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Abstract

This paper explores the value of information contained in spam tweets as it pertains to

prediction accuracy. As a case study, tweets discussing Bitcoin were collected and used to

predict the rise and fall of Bitcoin value. Precision of prediction both with and without

spam tweets, as identified by a naive Bayesian spam filter, were measured. Results showed

a minor increase in accuracy when spam tweets were included, indicating that spam

messages likely contain information valuable for prediction of market fluctuations.
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1 Introduction

1.1 Motivation

Spam messages are messages sent over the internet that contain information irrelevant

or uninteresting to the user. Spam can be found in every communication medium on

the internet: blogs, social media sites, video services, emails, and so on. Most often

administrators of these sites and services attempt to remove spam, or at the very least

filter it from the view of users. Yet while spam contains little to no information beneficial

to the user, it could provide information that improves the accuracy of prediction or

classification models.

1.2 Background

The microblogging service Twitter is a social media platform for users to share short

140-character messages publically or privately with other users. Users tweet about a va-

riety of subjects, viewing and interacting with other users via replies and likes. Naturally

these tweets contain a wealth of information from which organizations (from social me-

dia analytics companies to the US Center for Disease Control) can extract meaningful

insights and useful predictions. Many tweets are spam, often tweeted and retweeted by

automated bots. One estimate puts the spam rate on Twitter at nearly 10%, though this

number varies drastically depending upon the subject matter of the Tweets. For exam-

ple, tweets mentioning financial services corporation Visa have a spam rate of over 80% [1].

This paper uses tweets about Bitcoin, presently the leading cryptocurrency globally. The

blockchain, the distributed ledger upon which Bitcoin is built, was released in January

2009, although it would be 2011 until the technology began to pick up volume and gain

public interest. Perhaps due in part to the technical nature of Bitcoin and its under-

pinnings, online discussion about Bitcoin has increased dramatically as adoption of the

currency has grown. In 2015, Twitter reported over 20 million tweets containing bitcoin,

bitcoins, or btc.

1.3 Goals

This paper attempts to provide insight into the value of spam messages through a case

study, in which the author constructs a system of models to predict the value of Bitcoin
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based on the content of Twitter messages discussing the cryptocurrency, and then com-

pares the precision of this prediction system when trained on a dataset including spam

messages to the precision when trained using a dataset which has been filtered of spam.

The system consists of three parts: 1) a näıve Bayesian spam classifier trained to rec-

ognize and flag tweets as spam; 2) a Latent Dirichlet Allocation (LDA) model to discover

conversation topics within Bitcoin tweets and reduce those tweets to a set of topic scores;

and 3) a logistic regression model to learn correlations between topic scores and the move-

ment of Bitcoin value. A difference in the logistic regression model’s precision between

spam-inclusive and spam-exclusive datasets would be indicative of the value of spam

tweets. The necessity of spam filtering during preprocessing is highly dependent upon the

problem or question being addressed spam filtering would likely prove wise if one was

attempting to train a gender classifier, while such may not be the case for predicting the

number of people who would see a tweet about a particular subject on a given day. The

results of this project will ideally provide an intuitive base from which machine learning

practitioners can answer the question “should I remove spam messages from my dataset?”
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2 Related Work

In 2014, Kaminski and Gloor used a combination of sentiment and emotion extracted

from Bitcoin tweets in conjunction with intraday market movement to predict Bitcoin

market movement[13]. They also showed that a simplistic analysis of sentiment and

emotion signals from tweets mentioning Bitcoin could be significantly correlated with

both Bitcoin closing price and trading volume within a 2 day period, perhaps reflecting

speculative momentum within the market. Zhang et al showed that simple analysis of

tweets for ”emotional outbursts of any kind gives a predictor of how the stock market

will be doing the next day”[28]. Oh and Sheng further established that stock microblog

sentiments do have predictive power for market returns[19]. Numerous other works have

echoed these results[6][12][24][23].

2.1 Näıve Bayesian Spam Classifiers

Näıve Bayesian classifiers were first used to classify spam by Jason Rennie’s 1996 ifile pro-

gram [21]. Sahami et al published the first scholarly work demonstrating the principles in

1998, and Paul Graham greatly improved upon the precision of previous works by reduc-

ing the prevalence of false positives[22][10]. Androutsopoulos et al discuss and evaluate

the suitability of näıve Bayesian classifiers for spam filtering, showing that other methods

may provide more precise spam identification[3]. However, given the relative simplicity of

a näıve Bayesian classifier, in conjunction with an impressive accuracy rate (over 97% in

the former example), it was deemed sufficient for the purposes of this project.

2.2 Latent Dirichlet Allocation

LDA is a model which infers topics from a document collection, first proposed in 2004 by

Blei, Ng, and Jordan[5]. Jahanbakhsh and Moon used LDA to reduce tweet dimension-

ality with the goal of predicting US presidential election outcomes (and succeeded)[11].

Waldhauser employed LDA to discover topics within political tweets, and to show that

thematic content was more popular than episodic content within those tweets[27]. Bollen

et al applied LDA to extract mood state from public tweets, from which emotive trends

were modeled[6]. Kang et al developed a modified LDA, dubbed Transfer Hierarchical

LDA, to create topic models of tweets and Facebook posts[14]. Finally, Diaz-Aviles et al

used LDA to model topics of tweets in support of a groundbreaking method of surveilling

the spread of epidemics, such as influenza, detecting outbreaks well in advance of other
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widely-used systems[9].

2.3 Logistic Regression

Logistic regression is a probabilistic multiclass classifier with an extended history of use

and improvement. Taddy developed multinomial inverse logistic regression as a method

of dimensionality reduction on text[26]. Psomakelis et al showed that logistic regression

performed mediocrely when used to perform sentiment analysis on tweets[20]. Other

modified versions of logistic regression are also used for action recognition in video[15]

and feature selection for support vector machines[25].
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3 Background and Methods

3.1 Data Collection

This project combined two separate datasets to provide the features and labels used in

prediction. A third dataset was used to train the näıve Bayesian spam classifier. Tweet

content discussing Bitcoin comprised the features, and was collected through Twitter

subsidiary GNIP’s API service. The tweets collected span one year, from April 1, 2014

to March 31, 2015. The tweets comprised a randomly-selected 5% of tweets containing

bitcoin, bitcoins, btc (a common abbreviation for Bitcoin), or any capitalization permu-

tation of any of the three. In total, 875,847 Tweets were collected.

Bitcoin trading values were used to label the data. There exist a variety of exchanges

through which users can actively buy and sell Bitcoin for another currency, though ex-

change prices vary little between exchange sites. This project utilized trade history from

the BTC-e exchange during the given time period - data which is available publicly[2].

All trade prices were in United States Dollars.

A dataset of 52,070 web comments (including tweets), hand-labeled either spam or not

spam, was used to train the näıve Bayesian classifier. Of these comments, 50,080 were

not spam and 1990 were spam. These comments were provided by social listening and

analytics company DataRank, who collected and labeled them.

3.2 Tooling and Techniques

Due to the scale of the dataset and the need for distributed processing, Apache Hadoop

(distributed filesystem) and HBase (key-value NoSQL database) were used to store com-

ments. Apache Spark’s Machine Learning Library (mllib) provided a feature-rich, in-

memory, distributed implementation of both the LDA and logistic regression models to

process the comment data, as well as a few basic matrix algebra operations.

MySQL was used to store, process, and query aggregated comment topic scores and

all Bitcoin trade data.
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3.3 Spam Classification

Näıve Bayesian classifiers are a family of simple probabilistic classifiers based on Bayes

theorem:

P (A|B) =
P (B|A)P (A)

P (B)
(3.1)

For detecting spam, the classes S and H represent spam and not-spam (ham) categories,

respectively. Given a document D consisting of N words, the probability that the docu-

ment is spam is given by

P (S|D) =
N∏

n=0

P (W |S)P (S)

P (W |S)P (S) + P (W |H)P (H)
(3.2)

where P (W |S) is the probability of the word W (the nth word in D) appearing in a

spam document, P (S) is the overall probability that a comment is spam, P (W |H) is the

probability of W appearing in ham documents, and P (H) is the overall probability that

the comment is ham. The probability that a document is ham can be calculated in the

same manner.

A näıve Bayesian classifier was used to detect and flag spam Tweets. A Tweet in the

corpus was marked as spam if the probability was above a threshold of 90%:

C(D) =

S, P (S|D) > 0.9.

H, P (S|D) ≤ 0.9.
(3.3)

To account for words appearing in the corpus of Tweets but not appearing in the spam

training dataset, and to prevent underflow during computation, an insignificant value of

P (W |C) = .01 was substituted for both classes S and H for all P (W |C) < .01.

3.4 Latent Dirichlet Allocation

LDA is a natural language processing model that describes sets of observations with the

assumption that they are generated by unobserved groups. For example, a tweet can

be described as a mixture of a small number of topics, where each word in the tweet is

attributable to one of these topics. LDA derives its name from its use of the Dirichlet dis-

tribution to model both the topic distributions of documents and the word distributions

for each topic.
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LDA attempts to fit the topic distributions of documents and word distributions of topics

to the dataset using Bayesian inference. Bayesian inference derives posterior probability

as a consequence of the prior distribution (in LDA’s case, the Dirichlet distribution) and

a likelihood function using Bayes’ rule. Iterative simultaneous updates of the likelihood

functions of topic and word distributions results in a more representative topic distribu-

tion, which subsequently results in more representative word distributions for each topic,

and so on.

3.5 Logistic Regression

Logistic regression attempts to fit a standard logistic function curve of the form

F (x) =
1

1 + exp−(β0 + β1x)
(3.4)

to the provided dataset X by finding β0 and β1 such that the error rate e, defined by

e = F (x)− y (3.5)

where y is the discrete label corresponding to the features x, is minimized. This allows

the prediction of a binary response. For multilabel classification problems, a multinomial

logistic regression model containing K − 1 binary logistic regression models can be used.

BFGS is a quasi-Newtonian optimization method which converges faster in many cases

than gradient decent. A limited memory version of BFGS was used in this project. A

more thorough description of L-BFGS is described by Nocedal[18].
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4 Experiments and Results

4.1 Spam Classification

After training on the dataset of spam+ham labeled web comments, a small random sample

of 239 Bitcoin tweets were hand-labeled and used to determine the precision and recall of

the spam classifier, shown in 4.1 below (false positive indicating a ham comment marked

as spam).

Correctly Classified 221

True Positives 79

False Positive 4

True Negatives 142

False Negatives 14

Precision .9518

Recall .8495

Figure 4.1: Spam classification metrics.

When used to label the entire dataset of 875,847 tweets, the classifier flagged 332,877 as

spam, indicating that 38% of Bitcoin tweets are spam, which was very near the 34.7%

spam rate found in hand-labeled Bitcoin comments. Given the monetary nature of Bitcoin,

these figures are intuitively unsurprising.

4.2 Tweet Preprocessing

To prepare tweets for dimensionality reduction and to reduce noise from low-information

words, common English stopwords were removed, as well as all single and double character

tokens. A bag-of-words approach was then used to transform each tweet into a map of

tokens to their frequency of occurrence within that tweet.

4.3 Tweet Dimensionality Reduction

The dataset consisted of tweets from twelve months, from April 1, 2014 through March

31, 2015. The first eleven months were used as the training corpus, and the final month

of March 2015 was withheld as the test corpus.
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LDA was used to discover topics within the training corpus. Expectation Maximiza-

tion was used to implement a smoothed LDA model, as described in Asuncion et al[4].

Details of the full implementation can be found in the Spark 1.5.2 documentation[16].

Default values were used for the topic concentration Dirichlet prior (1.1) and document

concentration Dirichlet prior (k dimensional vector with values (50/k)+1). 200 iterations

of Expectation Maximization were used.

To determine the effect of the number of topics on the end prediction result, two topic

sizes were used. First, sixteen topics were inferred over the full dataset of tweets including

spam, and the topic scores for each tweet were calculated and stored. Sixteen topics were

again inferred, this time over the tweet set which did not include spam, and topic scores

for each tweet were again calculated and stored. The same process was repeated using 32

topics. 4.2 shows a few top terms and their weights from a sample topic.

term weight

bitcoin 0.0418

crypto 0.0320

altcoin 0.0212

spanning 0.0196

site 0.0164

around 0.01300

app 0.0118

Figure 4.2: Sample topic terms and weights.

Note that the inferred topics used to calculate topic scores in both the training and test

corpora were only those topics inferred from the training set; that is, no topics were in-

ferred using tweets from March 2015.

Tweet topic scores were then aggregated by the hour in which the corresponding tweet

was submitted: the topic scores of all tweets within a one-hour period were averaged,

resulting in a table as shown in 4.3.
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timestamp topic 00 topic 01 ... topic 15

2014-03-01 00:00:00 1638.3486 553.5873 ... 1084.3497

2014-03-01 01:00:00 1577.6205 512.3791 ... 961.5373

2014-03-01 02:00:00 1724.7447 573.4869 ... 1089.5858

Figure 4.3: Sample tweet topic scores, aggregated by hour.

4.4 Trade Signal Calculation

To provide labels for each hour of tweet topic scores, the movement of average Bitcoin

trade value between each hour and the following hour was calculated:

∆avgV alue =

∑
tradePrice0,n

N
−

∑
tradePrice1,m

M
(4.1)

Each hour was then labeled with the trade signal indicating what action should be taken

based on the above movement, using a threshold requiring movement of at least $0.25 in

either direction:

signal(timestamp) =


buy ∆avgV alue > 0.25.

hold −0.25 < ∆avgV alue < 0.25.

sell ∆avgV alue < −0.25

(4.2)

The final datasets used in prediction were formed by combining the hourly topic scores

from Section 4.3 with these hourly movement signals, producing rows such as though

shown in 4.4 in the 16 topic case.

timestamp topic 00 topic 01 ... topic 15 signal

2014-03-01 00:00:00 1638.3486 553.5873 ... 1084.3497 buy

2014-03-01 01:00:00 1577.6205 512.3791 ... 961.5373 hold

2014-03-01 02:00:00 1724.7447 573.4869 ... 1089.5858 sell

Figure 4.4: Sample features and labels for k=16.

4.5 Prediction

A logistic regression model was trained using the topic scores and trade signals derived

above. L-BFGS, an optimization algorithm in the quasi-Newton family of methods, was
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used to approximate the objective function locally as a quadratic without evaluating the

second partial derivatives of the objective function to construct a Hessian matrix. This

removes vertical scalability issues, and tends to faster convergence than stochastic gra-

dient descent. More information on L-BFGS can be found in the mllib documentation [17].

4.5 and 4.6 show the precision of the logistic regression model when predicting trade

signals for the test corpus of topic scores.

Figure 4.5: Prediction precision for 16-topic ham and spam + ham datasets from the

month of March, 2015. Random indicates precision when a trade signal was chosen at

random.
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Figure 4.6: Prediction precision for 32-topic ham and spam + ham datasets from the

month of March, 2015. Random indicates precision when a trade signal was chosen at

random.

It is clear that in both the 16- and 32-topic cases, the exclusion of spam caused a decrease

in the ability of the logistic regression model to accurately predict trade signals. Two ex-

planations present themselves. First, that the information contained in spam comments

contributed to an increase in precision. Second, that false positive spam comments, in-

correctly excluded from the ham dataset, contributed to an increase in precision in the

spam + ham dataset. However, given that only 1.67% of comments from the hand-labeled

random sample of Bitcoin comments were false positive spam comments, it seems unlikely

that false positives contributed even the smallest of increase in precision. In either case,

without a perfectly accurate spam filter, it is clear that the exclusion of spam comments

does not improve prediction accuracy in this case.

Finally, the difference in the derivative between 16- and 32-topic models at the beginning

of the month seems to indicate that greater granularity in topics increases the immediate

precision of prediction, though this effect disappears after only a few days, and would

need to be verified by testing further topic count parameters in the LDA model.
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5 Conclusion

Spam tweets are irrelevant to most human users and often filtered out from learning

datasets. The results of this project indicate that spam tweets can contain informa-

tion which improves prediction ability for complex classifications. However, these results

should not be seen as definitive, since many factors affect the utility of spam documents,

including the prediction goal and the distribution of spam to ham documents within the

dataset. This experiment serves to show that there exist prediction tasks for which spam

comments contain valuable information, and that spam should not be carelessly excluded

from training datasets.
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