent to the Xbee Antenna. Because there are 3 bits, there are 23 = 8 different sequences.

However, the “000” and “111” sequences are both used for stop signal (Table 12)

Table 12 Signal Sequences for different characters

Character D0 D1 D2

‘s’ 0/1 0/1 0/1

‘l’ 0 0 1

‘r’ 0 1 0

‘f’ 0 1 1

‘b’ 1 0 0

‘A’ 1 0 1

‘B’ 1 1 0

 66

Figure 47 The Transmitter Arduino and Xbee connection

b) Receiver side

The three-wheel robot as shown in Figure 48 is controlled by the other Arduino board. This

Arduino board is taking care of more objectives compared to that of the transmitter. There are

three main tasks this Arduino board has to complete. Firstly, after receiving signal in term of data

bit sequences as illustrated in Table 12, the Arduino board will make a decision to control the

robot. Each time a character indicating a directional movement is sent, the robot will move

counter clockwise (turning left), clockwise (turning right), forward or backward accordingly.

Then, at the end of the transmission, a Stop sequence will be sent to stop the robot completely,

which is also the second task of the Arduino board where different pulses are sent to the servo

motors. The last task is displaying the results on the LCD screen. Using only 4-bit sequences, the

board will print a string on the LCD display illustrates both the directional movements and the

 67

two letters A, B. The Arduino code for the motor control and LCD display is shown in

Receiver.ino in Appendix A.

Figure 48 The three-wheel robot

7.4 Testing robot control system

Using the SVM models with the highest accuracies shown in Section 6.6 are used for the final

test. After having a proper connection between the EPOC headset and the computer (all sensors

are green), the “RobotControl.m” program was run in real time mode. There were three

experiments. In the first experiment, we used the well-trained 2 directional classifier (Table 10)

to detect 25 Left and 25 Right thinking. The robot moved in the correct directions with the

accuracy of 80% (20/25 of both directions). This result showed only approximately 10% of

mismatch between the testing accuracy reported in last chapter and the accuracy of the real time

robot control. Then, in the second experiment, we used the well-trained 4 directional classifier

(Table 10) to detect 25 left, 25 right, 25 forward and 25 backward thinking. In this experiment, it

 68

was easier to control the robot to move left and right directions, we got 17 correct classification

results out of 25 for both directions. However, the accuracies of forward and backward are low.

We got 14 correct results for Forward movement and 8 correct results for backward movement.

The overall accuracy pf this real time testing is 56% which is 26% lower than the testing

accuracy reported in Table 10. Finally, a well-trained SVM model for 2 letters A and B was

tested. There were 20 correct results out of 25 for letter A while 15 correct results out of 25 for

B. This led to a 70% real time testing overall accuracy, which was 13.25% less than the testing

accuracy shown in Table 10.

 69

Chapter 8 Conclusion and Future work

8.1 Summary

Overall, the objective of the project was successfully achieved. The main contribution of the

project is creating a brain computer interface system (BCI) to control the robotic car with

alphabetic display only through human brain EEG signals only. Based on our BCI system, the

raw EEG data can be collected and stored in folders automatically and wirelessly. The SVM

model can be trained well to reach more than 80% testing accuracies. A detection result from the

SVM model can be transmitted to robotic car with LCD to drive the car and show the letters

remotely. Therefore, our BCI system has great potential to help people such as ALS patients who

cannot move or even talk at all to gain better mobility and communication capability.

EEG-based BCI is a very challenging topic. It is not easy to generate a large amount of good

quality EEG signals for better classification results. There is no standard to check for the quality

of the signal before making classification. It required a lot of focuses and took a lot of time to

generate 6000 EEG data in this project. The second challenging point is the optimization of the

parameters in the classification model is time-consuming. Although a good personal computer is

used to do this task, it still took days or weeks to complete the SVM training process for some

cases. This is also one drawback of the program itself since the user can only see the final result

after a long-time training process, it is very hard to figure out the mistakes and redo an

experiment. Since the developed BCI system is just an open loop system now, it is hard to

control the robot in the real time mode. Although the encouraging results have shown high

possibility to control the robot to run in 2 directions, it is still very challenging for the 4 direction

control.

 70

8.2 Future work

We have several ways to further improve the EEG-based BCI system. First, the software

implementation and interfaces can be improved. All of the interfaces between the user and the

computer are Matlab built in dialog in this project now. But we can use Matlab GUI to create a

more convenient interface. Second, we only focus on PSD data type as the feature of the

classification model. PSD is the most basic and simple feature used for EEG data analysis. Some

other more complicated features such as cross correlation and coherence have also been used

widely. We can consider them in this project to improve the classification accuracy. Third, there

is a new EPOC headset (EPOC+) that has a higher sampling rate. The higher density of data

might reduce the time required (now 5 seconds) to achieve higher accuracy. Fourth, to improve

the calculation efficiency, especially for the training parameters process, we might consider

using Super Computer in the future. This will ensure the correctness of the result at the same

time improve the calculation speed. Finally, instead of controlling the robot through a computer

with Matlab, the EEG-based BIC system can be built in python language. The Libsvm model

also supports the python language which is used commonly in Raspberry Pi board. A new

interface can be built so that the user will control the Raspberry Pi board directly with EPOC.

Then, this tiny board can have the capability of classifying the data and send signal pulse to

control the servos and LCD display. Such a system will only need one Raspberry Pi board to run

and eliminate the computer, Xbee antennas, and Arduino board, which will reduce the cost and

shrink the size of the whole system.

As discussed in [20], the brain control wheelchair (BCW) is a robotic system which has been

developed for people who are incapable of using the wheelchair control by joysticks, buttons, or

even voice. Our BCI system development is in the early stage. For example, the response time of

 71

our system is not short enough for the real-time application in the market. However, the results

shown in this project can prove that it is possible that our system can be further improved to

make an advanced BWC in the future.

 72

 References

1. F. Lopes da Silva, “EEG: Origin and Measurement”, University of Amsterdam,

Amsterdam, Netherlands, 2010.

2. Cortes, C.; Vapnik, V. (1995). "Support-vector networks ". Machine Learning 20 (3): 273.

3. Stefan Rueping, “SVM Classifier Estimation from Group Probabilities”, Schloss

Birlinghoven, Germany, ICML, 2010.

4. Mary Lyon, R.N., M.N., “Reasons for Living with ALS”. ALS Association [Online].

Available: http://www.alsa.org/als-care/resources/publications videos/factsheets/reasons-

for-living-with-als.html

5. “Definition of Amyotrophic Lateral Sclerosis (ALS)”, Medicine Net [Online].

Available: http://www.medterms.com/script/main/art.asp?articlekey=2231

6. C.-C. Chang and C.-J. Lin. LIBSVM : a library for support vector machines. ACM

Transactions on Intelligent Systems and Technology, 2:27:1--27:27, 2011.

7. Emotiv Insight,” Simulink EEG Importer”, Emotiv Inc [Online]

Available: https://emotiv.com/store/product_112.html

8. Gou, Qing “Improving Golf Putt Performance with Statistical Learning of EEG Signals.”

Thesis. University of Arkansas, 2014

9. Niels Landwehr, Mark Hall, and Eibe Frank (2003). Logistic model trees

10. Ridella S, Rovetta S, Zunino R. (1997). "Circular backpropagation networks for

classification". IEEE Transactions on Neural Networks 8 (1): 84–97.

11. Evangelista, Paul, Mark Embrechts, and Boleslaw Szymanski. "Taming the Curse of

Dimensionality in Kernels and Novelty Detection."Applied Soft Computing Technologies:

http://en.wikipedia.org/wiki/Corinna_Cortes
http://en.wikipedia.org/wiki/Machine_Learning_(journal)
http://www.alsa.org/als-care/resources/publications%20videos/factsheets/reasons-for-living-with-als.html
http://www.alsa.org/als-care/resources/publications%20videos/factsheets/reasons-for-living-with-als.html
http://www.medterms.com/script/main/art.asp?articlekey=2231
https://emotiv.com/store/product_112.html
http://www.cs.waikato.ac.nz/~ml/publications/2003/landwehr-etal.pdf

 73

The Challenge of Complexity. Vol. 34. Berlin: Springer Berlin Heidelberg, 2006. 425-438.

Print

12. G. Pfurtscheller, Ch. Neuper, D. Flotzinger, M. Pregenzer, EEG-based discrimination

between imagination of right and left hand movement, Electroencephalography and

Clinical Neurophysiology, Volume 103, Issue 6, December 1997, Pages 642-651

13. Srivastava, Durgesh K., and Lekha Bhambhu. "DATA CLASSIFICATION USING

SUPPORT VECTOR MACHINE." Journal of Theoretical and Applied Information

Technology (2005 - 2009): n. pag. Web.

Available: http://www.jatit.org/volumes/research-papers/Vol12No1/1Vol12No1.pdf

14. Apaydin, Ethem, 2004. Introduction to Machine Learning. books.google.com.

15. Weisstein, Eric W. "Fast Fourier Transform." From MathWorld--A Wolfram Web

Resource. http://mathworld.wolfram.com/FastFourierTransform.html

16. Bajpai, Anvita, and Knal Chada. “Real-time Facial Emotion Detection Using Support

Vector Machines.” International Journal of Advanced Computer Science and Applications,

1 (2010): 37-40. Print.

17. Teplan, M. “Fundamentals of EEG Measurement.” Measurement of Science Review 2

(2002): n. pag. Print

18. Kahana, Michael J. Robert Sekuler, Jeremy B. Caplan, Mathew Kirschen, and Joseph

Madsen. “Human Theta Oscillations Exhibit Task Dependence during Virtual Maze

Navigation.” Letters to Nature 399 (1999): 781-84, Print.

19. Weiss, Sabine, and Horst M. Mueller. “The Contribution of EEG Coherence to the

Investigation of Language.” Brain and Language 85 (2003) 325-43. Print

http://www.jatit.org/volumes/research-papers/Vol12No1/1Vol12No1.pdf
http://books.google.com/books%3Fhl%3Den%26lr%3D%26ie%3DUTF-8%26id%3D1k0_-WroiqEC%26oi%3Dfnd%26pg%3DPR31%26sig%3DZj7YBgcpOyKB7P4QXzqYDk6Sua4%26dq%3D%2522Introduction%2Bto%2BMachine%2BLearning%26prev%3Dhttp:/scholar.google.com/scholar%253Fq%253D%252522Introduction%252Bto%252BMachine%252BLearning%2526hl%253Den%2526lr%253D%2526ie%253DUTF-8
http://mathworld.wolfram.com/about/author.html
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/FastFourierTransform.html

 74

20. Brice Rebsamen. A Brain Controlled Wheelchair to Navigate in Familiar Environments.

Human-Computer Interaction [cs.HC]. national university of singapore, 2009.

 75

Appendix A: Matlab Code

A.1 TakingData.m

%% Step 1: collecting general information

open('C:\Program Files (x86)\Epoc Simulink EEG

Importer\EpocSignalServer.exe');

%open('C:\Program Files (x86)\Emotiv EPOC Brain Activity

Map\EmoBrainMap.exe');

open('C:\Program Files (x86)\Emotiv EPOC Control Panel

v2.0.0.21\Applications\ConsumerControlPanel.exe');

input_checking=0;

while input_checking==0

prompt = {'Training time for 1 data:','Number of Training items (have

to be divisible for numofclasses)'...

 ,'number of classes:'};

dlg_title = 'Input';

num_lines = 1;

def = {'1','2000','2'};

answer = inputdlg(prompt,dlg_title,num_lines,def);

simstime=str2num(answer{1,:});

simitems=str2num(answer{2,:});

numofclasses=str2num(answer{3,:});

classesNames=cell(1,numofclasses);

for i=1:1:numofclasses

 classesNames{1,i}=strcat('Class',int2str(i));

end

input_checking = ~mod(simitems,numofclasses);

if input_checking==0

 msg1= msgbox('Number of Training items have to be divisible for num

of classes'...

 , 'Warning');

while(1)

if ishandle(msg1)==0

 break;

end

pause(1);

end

end

end

input_checking=0;

while input_checking==0

Classes = inputdlg(classesNames,dlg_title,num_lines);

 for i=1:numofclasses-1

 cur_class=Classes{i};

 next_class=Classes{i+1};

 76

 if strcmp(cur_class,next_class)

 input_checking=0;

 break;

 else

 input_checking=1;

 end

 end

 if numofclasses==1

 input_checking=1;

 end

if input_checking==0

msg2= msgbox('Invalid Classes Name (they have to be different)'...

 , 'Warning');

while(1)

if ishandle(msg2)==0

 break;

end

pause(1);

end

end

end

%% Step 2: Making Destination Folders

Cur_dir=pwd;

FileDir_vetor=cell(numofclasses,1);

new_Folders=numofclasses

Cur_folders=dir;

Folder_mark=zeros(1,new_Folders);

for i=1:1:numofclasses

 if exist(Classes{i})==7

 new_Folders=new_Folders-1;

 Folder_mark(1,i)=1;

 end

end

if new_Folders~=0

msg3_string='The new Folders are: '

for i=1:1:numofclasses

 if Folder_mark(1,i)~=1

 msg3_string=strcat(msg3_string,', ',Classes{i,:});

 end

end

msg3= msgbox(msg3_string...

 , 'Warning');

while(1)

if ishandle(msg3)==0

 break;

end

pause(1);

end

else

msg3= msgbox('No new Folders will be made'...

 77

 , 'Warning');

while(1)

if ishandle(msg3)==0

 break;

end

pause(1);

end

end

for i=1:1:new_Folders

 if Folder_mark(1,i)~=1

 New_Dir=strcat(Cur_dir,'\',Classes{i,:})

 mkdir(New_Dir);

 end

end

%% Step 3: Making random indexes vector

Data_indexes=zeros(1,simitems);

for i=0:1:(numofclasses-1)

 start_index=i/numofclasses*simitems+1;

 stop_index=(i+1)/numofclasses*simitems;

 for j= start_index:1:stop_index

 Data_indexes(1,j)=i+1;

 end

end

%taking current time to get different rand state every time

cur_state=sum(clock);

rand('state',cur_state); randn('state',cur_state);

Trainging_indexes=randperm(simitems);

Data_indexes=Data_indexes(1,Trainging_indexes)

%% Step 4: Taking New data

back=1;

for i=1:1:simitems

Cur_index=Data_indexes(back)

DataType=Classes{Cur_index,:};

Message=['Prepare to take: ', DataType,' for',int2str(simstime), '

seconds'];

Saving_Dir=strcat(Cur_dir,'\',DataType);

Data_index=length(dir(Saving_Dir))-2;

New_File_Dir=strcat(Saving_Dir,'\','Time_data',DataType

,int2str(Data_index), '.mat')

msg=msgbox(Message);

while(1)

if ishandle(msg)==0

 break;

end

pause(1);

end

Timespan=[0 simstime];

sim('EmotivEpocEEG_testmodel_2011a.mdl',Timespan);

S=load('res.mat');

A=S.ans;

size=length(A)-1;

 78

X=A(3:16,1:size);

Taken_data=X;

choice = questdlg('Was that a good data?','Data

checker','Yes','No','Stop','Yes');

switch choice

 case 'Yes'

 save(New_File_Dir,'Taken_data')

 back=i+1

 case 'No'

 back=i;

 case 'Stop'

 break;

end

end

 79

A.2 ConvertData.m

input_checking=0;

while input_checking==0

prompt = {'number of classes:'};

dlg_title = 'Input';

num_lines = 1;

def = {'2'};

answer = inputdlg(prompt,dlg_title,num_lines,def);

numofclasses=str2num(answer{1,:});

classesNames=cell(1,numofclasses);

for i=1:1:numofclasses

 classesNames{1,i}=strcat('Class',int2str(i));

end

input_checking=1;

end

input_checking=0;

while input_checking==0

Classes = inputdlg(classesNames,dlg_title,num_lines);

 for i=1:numofclasses-1

 cur_class=Classes{i};

 next_class=Classes{i+1};

 if strcmp(cur_class,next_class)

 input_checking=0;

 break;

 else

 input_checking=1;

 end

 end

if numofclasses==1

 input_checking=1;

end

if input_checking==0

msg2= msgbox('Invalid Classes Name (they have to be different)'...

 , 'Warning');

while(1)

if ishandle(msg2)==0

 break;

end

pause(1);

end

end

end

Cur_dir=pwd;

FileDir_vetor=cell(numofclasses,1);

new_Folders=numofclasses

Cur_folders=dir;

Folder_mark=zeros(1,new_Folders);

for i=1:1:numofclasses

 if exist(Classes{i},'dir')==7

 new_Folders=new_Folders-1;

 80

 Folder_mark(1,i)=1;

 end

end

if new_Folders==0

msg3_string='The Folders exist'

for i=1:1:numofclasses

 if Folder_mark(1,i)~=1

 msg3_string=strcat(msg3_string,', ',Classes{i,:});

 end

end

msg3= msgbox(msg3_string...

 , 'Warning');

while(1)

if ishandle(msg3)==0

 break;

end

pause(1);

end

else

msg3= msgbox('These Folders are not existed'...

 , 'Warning');

while(1)

if ishandle(msg3)==0

 break;

end

pause(1);

end

end

%% Count Data

CountSource=zeros(numofclasses,1);

for i=1:1:numofclasses

 if Folder_mark(1,i)==1

 FileDir{i}=strcat(Cur_dir,'\',Classes{i,:})

 CountSource(i)=length(dir(FileDir{i}))-2;

 end

end

msg= msgbox('Ready to input 1==yes 0==no What Data Type You wanna

Create ? (New Dir will be made)'...

 , 'Warning');

while(1)

if ishandle(msg)==0

 break;

end

pause(1);

end

input_checking=0;

while input_checking==0

prompt = {'PSD data in Db','PSD data in uW'};

dlg_title = 'Input';

num_lines = 1;

 81

def = {'0','0'};

answer = inputdlg(prompt,dlg_title,num_lines,def);

Db=str2num(answer{1,:});

uW=str2num(answer{2,:});

for i=1:1:2

 if str2num(answer{i,:})~=1&&str2num(answer{i,:})~=0

 msg= msgbox('Plz input 1 or 0 only)'...

 , 'Warning');

 while(1)

 if ishandle(msg)==0

 break;

 end

 pause(1);

 end

 input_checking=0;

 else

 input_checking=1;

 end

end

end

New_Folders=2*numofclasses*5;

Folder_mark=zeros(1,New_Folders);

NewFolderNames=cell(New_Folders,1)

for i=0:1:numofclasses-1

 for j=0:1:2

 for k=1:1:5

 if j==0

NewFolderNames{i*10+5*j+k}=[Classes{i+1},'PSD_Db',num2str(k),'s'];

 elseif j==1

NewFolderNames{i*10+5*j+k}=[Classes{i+1},'PSD_uW',num2str(k),'s'];

 end

 end

 end

end

for i=1:1:New_Folders

 if exist(NewFolderNames{i})~=7

 Temp_Dir=strcat(Cur_dir,'\',NewFolderNames{i,:})

 mkdir(Temp_Dir)

 end

end

if Db==1

 i=1;

 Class=1;

 while(i<New_Folders)

 for sec=0:4

 Temp_Dir=strcat(Cur_dir,'\',NewFolderNames{i+sec,:})

 count_dir=length(dir(Temp_Dir))-2;

 82

 for j=count_dir:1:CountSource(Class)-1

FileRead=[FileDir{Class},'\','Time_data',Classes{Class},num2str(j),'.m

at']

 X=load(FileRead);

 X=X.Taken_data;

 X=X(:,1:128*(sec+1));

 Fs=128;

 N=128*(sec+1);

 for k=1:1:14

 original_data=X;

 window=hamming(N);

 psd_data(k,:) =

10*log10(2*periodogram(original_data(k,:),window,0:Fs/2,Fs));

 end

 Taken_data=psd_data;

FileSave=[Temp_Dir,'\','PSD_data_of_',NewFolderNames{i+sec},num2str(j)

,'.mat']

 save(FileSave,'Taken_data');

 end

 end

 Class=Class+1;

 i=i+10;

 end

end

if uW==1

 i=6;

 Class=1;

 while(i<New_Folders)

 for sec=0:4

 Temp_Dir=strcat(Cur_dir,'\',NewFolderNames{i+sec,:})

 count_dir=length(dir(Temp_Dir))-2;

 for j=count_dir:1:CountSource(Class)-1

FileRead=[FileDir{Class},'\','Time_data',Classes{Class},num2str(j),'.m

at']

 X=load(FileRead);

 X=X.Taken_data;

 X=X(:,1:128*(sec+1));

 Fs=128;

 N=128*(sec+1);

 for k=1:1:14

 original_data=X;

 window=hamming(N);

 psd_data(k,:) =

2*periodogram(original_data(k,:),window,0:Fs/2,Fs);

 end

 Taken_data=psd_data;

FileSave=[Temp_Dir,'\','PSD_data_of_',NewFolderNames{i+sec},num2str(j)

,'.mat']

 83

 save(FileSave,'Taken_data');

 end

 end

 Class=Class+1;

 i=i+10;

 end

end

 84

A.3 svm_train_n_categories.m

close all;

clear all;

clc;

Timer=clock();

Year=num2str(Timer(1));

Month=num2str(Timer(2));

Day=num2str(Timer(3));

Hour=num2str(Timer(4));

Min=num2str(Timer(5));

algo_choice=0;

choice = questdlg('What type of algorithm you want to choose

?','Algorithm checker','Seeding Analysis','Making a Predict

Model','Seeding Analysis');

switch choice

 case 'Seeding Analysis'

 algo_choice=0;

 case 'Making a Predict Model'

 algo_choice=1;

end

if algo_choice==0

ReportTxtName=['ResultReport','_on_',Month,'_',Day,'_',Year,'_at_',Hou

r,'_',Min,'.txt']

 prompt = {'File Save Name'};

 dlg_title = 'File name';

 num_lines = 1;

 def = {ReportTxtName};

 answer = inputdlg(prompt,dlg_title,num_lines,def);

 ReportTxtName=(answer{1,:});

 resultfile=fopen(ReportTxtName,'w')

 prompt = {'Wished Test Acc (1- 100):'};

 dlg_title = 'Input your choice';

 num_lines = 1;

 def = {'70'};

 answer = inputdlg(prompt,dlg_title,num_lines,def);

 Wished_Test_Acc=str2num(answer{1,:});

end

input_checking=0;

while input_checking==0

prompt = {'number of Folders:','Datasize','Num of layers'};

dlg_title = 'Input--(Datasize=0 for biggest Datasize will be taken';

num_lines = 1;

def = {'2','0','10'};

answer = inputdlg(prompt,dlg_title,num_lines,def);

input_checking=1;

NumsofFolders=str2num(answer{1,:});

datasize=str2num(answer{2,:});

Layers=str2num(answer{3,:});

 85

input_checking=1;

if mod(datasize,Layers)~=0 || datasize/Layers<50

 input_checking=0;

end

if input_checking==0

msg2= msgbox('datasize is not divible for layers'...

 , 'Warning');

while(1)

if ishandle(msg2)==0

 break;

end

pause(1);

end

end

end

classesNames=cell(1,NumsofFolders);

for i=1:1:NumsofFolders

 classesNames{1,i}=strcat('Class',int2str(i));

end

input_checking=0;

while input_checking==0

dlg_title = 'Input';

num_lines = 1;

Classes = inputdlg(classesNames,dlg_title,num_lines);

 for i=1:NumsofFolders-1

 cur_class=Classes{i};

 next_class=Classes{i+1};

 if strcmp(cur_class,next_class)

 input_checking=0;

 break;

 else

 input_checking=1;

 end

 end

 if NumsofFolders==1

 input_checking=1;

 end

if input_checking==0

msg2= msgbox('Invalid Classes Name (they have to be different)'...

 , 'Warning');

while(1)

if ishandle(msg2)==0

 break;

end

pause(1);

end

end

end

if algo_choice==1

% trained seed list here

LayersNames=cell(1,Layers);

for i=1:1:Layers

 86

 LayersNames{1,i}=strcat('Seed_For_Layers',int2str(i));

end

dlg_title = 'Input';

num_lines = 1;

SeedsList = inputdlg(LayersNames,dlg_title,num_lines);

end

Cur_dir=pwd;

FileDir=cell(NumsofFolders,1);

NumofFiles=zeros(NumsofFolders,1);

for i=1:NumsofFolders

FileDir{i}=strcat(Cur_dir,'/',Classes{i})

NumofFiles(i,:)=length(dir(FileDir{i}))-2;

end

if datasize~=0

Best_Num_Train=datasize;

else

Best_Num_Train=min(NumofFiles);

end

input_checking=0

while input_checking==0

prompt = {'Enter Selected Channels separate by dashes:'};

dlg_title = 'Input';

num_lines = 2;

def = {'1-2-3-4-5-6-7-8-9-10-11-12-13-14'};

SelectedChannels = inputdlg(prompt,dlg_title,num_lines,def);

SelectedChannels=SelectedChannels{1};

counter=0;

for i=1:length(SelectedChannels)

 if strcmp(SelectedChannels(i),'-')

 counter=counter+1;

 end

end

numofChannels=counter+1;

choosing_vector=zeros(numofChannels,1)

String='';

num_count=0;

dash_last_index=0;

for i=1:length(SelectedChannels)

 if ~strcmp(SelectedChannels(i),'-')

 String=[String,SelectedChannels(i)];

 else

 if i>dash_last_index

 dash_last_index=i;

 end

 num_count=num_count+1;

 choosing_vector(num_count,:)=str2num(String);

 String='';

 end

 87

end

choosing_vector(num_count+1,:)=str2num(SelectedChannels(dash_last_inde

x+1:length(SelectedChannels)))

if numofChannels<0 || numofChannels>14

msg3= msgbox('Out of Bound','Warning');

while(1)

if ishandle(msg3)==0

 break;

end

pause(1);

end

input_checking=0;

else

input_checking=1;

end

end

input_checking=0;

while input_checking==0

prompt = {'Start Frequency: ','Stop Frequency: '};

dlg_title = 'Input Frequency From 0--64 Hz';

num_lines = 1;

def = {'4','30'};

answer = inputdlg(prompt,dlg_title,num_lines,def);

F_Start=str2num(answer{1,:});

F_Stop=str2num(answer{2,:});

if F_Start==F_Stop || F_Start>F_Stop || F_Start<0 || F_Start>65 ||

F_Stop<0 || F_Stop>65

 input_checking=0;

else

 input_checking=1;

end

if input_checking==0

 msg4= msgbox('Invalid Frequency Range'...

 , 'Warning');

while(1)

if ishandle(msg4)==0

 break;

end

pause(1);

end

end

end

F_range=F_Start:1:F_Stop;

input_checking=0;

Myseed=1:10;

Mylatch=0:1:Layers-1

Total_Num_Train=Best_Num_Train;

Best_Num_Train=Best_Num_Train/Layers;

 88

Sectorlength=Best_Num_Train;

if algo_choice==1

 Wished_Test_Acc=0;

 Myseed=1;

 Mylatch=0;

 Mysector=0:1:Layers-1;

 Best_Num_Train=Total_Num_Train;

else

 Mysector=1;

end

Wished_Test_Acc=Wished_Test_Acc/100;

for latch=Mylatch

 for seed=Myseed

if algo_choice==0&&seed==1

fprintf(resultfile,'\n');

FirstLine=['Seed',' ','Best_C',' ','Best_gamma','

','Train_acc',' ','Test_acc',' ','Total_SV','\n']

fprintf(resultfile,FirstLine);

end

Data=zeros(Best_Num_Train*NumsofFolders,numofChannels*length(F_range))

;

 Data_row=zeros(1,numofChannels*length(F_range));

 Classify=zeros(Best_Num_Train*NumsofFolders,1);

if algo_choice==0||Layers==1

 I_Start=latch*Best_Num_Train;

 I_Stop=I_Start+Best_Num_Train-1;

 for i=0:NumsofFolders-1

 for j=I_Start:1:I_Stop

load_file=[FileDir{i+1},'\','PSD_data_of_',Classes{i+1},int2str(j),'.m

at']

 S=load(load_file)

 X=S.Taken_data(choosing_vector',F_range)

 for k=0:1:numofChannels-1

Data_row(length(F_range)*k+1:length(F_range)*k+length(F_range))=X(k+1,

:);

 end

 Classify(Best_Num_Train*i+j-I_Start+1,:)=i+1;

 Data(Best_Num_Train*i+j-I_Start+1,:)=Data_row;

 end

 end

else

for l=Mysector

 89

 Jump=Best_Num_Train/Layers

 I_Start=l*Jump;

 I_Stop=I_Start+Jump-1;

 for i=0:NumsofFolders-1

 for j=I_Start:1:I_Stop

load_file=[FileDir{i+1},'\','PSD_data_of_',Classes{i+1},int2str(j),'.m

at']

 S=load(load_file)

 X=S.Taken_data(choosing_vector',F_range)

 for k=0:1:numofChannels-1

Data_row(length(F_range)*k+1:length(F_range)*k+length(F_range))=X(k+1,

:);

 end

 Classify(Jump*(i+l*NumsofFolders)+(j-I_Start)+1,:)=i+1;

 Data(Jump*(i+l*NumsofFolders)+(j-I_Start)+1+1,:)=Data_row;

 end

 end

end

end

% Start Training

tic

timedata_all = Data;

decision_data_all = Classify;

saved_minarray=min(timedata_all,[],1);

saved_ratio=spdiags(1./(max(timedata_all,[],1)-

min(timedata_all,[],1))',0,size(timedata_all,2),size(timedata_all,2));

timedata_all = (timedata_all -

repmat(saved_minarray,size(timedata_all,1),1))*saved_ratio;

decision_data = decision_data_all(:,1);

range=length(decision_data');

timedata = timedata_all(1:1:range,:);

decision_data = decision_data(1:1:range,:);

x_all=timedata;

y_all = decision_data;

finaltest_index=zeros(1,length(y_all)/5);

for sector=Mysector

for i=0:1:NumsofFolders-1

 if algo_choice==1

 seed=str2num(SeedsList{sector+1});

 rand('state',seed); randn('state',seed);

 if Layers==1

finaltest_index(i*length(find(y_all==i+1))/5+1:1:(i+1)*length(find(y_a

ll==i+1))/5)=randsample(find(y_all==i+1),length(find(y_all==i+1))/5);

 else

 90

 Jumper=Layers;

 Section_length=Best_Num_Train/Layers*NumsofFolders;

finaltest_index(sector*length(y_all)/5/Jumper+i*length(find(y_all==i+1

))/Jumper/5+1:1:sector*length(y_all)/5/Jumper+(i+1)*length(find(y_all=

=i+1))/Jumper/5)=Section_length*sector+randsample(find(y_all(Section_l

ength*sector+1:Section_length*(sector+1))==i+1),length(find(y_all==i+1

))/5/Jumper);

 end

 else

 rand('state',seed); randn('state',seed);

finaltest_index(i*length(find(y_all==i+1))/5+1:1:(i+1)*length(find(y_a

ll==i+1))/5)=randsample(find(y_all==i+1),length(find(y_all==i+1))/5);

 end

end

end

x_finaltest = x_all(finaltest_index,:);

y_finaltest = y_all(finaltest_index)';

Train_index = setdiff(1:length(y_all),finaltest_index);

x_Train_all1 = x_all(Train_index,:);

y_Train_all1 = y_all(Train_index)';

[y_Train_all,right_order] = sort(y_Train_all1);

x_Train_all = x_Train_all1(right_order,:);

alpha = 1/NumsofFolders;

%% start calculating

bond = 80; % this bond is to limit the training accuracy

bondgap=40

percentage_bound = bond ;

xValidationFolds = 5;

% train_rbfsvm_official is the function we use to train data for

getting

% best parameters C ,gamma ,and SVM structure

y= y_Train_all';

x= x_Train_all;

if algo_choice==1

y= y_Train_all1';

x= x_Train_all1;

end

indexes=zeros(NumsofFolders,length(y_Train_all)/NumsofFolders);

for i=0:1:NumsofFolders-1

indexes(i+1,:)=find(y==i+1);

end

fid=fopen('writeweight.m','w')

for i=1:NumsofFolders

write='w%i=%i ;\r\n';

text=[i 1]'

fprintf(fid,write,text)

end

fclose(fid);

writeweight

Col=floor(length(y_Train_all)/NumsofFolders/xValidationFolds);

 91

%------------------------

Temp_indexes=indexes(1,:);

Temp_indexes_new=

reshape(Temp_indexes(randperm(xValidationFolds*Col)),xValidationFolds,

Col);

expected_range=length(Temp_indexes_new);

New_indexes=zeros(NumsofFolders*5,expected_range);

for sector=Mysector

for i=0:1:NumsofFolders-1

if algo_choice==1

seed=str2num(SeedsList{sector+1});

rand('state',seed); randn('state',seed);

lID=length(indexes)/Layers;

lID1=Col/Layers

Temp_indexes=indexes(i+1,sector*lID+1:(sector+1)*lID);

New_indexes(i*5+1:(i+1)*5,sector*lID1+1:(sector+1)*lID1)=reshape(Temp_

indexes(randperm(xValidationFolds*Col/Layers)),xValidationFolds,Col/La

yers);

else

rand('state',seed); randn('state',seed);

Temp_indexes=indexes(i+1,:);

New_indexes(i*5+1:(i+1)*5,:)=reshape(Temp_indexes(randperm(xValidation

Folds*Col)),xValidationFolds,Col);

end

end

end

% optimize C

% optimize gamma

if algo_choice==1

choice = questdlg('What type of optimization you want to choose

?','Algorithm checker','C optimizer','gamma optimizer','Making a

model','Making a model');

switch choice

 case 'gamma optimizer'

 option=0;

 case 'C optimizer'

 option=1;

 case 'Making a model'

 option=3;

end

else

 option=2

end

search=1:5

dlg_title='Input otimized para'

if option==0

prompt = {'Input C:'};

num_lines = 1;

def = {'0'};

answer = inputdlg(prompt,dlg_title,num_lines,def);

GuessBestC=str2num(answer{1});

search=1:5

 92

elseif option==1

prompt = {'Input Gamma:'};

num_lines = 1;

def = {'0'};

answer = inputdlg(prompt,dlg_title,num_lines,def);

GuessBestGamma=str2num(answer{1});

search=1:5

elseif option==3

prompt = {'Input Gamma:','Input C:'};

num_lines = 1;

def = {'0','0'};

answer = inputdlg(prompt,dlg_title,num_lines,def);

GuessBestGamma=str2num(answer{1});

GuessBestC=str2num(answer{2});

search=1;

xValidationFolds=1;

end

for search=search

if search==1

 step1 =1 ;

 if option==2

 min_c = -5; max_c =15;

 C_array = 2.^(min_c:step1:max_c);

 % original gamma step 1

 min_gamma = -10; max_gamma = 5;

 gamma_array = 2.^(min_gamma:step1:max_gamma);

 elseif option==0

 C_array=GuessBestC;

 min_gamma = -10; max_gamma = 5;

 gamma_array = 2.^(min_gamma:step1:max_gamma);

 elseif option==1

 gamma_array=GuessBestGamma;

 min_c = -5; max_c =15;

 C_array = 2.^(min_c:step1:max_c);

 elseif option==3

 gamma_array=GuessBestGamma

 C_array=GuessBestC;

 end

else

 step1=step1/2;

 if option==2

 C_range = max(min_c, log2(best_C)-

step1*10):step1:min(log2(best_C)+step1*10,max_c);

 C_array = 2.^(C_range);

 gamma_range = max(min_gamma, log2(best_gamma)-

step1*10):step1:min(log2(best_gamma)+step1*10,max_gamma);

 gamma_array=2.^(gamma_range);

 elseif option==0

 C_array=GuessBestC;

 min_gamma = -10; max_gamma = 5;

 gamma_array = 2.^(min_gamma:step1:max_gamma);

 elseif option==1

 93

 gamma_array=GuessBestGamma;

 min_c = -5; max_c =15;

 C_array = 2.^(min_c:step1:max_c);

 elseif option==3

 gamma_array=GuessBestGamma

 C_array=GuessBestC;

 end

end

C_length = length(C_array);

G_length=length(gamma_array);

train_correct_rate=zeros(C_length, G_length);

test_correct_rate=zeros(C_length, G_length);

optimazation_criterion_2=zeros(C_length, G_length);

for k=1:C_length

 for j=1:G_length

 for fold=1:xValidationFolds

 testPortion=zeros(1,expected_range*NumsofFolders);

 for i=0:1:NumsofFolders-1

 temp_indexes=New_indexes(i*5+1:(i+1)*5,:);

testPortion(1,i*expected_range+1:1:expected_range*(i+1))=temp_indexes(

fold,:);

 end

 trainPortion = setdiff(1:length(y),testPortion);

 x_train = x(trainPortion, :);

 y_train = y(trainPortion, :);

 x_test= x(testPortion,:);

 y_test= y(testPortion,:);

 cur_C=C_array(k);

 cur_S=gamma_array(j);

 fid=fopen('writePara.m','w')

 write='Parameters = [''-c '' num2str(C_array(k)) '' -g

'' num2str(gamma_array(j)) '

 for i=1:NumsofFolders

 write=[write,'''-w',num2str(i),' '' ','

','num2str(w',num2str(i),')',' '];

 if i==NumsofFolders

 write=[write,' ',''' -b 0''','];'];

 end

 end

 fprintf(fid,write)

 fclose(fid)

 writePara;

 model = svmtrain(y_train,x_train,Parameters);

 [group_train,acc_train,val_train] = svmpredict(y_train,

x_train, model,'-b 0');

 [group_test,acc_test,val_test] = svmpredict(y_test,

x_test, model,'-b 0');

 94

train_correct_rate(k,j)=train_correct_rate(k,j)+100*sum(group_train==y

_train)/size(x_train,1);

test_correct_rate(k,j)=test_correct_rate(k,j)+100*sum(group_test==y_te

st)/size(x_test,1);

 Pro_test=zeros(NumsofFolders,1);

 for i=1:NumsofFolders

 Pro_test(i)=

length(intersect(find(y_test==i),find(group_test~=i)))/length(find(y_t

est==i));

 if isnan(Pro_test(i));

 Pro_test(i) = 0;

 end

 end

 for i=1:NumsofFolders

 optimazation_criterion_2(k, j)=

optimazation_criterion_2(k, j)+alpha*Pro_test(i);

 end

 end

train_correct_rate(k,j)=train_correct_rate(k,j)/xValidationFolds;

test_correct_rate(k,j)=test_correct_rate(k,j)/xValidationFolds;

 optimazation_criterion_2(k, j)= optimazation_criterion_2(k,

j)/xValidationFolds;

 if train_correct_rate(k,j)<percentage_bound ||

test_correct_rate(k,j)<train_correct_rate(k,j)-bondgap

 optimazation_criterion_2(k, j)=Inf;

 end

 end % end j

end %end k

train_correct_rate

optimazation_criterion_2

test_correct_rate

[best_rate1, index1]=min(optimazation_criterion_2)

[best_rate2, index2]=min(best_rate1)

if option==2

 best_C=C_array(index1(1, index2))

 best_gamma=gamma_array(index2)

elseif option==0

 best_C=C_array

 best_gamma=gamma_array(index2)

elseif option==1

 best_gamma=gamma_array

 best_C=C_array(index1(1, index2))

elseif option ==3

 best_C=C_array

 best_gamma=gamma_array

end

 95

best_rate2

display('end')

display(search)

end

 fid=fopen('writeFPara.m','w')

 write='Final_Parameters = [''-c '' num2str(best_C) '' -

g '' num2str(best_gamma) '

 for i=1:NumsofFolders

 write=[write,'''-w',num2str(i),' '' ','

','num2str(w',num2str(i),')',' '];

 if i==NumsofFolders

 write=[write,' ',''' -b 0''','];'];

 end

 end

 fprintf(fid,write)

 fclose(fid)

writeFPara

final_model =

svmtrain(y_Train_all',x_Train_all,Final_Parameters);

[class_train,~,p_train] =

svmpredict(double(y_Train_all'),x_Train_all, final_model,'-b 0');

[class_test,~,p_test] =

svmpredict(double(y_finaltest'),x_finaltest, final_model,'-b 0');

label_train=class_train;

label_test=class_test;

train_acc = sum(label_train == y_Train_all') ./

numel(y_Train_all) % Accuracy

test_acc = sum(label_test == y_finaltest') ./

numel(y_finaltest)

C_train = confusionmat(y_Train_all,label_train)

C_test = confusionmat(y_finaltest,label_test)

numSV=final_model.totalSV

Cur_dir=pwd;

Para_dir=strcat(Cur_dir,'/','Parameters');

String=strcat(Para_dir,'/','Para_',int2str(Best_Num_Train),'data_');

for i=1:1:NumsofFolders

 String=strcat(String,Classes{i},'_');

end

if algo_choice==1

Name=strcat(int2str(numofChannels),'Channels','(',SelectedChannels

,')','_',num2str(test_acc),'.mat')

uisave('final_model',String);

else

if test_acc>=Wished_Test_Acc

ResultWrite=[num2str(seed),' ',num2str(best_C),'

',num2str(best_gamma),' ',num2str(train_acc),'

',num2str(test_acc),' ',num2str(numSV),'\n']

fprintf(resultfile,ResultWrite);

end

F_rangestr=[num2str(F_range(1)),'-',num2str(F_range(length(F_range)))]

IndexRange=[num2str(I_Start),'-',num2str(I_Stop),'ID']

 96

LastLine=['Result of ', num2str(Best_Num_Train),' data ',

SelectedChannels, 'channel ',F_rangestr,'Hz ', IndexRange]

for i=1:NumsofFolders

LastLine=[LastLine,' ',Classes{i}]

end

LastLine=[LastLine,'\n']

fprintf(resultfile,LastLine);

end

end

end

Test_acc=num2str(Wished_Test_Acc)

VeryLastLine=['Result of ', num2str(Total_Num_Train),' data ',

SelectedChannels, 'channel ',F_rangestr,'Hz ']

for i=1:NumsofFolders

VeryLastLine=[VeryLastLine,' ',Classes{i}]

end

VeryLastLine=[VeryLastLine,'with Wished_Test_Acc of: ',Test_acc]

fprintf(resultfile,VeryLastLine);

fclose(resultfile)

 97

A.4 RobotControl.m

clc

clear all

open('C:\Program Files (x86)\Epoc Simulink EEG

Importer\EpocSignalServer.exe');

open('C:\Program Files (x86)\Emotiv EPOC Control Panel

v2.0.0.21\Applications\ConsumerControlPanel.exe');

choice = questdlg('What type of Run you want to choose

?','Mode','Practice Mode','Real Time Mode','Practice Mode');

switch choice

 case 'Practice Mode'

 M=0;

 case 'Real Time Mode'

 M=1;

end

Cur_dir=pwd;

Para_folder=[Cur_dir,'\','Parameters']

Parachoice=0

while Parachoice==0

[Parachoice,ParaPath] = uigetfile('*.mat','Select The

Parameters',Para_folder)

RunModel=load([ParaPath,Parachoice])

RunModel=RunModel.final_model

end

if M==0

input_checking=0;

while input_checking==0

prompt = {'number of Folders:','Datasize','Time','Points:'};

dlg_title = 'Input--(Datasize=0 for biggest Datasize will be taken';

num_lines = 1;

def = {'2','1000','10','30'};

answer = inputdlg(prompt,dlg_title,num_lines,def);

NumsofFolders=str2num(answer{1,:});

datasize=str2num(answer{2,:});

TimeTrain=str2num(answer{3,:});

Points=str2num(answer{4,:});

input_checking=1;

end

else

input_checking=0;

while input_checking==0

prompt = {'number of Folders:','Datasize','Time'};

dlg_title = 'Input--(Datasize=0 for biggest Datasize will be taken';

num_lines = 1;

def = {'2','1000','5'};

answer = inputdlg(prompt,dlg_title,num_lines,def);

input_checking=1;

NumsofFolders=str2num(answer{1,:});

datasize=str2num(answer{2,:});

TimeTrain=str2num(answer{3,:});

 98

input_checking=1;

end

end

classesNames=cell(1,NumsofFolders);

for i=1:1:NumsofFolders

 classesNames{1,i}=strcat('Class',int2str(i));

end

input_checking=0;

while input_checking==0

dlg_title = 'Input';

num_lines = 1;

Classes = inputdlg(classesNames,dlg_title,num_lines);

 for i=1:NumsofFolders-1

 cur_class=Classes{i};

 next_class=Classes{i+1};

 if strcmp(cur_class,next_class)

 input_checking=0;

 break;

 else

 input_checking=1;

 end

 end

 if NumsofFolders==1

 input_checking=1;

 end

if input_checking==0

msg2= msgbox('Invalid Classes Name (they have to be different)'...

 , 'Warning');

while(1)

if ishandle(msg2)==0

 break;

end

pause(1);

end

end

end

FileDir=cell(NumsofFolders,1);

NumofFiles=zeros(NumsofFolders,1);

for i=1:NumsofFolders

FileDir{i}=strcat(Cur_dir,'/',Classes{i})

NumofFiles(i,:)=length(dir(FileDir{i}))-2;

end

if datasize~=0

Best_Num_Train=datasize;

else

Best_Num_Train=min(NumofFiles);

end

 99

input_checking=0

while input_checking==0

prompt = {'Enter Selected Channels separate by dashes:'};

dlg_title = 'Input';

num_lines = 2;

def = {'1-2-3-4-5-6-7-8-9-10-11-12-13-14'};

SelectedChannels = inputdlg(prompt,dlg_title,num_lines,def);

SelectedChannels=SelectedChannels{1};

counter=0;

for i=1:length(SelectedChannels)

 if strcmp(SelectedChannels(i),'-')

 counter=counter+1;

 end

end

numofChannels=counter+1;

choosing_vector=zeros(numofChannels,1)

String='';

num_count=0;

dash_last_index=0;

for i=1:length(SelectedChannels)

 if ~strcmp(SelectedChannels(i),'-')

 String=[String,SelectedChannels(i)];

 else

 if i>dash_last_index

 dash_last_index=i;

 end

 num_count=num_count+1;

 choosing_vector(num_count,:)=str2num(String);

 String='';

 end

end

choosing_vector(num_count+1,:)=str2num(SelectedChannels(dash_last_inde

x+1:length(SelectedChannels)))

if numofChannels<0 || numofChannels>14

msg3= msgbox('Out of Bound','Warning');

while(1)

if ishandle(msg3)==0

 break;

end

pause(1);

end

input_checking=0;

else

input_checking=1;

end

end

input_checking=0;

while input_checking==0

prompt = {'Start Frequency: ','Stop Frequency: '};

dlg_title = 'Input Frequency From 0--64 Hz';

 100

num_lines = 1;

def = {'4','30'};

answer = inputdlg(prompt,dlg_title,num_lines,def);

F_Start=str2num(answer{1,:});

F_Stop=str2num(answer{2,:});

if F_Start==F_Stop || F_Start>F_Stop || F_Start<0 || F_Start>64 ||

F_Stop<0 || F_Stop>65

 input_checking=0;

else

 input_checking=1;

end

if input_checking==0

 msg4= msgbox('Invalid Frequency Range'...

 , 'Warning');

while(1)

if ishandle(msg4)==0

 break;

end

pause(1);

end

end

end

F_range=F_Start:1:F_Stop;

Rows=Best_Num_Train*NumsofFolders

Collumns= numofChannels*length(F_range)

Data=zeros(Rows,Collumns);

Data_row=zeros(1,Collumns);

TakingDatamodel=uigetfile('*.mdl')

TakingDatamodel=TakingDatamodel(1:length(TakingDatamodel)-4)

choice = questdlg('What type of Feedback you want to choose

?','Feedback','Correlation Coefficent','Reference Power and

Correlation Coefficent','Reference Power and Correlation Coefficent');

switch choice

 case 'Correlation Coefficent'

 Feedback=0;

 case 'Reference Power and Correlation Coefficent'

 Feedback=1;

end

if Feedback==1

 msg=msgbox(['Collecting Reference Data for',num2str(20),'s'])

 while(1)

 if ishandle(msg)==0

 break;

 end

 pause(1);

 end

 sim(TakingDatamodel,20)

 S=load('res.mat');

 A=S.ans;

 101

 X=A(3:16,1:128*TimeTrain)

 Fs=128;

 N=128*TimeTrain;

 for k=1:1:14

 original_data=X;

 window=hamming(N);

 psd_data(k,:) =

2*periodogram(original_data(k,:),window,0:Fs/2,Fs);

 end

 psd_data_ref=psd_data(choosing_vector,F_range)

 Temp=psd_data_ref';

 Data_Ref=Temp(:)'

 msg=msgbox('Reference taken')

 while(1)

 if ishandle(msg)==0

 break;

 end

 pause(1);

 end

else

 Data_Ref=0;

end

 for i=0:NumsofFolders-1

 for j=0:1:Best_Num_Train-1

load_file=[FileDir{i+1},'\','PSD_data_of_',Classes{i+1},int2str(j),'.m

at']

 S=load(load_file)

 X=S.Taken_data(choosing_vector',F_range)

 for k=0:1:numofChannels-1

Data_row(length(F_range)*k+1:length(F_range)*k+length(F_range))=X(k+1,

:);

 end

 Data(Best_Num_Train*i+j+1,:)=Data_row;

 end

 end

timedata_all=zeros(Rows,Collumns)

timedata_all(1:Rows,:)=Data;

%Normalizing

minarray=min(timedata_all,[],1);

 ratio=spdiags(1./(max(timedata_all,[],1)-

min(timedata_all,[],1))',0,size(timedata_all,2),size(timedata_all,2));

 timedata_all = (timedata_all -

repmat(minarray,size(timedata_all,1),1))*ratio;

Timespan=[0 TimeTrain]

 102

check=0;

if M==0

for i = 1:NumsofFolders

Correct=0;

Choice=i;

cccheck=0;

Loop=0;

msg=msgbox(['Collecting Reference Data for Correlation Calculation

of',Classes{i},'s'])

while(1)

 if ishandle(msg)==0

 break;

 end

 pause(1);

end

while(cccheck~=1)

 sim(TakingDatamodel,TimeTrain)

 S=load('res.mat');

 A=S.ans;

 X=A(3:16,1:128*TimeTrain)

 Fs=128;

 N=128*TimeTrain;

 for k=1:1:14

 original_data=X;

 window=hamming(N);

 psd_data(k,:) =

2*periodogram(original_data(k,:),window,0:Fs/2,Fs);

 end

 psd_data_ref=psd_data(choosing_vector,F_range)

 Temp=psd_data_ref';

 Corr_Ref=Temp(:)';

 Corr_Ref=(Corr_Ref-minarray)*ratio;

 [Result_Corr,~,p_train] = svmpredict(Choice,Corr_Ref, RunModel,'-

b 0');

 if Result_Corr==i

 cccheck=1;

 Time_corr=X;

 msg=msgbox('Correlation Reference taken')

 while(1)

 if ishandle(msg)==0

 break;

 end

 pause(1);

 end

 else

 cccheck=0

 msg=msgbox('Try again')

 while(1)

 if ishandle(msg)==0

 break;

 end

 pause(1);

 103

 end

 end

end

 msg=msgbox(['ready to practice

',Classes{i},'for',num2str(Points),'times'])

 while(1)

 if ishandle(msg)==0

 break;

 end

 pause(1);

 end

while Correct<Points

Loop=Loop+1;

msg=msgbox(['Prepare to take data ')

while(1)

 if ishandle(msg)==0

 break;

 end

 pause(1);

end

check=0;

while check~=1

sim(TakingDatamodel,Timespan)

S=load('res.mat');

A=S.ans;

X=A(3:16,1:128*TimeTrain);

Timedata=X;

Fs=128;

N=128*TimeTrain;

 for k=1:1:14

 original_data=X;

 window=hamming(N);

 psd_data(k,:) =

2*periodogram(original_data(k,:),window,0:Fs/2,Fs);

 end

psd_data_use=psd_data(choosing_vector,F_range);

Temp=psd_data_use';

Predict_data=Temp(:)';

corr_coeff=corrcoef(Timedata(:),Time_corr(:))

if mean(Predict_data)<=mean(Data_Ref) || corr_coeff(1,2)<0.80

 check=0;

 msg=msgbox('Focus please');

 while(1)

 if ishandle(msg)==0

 break;

 end

 pause(1);

 end

else

 104

 check=1;

end

end

Predict_data=(Predict_data-minarray)*ratio;

[Result,~,p_train] = svmpredict(Choice,Predict_data, RunModel,'-b

0');

if Result==Choice

 msg=msgbox(['Your thought:',Classes(Result)],'Correct !')

 while(1)

 if ishandle(msg)==0

 break;

 end

 pause(1);

 end

 Correct=Correct+1;

else

 msg=msgbox(['Your thought:',Classes(Result)],'Incorrect !')

 while(1)

 if ishandle(msg)==0

 break;

 end

 pause(1);

 end

end

end

 msg=msgbox(['Your Result For ',Classes{i},' Practice is:

',num2str(Correct/Loop/NumsofFolders*100)],'Practice Result!')

 while(1)

 if ishandle(msg)==0

 break;

 end

 pause(1);

 end

end

else

choice = questdlg('What type of DataType you want to choose

?','DataType','Alphabetical','Directional','Directional');

switch choice

 case 'Alphabetical'

 Type=0;

 case 'Directional'

 Type=1;

end

Timedata_Corr=zeros(NumsofFolders,numofChannels*128*TimeTrain);

for i = 1:NumsofFolders

 cccheck=0;

 msg=msgbox(['Collecting Reference Data for Correlation Calculation

of',Classes{i},'s'])

 while(1)

 if ishandle(msg)==0

 break;

 105

 end

 pause(1);

 end

 while(cccheck~=1)

 sim(TakingDatamodel,TimeTrain)

 S=load('res.mat');

 A=S.ans;

 X=A(3:16,1:128*TimeTrain)

 Fs=128;

 N=128*TimeTrain;

 for k=1:1:14

 original_data=X;

 window=hamming(N);

 psd_data(k,:) =

2*periodogram(original_data(k,:),window,0:Fs/2,Fs);

 end

 psd_data_ref=psd_data(choosing_vector,F_range)

 Temp=psd_data_ref';

 Corr_Ref=Temp(:)';

 Corr_Ref=(Corr_Ref-minarray)*ratio;

 [Result_Corr,~,p_train] = svmpredict(i,Corr_Ref, RunModel,'-b

0');

 if Result_Corr==i

 cccheck=1;

Timedata_Corr(i,:)=X(:);

 msg=msgbox('Correlation Reference taken')

 while(1)

 if ishandle(msg)==0

 break;

 end

 pause(1);

 end

 else

 cccheck=0

 msg=msgbox('Try again')

 while(1)

 if ishandle(msg)==0

 break;

 end

 pause(1);

 end

 end

end

end

while(1)

msg=msgbox('Prepare to take data ')

while(1)

 if ishandle(msg)==0

 break;

 end

 pause(1);

end

 106

check=0;

while check~=1

sim(TakingDatamodel,Timespan)

S=load('res.mat');

A=S.ans;

X=A(3:16,1:128*TimeTrain);

Timedata=X;

Fs=128;

N=128*TimeTrain;

 for k=1:1:14

 original_data=X;

 window=hamming(N);

 psd_data(k,:) =

2*periodogram(original_data(k,:),window,0:Fs/2,Fs);

 end

psd_data_use=psd_data(choosing_vector,F_range);

Temp=psd_data_use';

Predict_data=Temp(:)';

Predict_data=(Predict_data-minarray)*ratio;

[Result,~,p_train] = svmpredict(1,Predict_data, RunModel,'-b 0');

Time_corr=Timedata_Corr(Result,:)

corr_coeff=corrcoef(Timedata(:),Time_corr)

if mean(Predict_data)<=mean(Data_Ref) || corr_coeff(1,2)<0.85

 check=0;

 msg=msgbox('Focus please');

 while(1)

 if ishandle(msg)==0

 break;

 end

 pause(1);

 end

else

if Type==0

 if Result==1

 string='A';

 else

 string='B';

 end

else

 if Result==1

 string='l';

 elseif Result==2

 string='r';

 elseif Result==3

 string='f';

 elseif Result==4

 string='b';

 end

end

 run ;

 107

 fprintf(s,string)

 display(string)

 pause(2);

 if Type==1

 string='s';

 fprintf(s,string)

 display(string)

 end

 fclose(instrfind);

msg=msgbox('Prepare to take data ')

while(1)

 if ishandle(msg)==0

 break;

 end

 pause(1);

end

end

end

end

end

 108

A.5 ExampleBrainDataMaker.m

input_checking=0;

while input_checking==0

prompt = {'Name of new data','Number of Example items'...

 ,'Mean','deviation'};

dlg_title = 'Input';

num_lines = 1;

def = {'Randdata_100mean','1000','100','5'};

answer = inputdlg(prompt,dlg_title,num_lines,def);

input_checking=1;

end

cur_dir=pwd;

des_dir=[cur_dir,'/',answer{1}]

mkdir(des_dir)

a = str2num(answer{4});

b = str2num(answer{3});

c = str2num(answer{2})

for i=0:1:c-1

 rng(i,'twister');

 Taken_data=a.*randn(14,64)+b;

 new_name=['PSD_data_of_',answer{1},int2str(i),'.mat']

 newdes=[des_dir,'/',new_name]

 save(newdes,'Taken_data')

end

 109

A.6 Serial mode function and run.m

a) run.m

comPort='COM5';

[s,flag]=setupSerial(comPort);

b) setupSerial.m

function[s,flag]=setupSerial(comPort)

flag=1;

s = serial(comPort);

set(s,'DataBits',8);

set(s,'Stopbits',1);

set(s,'BaudRate',9600);

set(s,'Parity','none');

fopen(s);

a='b';

while(a~='a')

 a=fread(s,1,'uchar');

end

if(a=='a')

 disp('serial read');

end

 fprintf(s,'%c','a');

 fscanf(s,'%u');

end

 110

Appendix B: Arduino code

B.1 Transmitter. ino

char myData;

void setup(){

 pinMode(2,OUTPUT);

 pinMode(3,OUTPUT);

 pinMode(4,OUTPUT);

 Serial.begin(9600);

 Serial.println('a');

 char a= 'b';

while (a !='a')

{

 a= Serial.read();

}

}

void loop(){

 if(Serial.available() > 0){

 myData = Serial.read();

 if(myData=='f')

 {

 digitalWrite(2, LOW);

 digitalWrite(3, LOW);

 digitalWrite(4, HIGH);

 }

 else if(myData=='b')

 {

 digitalWrite(2, LOW);

 digitalWrite(3, HIGH);

 digitalWrite(4, LOW);

 }

 else if(myData=='l')

 {

 digitalWrite(2, LOW);

 digitalWrite(3, HIGH);

 digitalWrite(4, HIGH);

 }

 else if(myData=='r')

 {

 digitalWrite(2, HIGH);

 digitalWrite(3, LOW);

 digitalWrite(4, LOW);

 }

 else if(myData=='A')

 {

 digitalWrite(2, HIGH);

 digitalWrite(3, LOW);

 digitalWrite(4, HIGH);

 }

 111

 else if(myData=='B')

 {

 digitalWrite(2, HIGH);

 digitalWrite(3, HIGH);

 digitalWrite(4, LOW);

 }

 Serial.print(myData);

 }

}

 112

B.2 Receiver.ino

#include <Servo.h>

#include <LiquidCrystal.h>

int motorL=8;

int motorR=9;

Servo myservoR;

Servo myservoL;

LiquidCrystal lcd(12,11,5,4,3,2);

char myData;

void setup(){

 Serial.begin(9600);

 pinMode(motorL, OUTPUT);

 pinMode(motorR, OUTPUT);

 myservoR.attach(9);

 myservoL.attach(8);

 lcd.begin(16,2);

 lcd.clear();

 pinMode(A0,INPUT);

 pinMode(A1,INPUT);

 pinMode(A2,INPUT);

}

 void loop(){

 int a=A0;

 int b=A1;

 int c=A2;

 if (a==0&&b==0&&c==1)

 {

 lcd.print("FORWARD");

 myservoL.writeMicroseconds(1000);

 myservoR.writeMicroseconds(2000);

 delay(100);

 myservoL.writeMicroseconds(1500);

 myservoR.writeMicroseconds(1500);

 }

 if (a==0&&b==1&&c==0)

 {

 lcd.print("BACkWARD");

 myservoL.writeMicroseconds(2000);

 myservoR.writeMicroseconds(1000);

 delay(100);

 myservoL.writeMicroseconds(1500);

 myservoR.writeMicroseconds(1500);

 }

 if (a==0&&b==1&&c==1)

 {

 lcd.print("LEFT");

 myservoL.writeMicroseconds(1000);

 myservoR.writeMicroseconds(1000);

 113

 delay(700);

 myservoL.writeMicroseconds(1500);

 myservoR.writeMicroseconds(1500);

 }

 if (a==1&&b==0&&c==0)

 {

 lcd.print("RIGHT");

 myservoL.writeMicroseconds(2000);

 myservoR.writeMicroseconds(2000);

 delay(700);

 myservoL.writeMicroseconds(1500);

 myservoR.writeMicroseconds(1500);

 }

 if (a==1&&b==0&&c==1)

 {

 lcd.print("A");

 }

 if (a==1&&b==1&&c==0)

 {

 lcd.print("B");

 }

 if (a==0&&b==0&&c==0)

 {

 lcd.print("STOP");

 }

 }

	University of Arkansas, Fayetteville
	ScholarWorks@UARK
	12-2015

	EEG-Controlling Robotic Car and Alphabetic Display by Support Vector Machine for Aiding Amyotrophic Lateral Sclerosis Patients
	Quang M. Le
	Recommended Citation

	tmp.1449258327.pdf.5Ky06

