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Abstract 

 This thesis presents the design and experiment of a system that can detect the human 

thinking such as driving directions and letters using the brainwave signals known as 

electroencephalogram (EEG) and a machine learning algorithm called support vector machine 

(SVM). This research is motivated by amyotrophic lateral sclerosis (ALS) disease which makes 

patients seriously lose mobility and speaking capabilities. The developed system in this thesis 

has three main steps. First, wearing EPOC headset from Emotiv Company, a user can record the 

EEG signals when he/she is thinking a direction or a letter, and also save the data in a personal 

computer wirelessly. Next, a large amount of EEG data carrying the information of different 

directions and letters from this user are used to train SVM classification model exhaustively. 

Finally, the well-trained SVM model will be used to detect any new thought about directions and 

letters from the user. The detection results from the SVM model will be transmitted wirelessly to 

a robotic car with LCD display built with Arduino microcontrollers to control its motions as well 

as the alphabetic display on LCD. One of the great potential applications of the developed 

system is to make an advanced brain control wheel chair system with LCD display for aiding 

ALS patients with their mobility and daily communications.      

Keywords: SVM (support vector machine), EEG (electroencephalogram), EPOC 

headset, ALS (amyotrophic lateral sclerosis). 
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Chapter 1: Introduction 

1.1 Background and motivation 

An EEG signal measures summation of electrical activities of thousands or even millions of 

neurons that have the similar spatial orientation in the human brain. It can be acquired through a 

small, flat electrical disk (electrode sensor) sitting directly on a location at the scalp [1] and is 

normally represented as a waveform in microvolt unit. The neural populations in different brain 

locations may generate EEG signals with different statistical properties when human beings are 

thinking different tasks. Therefore, multi-channel EEG signals may have different patterns in 

terms of tasks. From this principle, EEG pattern recognition through machine learning 

algorithms will be able to identify thoughts of human beings. For example, when human beings 

plan two possible driving directions which are forward and backward, the generated EEG data 

can be classified using the support vector machine (SVM) [2&3] algorithm into two categories 

associated with the directions. Such EEG classification outcomes with high accuracy will be able 

to provide a method and technology for mobile motion control. When human beings imagine or 

think English words letter by letter in minds, the EEG patterns may vary with letters and 

therefore, the EEG data carrying the letter information can be even classified into different 

categories by the SVM algorithm [1&2]. The accurate classification results will be able to 

provide a new way for communication. In addition, for applications related to human brains, 

EEG acquisition technology can be low-cost, safe, portable, and wireless compared with other 

technologies such as functional magnetic resonance imaging and invasive surgery of implanting 

electrodes into brain for neural spikes. In our research, EPOC package from Emotiv Company 

has been used to record EEG signals.       
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Amyotrophic lateral sclerosis (ALS) is a progressive chronic motor neuron disease to make 

patients lose mobility and speaking capabilities [4]. This disease occurs when specific nerve cells 

in the brain and spinal cord that control voluntary movement gradually degenerate. The loss of 

these motor neurons causes the muscles under their control to weaken and waste away, leading to 

paralysis and difficulty in speaking [5]. As a result, ALS patients may not be able to move or 

speak normally. ALS affects about 20,000 Americans with 5,000 new cases occurring in the 

United States each year. Unfortunately, the cause of this disease process is unknown, there is no 

cure for ALS, and the patients may die within 5 years of the time the diagnosis of this disease is 

made.  

Motivated by ALS disease and properties of human brain EEG signals, our research is to develop 

a EEG-based prototype system that can monitor the human brain activity, detect the human’s 

thought such as moving directions and letters, and then control robotic car motion and alphabetic 

display on LCD. In the research for developing the system, we use Emotiv EPOC package, a 

personal computer, Matlab software, and microcontrollers (Arduino package). Such a system can 

also be called a brain computer interface (BCI) system. Based on the developed system, an 

application such as an advanced EEG-based brain control wheelchair with LCD display can be 

further developed to improve the lift quality of ALS patients with better mobility and 

communications.   

1.2 EEG-based BCI system for robotic car and alphabetic display control  

In this Honor thesis, we focus on creating a BCI system for controlling robotic car motion and 

alphabetic display on LCD through EEG signals only. The main challenge of developing such a 

system is that the data originated from the human brain are normally extremely noisy. Therefore, 

we need use some special or complicated signal processing and data analysis techniques to 



  3 

 

recognize the human thought with high accuracy. For example, we use SVM, a popular 

sophisticated nonlinear machine learning algorithm, to classify EEG patterns into different 

classes for decoding the human thinking.  The main idea of our EEG-based BCI system is as 

follows. First, a user records the EEG signals when he/she is thinking a direction or a letter 

through EPOC headset, and also save these time-domain data in a personal computer (PC) 

wirelessly and automatically. Then, the time-domain EEG data are converted into power 

spectrum density (PSD) in the frequency domain as the input of the SVM algorithm. The output 

of the SVM algorithm would be the corresponding class of  the input. In our research, the output 

would be a direction or a letter. Before the SVM model can be used to detect any new thought 

about the directions and the letters from the user, its parameters need to be optimized. To do that, 

a large amount of training data which are pairs of inputs and known outputs are generated by the 

user. In our project, the SVM model is extensively optimized through libSVM library [6]. After 

that, the well-trained SVM model can be used to classify any new EEG trial into a direction or a 

letter. The classification result from the well-trained SVM model is then sent to the robot through 

Arduino board, Matlab, and Xbee to control the driving direction and LCD alphabetic display 

remotely. When one EEG trial is processed completely, another EEG trial will be converted into 

the PSD in the frequency domain.  Then, this PSD will be input into the well-trained SVM 

model. Next, the SVM output will be used to move the robot or control LCD display 

accordingly.  

To test the performance of the designed BCI system, we recorded 6000 EEG trials, 5 seconds 

long each in two different categories: directional category and alphabetic category. In the 

directional category, we focused on 4 directions: left, right, forward, and backward. We took 

1000 data for each direction. Then, in the alphabetic category, we focused on 2 letters: A and B. 
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We took 1000 data for each letter. Next, one part of these EEG trials with the corresponding 

direction or letters were used to train a SVM classification model for each category. The other 

parts of the EEG trials were used to show the performance of the developed BCI system.  

1.3 Thesis outline 

This thesis includes eight chapters. Chapter 1 presents the background and motivation for 

developing an EEG-based BCI system for robot motion and alphabetic display control and 

summarizes the main steps of such a system. In Chapter 2, the selected software and hardware 

will be discussed. Chapter 3 focuses on the optimization and implementation of the SVM model, 

which is the core of our BCI system. The details about SVM functions and their usage will be 

provided. Then, Chapter 4 will show how to use the programs developed for this project step by 

step. Next, Chapter 5 will discuss the rule and method of high-quality EEG data recording 

through our experience and the feature chosen as the input of the SVM model. We developed the 

system starting from the simple 2-class classification problem, then to the 3-class problem, then 

to the complicated 4-class problem. Chapter 6 will show the experimental results about 2-class 

classification, 3-class classification, and 4-class classification with different frequency ranges. In 

addition, since the SVM model is the core of our BCI system, a toy classification problem is 

created to verify the correction of the SVM program. Chapter 7 will show how to implement and 

test the BCI system on the robotic car with LCD. Finally, Chapter 8 will draw some conclusion 

of the project and propose some future work to further improve the system. 
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Chapter 2: Hardware and Software for EEG-based BCI System 

2.1 Hardware selection  

a) Emotiv EPOC 

The Emotiv EPOC headset as shown in Figure 1 from Emotiv Company [7] is capable of 

recording human brain EEG signals. This device is chosen for two main reasons. Firstly, Emotiv 

EPOC is a well-known device in the market and research filed and so it is very safe for us to do 

experiment. Secondly, it is a very low cost device compared to other EEG-headsets in the market 

and therefore it makes our developed system low cost. The EPOC device provides 14 channels 

plus 2 references with the sampling frequency of 128 data per second. The 14 channels have the 

following names: 1-AF3, 2-F7, 3-F3, 4-FC5, 5-T7, 6-P7, 7-O1, 8-O2, 9-P8, 10-T8, 11-FC6, 12-

F4, 13-F8, 14-AF4. Different channels have different characteristics, because they are 

corresponding to different brain areas. The names of channels can reflect their brain areas. 

Actually, F, P, O, and T represent frontal lobe, parietal lobe, occipital lobe, and temporal lobe, 

receptively. However, C does not mean center lobe because there is no center lobe at all. Instead, 

C means the center area of the brain. The odd numbers in the names represent left hemisphere 

and the even numbers represent right hemisphere. Please refer to 10-10 EEG electrode placement 

system and left and right brain hemispheres as shown in Figure 2 for specific channels and brain 

areas.    
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Figure 1 Emotiv EPOC headset
1
 

Emotiv EPOC package also comes with an SDK called “EPOC control panel” that allows the 

user to monitor the EEG signal quality of each channel. As seen in Figure 3, channels with green 

color provide good signals while yellow are for medium, orange and red are for weak signals and 

black means no signal at all. This SDK is used every time the BCI is running, so that if the signal 

quality is low (yellow, orange, red or black), the user has to add some moisture (saline solution) 

to the channel to get green signal. This checkup may be done several times during the BCI 

running process to ensure the highest quality of the data. 
 

                                                 
1
 Figure 1:http://emotiv.com/upload/media/1_big.jpg 

 

http://emotiv.com/upload/media/1_big.jpg
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Figure 2 10-10 EEG electrode system, left hemisphere, and right hemisphere
 2
 

 

 

Figure 3 EEG EPOC control panel SDK 

 

b) Arduino board 

In this project, the Arduino Uno board as shown in Figure 4 is the main control board for the 

robotic car and the wireless robot controller. This board has 14 digital input/output pins with 6 

analog inputs. It also has a 16 Mhz quartz crystal, USB connection, a power-jack, and a reset 

button. For this project, two Arduino boards will be needed for wireless communication between 

a personal computer (PC) and the robotic car. The first board is connected directly to the 

computer through a USB cable with the BCI software to create a Matlab-Arduino interface. All 

                                                 
2
 Figure 2: http://www.brainm.com/software/pubs/dg/BA_10-20_ROI_Talairach/nearesteeg.htm 
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of the results calculated from Matlab programs will be sent into this first board. The first board 

will be used to control a device called Xbee that can send signals wirelessly to the second board 

to control the robotic car. This will be discussed in more details in Chapter 7. 

 

Figure 4 Arduino Uno R3 board 
3
 

c) Xbee board 

Xbee board as shown in Figure 5 is a simple antenna that is used in a lot of electronics 

applications. In this project, this board will serve as the main communication channel between 

the BCI and the robot car. 

 

Figure 5 Xbee antenna
4
 

                                                 
3Figure 4: https://upload.wikimedia.org/wikipedia/commons/3/38/Arduino_Uno_-_R3.jpg 

4
 Figure 5: https://cdn.sparkfun.com//assets/parts/1/8/2/0/08665-00.jpg 
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2.2 Software selection  

To build the efficient BCI system for this project, some unique software and packages are 

chosen. 

a) Matlab  

Matlab is a multi-paradigm computing software that is used a lot in research area. The 

interfacing with Matlabs program can be built based on other languages such as C, C++, Java, 

and Python. It is also an open-source software that let the users adding many packages and 

functions. For this project, there are two main reasons to choose Matlab. Firstly, it does support 

the package from Libsvm library which is a very efficient toolbox to optimize and implement 

SVM model. Secondly, although Matlab is a numerical computing language, it does have a lot of 

packages that allow the user to control the hardware and microcontroller such as Arduino and 

Raspberry Pi. By this advantage, we will be able to use Matlab command window to control and 

send signals to an Arduino board. 

b) EPOC Simulink EEG importer 

In Qing Gou’s Master thesis [8], to collect the data, Qing used software from Emotiv called 

“Emotiv Control Panel”. This software developed from Emotiv allows users to collect the raw 

EEG data from the EPOC device and then save the data in CVS type used in Microsoft Excel. If 

we use Emotiv Control Panel in this project for EEG data collection, we have to manually 

convert the EEG data into Matlab format (.mat) to run the SVM algorithm.  So, we could not 

develop an automatic system. Instead, we used “EPOC Simulink EEG Importer” which is a 

package that allows a user to collect the EEG data through Simulink into Matlab environment 

automatically. This package is also very easy to use. Firstly, an exe file is run in order to connect 

the headset with the Simulink as shown in Figure 6. After the connection is set, a Simulink file is 
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called through some simple Matlab code and collect new data such as res.mat every single time 

as shown in Figure 7. 

 

Figure 6 EPOC simulink signal server 

 

Figure 7 A simple simulink model for EEG data collection 
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Chapter 3 Optimization and Implementation of Support Vector Machine 

As briefly introduced in Chapter 1, Support vector machine or SVM is a set of machine learning 

methods which are used for classifying different data features, or also regression and outliers’ 

detection [2]. Unlike other machine learning method such as logistic model tree (LMT) or 

Quadratic classifier [9&10], SVM is a kernel based non-linear, non-parametric classification 

technique which has shown good classification applications in medical analysis, character 

recognition, or electric load forecasting and other classification fields. SVM shows very good 

results on classifying data with large dimensionality and it can takes care of the “curse of 

dimensionality” [11]. In [11], the author pointed out that “the curse of dimensionality is a well-

known but not entirely understood phenomenon. Too much data, in terms of the number of input 

variables, is not always a good thing”. Also, for only one class, unknown class, or significantly 

unbalanced classes, the classification problem becomes very complicated. In this thesis, although 

we are not dealing with the unbalanced or one class type of classification, our problem is coming 

from the credibility of the data. Since the data is EEG type, the classification problem is 

normally high dimensional and complicated. Therefore, SVM method may be the optimal 

solution for the problem related to EEG data. 

Plenty of research has been conducted for the applications of SVM into EEG data analysis. For 

instance, in [12] an experiment is set up to discriminate between imagination of right and left 

hand movement. To conduct this experiment, three subjects were asked to imagine about left and 

right movements for 1.5 seconds with a 10 seconds interval gap. There were 160 hand-

movements data recorded. These data were then converted to power spectrum density (PSD) and 

frequency bands of 9-14 Hz are used for classification. The results showed that 80% of testing 

accuracy can be achieved. This has shown the possibility of using SVM as the classifier for EEG 
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data. However, for the statistical point of view, the small size of training set such as a set of 160 

data may be not very convincing to draw any conclusion. Therefore, in this project, we will 

create a large number of training data.  

3.1 Mathematical view of SVM classifier 

a) Basic concept of SVM  

We will use linear SVM classifier of two classes to show its basic concept. A two-class SVM 

classifier requires a set of training data of the input x and the output y to optimize the parameters 

in the SVM model. This set has to matrix X and Y for: 

𝐷 = {(𝑥𝑖, 𝑦𝑖)|𝑥𝑖 ∈ ℝ𝑛, 𝑦𝑖 ∈ {−1 ,1}}𝑖=1
𝑚       (3.1.1) 

 

 

Figure 8 A simple hyperplane dividing a set of data 

5
 

Where 𝑥𝑖 is a row vector representing a value of the input  that is mapped to a label or a value of 

the output 𝑦𝑖 =1 or -1. A hyper lane can be written as a set of point x satisfying that: 

                                                 
5
 Figure 8: http://www.jatit.org/volumes/research-papers/Vol12No1/1Vol12No1.pdf or see [9] 

 

http://www.jatit.org/volumes/research-papers/Vol12No1/1Vol12No1.pdf
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{𝑥: 𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏 = 0}                              (3.1.2) 

This hyperplane separates the data set in two different regions. The upper region covers the 

positive set while the lower region covers the negative set [13] as seen in Figure 8. 

b) Margin and optimization 

There are many hyperplanes can be drawn to separate a set of training input xi. To decide the 

optimal solution and unique hyperplane, some optimizations are needed. As seen in Figure 8, the 

distance between two hyperplanes 𝑤. 𝑥 − 𝑏 = 1 and 𝑤. 𝑥 − 𝑏 = −1 is 
2

|𝑤|
. As such, we want to 

maximize this distance by simply minimizing the value of |𝑤| or mathematically conveniently 

minimizing 
1

2
||𝑤||

2
 [13] when at the same time ensuring: 

                                                                     min𝑤,𝑏

1

2
||𝑤||

2
                             (3.1.3) 

subject to: 

𝑤. 𝑥𝑖 − 𝑏 ≥ 1  𝑜𝑟  𝑤. 𝑥𝑖 − 𝑏 ≤ −1                        (3.1.4) 

𝑜𝑟  𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) ≥ 1                                              (3.1.5) 

This optimization problem can be solved by the saddle point of the Lagrange’s function: 

                             𝐿𝑝 = 𝐿𝑤,𝑏,𝑎 =
1

2
||𝑤||

2
− ∑ 𝜆𝑖[𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) − 1]   (3.1.6)

𝑚

𝑖=1

 

To solve the extrema problem, we take the partial differentiation of L with respect to w and b.  

First for w, we have  

𝑑

𝑑𝑤
𝐿𝑤,𝑏,𝑎 = 𝑤 − ∑ 𝜆𝑖𝑦𝑖𝑥𝑖 = 0              (3.1.7)

𝑚

𝑖=1
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which gives us:  

                                                                                𝑤 = ∑ 𝜆𝑖𝑦𝑖𝑥𝑖              (3.1.8)𝑚
𝑖=1  

Then, taking the partial differentiation with respect to b leads to: 

                                      
𝑑

𝑑𝑏
𝐿𝑤,𝑏,𝑎 = ∑ 𝜆𝑖𝑦𝑖 = 0                     (3.1.9)𝑚

𝑖=1  

Plugging (3.1.8) and (3.1.9) in (3.1.6) gives us the extrema solution:  

                                   𝑚𝑎𝑥𝜆 ∑ 𝜆𝑖 −
1

2
∑  𝑚

𝑖=1 ∑ 𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝑥𝑖
𝑇𝑥𝑗

𝑚
𝑗=1       (3.1.10)𝑚

𝑖=1  

where: 

                                                        0 ≤ 𝜆𝑖 ≤ 𝐶 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑚.             (3.1.11) 

Note that choosing the value of the penalty factor 𝐶 is important as stated in [14]. If it is too 

large, we have a high penalty for no separable points and we may store many support vectors to 

cause the overfitting problem. If the penalty factor 𝐶  is too small, we may have the under fitting 

problem. 

When the optimized 𝜆 is solved, we can get the decision function as follows: 

                                           𝑓(𝑥) = 𝑠𝑔𝑛(∑ 𝜆𝑖𝑦𝑖𝑥𝑖
𝑇𝑥 + 𝑏𝑚

𝑖=1 )                (3.1.12) 

Using (3.1.12), we can map any value of x into either 1 or -1. 

c) Kernel functions and non-linear classification 

For some complicated problem, the training data cannot be simply classified by a linear SVM 

classifier. In order to solve such problems, the input 𝑥 can be mapped into higher dimensional 

space by the kernel function Φ. Then, by SVM we will find how to select a linear hyperplane 
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with the maximal margin in this new dimensional space. There are many popular kernal 

functions. For example:  

                            𝐿𝑖𝑛𝑒𝑎𝑟 𝐾𝑒𝑟𝑛𝑒𝑙: 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗                   (3.1.13) 

𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝐾𝑒𝑟𝑛𝑒𝑙: 𝐾(𝑥𝑖 , 𝑥𝑗) = (𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟)

𝑑
 𝑓𝑜𝑟 𝛾 > 0   (3.1.14) 

𝑅𝐵𝐹 𝐾𝑒𝑟𝑛𝑒𝑙: 𝐾(𝑥𝑖, 𝑥𝑗) = exp (−𝛾 ||𝑥𝑖 − 𝑥𝑗||
2

) , 𝑓𝑜𝑟 𝛾 > 0 (3.1.15)  

The RBF Kernel will be used in this thesis for the following main reasons: 

1. The samples will be mapped to a higher dimensional space; 

2. It is less computationally expensive compared to Polynomial Kernel since less 

parameters need to be found 

3. It is the best Kernel that can deal with the “curse of dimensionality” problem.  

In (3.1.10), the Linear Kernel is used. By simply switching this Kernel with (3.1.15), we have: 

                     𝑚𝑎𝑥𝜆 ∑ 𝜆𝑖 −
1

2
∑  𝑚

𝑖=1 ∑ 𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗 exp (−𝛾 ||𝑥𝑖 − 𝑥𝑗||
2

)𝑚
𝑗=1       (3.1.16)𝑚

𝑖=1  

where: 

                                      0 ≤ 𝜆𝑖 ≤ 𝐶 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑚.                  (3.1.17) 

To calculate the extrema solution of (3.1.16), first we need to find the optimal parameters 𝛾 and 

𝐶. It is normally time consuming and computationally expensive to find both optimal parameters. 

We will be discussed the method for finding them in Section 3.2. 
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3.2 LibSVM library and parameter optimization 

a) LibSVM library  

LIBSVM is a library for Support Vector Machines (SVMs). This library has been developed 

since the year 2000. The main goals are to help users to apply SVM to their applications 

conveniently. This section will briefly present the usage of LibSVM in solving SVM problems. 

In this thesis, libsvm version 3.18 will be used [6]. 

LibSVM provides two most important functions in Matlab environment named as “svmtrain” 

and “svmpredict”. First, we will introduce svmtrain function. A typical way to use this function 

is shown as follows: 

                     model        = svmtrain(y_train, x_train, Parameters) 

This function will help us to generate a classification model, given the training data x_train and 

y_train and parameters, where x_train is a 𝑚 × 𝑛 matrix and y_train is a 𝑚 × 1 vector with each 

component corresponding to one row vector of x_train. The parameter has its own form as 

follows: 

Parameters   = ['-c ' C_value ' -g ' gamma_value '-w1 ' w1_val   '-w2 '  w2_value  '-b 0' ]; 

C_value and gamma_value represent   the values of the parameters 𝐶 and 𝛾 which we choose. 

(As discuss in 3.1, the RBF Kernel will be used in this project for the SVM classification 

method.) w1 and w2 are the weight of the classes. Usually, if there are 2 classes and the number 

of data in each class is the same, w1 and w2 are equal to 0.5. In this thesis, we only consider the 

case that each class has the same number of training data, i.e. the data set is balanced. As such, 

the weight values are all equal to each other using the rule 𝑤𝑖 =
1

𝑛
 𝑓𝑜𝑟 (𝑖 = 1, … , 𝑛) where 𝑛 is 

the number of all possible values of y or the number of the classes. '-b' is the probability estimate 
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option and the default value is 0, which means we do not output any probability of each class in 

this thesis. Now, we will introduce svmpredict function. A typical way to use this function is 

shown as follows: 

[group_train, acc_train, val_train] = svmpredict(y, x, model,'-b 0' ); 

In this function, “model” has been obtained from svmtrain function. This function is used to 

calculate which class a row vector in matrix x belongs to. If the true values of the output y are 

available, this function can also provide the accuracy result by the number of correctly classified 

rows in matrix x divided by the total number of data.   

b) Optimization of the parameters 𝑪 and 𝜸 

As discussed both in Dr Lin’s paper [6] and Qing’s thesis [8], to have a higher classification 

accuracy, we have to optimize the parameters 𝐶 and 𝛾 before we optimize 𝜆 in the SVM model. 

It would be computationally expensive if we want to find the optimal 𝐶  and 𝛾. To balance the 

computation amount and higher classification accuracy, we will use grid searching method five 

times for best C and 𝛾 in a range. Grid searching starts with a coarse set: 

 For 𝐶 : {2−5, 2−5+ℎ, … . , 2−5+20ℎ} 

 For 𝛾: {2−10, 2−10+ℎ, … . , 2−10+15ℎ} 

Where h is the step size and it is equal to 1 at the beginning. At each time of search, a five-fold 

cross validation procedure is used to evaluate a pair of 𝐶 and 𝛾. In the cross validation, the total 

training data are partitioned into five folds. Any four folds out of them are used to train the 

model while the remaining one fold is used to test the model under the given pair of 𝐶 and 𝛾. 

Therefore, we have five testing accuracies and we take the average of them. To optimize the 

parameters and reduce computation cost, a bound value of training accuracy is set to be 80%. If 

the training accuracy of a pair of 𝐶 and 𝛾 is less than this value, this pair cannot be best and we 
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just discard this pair. At each time of searching, the best pair of 𝐶 and 𝛾 with the highest average 

testing accuracy is picked out. After one search, the step size h is divided by two and thus a finer 

grid searching at next time can be made within ten steps around 𝐶 and 𝛾 obtained from the 

previous searching. Finally, the best pair of 𝐶 and 𝛾 is found after five searches.  

3.3 Feature as input of SVM for EEG-based BCI system 

In our developed EEG-based BCI system, the feature or the input directly going into the SVM 

model is not time-domain EEG signals. Instead, we convert these signals into power spectrum 

density (PSD) in the frequency domain as the feature for classification. The typical algorithm 

used for this conversion from time domain to frequency domain is fast Fourier transform (FFT).  

Actually, FFT is an algorithm to calculate the discrete Fourier transform (DFT) [16]. It can 

reduce the computations order from 2𝑁2 to 2𝑁𝑙𝑜𝑔2(𝑁), where N is the number of computations 

needed.    

The function below shows the DFT:  

                                                              𝑋(𝑘) = ∑ 𝑥[𝑛]𝑒−𝑗𝜔𝑘𝑛 

𝑁

𝑛=1

                        (3.3.1) 

while  

                                                            𝜔𝑘 =
2𝜋

𝑁
𝑘                                                 (3.3.2) 

PSD represents the power of the time-domain signal in different frequencies. The equation to 

compute the PSD of a discrete time signal is:  

 

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://en.wikipedia.org/wiki/Discrete_Fourier_transform
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𝑆𝑥𝑥(𝑘) =
(Δ𝑡)2

𝑇
|∑ 𝑥[𝑛]𝑒−𝑗𝜔𝑘𝑛

𝑁

𝑛=1

|

2

 

=
Δ𝑡

𝑁
|∑ 𝑥[𝑛]𝑒−𝑗𝜔𝑘𝑛

𝑁

𝑛=1

|

2

 

                                                     =
1

𝐹𝑠 ∗ 𝑁
|∑ 𝑥[𝑛]𝑒−𝑗𝜔𝑘𝑛

𝑁

𝑛=1

|

2

 

                                                     =
1

𝐹𝑠 ∗ 𝑁
|𝑋(𝑘)|2                                                   (3.3.3)     

where 𝑥[𝑛] = 𝑥(𝑛 ∗ Δ𝑡), 𝑇 = 𝑁 ∗ Δ𝑡, 𝐹𝑠 = Δ𝑡 

Equation (3.3.3) will be used in Matlab coding in Section 4.2 for FFT computation. The 

rectangular window is used in the above FFT computation. However, to avoid the power leakage 

in calculation, the hamming window will be used instead in our research, which has the function: 

                                            ℎ(𝑛) = 0.54 − 0.46 cos (2𝜋
𝑛

𝑁
)                             (3.3.4)    
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Chapter 4 Useful Self-developed Programs for EEG-based BCI System 

4.1 EEG time domain data collection program 

In our research, a program is created for automatically collecting high-quality EEG time-domain 

data from EPOC headset to PC with the format compatible with Matlab. First, the raw EEG data 

is taken from EPOC headset. After the EPOC headset is connected to the EPOC Simulink Signal 

Sever. A Matlab program “TakingData.m” (see Appendix A) is run to start the data collecting 

process. Depending on where this program locates, it can automatically change the working 

directory into the directory of the folder that contains it. Firstly, the user will be asked to input 

some general information about the data type. The information includes: the number of training 

items, the number of data type, and the time in second for each data type. The code will then call 

the Simulink model as shown in Figure 7 and run the Simulink model for the same training time 

input from the user as seen in Figure 9. The training time for one data will be one second in the 

example in this figure. Depending on the number of classes, the user will be asked to input 

different names for classes (e.g. left, right) as seen in Figure 10. If the folders with the same 

names of these classes’ names do not exist in the working directory, new folders will be created. 

The program will then ask the user to prepare to take the data in the random manner. For example, 

if there are two classes of the letters A and B, the program will ask the user to think for A and B 

randomly and pop up a message dialog as seen in Figure 11. After the user has thought about a 

class for a specific time, the program will double check the user’s feeling about the data quality 

by using the question dialog as seen in Figure 12. If the answer is ‘Yes’, the program will collect 

the specific data and put it in a specific folder. However, if the answer is ‘No’, the program will 

ask the user to retake the specific data by calling the message box shown in Figure 11. The data 

corresponding to the folder name will be named in a numerical order (e.g. ‘Time_dataLeft0’ if the 
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class name is ‘Left’). By counting the number of files in each folder every time, the program will 

keep track of the numerical order. Even when the user closes the program to take a rest, the next 

time he or she wants to take new data, the program will resume the numerical order of the new 

data’s name. This will avoid overlapping which leads to losing data. An example of the data taken 

for the letters A and B in their working directories is shown in Figure 13. 

 

Figure 9 The program asks the user to input general information 

 

Figure 10 The program asks the user to input classes' names 

 

Figure 11 The program asks the user to use the EPOC and think for the specific class 
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Figure 12 The program double checks the user's feeling about the data quality 

 

Figure 13 Time-domain EEG data in the working directory 
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4.2 Conversion program for EEG data from time domain to frequency domain  

As discussed in Chapter 3, in this thesis, the EEG data will be converted into PSD format. To do 

this, the FFT function as shown in section 3.3 is used. In order to make the brain data converting 

job easier, the Matlab program “CovertData.m” (see Appendix A) is developed. The purpose of 

the code is converting all of the time domain data that is previously saved in the work directory to 

PSDs in the frequency domain. First of all, the user needs to place this Matlab code in the same 

directory where the time domain data locates. When the code is running, an input dialog will pop 

up and ask the user to input the number of classes as shown in Figure 14. Then, the user need to 

input the name of the folders where the time data are contained as shown in Figure 15. Here, “A” 

and “B” will be input here as an example. Note that “A” and “B” represent two folders that 

contain the time-domain EEG data for the letters A and B and locate in the same working 

directory. If these folders are not in the working directory, the program will show errors and close. 

Then another dialog will pop out and explain the user what to do next. At this point, just hit ‘OK’ 

to proceed. Another input dialog will appear as shown in Figure 16. Here, if the user changes the 

value of the input from 0 to 1, it means the user wants to convert the time-domain data into that 

specific data type. There are two type choices for data conversion available: “PSD data in Db” 

and “PSD data in uW” where the PSD data in Db is basically 10log10 of PSD data in uW. This 

input dialog serves for the same purpose as the check box, which is not included in Matlab basic 

dialog’s models. For this project, since all data are 5 seconds long, this program will serve for 

these data only. After the type of the converted data is chosen, the program will start running. 

Firstly, it will create the new directories as shown in Figure 17. For example, if “A” and “B” are 

the name of the folders containing time-domain data and the user wants to convert it into PSD 
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data in uW, there will be 10 new directories created APSD_uW1s-APSD_uW5s and 

BPSD_uW1s-BPSD_uW5s. These are where the PSD data from 1s-5s for each time-domain data 

locates. This will be done by looping 5 times to create five different hamming windows and 

chopping down different information from one piece of time data. To be more specific, the 1s 

PSD data is converted from 0-1s time-domain data, the 2s PSD data is converted from 0-2s time-

domain data until 5s PSD data is converted from 0-5s time-domain EEG data. Before converting 

data, the program will keep track of how many data are in each directory already. This will help 

the program to avoid calculating existed PSD data and thus saving a lot of time. The process of 

converting data normally takes about 15 minutes for 1000 time-domain data trials.     

 

Figure 14 Inserting the number of classes for conversion 

 

Figure 15 Inserting the name of the time-domain data folders 

 

Figure 16 Choosing the type of data to be converted into 
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Figure 17 New directories are created 

4.3 Program for training and creating SVM model 

In this project, the most critical program is the one which can solve multi-class classification 

problems. We will present such a program in this section. This program is named 

“svm_train_n_categories.m” which is shown in Appendix A. First, since in our project, each class 

has the same amount of data, i.e. the data set is balanced, our program is developed to be capable 

of doing multiple-classes classification for this case. The program has two main functions. The 

first function is to train the SVM model by training data and output the training result in a text 

file. The second function is to create the well trained SVM model and save it into .mat format. 

This well-trained model can be used later to control the robot car. When the user runs this 

program, the dialog below will pop up. The first choice “seeding analysis” is for SVM training, 

while the second choice “Making predict model” is used to generate the well-trained SVM model. 

Next, we will describe these two choices  
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Figure 18 The program asks the user to make choice between 2 options 

a) Seeding analysis  

If the user chooses “Seeding Analysis” from the dialog, the new dialog will pop up, asking for 

the name of the text file (Figure 19). This text file is located in the same working directory where 

the program is located and the result of the SVM training is stored. By default, the text file will 

be automatically generated based on the date and time of the simulation; the users can change the 

name if they wish to. When “Ok” button is hit, the text file will be generated in the working 

directory, the program will then ask for some information before the training process is run.  

 

Figure 19 The name of the text file 

First, the program will ask for the testing accuracy bound that the user wants to see 

(Figure 20). If the testing accuracy of a pair of 𝐶 and 𝛾 pair is lower than this bound, it will not 

show up in the text file (Figure 21). The output text file showed in Figure 21 has 6 columns. 

From right to left are the values of seed, best C parameter, best gamma parameter, training 

accuracy, testing accuracy, and finally the number of support vectors. In this sample output, only 

a few seeds which have the testing accuracy greater than 50% will be showed. Any results less 

than or equal to 50% will be ignored.  
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Figure 20 Insert the lowest bound for the output 

 

Figure 21 The sample of an output file 

Then, the program will ask for the numbers of classes for training. The user needs to input the 

information as follow: number of folders (classes), data size (numbers of data in each folder) and 

number of layers (Figure 22).  By default, the number of layers will be 1 which means that all of 

the data will be used for training. When the number of layers is changed, the data set will be 

divided into different groups. For example, if the data size is 1000, and the number of layers is 

10, then for each layers there will be 100 data only. These 10 layers will be used to train SVM 

model separately, so that the user can compare the quality of data in each layer. This is important 

because in reality, it is hard to know if the brain data taken is good for the training or not. The 

user only knows the quality of his or her data after the training is done, which might take a lot of 

time. For example, it might take at least 4 hours to train the SVM model by the Left versus Right 

data, which are high quality data. If the quality of the data is low, it might take about 1 day of 
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running to have one result. By running the SVM algorithm layers by layers, the user can have a 

better feeling about the data and remove a section of bad-quality data if necessary. Figure 23 

shows the output file if the user chooses the number of layers different from 1. As seen in Figure 

23, the first and second layers both have similar testing accuracy of 75-85% which means they 

are good data. Normally, the running time to get this output file is much shorter (1-2 hours) 

compared to the running time for the full data size (1000 data in this case).    

 

Figure 22 Input number of folders, data size and number of layers 

 

Figure 23 the layers by layers output 

After the user hits “Ok” to proceed, the program will pop up the same dialog as seen in Figure 

15. The user will need to input the name for the training data set which is PSD format data in our 

project. The program will then ask for the channel choices (Figure 24). Numbering from 1 to 14 

are 14 physical channels on the EPOC headset. In the processes of data being taken and being 
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converted, the raw EEG data from EPOC is used as input. As such, the information for all 14 

channels is still contained in the PSD data but in frequency domain. To choose different channels 

for the training data set, the user need to place the dash “-“ between the number, the program will 

convert this string to the integers and take out the selected channels for the SVM training.  The 

inputs have to be between 1 and 14 only; if the user input is out of range, the program will report 

error and ask for the channel selection again. Finally, the program will then ask for the frequency 

range. In this project, since the EPOC with 128 sample rate is used, only 64 frequencies from 0 

to 64 Hz will be analyzed. The dialog in Figure 25 will ask the user to input the start and stop 

frequencies to form the training data set. The inputs have to be between 0 and 64 Hz, if they are 

out of bound, the program will again report errors and ask for new inputs. Both of the options for 

channels and frequency range give the user flexibility in research. The user can compare testing 

accuracies o select the optimal frequency range and channels. Hitting “Ok” to proceed, the 

program will create the training data set and start training. The training process is shown in the 

block diagram below (Figure 26).   

 

Figure 24 Input the channel range 
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Figure 25 Input frequency range 
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Figure 26 SVM training process 

 The PSD data is saved in the form of a 𝑚 × 𝑛 matrix where the rows 𝑚 is the number of 

the channels and the columns 𝑛 is the number of the discrete frequencies from 0 to 64Hz. As 

discussed in section 3.3, each input in the training data has to be in a row vector. This vector will 

be formed as a 1 × (𝑚 × 𝑛) row vector by placing each rows of the matrix next to each other. 
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Each of this data row will correspond to a label. This label is automatically generated depending 

on the number of classes. The labels will depend on the order of the inputs, the first input is 

always mapped to 1 then the label will increase by 1 for the next classes. For example, as seen in 

Figure 15, class A will be mapped to label 1 and class B will be mapped to label 2. If there are C, 

D, and E, they will be mapped to labels 3, 4, and 5, respectively. The data will be then 

randomized using seeds’ value from 1 to 100 (which can be changed in the code). The reason 

why the seeds are used is as follow: assume we have a data set of 1000 data, where only 80% of 

this data (800) is chosen for SVM training. To calculate all the possible cases to form this 800 

data out of the total 1000 data set, we will use the combination equation: 

(
1000

800
) =

1000!

800! ∗ 200!
 

 where both 1000! and 800! are too big to calculate in Matlab, and the result could also be a large 

number. As a result, it is practically impossible to check all these cases and we need to 

randomize the data many times to get a best result out of all trials. The use of seeds in Matlab 

will help us to control the randomization and as such can reform the training data set for a given 

seed. The C and gamma searching will be done as discuss in Section 3.2. One problem here is 

the function “svmtrain” requires a string as its parameters. This string is written differently 

depending on the number of classes. To do this, normally we need to change this single line of 

code manually and this will reduces the flexibility of the program. The solution for this is to let 

the program write these lines of code itself. These special lines of the code are written in three 

other Matlab file named as writeFPara.m, writePara.m and writeweight.m. These files will be 

changed many times in the training process depending on the number of class, C value and 

gamma value. After the best C and Gamma parameters are found, the program will use these 
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parameters for the final testing data set (20% of the data). If the testing accuracy is greater than 

the wished testing accuracy (Figure 20), this result will be printed to the text file. The program 

will proceed to the next seed and redo all of the above steps. The training will be finished after 

all the seeds are used. Practically, for some type of data, the time for training 1 seed might be 

hours or days. As such, the user need to control this manually by changing MySeed parameters 

in the code (Appendix A).   

b) Making predict model  

If the user chooses “Making Predict Model” from the dialog in Figure 18, the same dialog as 

seen in Figure 24 will pop out. The program will then ask for the folders where the data locate 

(Figure 15). Next, the program will ask for the seed used for each layer. If the layer value input is 

1, only 1 seed is needed. However if layer value is a number n, more than 1, the user will be 

asked to input n seeds (Figure 27). This seed(s) is used to reconstruct the training data set as 

discuss in the previous section.  If this is a multilayer analysis, the best data in each layer will be 

taken out to form the training set. This is an extra implemented function but not necessarily used 

for this research.  
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Figure 27 Layer=1 on the left dialog, Layer =4 on the right dialog 

  

Then, the same dialogs in Figures 24 and 25 will show up. The user will input the same 

information that he or she uses for the seeding analysis case to reform the training data structure. 

It will take 1 to 2 minutes for the data reconstruction, depending on the data size. The program 

will then show three possible options (Figure 28). The first option C optimizer is used when the 

user knows the best value of gamma and search for C only. Conversely, the gamma optimizer is 

used when the user knows the best result for C and search for gamma. Again, these 2 options are 

built in this program but not used for this research. The last option “Making a model” will then 

ask the user to input the values for both best C and gamma parameters (Figure 29). These are the 

values shown in column 2 and 3 of the text file output (Figure 21). Hitting “Ok” to proceed, the 

program will start to recreate the well-trained SVM model which have the same training and 

testing accuracy shown in the text file. It would take several seconds to one minute for the model 

to be recreated. Finally, the program will ask the user to save the model in a desired directory 

(Figure 30). The default directory will be the Parameters folder located in the same working 

directory. 
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Figure 28 Choosing between 3 options 

 

Figure 29 Inputting best C and gamma  

 

Figure 30 Saving the final model to a location 
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4.4 Programs for controlling robot 

In this section, we will show the program “RobotControl.m” (see Appendix A) for establishing 

the interface between the computer and the robot. To do this, we need to use some of Matlab 

packages dealing with serial communication as well as Arduino control. Unlike other data types, 

creating a real time system for EEG is hard because there is no feedback between the user and 

the system. For example, in [16], the authors presented a method using libsvm for real time facial 

emotion detection. It has the similar purpose of our project which is to create a real time system 

for EEG signal detection. However, for facial recognition, the users can have the feedbacks (real-

time webcam images) from the system and at the same time the results from the classifications. 

Thus, the users can have a way to control their facial emotion to get the good classification 

result. This is not the case for the EEG signal. Since there is no way to monitor the brain states at 

the same time controlling the robot, this model is just an open loop controller with no feedbacks. 

As such, it is very challenging to control the robot to move in a desired direction or control LCD 

to display a desired letter. Although the average classification accuracy is relatively high, there is 

mismatching between the individual performances of each class. For example, the robot always 

prefers to get to the direction with the highest individual performance. To solve this, we have 

two methods. The first method is to ask the user to firstly think “nothing” for about 20s before 

running the robot. Using this information as a reference, if the mean power of a thought is less 

than the mean of this reference value, the robot will stop. This will eliminate some of the 

misclassification for some data that is not related to directional or alphabetical categories and 

thus increase the number of correct guesses. The second method is using the correlation 

coefficient to eliminate bad EEG data. Depending on the modes chosen by the user, the program 
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will calculate the correlation coefficient before or after the output from the model. The program 

will have two modes: practice mode and real time running mode (Figure 31). 

 

Figure 31 Choosing the mode for the Program to run 

a) Practice mode  

In this mode, the program will help the user to get familiar with the SVM model. Firstly, the 

program will automatically open the Epoc control panel and EEG Simulink importer which are 

normally located in the Program Files of the computer. After the user put the head set on and 

make sure all of the sensors are in good condition (all green), the program will then ask the user 

to choose the well trained SVM model which is saved in the Parameters folder (figure 32).  This 

is the same folder mentioned in Figure 30 above. The input dialog (Figure 33) will pop up, 

asking for general information before the training begins. The first three inputs have to be the 

same as the inputs while the model is created. For example, a model guessing 2 directions with 

1000 data of 5 seconds long each is shown in the picture below. The points of input represents 

the least number of trials the program will run for each class.  After the user hits “OK”, a dialog 

as seen in Figure 16 will appear, asking the user to provide the names of the PSD data folder. 

The reason why we need to take this information for the real time is because in the training 

process, the libsvm function requires all of the data to be normalized in the range between -1 and 

1. Therefore, a single input by its own has no meaning to the real time detection. To solve this 

problem, we have to recall the training folders to calculate the normalized data. For example, if 
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there is a total of N data in the training set, the new data will be then added into the group. The 

normalization of N+1 data is calculated and only the result for the real time data will be picked 

out. In fact, this calculation will reduce the response time of the system greatly since the 

normalized data will be recalculated every time the new data is input. To solve this problem, we 

only calculate the normalized data for N data and save the important values. These values 

include the array with the minimum value and the range (max-min). The new normalization of 

the single data will be calculated as followes: 

𝑟𝑒𝑎𝑙𝑡𝑖𝑚𝑒_𝑛𝑜𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑟𝑒𝑎𝑙𝑡𝑖𝑚𝑒−min

max−min
             (4.4.1) 

 

Figure 32 Choosing a model 
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Figure 33 Information input for model-practice mode 

 

Figure 34 choosing the simulink model 

After the data folders are chosen, the user will set up the data size identical to the training data of 

the model. This includes choosing the frequency range (Figure 25) and channel range (Figure 

24). After the information is taken, the user has to choose the Simulink model to take the data. 

This will be varied depending on the Matlab version in use. As seen in Figure 34 

“EmotivEpocEEG_testmodel2011a.mdl” will be used. Then the program will ask the user to 

choose the feedback type (Figure 35). There are 2 options available in which the first will 

calculate the correlation coefficient only and the second one will calculate both the correlation 

coefficient and the reference power. 
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Figure 35 input feedback type 

If the reference power is chosen, the program will ask the user to clear his or her mind for 20s 

and take this data (Figure 36). After the reference data is taken, it will be converted into PSD and 

the mean value of this PSD is also calculated. Then, the program will ask the user to take the 

reference data for the correlation coefficient calculation for each class. For example, if there are 

2 classes left and right, 2 references will be asked to take. In taking the reference data, the 

program will use the model and ask the user to think a specific thought for 5s (Figure 37). If the 

detection result from the SVM model is correct, the program will use this as the reference for 

that class; if not, the program will ask the user to try again until one EEG trial with the correct 

detection result is obtained (Figure 38). 

 

Figure 36 collecting the "no thinking" reference 

  

Figure 37 Colleting correlation coefficient reference data (left)-Retake data reference (right) 
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Figure 38 Informing the user that the EEG data with correct detection result is taken 

The program will inform the user to begin the practice (Figure 49). Using the correlation 

references taken before, the program will calculate the correlation coefficient. If the result is less 

than 85% or the mean power of the input data is less than the reference mean (thinking nothing), 

the program will ask the user to retake the data (Figure 41). If both of the tests are passed, the 

model will classify the data into correct or incorrect answer (Figure 41). If it is the same with the 

test case (left or right), one point will be added to the total points. If not, the program will keep 

running.  

 

Figure 39 Start training for one class 

 

Figure 40 Start taking a piece of data 
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Figure 41 Three types of possible answer from program-Correct (left)-Incorrect (middle)-Retake data (right) 

The dialogs in Figures 40 and 41 will keep showing up until the user gets all the points they 

indicate in the inputs. The total number of trials will be tracked so that the final accuracy can be 

calculated (Figure 42). In this mode, the results will not be illustrated on the robot car yet. When 

the user feels confident enough with the result, he or she can rerun the program and choose real 

time mode where the motion of the robot car will be controlled. 

 

 

Figure 42 Final result for practice modeb) Real time mode  

In this mode, before the data taking begins, the user has to set up the BCI. The transmitter circuit 

(Arduino board) will be first connected to the computer, and the robot car power source will also 

be turned on. Then the steps from Figures 34 to 39 will be the same in the real time mode. After 

the references are taken, the user has to indicate the data type he or she wants to send to the 

robot. This is important because by default the directional SVM model will classify input PSD 

data into 4 integers (1-4) and the alphabetical SVM model will classify input PSD data into 2 

integers (1-2). The answer the user has in this question dialog (Figure 44) will help the program 
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to distinguish between the output data of alphabetical or directional type. The program will start 

taking the brainwave data and informing the user with the dialog in Figure 40. The EEG data 

taken is converted to PSD and then sent to the well-trained SVM model to do the classification. 

Then, depending on the classification output, the program will compare the classification result 

with a corresponding correlation reference. If the result is greater than 85%, this is a correct 

result and will be sent to the robot. To send the signal to the robot, the program has to set up the 

serial communication between Matlab and Arduino board. Its code is shown in “run.m” in 

Appendix A. The user has to manually change the ComPort variable in order to have the 

program function correctly. To figure out the right Comport, the user has to open “Device 

Manager” in Window and check for the usb connection tab. This will indicate which Comport 

the Transmitter Arduino is connected to. After the connection is set up correctly, Matlab’s 

command window will now be in serial mode with the Arduino board. Anything printed on this 

command window will be sent to the Arduino board. We will have 6 different signals in 

character type using the first letter of each classs. These signals are: ‘l’- Left, ‘r’ – Right, ‘f’-

Forward, ‘b’-Backward, ‘A’- letter A and ‘B’-letter B. Depending on the classification result, 

these characters will be printed on the command window to send the signal to the board. The 

transmitter board will then send this information through Xbee to the robot. After each 

transmission, the serial connection will be closed between Matlab and Arduino, giving back the 

computational ability for Matlab.    
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Figure 43 Indicating the type of signal sent to robot 
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Chapter 5 Analysis of Raw EEG Data and Feature as SVM Inputs    

5.1 EEG data recording rule 

In order to have the classifiable data set, the user has to follow a strictly rule for recording every 

single data. The thesis writer was the subject for the experiment in this project. The tricky part 

about taking EEG data in this research is the subject has to mimic the condition of an ALS 

patient. He has to limit his body motions and try to stay still.  For each of directional EEG data 

taking, the subject will imagine visually there is an object on the corresponding direction and 

also think about the meaning of the direction verbally in his language. The subject has to close 

his eyes to reduce the eye movement artefacts. For the alphabetical EEG data, the subject will 

also think about the letter visually in mind at the same time thinking how to pronounce the letter. 

To increase the quality of both data types, after taking every 100 data, the subject will take a rest 

and let his mind relax. In total, there will be 6000 5-seconds EEG data taken for 6 different 

classes. In estimation, it would take at least 4 hours to complete 1000 data taking which leads to 

the total of 24 hours for 6 classes. 

5.2 EEG data recording method 

To control the robot using BCI, normally, the user may think about any possible directions at any 

time to get the robot to a desired destination. As such, when the data recording program (Chapter 

4) was developed, it was implemented so that the user can take the EEG data both randomly and 

continuously. If the user decides to take all time-domain data in different classes at the same 

time, the program will create a random list of labels and ask the user to think differently each 

time. The user can also decide to take the data continuously by choosing to take data for one 

class each time. At first, we thought that taking data randomly was a better approach since it can 
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gives the user the same feeling as if they are controlling the robot. To test our idea with this 

approach, 100 5-second EEG data of 2 directions (Left and Right) were taken. The data was then 

converted to PSD format and going through the SVM training and testing procedure. The best 

testing accuracy was 70% with 92% of the training accuracy. This was an acceptable result for a 

small data set so we decided to run the training process with more data. 1000 5-second EEG data 

of 2 directions (Left and Right) were used for SVM training and testing. The best result however 

was only 55% for testing and around 90% for training. The libsvm used 1280 support vectors out 

of 1280 training vectors to create the SVM model, which means overfitting (also known as curse 

of dimensionality) has happened. This is normally because the data size (the dimension of each 

training vector) is too big, and the libsvm classifier will try to find the optimal model 

exhaustively which then leads to the overfitting problem. To solve this, we try to reduce the data 

size by reducing the channel range. We picked only 8 channels for the last training and see if the 

classification results could improve. However, the result ended up to be only 60% for testing and 

around 91% for training. The number of support vectors for this training is about 1000 which 

was still a high number. At this point, we decided to restart from data recording process, 100 5-

second EEG data of Left and Right directions were taken continuously. After the first training 

process, both of the testing accuracy and training accuracy were above 90% which are very 

good. We continued to take 1000 5-seconds-data of each class in the same manner. For the first 8 

seeds, the results are shown in Table 2 in Chapter 6. The best result showed that the test accuracy 

can be as high as 83 %. The number of support vectors corresponding to the best result is only 

912 out of 1280 training data. This is a very good result which shows the model are well trained 

and good models for the real time testing. The same methods are used for 3 and 4 directional as 
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well as 2 alphabetic classifications. The results for these classifications will be shown in Section 

6.2 to 6.5 of Chapter 6.  

5.3 Feature size for SVM input  

The feature as the input of the SVM model in our research is PSD in the frequency domain. The 

size of this feature is decided by the selected frequencies and channels. The Matlab programs 

introduced in Chapter 4 give us the flexibility in choosing the frequency range as well as channel 

range for the PSD data. The EPOC headset used in this project has the sample rate of 128 

samples per second. As such, after being converted into the frequency domain, there are 64 

different frequencies ranging from 0-64 Hz. This range can be cut down into 5 different bands: 

Delta band (1-3 Hz), Theta band (4-7 Hz), Alpha band (8-12 Hz), Beta band (13-30 Hz), and 

Gamma band (30-100 Hz) [17]. Some researchers only chose specific frequency bands to do the 

classification. For example in “EEG-based discrimination between imagination of right and left 

hand movement” [12], the authors found out that different frequency components in alpha (8-12 

Hz) and beta bands (13-30Hz) provided best discrimination between left and right hand 

movement imagination. The classification results can reach to approximately 80 %. Another 

paper has also pointed out the EEG activity on theta band (4-7 Hz) in virtual maze navigation 

[18]. This research shows the important role of theta oscillators in human spatial navigation.  

Considering the alphabetical and language analysis, in [19] a broad analysis of different EEG 

frequency band can show different approaches to the language analysis. Specifically, Delta (1-4 

Hz), Theta (4-7 Hz) and Alpha (8-12 Hz) band shows a respectful effect on auditory and visual 

of language perceptions. The nouns or verbs are then compared in two bands Alpha (8-12Hz) 

and Beta (13-30 Hz) to see their performances. This result is not very useful in this case since 

only alphabetical (A or B) data is analyzed in this paper. However, these papers pointed out a 
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good frequency band (from Theta to Beta) and can help to lower the PSD data size concerned in 

this research. We decided to run 2 different trainings. In the first training, we only used 

frequency range from 4-30Hz and in the second we use all the possible frequency range from 0-

64Hz.We tried to run the classification using all frequencies (0-64 Hz). This in fact increased the 

testing results for approximately 10% in each classification. However, the big drawback was the 

time for training SVM model has increased to as low as 30 hours to as high as 96 hours for each 

classification (depending on data type and the number of class). As such, only 1 seed for each 

classification will be shown in the experimental result in Section 6.6. 
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Chapter 6 Experimental Results of SVM Models 

In this chapter, we will summarize the results of the SVM models for different classification 

problems. First we will give the result of a very simple classification problem to verify the 

correctness of the SVM program since it is the core of our developed BCI system. And then, we 

will show the results of classifying directional and alphabetic EEG signals. Finally, we will 

present some classification results using the whole frequency range.       

6.1 Classification of data from normal distributions  

Since the SVM program “svm_train_n_catefories.m” is extremely critical in our developed BCI 

system, before using the SVM program to classify the real EEG data, we created a case to check 

if the program runs correctly. To do this, we create a 14 × 64 matrix and fill the matrix with 

random normal distribution data. We control the mean and standard deviation of the data so that 

the data will be classifiable. For each mean value of 1 to 4, 100 of matrices are created using the 

example_brain_data.m in Appendix A. This small program will let the user create the normal 

distribution randomized data. The user can control the standard deviation and mean values by 

modifying the inputs showed in Figure 44. These data will be numerated from 1 to 100 and 

pushed into folders with the same names (1, 2, 3, 4). Using the “svm_train_n_catefories.m”, 

these data in the 4 folders will be classified. If the training accuracy and testing accuracy of the 

classification result is high, it means that the program created is capable of classifying data 

correctly. Table 1 below shows the classification results for the 4 different normal distribution 

randomized data. The results are close to 100% which proves that this program is working 

correctly. 
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Figure 44 Input used in ExampleBrainDataMaker.m for training 

 

Table 1 Classification result of data from normal distribution 

Seed Best_C Best_gamma Train_acc Test_acc Total_nSV 

1 0.03125 0.00097656   97.188 100 320 

2 29.3441 0.00097656 100 100 316 

3 0.03125 0.016317 98.125 100 320 

4 19.8697 0.00097656 100 96.25 320 

5 25.7678 0.00097656 100 92.5 317 

6 1.4142 0.038808 100 92.5 320 

7 0.03125 0.0040792 98.125 96.25 320 

8 0.03125 0.0009756 97.188 100 320 
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6.2 Classification of 2 directional data  

The classification results for 2 directions (left and right) are shown in Table 2. The best one 

appears at seed number 5 where the training accuracy is 98.188% and the testing accuracy is 

83%. Using the training method in Figure 26, there were 1280 data (200 left, 200 right) used as 

the training data set and 400 data used for the final testing, where the best model only used 912 

data out of 1280 training samples as support vectors. For this 2 directional classification, the 

training for each seed took at least 6 hours. The training time varied depending on the number of 

support vectors needed. In general, the classification with the least number of support vectors 

will take less time, but this does not always guarantee the optimal solutions. The program is 

capable of running more seeds. However, only the results of the first 8 seeds are obtained since it 

takes a lot of time and computational cost (running several Matlab windows at same time). Table 

2 gives the overall testing accuracy at the fifth column. It is the number of EEG data classified 

correctly divided by the total number of testing data. Table 3 shows the testing accuracy of 

individual direction classification. For example, the second column labeled as Left is the number 

of left direction data classified correctly divided by the total number of left direction data. For 

most of the seeds, the individual testing accuracies are not balanced. The SVM model may detect 

one direction more successfully than the other. Seed number 3 shows the most balanced 

performance with the gap of only 0.5% between Left versus Right classification. However, there 

is a tradeoff of 0.75% in overall testing accuracy compared to the imbalanced result of seed 5.  
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Table 2 Left vs Right Classification Result with Frequency range 4-30Hz 

Seed Best_C Best_gamma Train_acc Test_acc Total_nSV 

1 29.3441 0.088388 98.313 82.75 855 

2 449.6006 0.010132 94.937 79.25 675 

3 6.1688 0.13053 95.75 82.25 964 

4 6.7272 0.125 96.437 79.5 934 

5 14.6721 0.11463 98.188 83 912 

6 122.5732 0.02116 94.688 82.75 744 

7 18.2206 0.125 98.938 80.5 919 

8 14.6721 0.1197 98.1880.0 82.5 912 

 

Table 3 Individual performances of 2 directions Left vs Right 4-30Hz 

Seed Left  Right Test_accuracy 

1 84.5 81 82.75 

2 80.5 78 79.25 

3 82.5 82 82.25 

4 75 84 79.5 

5 81.5 84.5 83 

6 84 81.5 82.75 

7 79 82 80.5 

8 80.5 84.5 82.5 
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6.3 Classification of 3 directional data  

The classification results for 3 directions (left, right, and forward) are shown in Table 4. The best 

result in testing accuracy is 79.333 % for seed number 8 with the training accuracy of 95.208%.  

According to the training method (Figure 26), there were 600 data in the testing pool (200 left, 

200 right, and 200 forward) and 1920 data in the training pool. The best model used only 1410 

data out of 1920 data as support vectors. The training time for each seed was between 10 hours 

and 12 hours. So it took nearly 4 days for completing the calculation for all seeds. Table 5 then 

shows the individual testing accuracies. This table shows an even more imbalanced result 

compared to the 2 directional individual performances. The gap between the best and the worst 

individual performances in each seed varied from 4.5% (seed 4) to 12% (seed 3). The most 

balanced seed is seed number 4. However, there is a tradeoff of 5% overall accuracy compared to 

the imbalance result of seed 8.   
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Table 4 Left vs Right vs Forward Classification Result with Frequency range 4-30Hz 

Seed Best_C Best_gamma Train_acc Test_acc Total_nSV 

1 10.834 0.25 98.375 77.333 1644 

2 5.6569 0.17678 93.042 75.833 1602 

3 18.2206 0.20131 98.542 76.5 1576 

4 9.5137 0.17678 95.583 74.333 1555 

5 7.336 0.2394 96.583 78 1649 

6 69.7925 0.065267 96.333 79 1368 

7 66.8335 0.081052 97.5 75.167 1369 

8 32 0.084641 95.208 79.333 1410 

 

Table 5 Individual performances of 3 directions Left vs Right vs Forward 4-30Hz 

Seed Left Right Forward Test_acc 

1 80 73.5 78.5 77.333 

2 79 70.5 78 75.833 

3 79 67 83.5 76.5 

4 72.5 73.5 77 74.333 

5 77 78.5 78.5 78 

6 84 71.5 81.5 79 

7 75 71 79.5 75.167 

8 75.5 78.5 84 79.333 
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6.4 Classification of 4 directional data  

Table 6 shows the classification results of 4 directions (left, right, forward, and backward). The 

best result in testing accuracy is 72 % for seed number 11 with the training accuracy of 92.75%. 

Seeds 2,4,10 are eliminated from the text file outputs since these seeds have less than 70% of 

testing result.  According to the training method (Figure 26) there were 800 data in the testing 

pool (200 left, 200 right, 200 forward, and 200 backward) and 2560 data in the training pool.  

The best model used only 2089 data out of 2560 data as support vectors. The estimated time for 

training of each seed varied between 1 to 1.5 days. As such, it took approximately 2 weeks to 

finish all of these calculations. Table 7 then shows the individual testing accuracy on each 

directional class. This is the most imbalanced individual classification in the directional 

classification. The gap between the best and worst individual performances of each seed can be 

as low as 7.5% for seed 9 and as high as 19.5% for seed 3. The most imbalanced seed is number 

1 where the testing accuracy is only 70.875%. There is a tradeoff of 1.125% overall accuracy 

compared to the imbalance result of seed 11. In fact, during real time robot running, any 

classification model that has the testing accuracy lower than 80% may not be able to control 

robot well. As such, for this 4 directional classification problem, we expanded the frequency 

range to 0-64Hz. These classification results are shown in section 6.6.  
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Table 6 Left vs Right vs Forward vs Backward Classification Result with Frequency range 4-30Hz 

Seed Best_C Best_gamma Train_accuracy Test_accuracy Total_SupportVectors 

1 14.6721 0.1621 94.813 70.875 2229 

3 15.3217 0.19278 96.219 71.125 2277 

5 6.1688 0.19278 90.625 71.125 2319 

6 9.5137 0.20131 94.188 71.75 2299 

7 6.442 0.17678 90.281 71.75 2322 

8 18.2206 0.10511 91.031 71.125 2155 

9 107.6347 0.048194 93.031 71.875 1976 

11 34.8962 0.081052 92.75 72 2089 

 

Table 7 Individual performances of 4 directions Left vs Right vs Forward vs Backward 4-30Hz 

Seed Left Right Forward Backward Test_accuracy 

1 73.5 64 76.5 65 70.875 

3 70.5 62 81.5 70.5 71.125 

5 69 67.5 76 72 71.125 

6 72 63.5 78 73.5 71.75 

7 69 64.5 78.5 75 71.75 

8 68 67 80.5 69 71.125 

9 69 69 76.5 73 71.875 

11 73 66 79 70 72 
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6.5 Classification of 2 alphabetical data  

Table 8 shows the classification result for 2 letters (A and B). The best result appears at seed 1 

where the testing accuracy is 78.75% and the corresponding training accuracy is 92.75%. Similar 

to the 2 directions classification of left versus right, this classification used 400 data in the final 

testing pool and 1280 data in the training pool. The best result used 834 data out of 1280 data for 

the support vectors. The training time required for each seed is a little bit longer than that of 2 

directions classification. It took approximately 8 hours to complete the training for one seed 

which led to the total of nearly 4 days for the program to run. Table 9 will then show the 

individual testing accuracy of each letter’s detection. The most balanced result has the difference 

of 1% at seed 7, while the most imbalanced result has the difference of 9.5% at seed 5. The best 

model has the gap of 4.5% between A’s testing accuracy (81%) and B’s testing accuracy 

(78.75%).  

Table 8 A vs B Classification Result with Frequency range 4-30Hz 

Seed Best_C Best_gamma Train_accuracy Test_accuracy Total_SupportVectors 

1 1961.1715 0.0060243 92.75 78.75 834 

2 724.0773 0.013721 95.437 73 871 

3 112.4001 0.046151 97.938 71.25 966 

4 304.437 0.019404 93.875 75.75 917 

5 24.6754 0.068157 93.875 73.75 1033 

6 38.0546 0.10066 98.75 72.25 1091 

7 939.0121 0.017794 98.125 75.5 917 

8 122.5732 0.017794 88.813 74.75 958 
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Table 9 Individual performances of 2 letters A vs B 4-30Hz 

Seed A B Test_accuracy 

1 81 76.5 78.75 

2 74.5 71.5 73 

3 68.5 74 71.25 

4 76 75.5 75.75 

5 69 78.5 73.75 

6 68.5 76 72.25 

7 75 76 75.5 

8 74 75.5 74.75 

 

6.6 Classification of 4 directional and 2 alphabetic data using the maximum 

frequency range 

For the last training process, each classification case from 6.2 to 6.5 will have its frequency 

range expanded into 0-64Hz. The reason why only the result of the first seed is shown in this 

section for directional classification and alphabetic classification is that such classification 

problems need much more training time. For example, it may take approximately 1 day, 2 days, 

and 4 days for the 2, 3, and 4 directional classifications. For the 2 letter classification it may take 

about 2 days to complete. Although the computation time was increased, the testing accuracy has 

been increased approximately 4-11% in each of 4 cases. As shown in Table 10, each of the 

classification was run only for the first seed. For the directional classifications, the test 

accuracies for the 2, 3 and 4 directional classifications are 91.5%, 88.1667% and 81.75% 
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respectively. There is a gain of 8.75%, 10.8337%, and 10.875% of the 2, 3, and 4 directional 

classifications. Looking at the values of C and gamma parameters, we can see that the program 

uses very close values of C and gamma for these three cases. This has shown that the features 

with the expanded frequency range are more classifiable. For the 2 letter classification, the 

testing accuracy has an increase of 4.5%. The C and gamma parameters for the 2 letter 

classifications are also smaller compare to the results in the 4-30Hz frequency range. The 

individual performances in Table 11 show that these models are in fact more balanced than that 

of 4-30 Hz. The most imbalanced classification is the 4 directional one where the gap between 

the best and the worst performances is 4.5%. The most balanced result for the directional case is 

the Left versus Right classification where the gap is only 3%. This also shows that the 2 

directional robot motions are easier to be controlled by EEG than 4 directional robot motion in 

Chapter 7. After expanding the frequency range, all of these classification testing results are 

greater than 80% which shows good SVM models for the real time testing with the robot.  

Table 10 Classification result of directional and alphabetical data for the first seed from 0 to 64 Hz 

Classification Best_C Best_gamma Train_acc Test_acc Total_nSV 

L/R 3.668 0.10997 98.875 91.5 827 

L/R/F 4.1771 0.096388 97.0833 88.1667 1385 

L/R/F/B 3.5125 0.21022 98.4063 81.75 2227 

A/B 14.05 0.05985 98.625 83.25 998 
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Table 11 Individual performances of directional and alphabetical data for the first seed from 0 to 64 Hz 

Classification Left Right Forward Backward A B Testing Acc 

L/R 93 90     91.5 

L/R/F 92 86 86.5    88.1667 

L/R/F/B 79.5 82 84 81.5   81.75 

A/B     84 82.5 83.25 
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Chapter 7 Robot Control System Implementation and Testing 

7.1 Block diagram of robot motion and alphabetic display control system 

To control the robotic car motion and alphabetic LCD display, a lot of effort is required to 

communicate between different interfaces simultaneously. As seen in Figure 45, first of all, when 

a user is thinking about a direction or a letter, 14-channel EEG signals will be acquired by the 

EPOC device. Through Emotiv control panel and Simulink importer, these EEG signals will be 

saved with a Matlab format to be used easily in the Matlab SVM program. The parameters in the 

SVM algorithm will be optimized by  training process. In the SVM training process, training 

data sets will be needed. Training data sets mean pairs of inputs and outputs of the SVM. EEG 

signals last for 5 seconds and they will be converted in PSD data in the frequency domain in a 

desirable frequency range as the feature or input of the SVM model. The output would be a 

direction or a letter accordingly. To make the SVM well trained, 6000 training data for six 

classes (4 directions and 2 letters), 1000 data for each class, were generated for this project. As 

discussed in Chapter 3, in the training process, the cross validation and covex optimization 

methods will be used to optimize the SVM parameters. With all optimal paramters, the SVM will 

be well constructed and ready to classify any new EEG signals. This SVM training process and 

related steps are indicated by blue line in Figure 45.    

New EEG signals generated by the user when thinking about a direction or a letter will be send 

to the constructed SVM model with the optimal parameters through Emotive EPOC, control 

panel, and Simulink importer as shown by red line in Figure 45. The SVM output is then fed into 

a control function. This function will convert the SVM output into a digital command such as 

000,001,010, 011 and so on to represent each direction and letter. These digital commands will 

be sent wirelessly to the Adruino microcolltroller using Xbee. If the received digital command 
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means a direction, the Adruino microcontroller will generate a specific wave pulse to control the 

servo motor to move the robotic car in the desired directions. If the received digital signal means 

a letter,  the microcontroller will conrol the LCD installed in the robotic car to display the letter 

immediately. All steps related to new EEG signal process for conrolling robot motion and 

alphabetic display are indicated by red lines in Figure 45. In the previous chapters, we mainly 

focus on Steps 1-5. In the next sections of this chapter, we will focus on the remaining steps to 

discuss how to build wireless communication through PC, microcontrolloers, and Xbees in more 

details.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I.  

Figure 45 Robot motion and alphabetic display control system 

2. EPOC & Control 

Panel 

3. Simulink 

importer 
4. SVM training 

process 

5. Constructed SVM 

with optimal 

parameters  

1. User thinking 

direction/letter 

6. Control function 

7. Digital 

Commands 
9. Arduino 

micrcontroller 
10. Servo motor for 

moving car 

8. XBee wireless 

communication 

11. LCD for 

displaying letters 



 63 

 

7.2 Setting up the Xbee antennas 

 

Figure 46 Receiver vs Transmitter Xbee 

In this project, we will use 2 microcontrollers and 2 Xbee antennas to realize wireless 

communication between the computer and robot. First, we have to set up the connection between 

2 Xbee antennas. This can be done using a program X-CTU as seen in Figure 46. This software 

will help the users to set up the pan ID as well as channels of multiple Xbee antennas. To set up 

the Xbee, the user needs to connect the Xbee board to the computer using a micro USB cord. 

Then, by choosing the “modem configuration” tab, the user can read, write or restore the Xbee to 

default set up. The window on the left hand side of Figure 46 shows the set up for the 

transmitter, while the one on the right hand side is for the receiver antenna. Both of these antenna 

will be connected to two Arduino boards. The first board is connected to the computer while the 

second board is used to control the robot. Normally, there will be a serial mode connection 

between the Xbee antenna and the Arduino board. This can be done by connecting the Tx and Rx 

pins on each Arduino board to the Rx and Tx pins on the Xbees. However, since there has 
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already been a serial mode connection between Arduino board (which controls Xbee) and the 

Matlab command window (computer), these pins are always busy. We decided to use 3 pins D0, 

D1, and D2 on each Xbee antenna to set up the communication. The way this communication 

works is that if the Dx pin on the transmitter is high or low, the corresponding pins on the 

receiver will also be in the same state. Then these pins are connected to pins on the Arduino 

boards. The board will then process this 3-bit information and decide which action to perform.  

7.3 Serial Mode Setup 

The serial mode set up takes less than a second for each data transmission.  This can be done 

using the setupSerial.m and the Setup function in the transmitter.ino (Red Arduino board) shown 

in Appendix A. The setupSerial function will first connect the Matlab command window with a 

Comport where the Arduino is connected. Then, this function will decide the baud rate, the 

number of bits and the stop bit for the communication. The baud rate is set to 9600, there will be 

8 data bits in each transmission and the stop bit is assigned as 1. Then, the setupSerial function 

will send a simple character to the Arduino board. The Arduino board will then take this data and 

print it back on the command window. After this point, any characters printed on the Matlab 

command window will be sent to the Arduino board. However, since we need the Matlab 

command window to do the classification of EEG data taking continuously, after each 

transmission is done, the serial mode is closed. The Matlab will then classify the incoming PSD 

data using libsvm library. The new serial connection will then be opened to send the new 

command to the Arduino board. This loop won’t stop until the user decided to close the program 

or turn off the EPOC.   
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7.4 Robot control implementation 

The robot with LCD has two main parts, the transmitter side that sending the signals from 

Matlab command window, and a receiver side that controlling the robot.  

a) Transmitter side 

Figure 47 shows the connection between Xbee and an Arduino board. This is the Arduino board 

that is connected to the computer, taking care of the information from the Matlab command 

window. There will be 5 connections between the Arduino board and the Xbee antenna. The first 

2 pins provide the power connections or VCC and GND. The last 3 pins 2, 3, and 4 on the board 

will be connected to D0, D1, and D2 on the Xbee board, respectively. There are 7 different 

characters can be sent to the board which are ‘s’-Stop, ‘l’-Left, ‘r’-Right, ‘f’-Forward, ‘b’-

Backward, ‘A’, and ‘B’. The board will then encode these characters into 3-bit-sequences which 

are then sent to the Xbee Antenna. Because there are 3 bits, there are 23 = 8 different sequences. 

However, the “000” and “111” sequences are both used for stop signal (Table 12) 

Table 12 Signal Sequences for different characters 

Character D0 D1 D2 

‘s’ 0/1 0/1 0/1 

‘l’ 0 0 1 

‘r’ 0 1 0 

‘f’ 0 1 1 

‘b’ 1 0 0 

‘A’ 1 0 1 

‘B’ 1 1 0 
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Figure 47 The Transmitter Arduino and Xbee connection 

b) Receiver side  

The three-wheel robot as shown in Figure 48 is controlled by the other Arduino board. This 

Arduino board is taking care of more objectives compared to that of the transmitter. There are 

three main tasks this Arduino board has to complete. Firstly, after receiving signal in term of data 

bit sequences as illustrated in Table 12, the Arduino board will make a decision to control the 

robot. Each time a character indicating a directional movement is sent, the robot will move 

counter clockwise (turning left), clockwise (turning right), forward or backward accordingly. 

Then, at the end of the transmission, a Stop sequence will be sent to stop the robot completely, 

which is also the second task of the Arduino board where different pulses are sent to the servo 

motors. The last task is displaying the results on the LCD screen. Using only 4-bit sequences, the 

board will print a string on the LCD display illustrates both the directional movements and the 
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two letters A, B. The Arduino code for the motor control and LCD display is shown in 

Receiver.ino in Appendix A. 

 

Figure 48 The three-wheel robot 

7.4 Testing robot control system 

Using the SVM models with the highest accuracies shown in Section 6.6 are used for the final 

test. After having a proper connection between the EPOC headset and the computer (all sensors 

are green), the “RobotControl.m” program was run in real time mode. There were three 

experiments. In the first experiment, we used the well-trained 2 directional classifier (Table 10) 

to detect 25 Left and 25 Right thinking. The robot moved in the correct directions with the 

accuracy of 80% (20/25 of both directions). This result showed only approximately 10% of 

mismatch between the testing accuracy reported in last chapter and the accuracy of the real time 

robot control. Then, in the second experiment, we used the well-trained 4 directional classifier 

(Table 10) to detect 25 left, 25 right, 25 forward and 25 backward thinking. In this experiment, it 
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was easier to control the robot to move left and right directions, we got 17 correct classification 

results out of 25 for both directions. However, the accuracies of forward and backward are low. 

We got 14 correct results for Forward movement and 8 correct results for backward movement. 

The overall accuracy pf this real time testing is 56% which is 26% lower than the testing 

accuracy reported in Table 10. Finally, a well-trained SVM model for 2 letters A and B was 

tested. There were 20 correct results out of 25 for letter A while 15 correct results out of 25 for 

B. This led to a 70% real time testing overall accuracy, which was 13.25% less than the testing 

accuracy shown in Table 10.      
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Chapter 8 Conclusion and Future work   

8.1 Summary  

Overall, the objective of the project was successfully achieved. The main contribution of the 

project is creating a brain computer interface system (BCI) to control the robotic car with 

alphabetic display only through human brain EEG signals only. Based on our BCI system, the 

raw EEG data can be collected and stored in folders automatically and wirelessly. The SVM 

model can be trained well to reach more than 80% testing accuracies. A detection result from the 

SVM model can be transmitted to robotic car with LCD to drive the car and show the letters 

remotely. Therefore, our BCI system has great potential to help people such as ALS patients who 

cannot move or even talk at all to gain better mobility and communication capability.   

EEG-based BCI is a very challenging topic. It is not easy to generate a large amount of good 

quality EEG signals for better classification results.  There is no standard to check for the quality 

of the signal before making classification. It required a lot of focuses and took a lot of time to 

generate 6000 EEG data in this project. The second challenging point is the optimization of the 

parameters in the classification model is time-consuming. Although a good personal computer is 

used to do this task, it still took days or weeks to complete the SVM training process for some 

cases. This is also one drawback of the program itself since the user can only see the final result 

after a long-time training process, it is very hard to figure out the mistakes and redo an 

experiment. Since the developed BCI system is just an open loop system now, it is hard to 

control the robot in the real time mode. Although the encouraging results have shown high 

possibility to control the robot to run in 2 directions, it is still very challenging for the 4 direction 

control.   



 70 

 

8.2 Future work 

We have several ways to further improve the EEG-based BCI system. First, the software 

implementation and interfaces can be improved. All of the interfaces between the user and the 

computer are Matlab built in dialog in this project now. But we can use Matlab GUI to create a 

more convenient interface. Second, we only focus on PSD data type as the feature of the 

classification model. PSD is the most basic and simple feature used for EEG data analysis. Some 

other more complicated features such as cross correlation and coherence have also been used 

widely. We can consider them in this project to improve the classification accuracy. Third, there 

is a new EPOC headset (EPOC+) that has a higher sampling rate. The higher density of data 

might reduce the time required (now 5 seconds) to achieve higher accuracy. Fourth, to improve 

the calculation efficiency, especially for the training parameters process, we might consider 

using Super Computer in the future. This will ensure the correctness of the result at the same 

time improve the calculation speed. Finally, instead of controlling the robot through a computer 

with Matlab, the EEG-based BIC system can be built in python language. The Libsvm model 

also supports the python language which is used commonly in Raspberry Pi board. A new 

interface can be built so that the user will control the Raspberry Pi board directly with EPOC. 

Then, this tiny board can have the capability of classifying the data and send signal pulse to 

control the servos and LCD display. Such a system will only need one Raspberry Pi board to run 

and eliminate the computer, Xbee antennas, and Arduino board, which will reduce the cost and 

shrink the size of the whole system.      

As discussed in [20], the brain control wheelchair (BCW) is a robotic system which has been 

developed for people who are incapable of using the wheelchair control by joysticks, buttons, or 

even voice. Our BCI system development is in the early stage. For example, the response time of 
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our system is not short enough for the real-time application in the market. However, the results 

shown in this project can prove that it is possible that our system can be further improved to 

make an advanced BWC in the future.  
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Appendix A: Matlab Code 

A.1 TakingData.m 

%% Step 1: collecting general information 

open('C:\Program Files (x86)\Epoc Simulink EEG 

Importer\EpocSignalServer.exe'); 

%open('C:\Program Files (x86)\Emotiv EPOC Brain Activity 

Map\EmoBrainMap.exe'); 

open('C:\Program Files (x86)\Emotiv EPOC Control Panel 

v2.0.0.21\Applications\ConsumerControlPanel.exe'); 

input_checking=0; 

while input_checking==0 

prompt = {'Training time for 1 data:','Number of Training items (have 

to be divisible for numofclasses)'... 

    ,'number of classes:'}; 

dlg_title = 'Input'; 

num_lines = 1; 

def = {'1','2000','2'}; 

answer = inputdlg(prompt,dlg_title,num_lines,def); 

simstime=str2num(answer{1,:}); 

simitems=str2num(answer{2,:}); 

numofclasses=str2num(answer{3,:}); 

classesNames=cell(1,numofclasses); 

for i=1:1:numofclasses 

  classesNames{1,i}=strcat('Class',int2str(i));   

end 

input_checking = ~mod(simitems,numofclasses); 

if input_checking==0 

 msg1=   msgbox('Number of Training items have to be divisible for num 

of classes'... 

        , 'Warning'); 

while(1) 

if ishandle(msg1)==0 

   break;  

end     

pause(1); 

end 

end 

end 

  

input_checking=0; 

while input_checking==0 

Classes = inputdlg(classesNames,dlg_title,num_lines); 

  for i=1:numofclasses-1 

      cur_class=Classes{i}; 

      next_class=Classes{i+1}; 
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      if strcmp(cur_class,next_class) 

         input_checking=0; 

         break; 

      else 

         input_checking=1;  

      end     

  end 

  if numofclasses==1 

      input_checking=1; 

  end     

if input_checking==0 

msg2=   msgbox('Invalid Classes Name (they have to be different)'... 

        , 'Warning'); 

while(1) 

if ishandle(msg2)==0 

   break;  

end     

pause(1); 

end 

end 

  

end 

%% Step 2: Making Destination Folders 

Cur_dir=pwd; 

FileDir_vetor=cell(numofclasses,1); 

new_Folders=numofclasses 

Cur_folders=dir; 

Folder_mark=zeros(1,new_Folders); 

for i=1:1:numofclasses 

 if exist(Classes{i})==7 

   new_Folders=new_Folders-1; 

   Folder_mark(1,i)=1; 

 end 

end 

if new_Folders~=0 

msg3_string='The new Folders are: ' 

for i=1:1:numofclasses   

  if Folder_mark(1,i)~=1 

     msg3_string=strcat(msg3_string,', ',Classes{i,:});  

  end 

   

end  

msg3=   msgbox(msg3_string... 

        , 'Warning'); 

while(1) 

if ishandle(msg3)==0 

   break;  

end     

pause(1); 

end 

else 

msg3=   msgbox('No new Folders will be made'... 
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        , 'Warning'); 

while(1) 

if ishandle(msg3)==0 

   break;  

end     

pause(1); 

end 

end 

for i=1:1:new_Folders 

   if Folder_mark(1,i)~=1  

    New_Dir=strcat(Cur_dir,'\',Classes{i,:}) 

    mkdir(New_Dir);  

   end  

end 

%% Step 3: Making random indexes vector 

Data_indexes=zeros(1,simitems); 

for i=0:1:(numofclasses-1) 

   start_index=i/numofclasses*simitems+1; 

   stop_index=(i+1)/numofclasses*simitems; 

   for j= start_index:1:stop_index 

       Data_indexes(1,j)=i+1; 

   end 

end     

%taking current time to get different rand state every time 

cur_state=sum(clock); 

rand('state',cur_state); randn('state',cur_state); 

  

Trainging_indexes=randperm(simitems); 

Data_indexes=Data_indexes(1,Trainging_indexes) 

%% Step 4: Taking New data 

back=1; 

for i=1:1:simitems 

Cur_index=Data_indexes(back)     

DataType=Classes{Cur_index,:}; 

Message=['Prepare to take: ', DataType,' for',int2str(simstime), ' 

seconds']; 

Saving_Dir=strcat(Cur_dir,'\',DataType); 

Data_index=length(dir(Saving_Dir))-2; 

New_File_Dir=strcat(Saving_Dir,'\','Time_data',DataType 

,int2str(Data_index), '.mat') 

msg=msgbox(Message); 

while(1) 

if ishandle(msg)==0 

   break;  

end     

pause(1); 

end 

Timespan=[0 simstime]; 

sim('EmotivEpocEEG_testmodel_2011a.mdl',Timespan); 

S=load('res.mat'); 

A=S.ans; 

size=length(A)-1; 
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X=A(3:16,1:size); 

Taken_data=X; 

choice = questdlg('Was that a good data?','Data 

checker','Yes','No','Stop','Yes'); 

switch choice 

    case 'Yes'  

          save(New_File_Dir,'Taken_data') 

          back=i+1 

    case 'No' 

          back=i; 

    case 'Stop' 

          break; 

end 

end  
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A.2 ConvertData.m 

input_checking=0; 

while input_checking==0 

prompt = {'number of classes:'}; 

dlg_title = 'Input'; 

num_lines = 1; 

def = {'2'}; 

answer = inputdlg(prompt,dlg_title,num_lines,def); 

numofclasses=str2num(answer{1,:}); 

classesNames=cell(1,numofclasses); 

for i=1:1:numofclasses 

  classesNames{1,i}=strcat('Class',int2str(i));   

end 

input_checking=1; 

end  

input_checking=0; 

while input_checking==0 

Classes = inputdlg(classesNames,dlg_title,num_lines); 

  for i=1:numofclasses-1 

      cur_class=Classes{i}; 

      next_class=Classes{i+1}; 

      if strcmp(cur_class,next_class) 

         input_checking=0; 

         break; 

      else 

         input_checking=1;  

      end     

  end 

if numofclasses==1 

    input_checking=1; 

end     

if input_checking==0 

msg2=   msgbox('Invalid Classes Name (they have to be different)'... 

        , 'Warning'); 

while(1) 

if ishandle(msg2)==0 

   break;  

end     

pause(1); 

end 

end  

end 

Cur_dir=pwd; 

FileDir_vetor=cell(numofclasses,1); 

new_Folders=numofclasses 

Cur_folders=dir; 

Folder_mark=zeros(1,new_Folders); 

for i=1:1:numofclasses 

 if exist(Classes{i},'dir')==7 

   new_Folders=new_Folders-1; 
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   Folder_mark(1,i)=1; 

 end 

end 

if new_Folders==0 

msg3_string='The Folders exist' 

for i=1:1:numofclasses   

  if Folder_mark(1,i)~=1 

     msg3_string=strcat(msg3_string,', ',Classes{i,:});  

  end 

   

end  

msg3=   msgbox(msg3_string... 

        , 'Warning'); 

while(1) 

if ishandle(msg3)==0 

   break;  

end     

pause(1); 

end 

else 

msg3=   msgbox('These Folders are not existed'... 

        , 'Warning'); 

while(1) 

if ishandle(msg3)==0 

   break;  

end     

pause(1); 

end 

end 

%% Count Data 

CountSource=zeros(numofclasses,1); 

for i=1:1:numofclasses 

   if Folder_mark(1,i)==1  

    FileDir{i}=strcat(Cur_dir,'\',Classes{i,:}) 

    CountSource(i)=length(dir(FileDir{i}))-2;  

   end  

end 

  

msg=   msgbox('Ready to input 1==yes 0==no What Data Type You wanna 

Create ? (New Dir will be made)'... 

        , 'Warning'); 

while(1) 

if ishandle(msg)==0 

   break;  

end     

pause(1); 

end 

input_checking=0; 

while input_checking==0 

prompt = {'PSD data in Db','PSD data in uW'}; 

dlg_title = 'Input'; 

num_lines = 1; 
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def = {'0','0'}; 

answer = inputdlg(prompt,dlg_title,num_lines,def); 

Db=str2num(answer{1,:}); 

uW=str2num(answer{2,:}); 

for i=1:1:2 

   if str2num(answer{i,:})~=1&&str2num(answer{i,:})~=0 

       msg=   msgbox('Plz input 1 or 0 only)'... 

        , 'Warning'); 

       while(1) 

       if ishandle(msg)==0 

        break;  

       end     

       pause(1); 

       end 

      input_checking=0; 

   else 

      input_checking=1;   

   end     

end 

  

end 

New_Folders=2*numofclasses*5; 

Folder_mark=zeros(1,New_Folders); 

NewFolderNames=cell(New_Folders,1) 

for i=0:1:numofclasses-1 

    for j=0:1:2 

        for k=1:1:5 

          if j==0 

            

NewFolderNames{i*10+5*j+k}=[Classes{i+1},'PSD_Db',num2str(k),'s']; 

          elseif j==1      

            

NewFolderNames{i*10+5*j+k}=[Classes{i+1},'PSD_uW',num2str(k),'s']; 

        end 

        end 

    end 

     

end 

  

for i=1:1:New_Folders 

 if exist(NewFolderNames{i})~=7 

   Temp_Dir=strcat(Cur_dir,'\',NewFolderNames{i,:}) 

   mkdir(Temp_Dir) 

 end 

end 

if Db==1 

 i=1; 

 Class=1; 

 while(i<New_Folders) 

   for sec=0:4 

     Temp_Dir=strcat(Cur_dir,'\',NewFolderNames{i+sec,:}) 

     count_dir=length(dir(Temp_Dir))-2; 
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     for j=count_dir:1:CountSource(Class)-1      

FileRead=[FileDir{Class},'\','Time_data',Classes{Class},num2str(j),'.m

at'] 

         X=load(FileRead); 

         X=X.Taken_data; 

         X=X(:,1:128*(sec+1)); 

         Fs=128; 

         N=128*(sec+1); 

         for k=1:1:14 

         original_data=X; 

         window=hamming(N); 

         psd_data(k,:) = 

10*log10(2*periodogram(original_data(k,:),window,0:Fs/2,Fs)); 

         end 

         Taken_data=psd_data; 

         

FileSave=[Temp_Dir,'\','PSD_data_of_',NewFolderNames{i+sec},num2str(j)

,'.mat'] 

         save(FileSave,'Taken_data'); 

     end      

   end 

    Class=Class+1; 

     i=i+10; 

 end      

end 

  

if uW==1 

 i=6; 

 Class=1; 

 while(i<New_Folders) 

   for sec=0:4 

     Temp_Dir=strcat(Cur_dir,'\',NewFolderNames{i+sec,:}) 

     count_dir=length(dir(Temp_Dir))-2; 

     for j=count_dir:1:CountSource(Class)-1 

         

FileRead=[FileDir{Class},'\','Time_data',Classes{Class},num2str(j),'.m

at'] 

         X=load(FileRead); 

         X=X.Taken_data; 

         X=X(:,1:128*(sec+1)); 

         Fs=128; 

         N=128*(sec+1); 

         for k=1:1:14 

         original_data=X; 

         window=hamming(N); 

         psd_data(k,:) = 

2*periodogram(original_data(k,:),window,0:Fs/2,Fs); 

         end 

         Taken_data=psd_data; 

         

FileSave=[Temp_Dir,'\','PSD_data_of_',NewFolderNames{i+sec},num2str(j)

,'.mat'] 
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         save(FileSave,'Taken_data'); 

     end     

   end 

    Class=Class+1; 

     i=i+10; 

 end      

end 

  



 84 

 

A.3 svm_train_n_categories.m 

close all; 

clear all; 

clc;  

Timer=clock(); 

Year=num2str(Timer(1)); 

Month=num2str(Timer(2)); 

Day=num2str(Timer(3)); 

Hour=num2str(Timer(4)); 

Min=num2str(Timer(5)); 

algo_choice=0; 

choice = questdlg('What type of algorithm you want to choose 

?','Algorithm checker','Seeding Analysis','Making a Predict 

Model','Seeding Analysis'); 

switch choice 

    case 'Seeding Analysis'  

          algo_choice=0; 

    case 'Making a Predict Model' 

          algo_choice=1; 

end 

if algo_choice==0 

    

ReportTxtName=['ResultReport','_on_',Month,'_',Day,'_',Year,'_at_',Hou

r,'_',Min,'.txt'] 

    prompt = {'File Save Name'}; 

    dlg_title = 'File name'; 

    num_lines = 1; 

    def = {ReportTxtName}; 

    answer = inputdlg(prompt,dlg_title,num_lines,def); 

    ReportTxtName=(answer{1,:}); 

  

    resultfile=fopen(ReportTxtName,'w') 

    prompt = {'Wished Test Acc (1- 100):'}; 

    dlg_title = 'Input your choice'; 

    num_lines = 1; 

    def = {'70'}; 

    answer = inputdlg(prompt,dlg_title,num_lines,def); 

    Wished_Test_Acc=str2num(answer{1,:}); 

end     

input_checking=0; 

while input_checking==0 

prompt = {'number of Folders:','Datasize','Num of layers'}; 

dlg_title = 'Input--(Datasize=0 for biggest Datasize will be taken'; 

num_lines = 1; 

def = {'2','0','10'}; 

answer = inputdlg(prompt,dlg_title,num_lines,def); 

input_checking=1; 

NumsofFolders=str2num(answer{1,:}); 

datasize=str2num(answer{2,:}); 

Layers=str2num(answer{3,:}); 
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input_checking=1;  

if mod(datasize,Layers)~=0 || datasize/Layers<50   

   input_checking=0;  

end  

if input_checking==0 

msg2=   msgbox('datasize is not divible for layers'... 

        , 'Warning'); 

while(1) 

if ishandle(msg2)==0 

   break;  

end     

pause(1); 

end 

end 

end 

classesNames=cell(1,NumsofFolders); 

for i=1:1:NumsofFolders 

  classesNames{1,i}=strcat('Class',int2str(i));   

end 

input_checking=0; 

while input_checking==0 

dlg_title = 'Input'; 

num_lines = 1; 

Classes = inputdlg(classesNames,dlg_title,num_lines); 

 for i=1:NumsofFolders-1 

      cur_class=Classes{i}; 

      next_class=Classes{i+1}; 

      if strcmp(cur_class,next_class) 

         input_checking=0; 

         break; 

      else 

         input_checking=1;  

      end     

 end 

    if NumsofFolders==1 

      input_checking=1; 

    end   

if input_checking==0 

msg2=   msgbox('Invalid Classes Name (they have to be different)'... 

        , 'Warning'); 

while(1) 

if ishandle(msg2)==0 

   break;  

end     

pause(1); 

end 

end 

end 

if algo_choice==1 

% trained seed list here 

LayersNames=cell(1,Layers); 

for i=1:1:Layers 



 86 

 

  LayersNames{1,i}=strcat('Seed_For_Layers',int2str(i));   

end 

  

dlg_title = 'Input'; 

num_lines = 1; 

SeedsList = inputdlg(LayersNames,dlg_title,num_lines); 

  

end 

Cur_dir=pwd; 

FileDir=cell(NumsofFolders,1); 

NumofFiles=zeros(NumsofFolders,1); 

for i=1:NumsofFolders 

FileDir{i}=strcat(Cur_dir,'/',Classes{i}) 

NumofFiles(i,:)=length(dir(FileDir{i}))-2; 

end 

if datasize~=0 

Best_Num_Train=datasize; 

else 

Best_Num_Train=min(NumofFiles); 

end 

  

input_checking=0 

while input_checking==0 

prompt = {'Enter Selected Channels separate by dashes:'}; 

dlg_title = 'Input'; 

num_lines = 2; 

def = {'1-2-3-4-5-6-7-8-9-10-11-12-13-14'}; 

SelectedChannels = inputdlg(prompt,dlg_title,num_lines,def); 

SelectedChannels=SelectedChannels{1}; 

counter=0; 

for i=1:length(SelectedChannels) 

    if strcmp(SelectedChannels(i),'-') 

     counter=counter+1;    

    end     

end 

numofChannels=counter+1; 

choosing_vector=zeros(numofChannels,1) 

String=''; 

num_count=0; 

dash_last_index=0; 

for i=1:length(SelectedChannels) 

    if ~strcmp(SelectedChannels(i),'-') 

     String=[String,SelectedChannels(i)]; 

    else 

     if i>dash_last_index 

       dash_last_index=i; 

     end     

     num_count=num_count+1; 

     choosing_vector(num_count,:)=str2num(String); 

     String=''; 

    end  
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end 

choosing_vector(num_count+1,:)=str2num(SelectedChannels(dash_last_inde

x+1:length(SelectedChannels))) 

if numofChannels<0 || numofChannels>14 

msg3=   msgbox('Out of Bound','Warning'); 

while(1) 

if ishandle(msg3)==0 

   break;  

end     

pause(1); 

end 

input_checking=0; 

else 

input_checking=1;       

end 

end 

  

input_checking=0; 

while input_checking==0 

prompt = {'Start Frequency: ','Stop Frequency: '}; 

dlg_title = 'Input Frequency From 0--64 Hz'; 

num_lines = 1; 

def = {'4','30'}; 

answer = inputdlg(prompt,dlg_title,num_lines,def); 

  

F_Start=str2num(answer{1,:}); 

F_Stop=str2num(answer{2,:}); 

if F_Start==F_Stop || F_Start>F_Stop || F_Start<0 || F_Start>65 || 

F_Stop<0 || F_Stop>65 

   input_checking=0; 

else 

   input_checking=1; 

end     

  

if input_checking==0 

   msg4=   msgbox('Invalid Frequency Range'... 

        , 'Warning'); 

while(1) 

if ishandle(msg4)==0 

   break;  

end     

pause(1); 

end 

  

end     

end 

F_range=F_Start:1:F_Stop;  

input_checking=0; 

Myseed=1:10; 

Mylatch=0:1:Layers-1 

Total_Num_Train=Best_Num_Train; 

Best_Num_Train=Best_Num_Train/Layers; 
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Sectorlength=Best_Num_Train; 

  

if algo_choice==1 

  Wished_Test_Acc=0; 

  Myseed=1; 

  Mylatch=0; 

  Mysector=0:1:Layers-1; 

  Best_Num_Train=Total_Num_Train; 

else 

  Mysector=1;   

end 

Wished_Test_Acc=Wished_Test_Acc/100; 

for latch=Mylatch 

  

 for seed=Myseed 

  

if algo_choice==0&&seed==1 

fprintf(resultfile,'\n');  

FirstLine=['Seed','    ','Best_C','   ','Best_gamma','   

','Train_acc','   ','Test_acc','   ','Total_SV','\n']  

fprintf(resultfile,FirstLine); 

end 

 

Data=zeros(Best_Num_Train*NumsofFolders,numofChannels*length(F_range))

; 

 Data_row=zeros(1,numofChannels*length(F_range)); 

 Classify=zeros(Best_Num_Train*NumsofFolders,1); 

if algo_choice==0||Layers==1  

    I_Start=latch*Best_Num_Train; 

    I_Stop=I_Start+Best_Num_Train-1; 

 for i=0:NumsofFolders-1 

 for j=I_Start:1:I_Stop 

   

load_file=[FileDir{i+1},'\','PSD_data_of_',Classes{i+1},int2str(j),'.m

at'] 

   S=load(load_file) 

   X=S.Taken_data(choosing_vector',F_range) 

  

   for k=0:1:numofChannels-1 

       

Data_row(length(F_range)*k+1:length(F_range)*k+length(F_range))=X(k+1,

:); 

   end   

  

  Classify(Best_Num_Train*i+j-I_Start+1,:)=i+1;     

  Data(Best_Num_Train*i+j-I_Start+1,:)=Data_row;    

  

  end 

 end 

else 

     

for l=Mysector 
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    Jump=Best_Num_Train/Layers 

    I_Start=l*Jump; 

    I_Stop=I_Start+Jump-1; 

 for i=0:NumsofFolders-1 

    for j=I_Start:1:I_Stop 

   

load_file=[FileDir{i+1},'\','PSD_data_of_',Classes{i+1},int2str(j),'.m

at'] 

   S=load(load_file) 

   X=S.Taken_data(choosing_vector',F_range) 

   for k=0:1:numofChannels-1 

       

Data_row(length(F_range)*k+1:length(F_range)*k+length(F_range))=X(k+1,

:); 

   end   

  

       

  Classify(Jump*(i+l*NumsofFolders)+(j-I_Start)+1,:)=i+1;     

  Data(Jump*(i+l*NumsofFolders)+(j-I_Start)+1+1,:)=Data_row;    

   

  end 

 end 

end    

end 

 

  

% Start Training 

tic 

timedata_all = Data; 

decision_data_all = Classify; 

saved_minarray=min(timedata_all,[],1); 

saved_ratio=spdiags(1./(max(timedata_all,[],1)-

min(timedata_all,[],1))',0,size(timedata_all,2),size(timedata_all,2)); 

timedata_all = (timedata_all - 

repmat(saved_minarray,size(timedata_all,1),1))*saved_ratio;  

decision_data = decision_data_all(:,1); 

range=length(decision_data'); 

timedata = timedata_all(1:1:range,:); 

decision_data = decision_data(1:1:range,:); 

x_all=timedata; 

y_all = decision_data;  

finaltest_index=zeros(1,length(y_all)/5); 

for sector=Mysector 

for i=0:1:NumsofFolders-1 

    if algo_choice==1 

       seed=str2num(SeedsList{sector+1}); 

       rand('state',seed); randn('state',seed); 

       if Layers==1 

       

finaltest_index(i*length(find(y_all==i+1))/5+1:1:(i+1)*length(find(y_a

ll==i+1))/5)=randsample(find(y_all==i+1),length(find(y_all==i+1))/5);     

       else     
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       Jumper=Layers; 

       Section_length=Best_Num_Train/Layers*NumsofFolders; 

       

finaltest_index(sector*length(y_all)/5/Jumper+i*length(find(y_all==i+1

))/Jumper/5+1:1:sector*length(y_all)/5/Jumper+(i+1)*length(find(y_all=

=i+1))/Jumper/5)=Section_length*sector+randsample(find(y_all(Section_l

ength*sector+1:Section_length*(sector+1))==i+1),length(find(y_all==i+1

))/5/Jumper); 

       end 

       else 

       rand('state',seed); randn('state',seed); 

       

finaltest_index(i*length(find(y_all==i+1))/5+1:1:(i+1)*length(find(y_a

ll==i+1))/5)=randsample(find(y_all==i+1),length(find(y_all==i+1))/5); 

    end 

end 

end 

x_finaltest     = x_all(finaltest_index,:); 

y_finaltest     = y_all(finaltest_index)'; 

Train_index     = setdiff(1:length(y_all),finaltest_index); 

x_Train_all1     = x_all(Train_index,:); 

y_Train_all1     = y_all(Train_index)'; 

[y_Train_all,right_order] = sort(y_Train_all1); 

x_Train_all               = x_Train_all1(right_order,:); 

alpha = 1/NumsofFolders;  

%% start calculating 

bond    = 80;  % this bond is to limit the training accuracy  

bondgap=40 

percentage_bound = bond ; 

xValidationFolds = 5; 

% train_rbfsvm_official is the function we use to train data for 

getting 

% best parameters C ,gamma ,and SVM structure 

y= y_Train_all'; 

x= x_Train_all; 

if algo_choice==1 

y= y_Train_all1'; 

x= x_Train_all1;    

end 

indexes=zeros(NumsofFolders,length(y_Train_all)/NumsofFolders); 

for i=0:1:NumsofFolders-1 

indexes(i+1,:)=find(y==i+1); 

end   

fid=fopen('writeweight.m','w') 

for i=1:NumsofFolders 

write='w%i=%i ;\r\n'; 

text=[i 1]' 

fprintf(fid,write,text) 

end 

fclose(fid); 

writeweight 

Col=floor(length(y_Train_all)/NumsofFolders/xValidationFolds); 
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%------------------------ 

Temp_indexes=indexes(1,:); 

Temp_indexes_new= 

reshape(Temp_indexes(randperm(xValidationFolds*Col)),xValidationFolds,

Col); 

expected_range=length(Temp_indexes_new); 

New_indexes=zeros(NumsofFolders*5,expected_range); 

for sector=Mysector 

for i=0:1:NumsofFolders-1 

if algo_choice==1 

seed=str2num(SeedsList{sector+1}); 

rand('state',seed); randn('state',seed);     

lID=length(indexes)/Layers; 

lID1=Col/Layers 

Temp_indexes=indexes(i+1,sector*lID+1:(sector+1)*lID); 

New_indexes(i*5+1:(i+1)*5,sector*lID1+1:(sector+1)*lID1)=reshape(Temp_

indexes(randperm(xValidationFolds*Col/Layers)),xValidationFolds,Col/La

yers); 

else 

rand('state',seed); randn('state',seed);   

Temp_indexes=indexes(i+1,:); 

New_indexes(i*5+1:(i+1)*5,:)=reshape(Temp_indexes(randperm(xValidation

Folds*Col)),xValidationFolds,Col);  

end 

end 

end     

% optimize C 

% optimize gamma  

if algo_choice==1 

choice = questdlg('What type of optimization you want to choose 

?','Algorithm checker','C optimizer','gamma optimizer','Making a 

model','Making a model'); 

switch choice 

    case 'gamma optimizer'  

          option=0; 

    case 'C optimizer' 

          option=1; 

    case 'Making a model' 

          option=3; 

end 

else 

    option=2 

end 

search=1:5 

dlg_title='Input otimized para' 

if option==0 

prompt = {'Input C:'}; 

num_lines = 1; 

def = {'0'}; 

answer = inputdlg(prompt,dlg_title,num_lines,def); 

GuessBestC=str2num(answer{1}); 

search=1:5 
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elseif option==1 

prompt = {'Input Gamma:'}; 

num_lines = 1; 

def = {'0'}; 

answer = inputdlg(prompt,dlg_title,num_lines,def); 

GuessBestGamma=str2num(answer{1}); 

search=1:5 

elseif option==3 

prompt = {'Input Gamma:','Input C:'}; 

num_lines = 1; 

def = {'0','0'}; 

answer = inputdlg(prompt,dlg_title,num_lines,def); 

GuessBestGamma=str2num(answer{1});         

GuessBestC=str2num(answer{2}); 

search=1; 

xValidationFolds=1; 

end 

for search=search 

if search==1 

    step1 =1 ; 

    if option==2 

        min_c = -5; max_c =15; 

        C_array = 2.^(min_c:step1:max_c); 

        % original gamma step 1 

        min_gamma = -10; max_gamma = 5; 

        gamma_array = 2.^(min_gamma:step1:max_gamma);    

    elseif option==0  

        C_array=GuessBestC; 

        min_gamma = -10; max_gamma = 5; 

        gamma_array = 2.^(min_gamma:step1:max_gamma); 

    elseif option==1 

        gamma_array=GuessBestGamma; 

        min_c = -5; max_c =15; 

        C_array = 2.^(min_c:step1:max_c);     

    elseif option==3 

        gamma_array=GuessBestGamma 

        C_array=GuessBestC; 

    end 

else 

    step1=step1/2; 

    if option==2 

        C_range = max(min_c, log2(best_C)-

step1*10):step1:min(log2(best_C)+step1*10,max_c); 

        C_array = 2.^(C_range); 

        gamma_range = max(min_gamma, log2(best_gamma)-

step1*10):step1:min(log2(best_gamma)+step1*10,max_gamma); 

        gamma_array=2.^(gamma_range); 

    elseif option==0  

        C_array=GuessBestC; 

        min_gamma = -10; max_gamma = 5; 

        gamma_array = 2.^(min_gamma:step1:max_gamma); 

    elseif option==1 
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        gamma_array=GuessBestGamma; 

        min_c = -5; max_c =15; 

        C_array = 2.^(min_c:step1:max_c);    

    elseif option==3 

        gamma_array=GuessBestGamma 

        C_array=GuessBestC;     

    end 

end 

C_length = length(C_array); 

G_length=length(gamma_array);  

train_correct_rate=zeros(C_length, G_length); 

test_correct_rate=zeros(C_length, G_length);   

optimazation_criterion_2=zeros(C_length, G_length); 

  

for k=1:C_length 

 for j=1:G_length 

     for fold=1:xValidationFolds 

         testPortion=zeros(1,expected_range*NumsofFolders); 

                for i=0:1:NumsofFolders-1 

                    temp_indexes=New_indexes(i*5+1:(i+1)*5,:); 

                    

testPortion(1,i*expected_range+1:1:expected_range*(i+1))=temp_indexes(

fold,:); 

                end  

           

            trainPortion  = setdiff(1:length(y),testPortion);             

            x_train = x(trainPortion, :); 

            y_train = y(trainPortion, :); 

            x_test= x(testPortion,:); 

            y_test= y(testPortion,:); 

            cur_C=C_array(k); 

            cur_S=gamma_array(j); 

            fid=fopen('writePara.m','w') 

            write='Parameters   = [''-c '' num2str(C_array(k)) '' -g 

'' num2str(gamma_array(j)) ' 

            for i=1:NumsofFolders 

            write=[write,'''-w',num2str(i),' '' ',' 

','num2str(w',num2str(i),')',' ']; 

            if i==NumsofFolders 

            write=[write,' ',''' -b 0''',' ];']; 

            end    

            end 

            fprintf(fid,write) 

            fclose(fid) 

            writePara; 

            model        = svmtrain(y_train,x_train,Parameters); 

            [group_train,acc_train,val_train] = svmpredict(y_train, 

x_train, model,'-b 0');  

            [group_test,acc_test,val_test]       = svmpredict(y_test, 

x_test, model,'-b 0');   
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train_correct_rate(k,j)=train_correct_rate(k,j)+100*sum(group_train==y

_train)/size(x_train,1); 

            

test_correct_rate(k,j)=test_correct_rate(k,j)+100*sum(group_test==y_te

st)/size(x_test,1);    

            Pro_test=zeros(NumsofFolders,1); 

             

            for i=1:NumsofFolders 

               Pro_test(i)= 

length(intersect(find(y_test==i),find(group_test~=i)))/length(find(y_t

est==i)); 

                if isnan(Pro_test(i)); 

                Pro_test(i) = 0; 

               end 

            end 

  for i=1:NumsofFolders 

            optimazation_criterion_2(k, j)= 

optimazation_criterion_2(k, j)+alpha*Pro_test(i);           

  end     

  end 

        

train_correct_rate(k,j)=train_correct_rate(k,j)/xValidationFolds; 

        

test_correct_rate(k,j)=test_correct_rate(k,j)/xValidationFolds; 

        optimazation_criterion_2(k, j)= optimazation_criterion_2(k, 

j)/xValidationFolds;   

       

          if train_correct_rate(k,j)<percentage_bound || 

test_correct_rate(k,j)<train_correct_rate(k,j)-bondgap 

           optimazation_criterion_2(k, j)=Inf;  

          end 

            end % end j 

end %end k 

train_correct_rate 

optimazation_criterion_2 

test_correct_rate 

[best_rate1, index1]=min(optimazation_criterion_2) 

[best_rate2, index2]=min(best_rate1) 

if option==2 

    best_C=C_array(index1(1, index2)) 

    best_gamma=gamma_array(index2) 

elseif option==0 

    best_C=C_array 

    best_gamma=gamma_array(index2) 

elseif option==1 

    best_gamma=gamma_array 

    best_C=C_array(index1(1, index2)) 

elseif option ==3 

    best_C=C_array  

    best_gamma=gamma_array 

end 
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best_rate2 

display('end') 

display(search) 

end 

 fid=fopen('writeFPara.m','w') 

            write='Final_Parameters    = [''-c '' num2str(best_C) '' -

g '' num2str(best_gamma) ' 

            for i=1:NumsofFolders 

            write=[write,'''-w',num2str(i),' '' ',' 

','num2str(w',num2str(i),')',' ']; 

            if i==NumsofFolders 

            write=[write,' ',''' -b 0''',' ];']; 

            end    

            end 

            fprintf(fid,write) 

            fclose(fid) 

writeFPara 

final_model               = 

svmtrain(y_Train_all',x_Train_all,Final_Parameters); 

[class_train,~,p_train]   = 

svmpredict(double(y_Train_all'),x_Train_all, final_model,'-b 0'); 

[class_test,~,p_test]     = 

svmpredict(double(y_finaltest'),x_finaltest, final_model,'-b 0'); 

label_train=class_train; 

label_test=class_test; 

train_acc                 = sum(label_train == y_Train_all') ./ 

numel(y_Train_all)    % Accuracy 

test_acc                  = sum(label_test == y_finaltest') ./ 

numel(y_finaltest) 

C_train                   = confusionmat(y_Train_all,label_train) 

C_test                    = confusionmat(y_finaltest,label_test) 

numSV=final_model.totalSV 

Cur_dir=pwd; 

Para_dir=strcat(Cur_dir,'/','Parameters'); 

String=strcat(Para_dir,'/','Para_',int2str(Best_Num_Train),'data_'); 

for i=1:1:NumsofFolders 

     String=strcat(String,Classes{i},'_'); 

end 

if algo_choice==1 

Name=strcat(int2str(numofChannels),'Channels','(',SelectedChannels 

,')','_',num2str(test_acc),'.mat') 

uisave('final_model',String); 

else 

if test_acc>=Wished_Test_Acc 

ResultWrite=[num2str(seed),'        ',num2str(best_C),'       

',num2str(best_gamma),'        ',num2str(train_acc),'           

',num2str(test_acc),'        ',num2str(numSV),'\n'] 

fprintf(resultfile,ResultWrite); 

end 

F_rangestr=[num2str(F_range(1)),'-',num2str(F_range(length(F_range)))] 

IndexRange=[num2str(I_Start),'-',num2str(I_Stop),'ID'] 
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LastLine=['Result of ', num2str(Best_Num_Train),' data ', 

SelectedChannels, 'channel ',F_rangestr,'Hz ', IndexRange] 

for i=1:NumsofFolders 

LastLine=[LastLine,' ',Classes{i}] 

end 

LastLine=[LastLine,'\n'] 

fprintf(resultfile,LastLine); 

end 

end 

end 

Test_acc=num2str(Wished_Test_Acc) 

VeryLastLine=['Result of ', num2str(Total_Num_Train),' data ', 

SelectedChannels, 'channel ',F_rangestr,'Hz '] 

for i=1:NumsofFolders 

VeryLastLine=[VeryLastLine,' ',Classes{i}] 

end 

VeryLastLine=[VeryLastLine,'with Wished_Test_Acc of: ',Test_acc] 

fprintf(resultfile,VeryLastLine); 

fclose(resultfile) 
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A.4 RobotControl.m 

clc 

clear all 

open('C:\Program Files (x86)\Epoc Simulink EEG 

Importer\EpocSignalServer.exe'); 

open('C:\Program Files (x86)\Emotiv EPOC Control Panel 

v2.0.0.21\Applications\ConsumerControlPanel.exe'); 

choice = questdlg('What type of Run you want to choose 

?','Mode','Practice Mode','Real Time Mode','Practice Mode'); 

switch choice 

    case 'Practice Mode'  

          M=0; 

    case 'Real Time Mode' 

          M=1; 

end 

Cur_dir=pwd; 

Para_folder=[Cur_dir,'\','Parameters'] 

Parachoice=0 

while Parachoice==0 

[Parachoice,ParaPath] = uigetfile('*.mat','Select The 

Parameters',Para_folder) 

RunModel=load([ParaPath,Parachoice]) 

RunModel=RunModel.final_model 

end 

if M==0 

input_checking=0; 

while input_checking==0 

prompt = {'number of Folders:','Datasize','Time','Points:'}; 

dlg_title = 'Input--(Datasize=0 for biggest Datasize will be taken'; 

num_lines = 1; 

def = {'2','1000','10','30'}; 

answer = inputdlg(prompt,dlg_title,num_lines,def); 

NumsofFolders=str2num(answer{1,:}); 

datasize=str2num(answer{2,:}); 

TimeTrain=str2num(answer{3,:}); 

Points=str2num(answer{4,:}); 

input_checking=1;  

end 

else 

input_checking=0; 

while input_checking==0     

prompt = {'number of Folders:','Datasize','Time'};   

dlg_title = 'Input--(Datasize=0 for biggest Datasize will be taken'; 

num_lines = 1; 

def = {'2','1000','5'}; 

answer = inputdlg(prompt,dlg_title,num_lines,def); 

input_checking=1; 

NumsofFolders=str2num(answer{1,:}); 

datasize=str2num(answer{2,:}); 

TimeTrain=str2num(answer{3,:}); 
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input_checking=1;  

end 

end 

  

classesNames=cell(1,NumsofFolders); 

for i=1:1:NumsofFolders 

  classesNames{1,i}=strcat('Class',int2str(i));   

end 

  

input_checking=0; 

  

while input_checking==0 

dlg_title = 'Input'; 

num_lines = 1; 

Classes = inputdlg(classesNames,dlg_title,num_lines); 

 for i=1:NumsofFolders-1 

      cur_class=Classes{i}; 

      next_class=Classes{i+1}; 

      if strcmp(cur_class,next_class) 

         input_checking=0; 

         break; 

      else 

         input_checking=1;  

      end     

 end 

    if NumsofFolders==1 

      input_checking=1; 

    end   

if input_checking==0 

msg2=   msgbox('Invalid Classes Name (they have to be different)'... 

        , 'Warning'); 

while(1) 

if ishandle(msg2)==0 

   break;  

end     

pause(1); 

end 

end 

  

end 

FileDir=cell(NumsofFolders,1); 

NumofFiles=zeros(NumsofFolders,1); 

for i=1:NumsofFolders 

FileDir{i}=strcat(Cur_dir,'/',Classes{i}) 

NumofFiles(i,:)=length(dir(FileDir{i}))-2; 

end 

if datasize~=0 

Best_Num_Train=datasize; 

else 

Best_Num_Train=min(NumofFiles); 

end 
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input_checking=0 

while input_checking==0 

prompt = {'Enter Selected Channels separate by dashes:'}; 

dlg_title = 'Input'; 

num_lines = 2; 

def = {'1-2-3-4-5-6-7-8-9-10-11-12-13-14'}; 

SelectedChannels = inputdlg(prompt,dlg_title,num_lines,def); 

SelectedChannels=SelectedChannels{1}; 

counter=0; 

for i=1:length(SelectedChannels) 

    if strcmp(SelectedChannels(i),'-') 

     counter=counter+1;    

    end     

end 

numofChannels=counter+1; 

choosing_vector=zeros(numofChannels,1) 

String=''; 

num_count=0; 

dash_last_index=0; 

for i=1:length(SelectedChannels) 

    if ~strcmp(SelectedChannels(i),'-') 

     String=[String,SelectedChannels(i)]; 

    else 

     if i>dash_last_index 

       dash_last_index=i; 

     end     

     num_count=num_count+1; 

     choosing_vector(num_count,:)=str2num(String); 

     String=''; 

    end  

      

end 

choosing_vector(num_count+1,:)=str2num(SelectedChannels(dash_last_inde

x+1:length(SelectedChannels))) 

if numofChannels<0 || numofChannels>14 

msg3=   msgbox('Out of Bound','Warning'); 

while(1) 

if ishandle(msg3)==0 

   break;  

end     

pause(1); 

end 

input_checking=0; 

else 

input_checking=1;       

end 

end 

  

input_checking=0; 

while input_checking==0 

prompt = {'Start Frequency: ','Stop Frequency: '}; 

dlg_title = 'Input Frequency From 0--64 Hz'; 
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num_lines = 1; 

def = {'4','30'}; 

answer = inputdlg(prompt,dlg_title,num_lines,def); 

  

F_Start=str2num(answer{1,:}); 

F_Stop=str2num(answer{2,:}); 

if F_Start==F_Stop || F_Start>F_Stop || F_Start<0 || F_Start>64 || 

F_Stop<0 || F_Stop>65 

   input_checking=0; 

else 

   input_checking=1; 

end     

  

if input_checking==0 

   msg4=   msgbox('Invalid Frequency Range'... 

        , 'Warning'); 

while(1) 

if ishandle(msg4)==0 

   break;  

end     

pause(1); 

end 

  

end     

end 

F_range=F_Start:1:F_Stop;  

Rows=Best_Num_Train*NumsofFolders 

Collumns= numofChannels*length(F_range) 

Data=zeros(Rows,Collumns); 

Data_row=zeros(1,Collumns); 

TakingDatamodel=uigetfile('*.mdl') 

TakingDatamodel=TakingDatamodel(1:length(TakingDatamodel)-4) 

choice = questdlg('What type of Feedback you want to choose 

?','Feedback','Correlation Coefficent','Reference Power and 

Correlation Coefficent','Reference Power and Correlation Coefficent'); 

switch choice 

    case 'Correlation Coefficent'  

          Feedback=0; 

    case 'Reference Power and Correlation Coefficent' 

          Feedback=1; 

end 

if Feedback==1 

   msg=msgbox(['Collecting Reference Data for',num2str(20),'s']) 

   while(1) 

   if ishandle(msg)==0 

   break;  

   end     

   pause(1); 

   end 

   sim(TakingDatamodel,20) 

   S=load('res.mat'); 

   A=S.ans; 
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   X=A(3:16,1:128*TimeTrain) 

   Fs=128; 

   N=128*TimeTrain; 

 for k=1:1:14 

         original_data=X; 

         window=hamming(N); 

         psd_data(k,:) = 

2*periodogram(original_data(k,:),window,0:Fs/2,Fs); 

 end 

   psd_data_ref=psd_data(choosing_vector,F_range) 

   Temp=psd_data_ref';  

   Data_Ref=Temp(:)' 

 msg=msgbox('Reference taken') 

   while(1) 

   if ishandle(msg)==0 

   break;  

   end     

   pause(1); 

   end    

else 

    Data_Ref=0; 

end    

 for i=0:NumsofFolders-1 

 for j=0:1:Best_Num_Train-1 

   

load_file=[FileDir{i+1},'\','PSD_data_of_',Classes{i+1},int2str(j),'.m

at'] 

   S=load(load_file) 

   X=S.Taken_data(choosing_vector',F_range) 

  

   for k=0:1:numofChannels-1 

       

Data_row(length(F_range)*k+1:length(F_range)*k+length(F_range))=X(k+1,

:); 

   end   

    

  Data(Best_Num_Train*i+j+1,:)=Data_row;    

  

  end 

 end 

timedata_all=zeros(Rows,Collumns)  

timedata_all(1:Rows,:)=Data; 

%Normalizing   

minarray=min(timedata_all,[],1); 

 ratio=spdiags(1./(max(timedata_all,[],1)-

min(timedata_all,[],1))',0,size(timedata_all,2),size(timedata_all,2)); 

 timedata_all = (timedata_all - 

repmat(minarray,size(timedata_all,1),1))*ratio; 

Timespan=[0 TimeTrain] 
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check=0; 

if M==0 

for i = 1:NumsofFolders 

Correct=0;     

Choice=i;      

cccheck=0; 

Loop=0; 

msg=msgbox(['Collecting Reference Data for Correlation Calculation 

of',Classes{i},'s']) 

while(1) 

   if ishandle(msg)==0 

   break;  

   end     

   pause(1); 

end 

while(cccheck~=1)    

   sim(TakingDatamodel,TimeTrain) 

   S=load('res.mat'); 

   A=S.ans; 

    X=A(3:16,1:128*TimeTrain) 

   Fs=128; 

   N=128*TimeTrain; 

 for k=1:1:14 

         original_data=X; 

         window=hamming(N); 

         psd_data(k,:) = 

2*periodogram(original_data(k,:),window,0:Fs/2,Fs); 

 end 

   psd_data_ref=psd_data(choosing_vector,F_range) 

   Temp=psd_data_ref';  

   Corr_Ref=Temp(:)'; 

   Corr_Ref=(Corr_Ref-minarray)*ratio; 

   [Result_Corr,~,p_train]   = svmpredict(Choice,Corr_Ref, RunModel,'-

b 0'); 

  if Result_Corr==i 

    cccheck=1; 

    Time_corr=X; 

   msg=msgbox('Correlation Reference taken') 

   while(1) 

   if ishandle(msg)==0 

   break;  

   end     

   pause(1); 

   end    

  else 

    cccheck=0 

   msg=msgbox('Try again') 

   while(1) 

   if ishandle(msg)==0 

   break;  

   end     

   pause(1); 
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   end  

  end 

end    

  

  

   msg=msgbox(['ready to practice 

',Classes{i},'for',num2str(Points),'times']) 

   while(1) 

   if ishandle(msg)==0 

   break;  

   end     

   pause(1); 

   end 

   

while Correct<Points 

Loop=Loop+1;     

msg=msgbox(['Prepare to take data ')   

while(1) 

   if ishandle(msg)==0 

   break;  

   end     

   pause(1); 

end 

check=0; 

while check~=1  

sim(TakingDatamodel,Timespan) 

S=load('res.mat'); 

A=S.ans; 

X=A(3:16,1:128*TimeTrain); 

Timedata=X; 

Fs=128; 

N=128*TimeTrain; 

 for k=1:1:14 

         original_data=X; 

         window=hamming(N); 

         psd_data(k,:) = 

2*periodogram(original_data(k,:),window,0:Fs/2,Fs); 

 end 

psd_data_use=psd_data(choosing_vector,F_range); 

Temp=psd_data_use'; 

Predict_data=Temp(:)'; 

corr_coeff=corrcoef(Timedata(:),Time_corr(:)) 

if mean(Predict_data)<=mean(Data_Ref) || corr_coeff(1,2)<0.80 

   check=0; 

   msg=msgbox('Focus please'); 

   while(1) 

   if ishandle(msg)==0 

   break;  

   end     

   pause(1); 

   end 

else 
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   check=1;  

end 

end 

Predict_data=(Predict_data-minarray)*ratio; 

[Result,~,p_train]   = svmpredict(Choice,Predict_data, RunModel,'-b 

0'); 

if Result==Choice 

   msg=msgbox(['Your thought:',Classes(Result)],'Correct !') 

   while(1) 

   if ishandle(msg)==0 

   break;  

   end     

   pause(1); 

   end 

   Correct=Correct+1; 

else 

   msg=msgbox(['Your thought:',Classes(Result)],'Incorrect !') 

   while(1) 

   if ishandle(msg)==0 

   break;  

   end     

   pause(1); 

   end 

end     

end 

   msg=msgbox(['Your Result For ',Classes{i},' Practice is: 

',num2str(Correct/Loop/NumsofFolders*100)],'Practice Result!') 

   while(1) 

   if ishandle(msg)==0 

   break;  

   end     

   pause(1); 

   end 

end 

else 

choice = questdlg('What type of DataType you want to choose 

?','DataType','Alphabetical','Directional','Directional'); 

switch choice 

    case 'Alphabetical'  

          Type=0; 

    case 'Directional' 

          Type=1; 

end     

Timedata_Corr=zeros(NumsofFolders,numofChannels*128*TimeTrain); 

  

for i = 1:NumsofFolders 

    cccheck=0; 

    msg=msgbox(['Collecting Reference Data for Correlation Calculation 

of',Classes{i},'s']) 

   while(1) 

   if ishandle(msg)==0 

   break;  
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   end     

   pause(1); 

   end 

    while(cccheck~=1)    

   sim(TakingDatamodel,TimeTrain) 

   S=load('res.mat'); 

   A=S.ans; 

    X=A(3:16,1:128*TimeTrain) 

   Fs=128; 

   N=128*TimeTrain; 

 for k=1:1:14 

         original_data=X; 

         window=hamming(N); 

         psd_data(k,:) = 

2*periodogram(original_data(k,:),window,0:Fs/2,Fs); 

 end 

   psd_data_ref=psd_data(choosing_vector,F_range) 

   Temp=psd_data_ref';  

   Corr_Ref=Temp(:)'; 

   Corr_Ref=(Corr_Ref-minarray)*ratio; 

   [Result_Corr,~,p_train]   = svmpredict(i,Corr_Ref, RunModel,'-b 

0'); 

  if Result_Corr==i 

    cccheck=1;  

Timedata_Corr(i,:)=X(:); 

   msg=msgbox('Correlation Reference taken') 

   while(1) 

   if ishandle(msg)==0 

   break;  

   end     

   pause(1); 

   end    

  else 

    cccheck=0 

   msg=msgbox('Try again') 

   while(1) 

   if ishandle(msg)==0 

   break;  

   end     

   pause(1); 

   end  

  end 

end  

end 

while(1) 

msg=msgbox('Prepare to take data ')   

while(1) 

   if ishandle(msg)==0 

   break;  

   end     

   pause(1); 

end 
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check=0; 

while check~=1  

sim(TakingDatamodel,Timespan) 

S=load('res.mat'); 

A=S.ans; 

X=A(3:16,1:128*TimeTrain); 

Timedata=X; 

Fs=128; 

N=128*TimeTrain; 

 for k=1:1:14 

         original_data=X; 

         window=hamming(N); 

         psd_data(k,:) = 

2*periodogram(original_data(k,:),window,0:Fs/2,Fs); 

 end 

psd_data_use=psd_data(choosing_vector,F_range); 

Temp=psd_data_use'; 

Predict_data=Temp(:)'; 

  

Predict_data=(Predict_data-minarray)*ratio; 

[Result,~,p_train]   = svmpredict(1,Predict_data, RunModel,'-b 0'); 

Time_corr=Timedata_Corr(Result,:) 

corr_coeff=corrcoef(Timedata(:),Time_corr) 

if mean(Predict_data)<=mean(Data_Ref) || corr_coeff(1,2)<0.85 

   check=0; 

   msg=msgbox('Focus please'); 

   while(1) 

   if ishandle(msg)==0 

   break;  

   end     

   pause(1); 

   end 

else 

if Type==0    

   if Result==1 

       string='A'; 

   else 

       string='B'; 

   end 

else   

   if Result==1 

       string='l'; 

   elseif Result==2 

       string='r'; 

   elseif Result==3     

       string='f'; 

   elseif Result==4     

       string='b'; 

   end  

end     

    run ; 
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    fprintf(s,string) 

    display(string) 

    pause(2); 

    if Type==1 

      string='s'; 

    fprintf(s,string) 

    display(string) 

  

    end     

    fclose(instrfind); 

msg=msgbox('Prepare to take data ')   

while(1) 

   if ishandle(msg)==0 

   break;  

   end     

   pause(1); 

end 

end 

end 

end 

end 
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A.5 ExampleBrainDataMaker.m 

input_checking=0; 

while input_checking==0 

prompt = {'Name of new data','Number of Example items'... 

    ,'Mean','deviation'}; 

dlg_title = 'Input'; 

num_lines = 1; 

def = {'Randdata_100mean','1000','100','5'}; 

answer = inputdlg(prompt,dlg_title,num_lines,def); 

input_checking=1; 

end 

cur_dir=pwd; 

des_dir=[cur_dir,'/',answer{1}] 

mkdir(des_dir) 

a = str2num(answer{4}); 

b = str2num(answer{3}); 

c = str2num(answer{2}) 

for i=0:1:c-1 

   rng(i,'twister'); 

   Taken_data=a.*randn(14,64)+b; 

   new_name=['PSD_data_of_',answer{1},int2str(i),'.mat'] 

   newdes=[des_dir,'/',new_name] 

   save(newdes,'Taken_data') 

end 
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A.6 Serial mode function and run.m 

a) run.m 

comPort='COM5'; 

[s,flag]=setupSerial(comPort); 

 

b) setupSerial.m 

function[s,flag]=setupSerial(comPort) 

flag=1; 

s = serial(comPort); 

set(s,'DataBits',8); 

set(s,'Stopbits',1); 

set(s,'BaudRate',9600); 

set(s,'Parity','none'); 

fopen(s); 

  

a='b'; 

while(a~='a') 

    a=fread(s,1,'uchar'); 

end 

if(a=='a') 

    disp('serial read'); 

end 

   fprintf(s,'%c','a'); 

   fscanf(s,'%u'); 

end 

 

  



 110 

 

Appendix B: Arduino code 

B.1 Transmitter. ino 

char myData; 

void setup(){ 

  pinMode(2,OUTPUT); 

  pinMode(3,OUTPUT); 

  pinMode(4,OUTPUT); 

  Serial.begin(9600); 

  Serial.println('a'); 

  char a= 'b'; 

while (a !='a') 

{ 

 a= Serial.read(); 

} 

} 

void loop(){  

  if(Serial.available() > 0){ 

    myData = Serial.read(); 

             if(myData=='f') 

        { 

          digitalWrite(2, LOW); 

          digitalWrite(3, LOW); 

          digitalWrite(4, HIGH); 

        } 

        else if(myData=='b') 

        { 

          digitalWrite(2, LOW); 

          digitalWrite(3, HIGH); 

          digitalWrite(4, LOW);  

        } 

        else if(myData=='l') 

        {         

          digitalWrite(2, LOW); 

          digitalWrite(3, HIGH); 

          digitalWrite(4, HIGH); 

        } 

        else if(myData=='r') 

        { 

          digitalWrite(2, HIGH); 

          digitalWrite(3, LOW); 

          digitalWrite(4, LOW); 

        }  

        else if(myData=='A') 

        { 

          digitalWrite(2, HIGH); 

          digitalWrite(3, LOW); 

          digitalWrite(4, HIGH); 

        }  
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        else if(myData=='B') 

        { 

          digitalWrite(2, HIGH); 

          digitalWrite(3, HIGH); 

          digitalWrite(4, LOW); 

        }  

        Serial.print(myData); 

   } 

} 
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B.2 Receiver.ino 

#include <Servo.h> 

#include <LiquidCrystal.h> 

int motorL=8; 

int motorR=9; 

Servo myservoR; 

Servo myservoL; 

LiquidCrystal lcd(12,11,5,4,3,2); 

char myData; 

void setup(){ 

  Serial.begin(9600); 

  pinMode(motorL, OUTPUT); 

  pinMode(motorR, OUTPUT); 

  myservoR.attach(9); 

  myservoL.attach(8); 

  lcd.begin(16,2); 

  lcd.clear(); 

  pinMode(A0,INPUT); 

  pinMode(A1,INPUT); 

  pinMode(A2,INPUT); 

} 

  void loop(){ 

  int a=A0; 

  int b=A1; 

  int c=A2; 

  if (a==0&&b==0&&c==1) 

  { 

          lcd.print("FORWARD");  

    myservoL.writeMicroseconds(1000); 

    myservoR.writeMicroseconds(2000); 

    delay(100); 

    myservoL.writeMicroseconds(1500); 

    myservoR.writeMicroseconds(1500); 

  } 

    if (a==0&&b==1&&c==0) 

  {  

         lcd.print("BACkWARD"); 

    myservoL.writeMicroseconds(2000); 

    myservoR.writeMicroseconds(1000); 

    delay(100); 

    myservoL.writeMicroseconds(1500); 

    myservoR.writeMicroseconds(1500); 

  } 

    if (a==0&&b==1&&c==1) 

  { 

          lcd.print("LEFT");  

    myservoL.writeMicroseconds(1000); 

    myservoR.writeMicroseconds(1000); 
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    delay(700); 

    myservoL.writeMicroseconds(1500); 

    myservoR.writeMicroseconds(1500); 

  } 

    if (a==1&&b==0&&c==0) 

  { 

           lcd.print("RIGHT");  

    myservoL.writeMicroseconds(2000); 

    myservoR.writeMicroseconds(2000); 

    delay(700); 

    myservoL.writeMicroseconds(1500); 

    myservoR.writeMicroseconds(1500); 

  } 

    if (a==1&&b==0&&c==1) 

  { 

     lcd.print("A"); 

  } 

    if (a==1&&b==1&&c==0) 

  { 

     lcd.print("B"); 

  } 

      if (a==0&&b==0&&c==0) 

  { 

     lcd.print("STOP"); 

  } 

   

  } 
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