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Abstract

A relatively new consideration in proton therapy planning is the requirement that the

mix of patients treated satisfy desired percentages. Since it is very difficult to satisfy

an integer number of patients in light of these requirements, deviations from patient

mix preferences and their impacts on operational capabilities are of particular interest

to healthcare planners. Therefore, we propose a bicriteria mathematical programming

model that determines an outpatient schedule maximizing the number of fractions

and minimizing the deviations from the patient mix ratios over the planning horizon.

The tradeoffs between the two objectives are identified through analysis of efficient

frontiers. Our models are applicable to healthcare treatment facilities throughout

the United States, but are motivated by collaboration with the University of Florida

Proton Therapy Institute (UFPTI) in Jacksonville, Florida.
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student colleagues for their kind friendships.

Finally, special thanks go to my siblings for their continuous and unconditional

supports during all phases of my life. Most importantly, I would like to thank to my
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1 Introduction

Proton therapy is a relatively new and fast growing form of radiation therapy for

cancer patients. To date, more than 40,000 people have been treated at 25 proton

therapy centers around the world [1]. Due to the effectiveness and limited availability

of proton therapy, the demand for this form of treatment is extremely high in rela-

tionship to the available capacity. Moreover, it is an expensive treatment procedure

to deliver. According to the study by Goitein et al. [2], the cost-per-fraction in proton

therapy is more than two times the cost-per-fraction of X-ray therapy. A portion of

these high costs can be attributed to the small number of proton therapy facilities

in the country (9 in use and 3 are under construction). An equally important driver

of cost is the meticulous process that must be followed to successfully deliver this

form of treatment. In fact, in radiation therapy, a treatment protocol consists not

only of a prescribed total delivered dose to so-called targets, but must also specify

treatment times, sequences, and frequencies (fractionation schedule). It is known

that dose fractionation contributes to the preservation of healthy tissue throughout

the treatment (see, e.g., Yamada et al. [3]). However, a shorter fractionation schedule

provides a more economical use of the radiation therapy facilities while still improv-

ing, albeit marginally, a patient’s quality of life (see, e.g., Shelley et al. [4]). Because

of these important tradeoffs, efficient patient scheduling is a growing area of interest

to healthcare professionals.

Over the past 50 years, a large amount of health care scheduling literature has been

developed. In most of the studies, operation/emergency room, nurse and physician
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scheduling problems are considered. Cardoen et al. [5] proposed a detailed review

on operating room planning and scheduling. In this study, previous work can be

characterized in terms of problem structures and technical features. One class of

problems is based on the classification of patients in two major classes based on

individual patient characteristics; elective (operation is planned in advance) and non-

elective (unexpected operation). The former includes inpatient (stay overnight) and

outpatient (enter and leave on same day) categories as well. In most of the studies

(e.g., Bowers and Mould [6], Cayirli et al. [7], and Pham and Klinkert [8]), elective

cases are considered in order to reduce potential uncertainties patient attributes (i.e.,

patient type, financial gain, resource allocation per patient, etc.). In other studies,

treatment time for an outpatient is assumed to be constant for the sake of simplicity

(see, e.g., Conforti et al. [9]).

Most commonly, patient scheduling problems seek to maximize the number of

scheduled patients (see, e.g., Conforti et al.[10], Ballard and Kuhl [11], and Cardoen

and Demeulemeester [12]) subject to case-specific constraints combined with pre-

scribed treatment plans. Minimizing the waiting times of patients is also considered

as an objective in a subset of works (see, e.g., Chaabane et al. [13] and Kaandorp

and Koole [14]). Of course, these two objectives are complementary to each other.

Under appropriate assumptions, we may use Little’s Law to conclude that the average

number of patients in the system is equal to average cycle time (treatment time and

waiting time) multiplied by the average throughput (see Cardoen et al. [5]). There-

fore, ultimately, reduced waiting times for the patients results in shorter workdays

for doctors and an increased number of treated patients [15].
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Conforti et al. [10] proposed an integer linear optimization program with the

objective to maximize the number of new scheduled patients in a radiation therapy

clinic. According to the pathological conditions, weights are assigned to patients in

order to identify different patient groups. Patients are scheduled from two different

lists; a waiting list refers to patients waiting to be scheduled and a booked list contains

names of those patients already scheduled for the upcoming planning period (see

Conforti et al. [9] as well). Both lists are dynamic, therefore patients scheduled for

a planning period may be replaced with individuals from either list. For instance, a

patient from the waiting list with an urgent condition can be rescheduled and added

to the booked list during a planning period. Even though the decisions are based

on a weekly horizon, utilization of linear accelerators are increased by rescheduling

patients dynamically.

Another related study to our work was conducted by Mulholland et al. [16].

They proposed a linear program to determine the optimal mix of surgical procedures.

They analyzed the effects of changes in these procedures on financial outcomes. Even

though no more than 15% deviation in procedure mix is allowed, substantial financial

gains (i.e. 16.1% increases in hospital total margin) are obtained due to small changes

in procedure volume without any capacity investments. These desirable findings

motivate further investigation into sophisticated models for efficient patient planning

in the proton therapy healthcare environment.

Although our work and other patient scheduling problems share common prop-

erties (treatment continuity, capacity, staff/physician requirements etc.), the model

in this study differs by aiming to accommodate patients from different categories
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without assigning them any priority weights related urgency level of disease. Instead,

categories represent the different patient types. Each one of these types has different

treatment time and number of fractions to be delivered. Moreover, similar to the case

in [16], there is a restriction on each patient category that forces us to have a target

value in terms of number of fractions for a patient category over the planning period.

Since it is very difficult to satisfy an integer number of patients in light of these

requirements, deviations from patient mix preferences and their impacts on opera-

tional capabilities are of particular interest to healthcare planners. Therefore, we

propose a bicriteria mathematical programming model that determines an outpatient

schedule maximizing the number of fractions and minimizing the deviations from the

patient mix ratios over the planning horizon. The tradeoffs between the two objec-

tives are identified through analysis of efficient frontiers. Our models are applicable

to healthcare treatment facilities throughout the United States, but are motivated

by collaboration with the University of Florida Proton Therapy Institute (UFPTI) in

Jacksonville, Florida.

The remainder of the study is organized as follows. Section 2 introduces the

problem components in light of proton therapy scheduling problem of interest. Sec-

tion 2.1 presents an integer linear program with the fundamental constraints consid-

ered by the medical decision to solve the proton therapy patient scheduling problem.

Then, Section 2.2 specifies the various operational restrictions that may be required in

scheduling different types of patients. A bicriteria optimization model is introduced in

Section 2.3. Section 3 discusses the noninferior set estimation (NISE) method used to

investigate the tradeoffs between patient fractions treated and the deviation from the
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desired patient mix. Section 4 demonstrates the results obtained by implementing the

NISE algorithm for each operational restriction and a sensitivity analysis on model

parameters. Finally, Section 5 provides a summary of the results and suggestions for

future work.

2 Problem Description

Due to rising interest in proton therapy, healthcare planners are looking forward to

increasing the utilization of the resources in proton therapy facilities in order to satisfy

the growing demand for this technology. Decision makers must also take into account

numerous other operational restrictions and their possible impacts on the facility

capacity. Hence, the objective of this study is to provide efficient capacity planning

for a proton therapy facility and to investigate the impact of various operational

limitations, such as: (i)strategic patient mix ratios, (ii) physician availability, (iii)

operating hours, (iv) number of available treatment gantries, (v) gantry specialization

and (vi) gantry switching. Strategic patient mix ratios for patient categories is a

relatively new consideration in proton therapy planning. It implies that the mix of

patients treated in a planning period must satisfy the targeted percentages specified

by managers. Further discussions about patient mix constraints, as well as other

operational restrictions, are given throughout this section. In order to represent the

impacts of these restrictions and perform capacity analysis over a physician-specified

planning period, we propose an integer linear programming model in Section 2.1.

In the healthcare environment, uncertainty is one of the major obstacles encoun-

tered in scheduling problems. Appointment cancellations (no-show) are the most
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common sources of uncertainty in patient scheduling problems. However, the issue

of rescheduling and treatment session cancellations require less consideration in this

study than in other healthcare applications. Since there is always a huge demand

for this therapy, the replacement of cancelled patients with the new patients in the

waiting lists can be performed instantaneously without any waste in resources. This

greatly reduces the uncertainty associated with scheduling patients to deliver treat-

ments within a planning period. As a result, daily rostering and no-show are not

considered in this study.

Cardoen et al. [5] characterized previous works conducted in health care schedul-

ing according to specific problem structures and problem elements. Based on these

criterion, patients in our study are classified as elective outpatient patients. This im-

plies that even though consecutive daily appointments are required for proton therapy,

patients do not typically stay at the hospital overnight.

We begin with an introduction of the notation used throughout the remainder of

the document and then proceed to present what we will refer to as the base model

of this study. The restrictions associated with varying operational issues and patient

categories are also presented.

• Sets:

T : set of days in planning horizon

G: set of gantries

K: set of patient categories

Ka: set of patient categories needing anesthesia for treatment
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K2: set of categories for patients needing twice-a-day fractions

TNA: set of non authorized days to start new patients

TA: set of authorized days to start new patients

• Parameters:

Ctg: time available for treatment on gantry g on day t

nk: number of consecutive treatment days for patients in category k

fk: number of fractions required on each day of the treatment by a patient in

category k

ck: duration of a fraction on each day of the treatment by a patient in category

k

c̄k: additional duration needed for the first fraction on the first treatment day

for patients in category k

dk: desired fraction of patients in category k treated over the planning horizon

wk: total duration required for each patient from category k, wk = fknk

Ag: anesthesia availability per day on gantry g

τ : minimal time between two fractions (in minutes)

ηg: Available prime hours on authorized days to treat new patients

• Decision variables:

xtkg : the number of new patients in category k that start their treatment on

day t on gantry g

ytkg : the number of patients in category k that receive treatment on day t on

gantry g
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2.1 Base Model

The so-called base model introduced in this section incorporates the three fundamen-

tal restrictions placed on a medical decision maker in a proton therapy treatment

facility: (i) gantry capacity limitations, (ii) patient continuity requirements and (iii)

patient mix specifications. Since we are considering a strategic capacity analysis, we

prevent both end of study effects and the need for an excessively long planning hori-

zon by assuming that the facility is operating in steady-state. Hence, we consider the

planning period to be cyclic with a period length of T days.

maximize
∑
t∈T

∑
k∈K

∑
g∈G

fkytkg

subject to (B)

nk∑
n=1

x[t−n+1],kg = ytkg t ∈ T ; k ∈ K g ∈ G (1)

∑
k∈K

c̄kxtkg +
∑
k∈K

ckfkytkg ≤ Ctg t ∈ T ; g ∈ G (2)

dk
∑
t∈T

∑
k′∈K

∑
g∈G

xtk′g =
∑
t∈T

∑
g∈G

xtkg k ∈ K (3)

xtkg, ytkg ∈ Z t ∈ T ; k ∈ K; g ∈ G (4)

The objective function of problem (B) maximizes the total number of fractions

treated over the planning cycle. Note that treatment continuity constraints (1) re-

quire that patients must be treated in the same gantry throughout their treatment
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plan. These constraints can be rewritten to allow for patients to switch gantries

throughout the the planning horizon, if the decision maker is afforded this flexibility.

This alternative representation of treatment continuity, which refer to as allowable

gantry switching, is given in (5) as follows.

G∑
g=1

nk∑
n=1

x[t−n+1],kg =
G∑

g=1

ytkg t ∈ T ; k ∈ K. (5)

Both constraints (1) and (5) enforce the appropriate relationship between two

decision variables our problem; number of fractions and the number of patients. Each

guarantees that fractions are delivered over a number of consecutive (week)days.

Therefore, if the treatment of a patient in category k starts on day t, the following

treatment days for this patient will be t+1, . . . , t+nk−1 for each k and t. Constraints

(2) ensure that the limited operational capacity is enforced on each treatment day

t and on each gantry g. Constraint set (3) specifies the desired patient mix ratios

among the different categories in such a way that number of patients treated from

category k over the total number of patients received treatments from all categories

in a planning period must be equal to targeted percentages dk.

2.2 Side Constraints

There are operational side constrains briefly listed in the problem description that

impact the number of fractions to be treated over the specified horizon. In this section,

we mention the limitations caused by these restrictions and give the corresponding

mathematical representations in Sections 2.2.1 - 2.2.5.
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2.2.1 Anesthesia Patients

Some patients need the surveillance of anesthesia teams while they are receiving their

treatments. Constraints (6) assure that the treatment durations for these patients

can not exceed the daily availability of anesthesia teams in each gantry on day t.

∑
k∈Ka

(c̄kxtkg + ckfkytkg) ≤ Ag t ∈ T ; g ∈ G (6)

2.2.2 BID Patients

Often, a subset of patients are required to receive two treatments on the same day.

These patients are referred to as BID (Bis In Die, twice daily) patients and must

be treated in the same order, on the same gantry and on a particular day. Hence,

constraints (7) make sure that the second set of fractions for these patients starts at

least τ + maxk∈K2 ck time units after the start of the day.

∑
k∈K2

(c̄kxtkg + ckytkg) ≤ Ctg − τ −max
k∈K2

ck t ∈ T ; g ∈ G (7)

2.2.3 Gantry Specialization

Managers may want to specialize one or more gantries for the patients from specified

categories in order to increase the service level. Therefore, if the patient categories

in the set Kg (g ∈ G) are specialized to be treated in gantry g, then the following
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constraints should be enforced.

ytkg = 0 t ∈ T ; g ∈ G; k ∈ K\Kg. (8)

2.2.4 Prime Hours

Due to limited physicians’ schedule, managers might need to restrict accepting new

patients on specific days and deliver fractions in their physicians’ presence. Conse-

quently, constraint set (9) ensures that new patients can only start their treatment

on authorized days (TA) during so called prime hours (ηg) in each gantry.

∑
k∈K

(c̄k + ck)xtkg ≤ ηg t ∈ TA; g ∈ G (9)

xtkg = 0 t ∈ TNA; g ∈ G; k ∈ K (10)

Also, constraints (10) prohibits starting new patient treatments on non authorized

days (TNA).

2.2.5 Capacity Exchange

From a personnel planning perspective, any consideration of overtime can be costly.

Therefore, decision makers must understand the operational benefits made possible

by manipulating the resource availability schedule. To model this change in case

of prime hours restriction, we introduce a new decision variable δtg to represent the

capacity exchange among gantries on authorized days (t ∈ TA). Hence, constraints

(2) is replaced by constraints (11) to include the flexibility gained by reallocating
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capacity. Constraints (12) ensure that excess capacity spent on gantry g is taken

from other gantries on each authorized day t ∈ TA. That is, the net change in total

capacity used for a fixed day must be zero. Constraints (13) ensure that the maximum

capacity taken from a gantry g on day t can not exceed ng as well as extra time spent

in a gantry can not exceed the leftover time (Ctg − ηg) in a day. Finally, constraints

(14) assure that capacity exchange can not be performed during non authorized days

among gantries.

∑
k∈K

(c̄k + ck)xtkg ≤ ηg + δtg t ∈ TA; g ∈ G (11)

∑
g∈G

δtg = 0 t ∈ TA (12)

−ηg ≤ δtg ≤ Ctg − ηg t ∈ TA; g ∈ G (13)

δtg = 0 t ∈ TNA; g ∈ G (14)

δtkg urs t ∈ T ; k ∈ K; g ∈ G (15)

Alternatively, this relationship can be established by relaxing constraints (16) to allow

for capacity exchange between gantries over the entire planning horizon among the

authorized days..

∑
t∈TA

∑
g∈G

δtg = 0 (16)

12



2.3 Bicriteria Optimization

Our initial investigation found that the patient mix constraints, in light of the integral-

ity restrictions, result in a problem that becomes computationally intractable when

solved using a black box optimization solver. Unfortunately, relaxing the integrality

constraints is likely to lead to non-insightful solutions due to the large number of

patient categories and relatively small number of patients on a given day. Therefore,

we choose to pursue the following bicriteria optimization problem. This approach

allows us evaluate the deviation from the desired patient mix ratios versus the total

fractions treated. This evaluation will be aided by the construction of Pareto efficient

frontiers for the following problem.

maximize

{
T∑
t=1

K∑
k=1

G∑
g=1

fkytkg,−
K∑
k=1

uk

}

subject to (M)

nk∑
n=1

x[t−n+1],kg = ytkg t ∈ T ; k ∈ K

K∑
k=1

c̄kxtkg +
K∑
k=1

ckfkytkg ≤ Ctg t ∈ T ; g ∈ G

T∑
t=1

G∑
g=1

xtkg ≥ dk

T∑
t=1

K∑
k′=1

G∑
g=1

xtk′g − uk k ∈ K (17)

T∑
t=1

G∑
g=1

xtkg ≤ dk

T∑
t=1

K∑
k′=1

G∑
g=1

xtk′g + uk k ∈ K (18)

uk ≥ 0 k ∈ K (19)

xtkg, ytkg ∈ Z+ t ∈ T ; k ∈ K; g ∈ G
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For each patient category k, a new decision variable uk is defined. It measures

the deviation from target level dk for each k ∈ K in terms of patient. While the

treatment continuity (1) and capacity constraints (2) are preserved in (M), the patient

mix requirements are enforced by new constraint sets (17) and (18). Although these

two constraints allow model (M) to treat below and above the target levels for each

category k, deviation from desired mixes is penalized in the objective function. Note

that the model (M) aims to maximize the number of total fractions delivered and

minimize the total deviations from patient mix ratios at the same time. In Section 3,

a solution method for model (M) is provided to demonstrate the quantified tradeoffs

between two objectives.

3 NISE Method

As with most integer programs, the exact construction of efficient frontiers is quite

challenging. Therefore, we wish to study the structure of the efficient frontiers for a

relaxed version of (M) in which the integrality restrictions are omitted. The generation

of these frontiers can be accomplished through use of the so-called Noninferior Set

Estimation (NISE) method. The ε-constraint and weighted sum methods are the two

alternative methods that can be utilized to produce the noninferior set for problem

(M). However, these methods need strong analyst intuition about the shape of the

noninferior set. Hence, the NISE method has been shown to be more efficient in

producing noninferior sets than its competitors [17]. The NISE method was first

proposed by Cohon et al. [17, 18] and that generates the exact shape of the noninferior

set that will allow us to examine the tradeoffs between the total patient mix deviations
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and the total number of fractions for the relaxation of our problem.

Before proceeding, we introduce the following notation notation used in present-

ing the NISE method. Let P1 and P2 be the optimal solutions that correspond to

the maximum total patient deviation that can be observed and maximum total frac-

tions, respectively. Furthermore, Pt is denoted as the tth noninferior extreme point

generated. Note that Pt and Pt+1 are not necessarily adjacent in general. Therefore,

ordering noninferior points is handled by defining the set S as the adjacent noninfe-

rior set of points and Si as the ith highest value of Z2. Accordingly, the initial two

points are sorted as P2 = S1 and P1 = S2. In the algorithm, Z1 and Z2 are defined as

the objective function equations corresponding to the total patient mix deviation and

total fractions. Subsequently, if x̄ is given as a vector of decision variables then Z1(x̄)

and Z1(x̄) generate the values of associated objective functions. The calculation of

the weights assigned to these two objectives is based on the slope (α) of the line

segment connecting Si and Si+1, where α is given by

α =
Z2(Si)− Z2(Si+1)

Z1(Si)− Z1(Si+1)
. (20)

By the definition of S and the nature of the noninferior set, Z2 always decreases

and Z1 always increases as we move from Si to Si+1. Therefore, the slope α is always

negative. Then, corresponding weights of two objectives should be chosen so that

w1

w2

= −α. (21)
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By letting w2 = 1 and plugging (20) into (21), w1 can be computed as follows;

w1 =
Z2(Si)− Z2(Si+1)

Z1(Si+1)− Z1(Si)
(22)

Note that (22) is always positive. Then the weighted objective function of interest is

maxZ(x̄;w1, w2) = maxw1Z1(x̄) + w2Z2(x̄) (23)

which becomes (24) by substituting (22) and w2 = 1

maxBi,i+1 = [Z2(Si)− Z2(Si+1)](Z1(x̄)) + [Z1(Si+1)− Z1(Si)](Z2(x̄)). (24)

Note that Bi,i+1 is the weighted objective function for the line segment between points

Si and Si+1.

The maximum possible error, ψi,i+1, is defined with respect to the line segment

connecting Si and Si+1. It can be calculated by measuring the maximum distance

between the lower bound and upper bound over the segment. In other words, it is a

perpendicular line to the lower bound and passing through the intersection of the two

weighted objective function contours. In our implementation of the NISE method, we

consider an error value less that 0.001 to be zero to address to address computational

precision concerns. That is, initially, we begin with all ψi,i+1 = 1 and the algorithm

terminates if ψi,i+1 < 0.001 for all adjacent noninferior points.

Finally, let Vi,i+1 be the value of Bi,i+1 evaluated at Si and Si,i+1, and B̄i,i+1 be

the optimal value of Bi,i+1 when (24) is solved. If the solution of weighted problem
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leads to B̄i,i+1 = Vi,i+1, then it means that Si, Si+1 and line segments connecting

them are in the noninferior set (e.g. ψi,i+1 = 0). On the other hand, if B̄i,i+1 > Vi,i+1,

then a new feasible noninferior point has been found that lies above the current line

segment.

Using the notation and definitions described above, we summarize the NISE al-

gorithm in the following four main steps:

1. Initialize the algorithm by obtaining P1 and P2. Note that there might be

inferior alternative optimal solutions to either of these problems. Make sure

that P1 and P2 are noninferior solutions to Z1 and Z2, respectively. After

computing the error ( ψ1,2 ), let n = 2 (n: number of distinct points currently

in S).

2. If ψ1,2 = 0 for i = 1, 2, ..., n − 1, then stop. Exact representation of the non-

inferior set is obtained for points Si for i = 1, 2, ..., n and the line segments

connecting them. Otherwise go to step 3.

3. Pick a ψ1,2 = 1 corresponding the highest noninferior point in Z2. Solve the

weighted problem using the objective function in (24). If B̄i,i+1 = Vi,i+1, then

set ψ1,2 = 0 and return to step 2. If B̄i,i+1 > Vi,i+1, label the new noninferior

solution as Pn+1 and go to step 4.

4. Reorder the points Pt, t = 1, 2, ..., n+ 1. Note that Pn+1 has a value of Z2 next

highest after Z2(Si). Therefore, relabel the points in set S as follows:

S ′t = St t = 1, . . . , i
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S ′i+1 = Pn+1

S ′t+1 = St t = i+ 1, . . . , n.

Update error terms as follows:

ψ′t,t+1 = ψt,t+1 t = 1, . . . , i− 1 ( if i ≥ 1)

ψ′t+1,t+2 = ψt,t+1 t = i+ 1, . . . , n− 1 ( if i ≤ n− 2).

Finally, compute ψ′t,t+1 and ψ′t+1,t+2. Increment n by 1 and return to step 2.

The NISE method is applied to obtain the efficient frontiers for each formulation

described in Section 2. The frontiers reflect the impacts of side constraints on the ca-

pacity usage of the proton therapy facility in the case of varying patient mix deviation

levels. The obtained results are discussed in Section 4 in detail.

4 Computational Study

In this section we present a computational study for the bicriteria model defined in

Section 2.3. Our study focuses on the generation of efficient frontiers for the LP-

relaxation of model (M). The results of this section clarify the tradeoffs between total

number of fractions treated and total patient mix deviations in a proton therapy

facility for a finite planning horizon. Section 4.1 discusses the instance generation

scheme for this study. In the remaining sections, we discuss the relationships between

the capacity usage and corresponding deviation of the patient mix constrains from the
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target levels in the presence of different operational constraints mentioned in Section

2.

4.1 Experimental Design

Table 1 provides the parameters used in the set of instances in considered in our

computational tests. Our investigation includes instances with 3 different patient

mix ratios (PMRs), 2 different capacity levels of gantries (Ctg = C = 12 and 15

hours) and 7 planning period lengths (T = 75, 100, 150, 200, 300, 400, and 500

days). For each PMR, common patient category parameters (ck, c̄k, fk, nk), shown in

Table 1, are used. In Section 4.2, we discuss the effects of adding each operational side

constraint presented in Section 2.2 to the base model individually. Consequently, the

figures provided refer to the frontiers drawn according to the corresponding constraint

or model name (e.g. “Base model frontier”, “Anesthesia frontier”).
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The restrictions imposed by operational constraints are also summarized in Ta-

ble 1. Patients from categories 3 and 4 need to be treated twice in a day (BID).

Therefore, the corresponding fk values are 2 for these patient categories. Even though

the time requirement between 2 treatment sessions (τ) is assumed to be 6 hours, we

discuss the impacts of this time interval in detail in Section 4.4. Separately, the

anesthesia team is required while treating patients from 6th and 8th categories. The

default value of the anesthesia team availability (Ag) in the facility is 4 hours in a

single gantry (1× 4). In addition, we study the impacts of this availability for differ-

ent levels in Section 4.3. In Section 4.5, we discuss the effects of specializing gantry

3 such that it may only treat patients from category 1, as well as the interactions

between the gantry switching flexibility and gantry specialization constraints. Sec-

tion 4.6 includes discussion about prime hours restrictions. Accordingly, new patients

are allowed to receive their treatment on Monday, Tuesday and Wednesday during

prime hours from 9:00 am to 4:00 pm (ηg = 420 min).

The above instances were solved by using CPLEX 12.1 on a Microsoft Windows

Server 2003 R2 with 2.93 GHz.

Frontiers presented in Section 4.2–Section 4.6 are plotted with default parameters

(C = 12 hrs and T = 75 days) unless otherwise stated. For some figures, a second

plot is drawn directly below the original one (e.eg. see Figure 1) in order to identify

the differences among frontiers by zooming in the parts that are hard to differentiate.

Finally, the effects of gantry capacity and length of the planning period in case of

different operational restrictions are discussed in Sections 4.7 and 4.8, respectively.
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4.2 General Comparison of Frontiers

Figure 1 shows the behaviors of three operational restrictions; anesthesia, BID and

gantry specialization constraints together with the base model. It should be noted

that all of the frontiers are obtained in the absence of gantry switching flexibility

unless stated otherwise. Again, this means that if the initial treatment of a patient

is delivered in gantry g, subsequent fractions must also be delivered in same gantry

g where the treatment is started. Plots in the first row of Figure 1 demonstrate the

noninferior breakpoints and line segments for base model and operational restrictions

in the case of three different patient mix ratios. The second row of Figure 1 captures

the relationships of noninferior points and line segments for different operational

constraints when the total deviation is smaller than 140. Note that the total number

of patients and total number of fractions are not the same in a planning period. All

nk, and some fk, values are strictly greater than 1. This means that the number of

fractions is greater than the total number of patients for a given planning period.

Moreover, the capacity, BID and anesthesia constraints are all quantified according

to number of fractions. Therefore, total fractions is used on y-axis, rather than total

patients. This value is plotted against total deviation on the x-axis. It should also

be noted that total deviation is in terms of total number of patients not fractions.

22



0
10

0
20

0
30

0
40

0
01k2k3k4k5k6k7k8k9k

0
20

40
60

80
10

0
12

0
14

0
01k2k3k4k5k6k

 G
Sp

ec
iliz

ati
on

 BI
D

 1x
4_

An
es

the
sia

 Ba
se

Total Fraction

To
tal

 De
via

tio
n

 G
Sp

ec
iliz

ati
on

 BI
D

 1x
4_

An
es

the
sia

 Ba
se

Total Fraction

To
tal

 De
via

tio
n

(a
)

P
M
R
1

0
50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

01k2k3k4k5k6k7k8k9k

0
20

40
60

80
10

0
12

0
14

0
01k2k3k4k5k6k

 G
Sp

ec
iliz

ati
on

 BI
D

 1x
4_

An
es

the
sia

 Ba
se

Total Fraction
To

tal
 De

via
tio

n

 G
Sp

ec
iliz

ati
on

 BI
D

 1x
4_

An
es

the
sia

 Ba
se

Total Fraction

To
tal

 De
via

tio
n

(b
)

P
M
R
2

0
30

60
90

12
0

15
0

01k2k3k4k5k6k7k8k9k

0
20

40
60

80
10

0
6k7k8k9k

 G
Sp

ec
iliz

ati
on

 BI
D

 1x
4_

An
es

the
sia

 Ba
se

Total Fraction

To
tal

 De
via

tio
n

 G
Sp

ec
iliz

ati
on

 BI
D

 1x
4_

An
es

the
sia

 Ba
se

Total Fraction

To
tal

 De
via

tio
n

(c
)

P
M
R
3

F
ig

u
re

1:
Im

p
ac

ts
of

op
er

at
io

n
al

re
st

ri
ct

io
n
s

23



As shown in Figures (1a), (1b) and (1c), base model frontiers have the highest

total number of fractions for a given amount of total deviation compared to other

operational constraints, regardless of the patient mix ratios in use. This is because,

it is the simplest (relaxed) version among all formulations. However, after a certain

amount of total deviation, all operational constraint frontiers tend to merge with the

base model frontiers. The reason behind this inference is that as the total deviation

increases, the impacts of operational restrictions disappear. If the actual patient mix

ratio of category k is greater than the target level (dk), it means that the resources

reserved for other categories are used to treat patients from category k. In other

words, treating fewer patients than the target levels from categories which are exposed

to additional restrictions (BID, anesthesia availability, gantry specialization) leads to

higher totals of fractions treated when compared to cases where the target levels

are satisfied (total patient mix deviation is 0). This is interpreted as the higher the

total deviation, the smaller the impact of operational restriction. However, more

complicated relationships behind the scene are revealed by further investigations in

the following sections.

4.3 Anesthesia Frontiers

In Figures (1a) and (1b), it can be seen that after a small deviation of 21.56, anesthesia

break points are aligned with the base model frontiers since the deviations are used

to treat more patients from categories other than 6 and 8 (anesthesia patients). Note

that number of patients treated in these categories become 0 after total deviation

reaches 113.63. This fact can be seen in Figure 2, which demonstrates the change in
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actual mix ratios of each patient category with corresponding total deviation in the

case of PMR1 and PMR2. As expected, actual mix ratios are exactly equal to the

target mix ratios for each category, regardless of the patient mix ratio, when the total

deviation is zero. However, the number of treated patients from patient category 8 is

0 when the total deviation is 21.56 for the two frontiers associated with PMR1 and

2, whereas patients from category 6 are treated until the total deviation amount of

75.94 and 75.70 in case of PMR1 and PMR2, respectively. Note that the resources

gained from the 6th, 7th and 8th categories are used to treat patients from the 1st

and 3rd categories which are more attractive in terms of treatment duration (ck) and

patient setup time (c̄k). Also, our results suggest that a higher treatment and patient

setup time, together with the patient mix constraints, make anesthesia constraints

highly restrictive. In Figures 1a and 1a, it is seen that the anesthesia availability

restriction remains active until a total deviation amount of 25. Note that anesthesia

availability in gantries does not only impact the number of fractions delivered to these

categories. It also limits the number of non-anesthesia patients due to patient mix

requirements enforcing that the number of patients treated from any category must

be proportional to others according to PMR in use. As a consequence, the availability

of the anesthesia team has significant impacts on the number of fractions delivered

to non-anesthesia categories as well since patient mix constraints indirectly keep the

total patients from all categories proportional to each other. However, as the total

deviation increases, this indirect restriction is removed and anesthesia frontiers are

aligned with the base model frontiers.

Figure (1c) reveals that 4 hours of anesthesia availability in a single gantry (1×4)
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Figure 2: Stacked area representation of Table 1

has no impact on other patient categories due to small patient mix ratios of anesthesia

patient categories (see Table 1). In other words, the percentage of anesthesia patient

categories are so small that 4 hours of anesthesia team availability is enough to serve

all anesthesia patients implied by any patient mix ratios. For PMR3, in order to

have noninferior points and line segments for anesthesia frontiers different from the

base model, either: (i) patient mix ratios of categories 6 and 8 should be increased

or (ii) the duration of the anesthesia team availability should be decreased to make

anesthesia constraints more restrictive. Further investigations are made to capture

the relationship between the anesthesia and patient mix constraints in the following

section.

4.3.1 Impacts of Anesthesia Availability Hours

Impacts of anesthesia availability can be clearly seen in Figure 3. Anesthesia avail-

ability in a single gantry is varied from 4 hours through 8 hours (1×4,1×6 and 1×8)
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and impacts of capacity increase in relationship to base case are demonstrated on

Figures (3a) and (3b) in case of PMR1 and PMR2, respectively. It is observed that
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Figure 3: Impacts of anesthesia availability in gantries

additional anesthesia availability increases the total number of fractions delivered in

a planning period dramatically. This is particularly true when the total deviation is

small. For instance, increasing anesthesia availability 2 hrs (1× 6) and 4 hrs (1× 8)

reduces the matching point of anesthesia and base model frontiers on the x-axis from

25 to 15 and 5, respectively (see Figure 3). Knowing that treatment and patient setup

durations are kept constant, as shown in Table 1, the number of treated anesthesia

patients is increased for a given level of deviation. This allows the gap between base

model and anesthesia frontiers to close as the total deviation allowed increases as seen
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in both Figures (3a) and (3b).

4.4 BID Frontiers

Figure 1 points out that the time difference between two sessions of BID patients (τ=

6 hrs) is adequate to treat as many fractions as in the base case, regardless of patient

mix ratio. For this case, noninferior points and line segments obtained by NISE

method for both BID and base formulations are identical. Although 6 or 8 hour

rest periods between twice-daily treatment sessions is adequate to allow complete

repair on healthy tissues, there might be some cases where interfraction interval time

is required more than 8-hours [19]. Hence, from a management perspective, it is

vital to see the impacts of different interfraction intervals (τ=6, 9, 10 hrs) on the

number of total fractions from all categories within allowed deviations from patient

mix constraints.

Noninferior set approximations by NISE method for different PMRs and inter-

fraction intervals can be seen in Figure 4. From Table 1, the total mix ratio for BID

patient categories (3 and 4) is 20%, 30% and 10% in case of PMR1, 2 and 3, respec-

tively. Since PMR2 has the highest mix ratio of BID patients, frontiers in Figure 4b

are more sensitive to a change in interfraction interval. However, for each PMR (see

Figures (4a), (4b) and (4c)), it is indicated that for a 10-hour rest period obligation,

the total fractions delivered in a planning period is dramatically decreased due to

BID constraints. This is illustrated clearly when the total deviation is around 50 for

PMR1 & 2 and 5 for PMR3. On the other hand, even though a 9-hour rest period has

less impact on total fractions, compared to 10-hour interval, BID constraints become
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Figure 4: Impacts of τ on total fractions

tight for PMR2 where total mix ratio of BID patients is 30%. 9-hour rest period has

slightly changed the coordinates of noninferior points in case of PMR1. However, this

is not significant due to the fact that noninferior line segments on both base and BID

formulation frontiers are nearly identical. Even though the coordinates of breakpoints

are different, boundaries of noninferior sets are approximately same.

4.5 Gantry Specialization Frontiers

Gantry specialization requires restricting the use of the 3rd gantry for only patients

from 1st category. Figures (1a) and (1b) point out that this is a restrictive constraint
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since patient mix percentages for the 1st category are only 10% and 20 % in PMR1

and 2, respectively. However, it does not alter total fractions when compared to the

base model in use of PMR3. This follows due to the fact that the 1st patient category

has a mix of 65% and it is worthwhile to reserve a gantry for this amount of fractions

from 1st category. On the other hand, specializing gantry 3 for only patients from 1st

category in case of PMR1 and 2 is not only wasting the reserved capacity for gantry

3, it also significantly limits the available capacity for other patient categories as well.

As a consequence, less amount of fractions are treated than the base case model when

the total deviation is smaller than 118.06 (PMR1) and 90.57 (PMR2).
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Figure 5: Actual patient mix percentages for gantry specialization frontiers

Figure 5 demonstrates actual patient mix percentages for PMR1 and PMR2. At

this point, a majority of the deviation is consumed by the 1st patient category to

treat more 1st category patients in order to fully use the allocated capacity to this

category in gantry 3.

It should be highlighted that specializing gantry 3 for only patient category 1
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does not force patients from 1st category not to be treated in other gantries. It

only prevents treatment of patients from different categories other than 1st one in

gantry 3. Hence, investing total deviation on the 1st patient category from the 6th

breakpoint forward does not necessarily mean that these patients need to be treated in

the specialized gantry. Other two gantries are still open to patients from 1st category

as well.
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Figure 6: Impacts of gantry switching flexibility

It is also important to see the reactions of gantry specialization constraints to

gantry switching flexibility. This is because prohibiting gantry switching only im-

pacts gantry specialization frontiers. Other formulation frontiers (BID,Anesthesia,

etc.) are not affected by gantry switching flexibility. Therefore, the NISE method

is used to draw the gantry specialization frontiers in the presence of gantry switch-

ing flexibility and the results are shown in Figure 6. Regardless of patient mix ratio,

gantry switching flexibility makes gantry specialization and base model frontiers iden-

tical since it removes the obstacle preventing treatment of patient gantries in gantry

1 other than the 1st category patients.

31



4.6 Prime Hours Frontiers

Figure 7 provides insights into the impacts of prime hours constraints in the case of

3 different PMRs considered. Even though new patients can only be accepted in the

first three weekdays, a small gap is observed between prime hours and base model

frontiers in use of each PMR. Interestingly, prime hours and base model frontiers

appear aligned for a small amount of allowed total deviation. However, as shown

In Figures (7a) and (7b), the gaps between the frontiers become visible after a total

deviation amount of 250. This threshold is approximately 60 in Figures (7c) for

PRM3.
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Figure 7: Impacts of Prime Hours Constraints
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Note that previous operational restrictions (anesthesia availability, BID and gantry

specialization) create additional capacity restrictions based on different patient cate-

gories. Anesthesia team availability, BID and gantry specialization constraints limit

the capacity of treating patients from corresponding categories. In addition to the

time limit (ηg) on treating new patients, prime hours constraints also restrict accept-

ing new patients from all categories on specified days. It is observed in the previous

results that the model overcomes extra capacity constraints by deviating more and

more from the target levels. For the prime hours constraints, this strategy appears

to be effective until a certain amount of total deviation is attained (see Figures (7a),

(7b), (7c)). However, a fewer number of total fractions are delivered when compared

to base model frontiers as the deviation increases.This is because of the fact that

deviating from target levels becomes less beneficial compared to the base model since

the overall number of patients is already limited by prime hours constraints.

Another important property of prime hours frontiers is the dramatically increased

number of breakpoints compared to other frontiers. Prime hours constraints differ-

entiate the days of the planning periods by introducing TNA as the first 3 days of

weeks. As a consequence, the NISE method produces frontiers with greater number

of breakpoints for the altered set T that includes nonidentical days.

Finally, we introduced the constraints in Section 2.2.4 to the base model with

prime hours constraints in order to gain more flexibility over constraints (9). However,

no improvement is obtained in terms of total fractions even though capacity exchange

is allowed among gantries on specified days. This is because of the fact that the

maximum number of patients can be treated is strictly restricted by constraints (10)
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and (9) for a finite planning period. In addition, capacity exchange among gantries do

not save more time for additional patients outside of bringing flexibility on treatment

schedules.

4.7 Impacts of Gantry Capacities

In this section, we discuss the impacts of increasing daily gantry capacities from 12 hrs

to 15 hrs. As expected, increasing C while keeping other patient category parameters

(c̄k, ck, etc.) constant results in delivering more fractions for a given total deviation

(see Figures 8, 9, 13 and 14).

Figure 8 demonstrates the impacts of raising daily capacities 3 more hrs on anes-

thesia frontiers. Discussion in Section 4.3.1 highlights the relationships between anes-

thesia availability and patient mix constraints. Recall that patient mix constraints

indirectly limits the number of non-anesthesia patients while PMR1 and PMR2 are

in use. In case of PMR3, total mix of anesthesia patients is 3%. Therefore, 4 hrs

of anesthesia team availability is enough to serve all anesthesia patients and other

categories are not restricted by patient mix constraints. Analogously, as seen in Fig-

ures (8a) and (8b), raising daily capacities 3 hrs per day does not lead to any increase

in number of total fractions until a total deviation of 25 in case of PMR1 and 2. As

the total deviation increases (> 25), indirect impacts of patient mix ratios disappear.

Immediately after that deviation threshold, frontiers begin to diverge from each other

and the total number of fractions are improved by the 3 hour capacity increase on

each gantry.

Figure 9 demonstrates the impacts of the increase in daily capacities of 3 gantries
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Figure 8: Impacts of C on anesthesia frontiers

from 12 hours to 15 hours on gantry specializing frontiers. In Section 4.5, for PMR1

and PMR2, it is shown that specializing gantry 3 for the 1st patient category makes

gantry 3 primarily idle. Recall that as the total deviation is used to treat more pa-

tients from this category, utilization of gantry 3 is increased and gantry specialization

frontiers are aligned with those generated for the base model. Similarly, the gain in

terms of total fractions is reflected on frontiers in Figures (9a) and (9b) after the 1st

gantry is fully utilized. Until these levels in both figures, capacity increase in gantry

2 and 3 explain the gap between frontiers corresponding to C = 12 hours and C = 15

hours. Note that for PMR3, since 65% mix ratio of 1st patient category keeps the
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utilization of gantry 3 high, the increase in daily gantry capacity improves the total

fractions regardless of the total deviation level (see Figure 9c).
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Figure 9: Impacts of C on gantry specializing frontiers

4.8 Normalized T Frontiers

In this section, we discuss the impacts of using different period planning length. We

gradually increase T from 75 to 500 days and produce efficient frontiers for each stage

of T . As expected, increasing T while keeping other patient category parameters (nk,

ck, etc.) constant yields in delivering more fractions for a given total deviation (see

Figures 15, 16, 17 and 18). In order to possess the impacts of planning period length,
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we scaled each of the curves by dividing both total deviation and fraction values by

T and obtained normalized T plots as seen in Figures 19 and 20. It was observed

that normalized T frontiers for each formulation overlap for the cases where planning

period length is greater than or equal to 75 days. However, the exact value of T at

where the convergence has essentially taken place still needs to be identified. Hence,

other normalized plots with T ≤ 75 are also drawn for each formulation as well.
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Figure 10: Normalized T base model frontiers
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Figure 11: Normalized T anesthesia frontiers

Figures 10, 11 and 12 demonstrate normalized T frontiers for base model, anesthe-

sia and gantry specialization operational constraints, respectively. Three dimensional

representation of these plots can be seen in Figures 21, 22 and 23. Even though the

frontiers coincide when the total deviation is small, they start to differ from each other

when the total deviation gets larger. For instance, number of breakpoints increases

dramatically when T = 20 and T = 30 as the deviation gets larger. However, both

the noninferior points and line segments connecting them become identical for T = 40

and T = 100. Since, the frontiers are aligned with each other for T ≥ 75 (see Figures

38



0 1 2 3 4 5 6
2 0

4 0

6 0

8 0

1 0 0

1 2 0

 T = 1 0
 T = 2 0
 T = 3 0
 T = 4 0
 T = 1 0 0

To
tal

 Fr
ac

tio
n

T o t a l  D e v i a t i o n

(a) PMR1

0 1 2 3 4 5

4 0

6 0

8 0

1 0 0

1 2 0

 T = 1 0
 T = 2 0
 T = 3 0
 T = 4 0
 T = 1 0 0

To
tal

 Fr
ac

tio
n

T o t a l  D e v i a t i o n

(b) PMR2

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5
8 0

9 0

1 0 0

1 1 0

1 2 0

 T = 1 0
 T = 2 0
 T = 3 0
 T = 4 0
 T = 1 0 0

To
tal

 Fr
ac

tio
n

T o t a l  D e v i a t i o n

(c) PMR3

Figure 12: Normalized T gantry specialization frontiers

19 and 20) and the curves for T = 40 and T = 100 are indistinguishable, we can

conclude that T = 40 is a sufficient planning period to capture all effects consistently

among the model variants.
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5 Conclusion & Future Work

In this thesis we explored the impacts of operational limitations on the proton therapy

facility in light of strategic patient mix constraints. We began by describing commonly

encountered problems and general solution methodologies in the healthcare scheduling

environment in Section 1. After defining our problem with its unique elements in

Section 2, we proposed a general IP model (M) with three vital constraints in Section

2.1. It was observed that the combination of integrality restrictions and patient

mix constraints, the problem was quite difficult to solve in order to make strategic

decisions. Subsequently, our research focused on the relaxed version of a bicriteria

representation of the problem, (M), which considers tradeoffs between deviations from

patient mix preferences and their impacts on the capacity.

Our study provides insights for MDMs via projected limitations on the proton

therapy treatment capacity from common operational requirements coupled with

strategic patient mix requirements. In Section 4, the frontiers obtained by NISE

method for each formulation are piecewise-linear concave increasing functions. As

expected, an increased allowable deviation from patient mix constraints can be used

to treat additional patients from categories with smaller setup and treatment du-

rations. Therefore, managers can utilize the results of our research to quantify the

marginal cost of a fraction in terms of deviation from strategic target levels. In case

of various deterministic demand patterns, the methodology is easily implemented so

that forecasting scenarios for different PMRs can be portrayed accordingly. There-

fore, healthcare planners can see the impacts of staff/patient scheduling and resource
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planning decisions and make necessary changes beforehand.

As observed from frontiers generated in Section 4, total fractions treated is high-

est in base model frontiers (without additional operational constraints) for a given

level of total deviation. However, as the allowable patient deviation increases, patient

mix requirements become less restrictive. After a certain amount of total deviation,

all frontiers begin converging and the cost of increasing total fraction by one unit

becomes more and more expensive. Some patient categories (i.e. BID, anesthesia,

gantry specialization) are susceptible to specialized operational constraints. For cat-

egories limited by these additional restrictions, the percentage of patients treated

decrease below target levels. When the total deviation amount is not able to com-

pensate the additional operational limitation (< 30 for anesthesia frontiers, < 100 for

gantry specialization frontiers, etc.), the impacts of patient mix constraints become

significant. This is because the impacted patient categories also lead to a decrease

in number of patients treated from other categories due to proportional target levels.

Hence, once the operational restriction influences patient categories, managers must

account for the impacts of patient mix constraints as well. For a majority of the

time, a small increase in the available resources results in decreased total deviation

together with a substantial increase in total fractions (e.g. see Figures 3, 4).
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