
University of Arkansas, Fayetteville
ScholarWorks@UARK

Theses and Dissertations

8-2011

File System Simulation: Hierarchical Performance
Measurement and Modeling
Hai Quang Nguyen
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/etd

Part of the Computer Engineering Commons, and the Electrical and Computer Engineering
Commons

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by
an authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu.

Recommended Citation
Nguyen, Hai Quang, "File System Simulation: Hierarchical Performance Measurement and Modeling" (2011). Theses and
Dissertations. 111.
http://scholarworks.uark.edu/etd/111

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fetd%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarworks.uark.edu%2Fetd%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.uark.edu%2Fetd%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.uark.edu%2Fetd%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd/111?utm_source=scholarworks.uark.edu%2Fetd%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu

FILE SYSTEM SIMULATION: HIERARCHICAL PERFORMANCE

MEASUREMENT AND MODELING

FILE SYSTEM SIMULATION: HIERACHICAL PERFORMANCE

MEASUREMENT AND MODELING

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy in Computer Engineering

By

Hai Quang Nguyen

Ho Chi Minh City University of Technology

Bachelor of Science in Computer Engineering, 1997

University of Arkansas

Master of Science in Computer System Engineering, 2002

August 2011

University of Arkansas

ABSTRACT

File systems are very important components in a computer system. File system simulation

can help to predict the performance of new system designs. It offers the advantages of the

flexibility of modeling and the cost and time savings of utilizing simulation instead of full

implementation. Being able to predict end-to-end file system performance against a pre-

defined workload can help system designers to make decisions that could affect their entire

product line, involving several million dollars of investment.

This dissertation presents detailed simulation-based performance models of the Linux ext3

file system and the PVFS parallel file system. The models are developed using Colored

Petri Nets. A performance study, using the models, shows that the obtained results are close

to the expected behavior of the real file system. The model shows that file system

parameters have significant impact on the performance of the I/O when compared to the

parameters of the disk subsystem.

This dissertation is approved for recommendation

to the Graduate Council.

Dissertation Director:

Dr. Amy Apon

Dissertation Committee:

Dr. Craig W. Thompson

Dr. Dale R. Thompson

Dr. Fred Limp

DISSERTATION DUPLICATION RELEASE

I hereby authorize the University of Arkansas Libraries to duplicate this dissertation when

needed for research and/or scholarship.

Agreed __

 Hai Quang Nguyen

Refused __

v

ACKNOWLEDGMENTS

Sir Isaac Newton once said: ―If I have seen further than others, it is because I have stood on

the shoulders of giants.‖ This dissertation could not have been possible without the great

deal of collaboration, guidance, and friendship I have been blessed with over the years. I

owe my gratitude to all who have supported me on my journey to and through graduate

school.

I would like to express sincere appreciation to my advisor, Dr. Amy Apon, for her

guidance, understanding, patience and support during my graduate study at the University

of Arkansas. I cannot thank her enough for her willingness to go above and beyond to

ensure the success of her students. It has always been a privilege to study under her

tutelage. For everything you have done for me, Dr. Apon, I thank you.

I would like to thank my committee members, Dr. Dale Thompson, Dr. Fred Limp and Dr.

Craig Thompson. I had the good fortune of having a stellar dissertation committee. I am

extremely grateful for their expert guidance and suggestions concerning my research

directions.

I would like to express my gratitude to Dr. Larry Dowdy of the Department of Electrical

Engineering and Computer Science at Vanderbilt University for his feedback and for

sharing his invaluable knowledge and insights into file system behavior and performance

modeling, and to Dr. Laurence Dilday of the Departments of Writing and Communication

at the University of Central Arkansas for his editorial assistance.

I have been blessed with many dedicated and capable good friends and colleagues of whose

wisdom have been translated into much of the work represented herein. Phil Carn at

 vi

Argonne National Laboratory and David Metheny and Bart Taylor at Acxiom Corporation

have shared their precious parallel file system knowledge and have provided valuable

insight into the internal design of PVFS and PVFS2. I would like to thank Frank and

Sharon Bode whose many instances of support have helped me stay sane through these

difficult years. I am also thankful to Sharon for carefully reading and commenting on

countless revisions of this manuscript. I also want to thank Linh Ngo, Hung Tran and Hung

Bui who have shared their life with me through graduate school. I greatly value their

friendship, and I deeply appreciate their belief in me.

I would like to thank the Department of Computer Science and Computer Engineering at

the University of Arkansas. In particular, I would like to thank Susan Huskey for her

support during my graduate study at the University of Arkansas and since.

I am grateful to the National Science Foundation for providing financial support for the

work in this dissertation. This dissertation was supported in part by NSF Grant No.

0421099 and NSF Grant No. 0722625.

Finally, and most importantly, I would like to thank my family. None of this would have

been possible without their love and patience. I thank my wife, Tien. Her support,

encouragement, quiet patience, unyielding devotion and unwavering love have been with

me through good times and bad, in sickness and in health. I would like to thank my parents

for their faith in me. Their encouragement and support gave me the strength to become who

I wanted to be.

 vii

TABLE OF CONTENTS

List of Figures ... ix

List of Tables .. xi

Chapter 1: Introduction .. 1

1.1 Problem definition ... 1

1.2 Thesis statement .. 4

1.3 Contributions of this dissertation .. 5

1.4 Overview of this dissertation .. 5

1.5 Summary .. 13

Chapter 2: Background and literature ... 14

2.1 Introduction ... 14

2.2 Related work .. 14

2.3 Summary .. 35

Chapter 3: Performance measurements and workload study 36

3.1 Introduction ... 36

3.2 Local file system performance study .. 36

3.3 PVFS file system performance study.. 47

3.4 Summary .. 53

Chapter 4: Design of a simulation model for local file system 55

4.1 Introduction ... 55

4.2 Assumptions and model limitations .. 55

4.3 File read model implementation ... 56

4.4 File write model implementation .. 63

4.5 L2 cache effect model ... 70

4.6 Summary .. 72

Chapter 5: Local file system simulation model performance validation 74

5.1 Introduction ... 74

5.2 Validation setup ... 74

5.3 Synthetic sequential workload .. 75

5.4 Synthetic random workload .. 77

5.5 Captured I/O traces from production systems 79

5.6 The impact of the dirty ration kernel parameter 84

5.7 Full data journal mode write performance.. 85

5.8 Synchronous write performance ... 88

5.9 Summary .. 91

Chapter 6: Design of a simulation model for parallel file system 93

6.1 Introduction ... 93

6.2 Assumptions and model limitations .. 93

6.3 File read model implementation ... 94

6.4 File write model implementation .. 104

6.5 Summary .. 114

 viii

Chapter 7: Parallel file system simulation model performance validation 115

7.1 Introduction ... 115

7.2 Validation setup ... 115

7.3 Performance validation experiments .. 116

7.4 Summary .. 133

Chapter 8: Conclusion ... 135

8.1 The importance of file system simulation model 135

8.2 Implication of this research ... 135

8.3 Keys to the acceptance of the file system simulation model 136

8.4 Opportunities for future work ... 137

Bibliography .. 146

 ix

LIST OF FIGURES

Figure 1: Integer type place .. 8
Figure 2: Arc with integer variable .. 8

Figure 3: Transition in a Colored Petri Net .. 9
Figure 4: PVFS file system architecture .. 12
Figure 5: Sequential I/O read performance .. 38
Figure 6: Detail view - sequential I/O read performance .. 38
Figure 7: Sequential I/O write performance .. 39

Figure 8: Detail view- sequential I/O write performance .. 40

Figure 9: Physical memory capacity and I/O performance ... 41

Figure 10: Dirty ratio parameter and I/O performance .. 42
Figure 11: I/O read performance with different hardware .. 43

Figure 12: I/O write performance with different hardware ... 44
Figure 13: Average response time of data transferring between kernel and user space 45

Figure 14: L2 cache misses during I/O with different block sizes .. 46
Figure 15: PVFS test cluster architecture... 48
Figure 16: PVFS captured I/O traces ... 50

Figure 17: PVFS sequential I/O read performance .. 51
Figure 18: PVFS sequential I/O write performance .. 53

Figure 19: High level application read model .. 57
Figure 20: The fread function model ... 59
Figure 21: The generic_file_read model .. 60

Figure 22: Buffer cache component model .. 62

Figure 23: Disk component model ... 63
Figure 24: High level I/O write model ... 64
Figure 25: fwrite function model.. 66

Figure 26: generic_file_write model .. 67
Figure 27: Journal component model ... 68

Figure 28: Data flushing component model... 69
Figure 29: Disk component model ... 70
Figure 30: L2 cache model validation .. 72
Figure 31: Sequential I/O read performance validation .. 75

Figure 32: Sequential I/O write performance validation ... 76
Figure 33: Synthetic random workload pattern ... 78

Figure 34: I/O read pattern of the first trace .. 80
Figure 35: I/O write pattern of the first trace ... 81
Figure 36: I/O read pattern of the second trace .. 82
Figure 37: I/O write pattern of the second trace .. 83
Figure 38: The impact of dirty ratio parameter .. 85

Figure 39: Sequential I/O write validation – full data journal mode 87
Figure 40: Sequential I/O write validation - synchronous write ... 90

file:///C:/Documents%20and%20Settings/hanguy/My%20Documents/Research/Dissertation/Edited/Dissertation%20-%20Preliminary%20reformatted.docx%23_Toc298429396
file:///C:/Documents%20and%20Settings/hanguy/My%20Documents/Research/Dissertation/Edited/Dissertation%20-%20Preliminary%20reformatted.docx%23_Toc298429397
file:///C:/Documents%20and%20Settings/hanguy/My%20Documents/Research/Dissertation/Edited/Dissertation%20-%20Preliminary%20reformatted.docx%23_Toc298429398
file:///C:/Documents%20and%20Settings/hanguy/My%20Documents/Research/Dissertation/Edited/Dissertation%20-%20Preliminary%20reformatted.docx%23_Toc298429400
file:///C:/Documents%20and%20Settings/hanguy/My%20Documents/Research/Dissertation/Edited/Dissertation%20-%20Preliminary%20reformatted.docx%23_Toc298429401
file:///C:/Documents%20and%20Settings/hanguy/My%20Documents/Research/Dissertation/Edited/Dissertation%20-%20Preliminary%20reformatted.docx%23_Toc298429402

 x

Figure 41: High level PVFS application read model ... 96
Figure 42: PVFS client component model for file read ... 97
Figure 43: Payload creation component model for PVFS file read 98

Figure 44: Sending network component for PVFS file read ... 100
Figure 45: Receiving network component for PVFS file read .. 101
Figure 46: Server component for PVFS file read .. 103
Figure 47: Data segmentation component for PVFS file read .. 104
Figure 48: High level PVFS application write model ... 106

Figure 49: PVFS client component for file write .. 107
Figure 50: Payload creation component for PVFS file write .. 108
Figure 51: Data segmentation component for PVFS file write ... 109
Figure 52: The sending network component for PVFS file write 110

Figure 53: The receiving network component for PVFS file write 111
Figure 54: Server component for PVFS file write ... 113

Figure 55: Single client I/O read validation ... 116
Figure 56: Single client I/O write validation ... 117

Figure 57: Two clients I/O read validation .. 119
Figure 58: Two clients I/O write validation ... 120
Figure 59: Three clients I/O read validation .. 121

Figure 60: Three clients I/O write validation ... 122
Figure 61: Four clients I/O read validation .. 123

Figure 62: Four clients I/O write validation ... 124
Figure 63: Five clients I/O read validation .. 125
Figure 64: Five clients I/O write validation ... 126

Figure 65: Six clients I/O read validation .. 127

Figure 66: Six clients I/O write validation ... 128
Figure 67: Seven clients I/O read validation .. 129
Figure 68: Seven clients I/O write validation .. 130

Figure 69: Eight clients I/O read validation ... 131
Figure 70: Eight clients I/O write validation ... 132

file:///C:/Documents%20and%20Settings/hanguy/My%20Documents/Research/Dissertation/Edited/Dissertation%20-%20Preliminary%20reformatted.docx%23_Toc298429417
file:///C:/Documents%20and%20Settings/hanguy/My%20Documents/Research/Dissertation/Edited/Dissertation%20-%20Preliminary%20reformatted.docx%23_Toc298429420
file:///C:/Documents%20and%20Settings/hanguy/My%20Documents/Research/Dissertation/Edited/Dissertation%20-%20Preliminary%20reformatted.docx%23_Toc298429421
file:///C:/Documents%20and%20Settings/hanguy/My%20Documents/Research/Dissertation/Edited/Dissertation%20-%20Preliminary%20reformatted.docx%23_Toc298429422
file:///C:/Documents%20and%20Settings/hanguy/My%20Documents/Research/Dissertation/Edited/Dissertation%20-%20Preliminary%20reformatted.docx%23_Toc298429424
file:///C:/Documents%20and%20Settings/hanguy/My%20Documents/Research/Dissertation/Edited/Dissertation%20-%20Preliminary%20reformatted.docx%23_Toc298429425
file:///C:/Documents%20and%20Settings/hanguy/My%20Documents/Research/Dissertation/Edited/Dissertation%20-%20Preliminary%20reformatted.docx%23_Toc298429428
file:///C:/Documents%20and%20Settings/hanguy/My%20Documents/Research/Dissertation/Edited/Dissertation%20-%20Preliminary%20reformatted.docx%23_Toc298429429
file:///C:/Documents%20and%20Settings/hanguy/My%20Documents/Research/Dissertation/Edited/Dissertation%20-%20Preliminary%20reformatted.docx%23_Toc298429430

 xi

LIST OF TABLES

Table 1: Test system configuration .. 37
Table 2: CPU L2 cache sizes vs. performance drop off points ... 46

Table 3: PVFS test cluster machine configuration .. 47
Table 4: PVFS I/O workload breakdown ... 49
Table 5: Random I/O read performance validation ... 78
Table 6: Random I/O write performance validation .. 79
Table 7: Captured traces I/O read validation ... 84

Table 8: Captured traces I/O write validation .. 84

Table 9: Random I/O write validation - full data journal mode .. 88

Table 10: Captured traces I/O write validation - full data journal mode 88
Table 11: Random I/O write validation - synchronous write .. 91

Table 12: Captured traces I/O write validation - synchronous write 91

1

C h a p t e r 1

INTRODUCTION

This dissertation promotes simulation modeling, using Colored Petri Nets as a tool for the

evaluation of file systems performance with different architectures, including local and

parallel file systems.

1.1 Problem definition

Today‘s scientific data-intensive research applications place very high demands on

storage systems in both performance and capacity [1, 2] with much attention paid to large-

scale resource sharing and allocation. Even though big and powerful mainframe systems

are still being built and deployed, data-intensive clusters of computers utilizing cloud-

computing technology are growing at an impressive rate. Although storage systems are

well-established research areas [3-5], modern storage system development still lags behind

processor technologies. When comparing the latency before data are available and the

bandwidth of data transferring with the data processing rate of state of the art data-intensive

clusters utilizing the most current processor technology, storage systems cannot keep up.

As a result, storage systems are often considered the bottlenecks of many data-intensive

applications. In other words, the overall system performance is adversely affected by the

time required for accessing data from secondary storage components. Many applications

spend a significant amount of run time in I/O wait as opposed to actual processing,

computing and transforming data. In order to meet the storage capacity and performance

demands of these applications, storage research has pushed aggressively on multiple fronts.

2

High- performance magnetic disks have become so inexpensive that users are finding new,

previously unaffordable uses for storage. Multi-tier storage systems have included more

layers of different types of magnetic storage. This introduces even better transition with

more granularities between the high, but expensive performance of solid-state storage and

the low, but cheap performance of the tape library. As a consequence, operational

personnel costs for storage management and performance tuning now dominate over

capital costs of the equipment over its useful lifetime [6]. The utilization of cloud

computing and the concept of resource-on-demand push the issues even further, causing the

management of storage performance and capacity to become even more challenging.

Because of the critical role of the storage system in overall system performance,

choosing and integrating a storage component is usually a difficult challenge for a system

designer. Typically, a storage configuration fits best with a certain type of application due

to the I/O access pattern. Therefore, by choosing the right storage configuration, one can

maximize the most important performance metrics for the targeted application. For

example, scientific applications such as geospatial analysis and modeling, high density

survey, and digital photogrammetry often use a sequential access pattern over very large

data sets. This type of I/O pattern performs well with storage configurations using parallel

or distributed file systems over highly redundant disk array subsystems. However, the same

type of storage configuration will perform badly when utilized by business-reporting

applications that randomly process a large quantity of medium or small files. Moreover, the

whole system, once built, is so complex; it is not easy to make modifications or

improvements to core components like storage systems. The consequence of a poor

3

decision could significantly increase the cost to operate and maintain the system throughout

its lifetime. As a result, many techniques have been developed to assist with such decisions.

At the laboratory bench, real system interactions can be studied utilizing prototype or test-

built systems. These experiments could provide accurate system behaviors and

performances. However, a typical storage system used in a high performance data-intensive

environment consists of many components, and they usually are not cheap. In addition to

the initial investment, hardware deployment is time consuming as well. As a consequence,

experiments with real hardware are sometimes not very attractive, even for big companies

or research groups and especially when only proofs of concepts are needed. At the drawing

board, analytical techniques or computer simulation models can be used in conjunction

with models of different workloads to evaluate the expected consequences of a proposed

device. Under this technique, the system is simulated in enough detail to evaluate the

performance and behavioral response of the storage system. This technique offers the dual

advantage that any or all of the individual system components can be speculative and

hypothetical; in addition to looking at next year‘s storage device, components such as the

processors and memory can be scaled up according to expected trends to simulate the

overall system that will be available next year. Unfortunately, substantial effort is required

to build and maintain a complete machine simulator, both in terms of correctly executing

programs and correctly accounting for time. Additionally, such simulators usually run

much slower than real systems, which limit the overall scope of what architectural designs

can be considered. Among several storage architectures, the three most common ones are

Direct-Attached Storage (DAS), Network-Attached Storage (NAS), and Storage Area

4

Networks (SANs). These storage architectures prove to be able to provide a shared,

adaptable, and high-performance storage system for data-intensive applications. The

performance of each of these classes of storage architectures has a strong impact on the

overall performance of the system. An accurate, well-developed simulation modeling

environment could allow researchers to fine tune both the performance and the workload of

network storage architecture.

Perhaps more so than in the past, now is a particularly pertinent time for needing this

sort of evaluation technology. The gap between high-end and low-end storage hardware is

significant enough to make system designers rethink their design strategy toward

application-specific storage. Large and non-critical data sets will be put on consumer-

grade, low-cost, high-capacity storages while small but very fast, high-end multi-disk

arrays will be used for mission critical and database operations. Both product divisions are

areas in which the performance implications and the impact of new system configurations

of file systems and storage devices could be readily examined under file system simulation

models.

1.2 Thesis statement

Current approaches to storage system evaluation using hardware are limited in that

they are expensive and usually take time to deploy. In order to sufficiently perform system-

level evaluation of system designs or architectural decisions, system designers need to

consider both budgets and timelines, which proves to be quite a challenge. In response to

these limitations, this dissertation advocates that simulation models for file systems are

5

feasible and enable end-to-end performance experimentation while supporting both local

file systems as well as parallel file systems.

1.3 Contributions of this dissertation

This dissertation advances four primary contributions:

1. It presents and validates the model of file system simulation for both local file

systems and parallel file systems.

2. It demonstrates the feasibility of file system simulation in the context of end-to-end

complex system performance evaluation.

3. It describes a general architecture for a file system simulation model and

mechanisms for making it flexible enough to simulate an existing complex parallel

file system. The architecture can also be used as a framework to develop other local

file systems and parallel file systems.

4. It details concrete examples of the use of storage and file system simulation for

explorations of system configurations and functionalities.

1.4 Overview of this dissertation

The text of this dissertation is presented in three conceptual parts, corresponding

roughly to background and motivations, the local file system simulation model, and the

parallel file system simulation model.

Chapter 2 discusses the background of the modern storage subsystem, storage

improvement in general, and the role of file system in overall system-level evaluations.

6

Chapter 3 presents measurement studies of the local file system candidate—the third

extended file system, or ext3—as well as the parallel study candidate—the parallel virtual

file system, or PVFS.

Chapter 4 and Chapter 5 discuss the design and implementation of a simulation model

for the ext3 file system and the performance evaluation of that system using the model.

Chapter 6 and Chapter 7 discuss the design and implementation of a simulation model

for the PVFS file system and the performance studies of that system using the model.

Chapter 8 concludes by looking to the future of file system simulation.

1.4.1 File system simulation in system-level evaluation

The file system is a very important component in a computer system, yet file system

simulation is rarely used for performance evaluation of new system designs. We argue for

more frequent use, noting that file system simulation offers significant advantages: the

flexibility of simulation and the cost and time savings when utilizing simulation.

The applications for a file system simulation model are many. End-to-end file system

performance measurement for existing workload is one example of such applications.

Modern scientific and business applications could be divided into multiple categories; each

has every specific type of workload. While a system designer could certainly use one type

of file system for all of his or her applications and customers, the performance results are

usually not adequate. This is particularly true when network file systems are involved.

There are many commercial network file systems as well as open-source ones. They are all

designed to support a broad range of applications; however, each of them has certain

strengths and weaknesses. Being able to measure end-to-end file system performances

7

against pre-defined workloads could help system designers to make decisions that could

affect their entire product line and be worth several million dollars of investment.

Another application for a file system simulation model is bottle-neck analysis. In a

complex high-performance parallel file system, identifying where the bottle-necks are that

need to be upgraded or expanded could be very difficult. Components in such a system

could be well integrated into the whole system and very hard and expensive to upgrade. It

is in a system designer‘s best interest to identify the correct bottle-necks of the system to

upgrade. File system simulation models could be used to analyze the I/O flow and identify

bottle-necks. It could also be used for ‗what-if‘ type of provisioning analysis.

1.4.2 Modeling using Colored Petri Nets

K. Jensen proposed an extended version of classical Petri Net called Colored Petri Net

[7]. Colored Petri Net, or CPN, is a graphical-oriented language for design, specification,

simulation and verification of systems. This language is particularly well suited to

illustrating and simulating systems in which communication, synchronization between

components, and resource sharing are primary concerns [8]. This offers a flexible

framework that is well adapted for the analysis of I/O flow performance. CPNTools [9] is

utilized for simulation and analysis.

In addition to places, transitions and tokens, the concepts of colors, guards and

expressions are introduced, so that computed data values can be carried by the tokens. For

simplicity, the color of a token can be described as a data type. It defines the types of data

that can be carried by tokens. Each place in the net is also assigned a data type, and can

8

only hold tokens of its assigned type. For example, Figure 1 presents a place of type

integer. This place contains an initial token with a value of 1.

Figure 1: Integer type place

Each arc in the net is also assigned an expression that evaluates to a certain data type.

The data type of the arc must match the color set of the place attached to the arc. For

example, Figure 2 presents an arc connected to a place with integer type. The arc has an

expression that is an integer variable named i.

Figure 2: Arc with integer variable

A transition in the net has similar functionality to a subroutine in a program. Incoming

arcs define input parameters to the transition. Outgoing arcs are results from the transition.

A transition can have a guard which is a Boolean expression. Guards are used for testing

the input arcs enabling conditions or restrictions. A transition can also have a code

segment. Code segments are executed when tokens go through the transitions. Figure 3

presents a transition with a guard and a code segment. The guard restricts the value of the

input tokens to less than 10. The code segments produce two output results. One is equal to

the input plus 1. The other is equal to the input plus 2.

INT

1

1 1`1

INT

1
i

1 1`1

9

Figure 3: Transition in a Colored Petri Net

These concepts prove to be incredibly powerful since tokens can now carry

information that is simple or complex. This feature is used extensively to carry time stamps

with tokens flowing within the simulation model.

1.4.3 Design of a simulation model for local file systems

Linux, as an open-source operating system, offers a very flexible system that supports

a large number of file systems, including journaling file systems, clustering file systems,

and cryptographic file systems. The architecture for a file system under Linux was

designed with an abstract layer to support a large variety of file systems on a large variety

of storage devices. The application, when using the abstract layer function, is completely

unaware of the true file system types or the storage medium. In this clean and well-

designed layer system, an upper component often hides the details of the lower components

and presents more unified and simpler information to the layer above it. The ext3 file

system has been chosen to be the study candidate for this simulation model. Ext3 is a

standard file system on every Linux distribution. It was released and officially supported by

INT

1

Even
m b

INT

n

input (m);
output (n,b);
action

(m+1, m+2);

[m<10]

1 1`1

10

Red Hat since 2001 [10]. Ext4, the successor of ext3, was introduced into Red Hat

Enterprise Linux very recently as a technology review. It takes time for industry to adopt

and migrate to a new file system. For the time being and in the near future, ext3 will

continue to be deployed and utilized in industrial settings.

The model provides simulation implementations for most components in the ext3 file

system, such as data pre-fetching, buffer cache, and data journaling. Components are

designed to follow the implementation in Linux closely to preserve the performance

characteristics of the file system. The simulation model is organized into two main I/O

operations: data reading and data writing. Since the Linux abstract layer hides the details of

the lower components, instead of having to model the lower hardware layer of storage

devices in detail, the model uses a more simple queuing approach. Without going into the

device drivers level, a direct attach disk drive is similar to a SAN storage array. This design

helps the simulation model to be more flexible and to support multiple types of storage

devices.

The ext3 file system simulation model is validated using different types of workload to

make sure the model behaves similarly to the real file system under different situations. A

synthetic workload, such as a sequential I/O access pattern and a random I/O access

pattern, is generated and used in both the simulation model and the real system. In addition

to the synthetic workload, I/O traces are collected from production systems and used to

study the behavior of the simulation model under real-world situations.

11

1.4.4 Design of a simulation model for parallel file systems

While local file systems play a very important role in a modern datacenter, scientific

and business applications put forth many challenges to computer system designers. Two

pinnacles of those challenges are processing power and storage capacity. Parallel file

systems are being developed to fill the gap between data accessing speed from secondary

storage and the processing speed of a high-performance cluster.

Parallel file systems bring many advanced features to high-performance computing.

Two major ones are providing unified name space across multiple machines (or nodes) and

providing parallel accessing to storage devices. These two characteristics create a many-to-

many relationship between high-performance clusters and storage devices, enabling high

enough I/O throughput to satisfy state-of-the-art clusters. These characteristics, however,

also bring another important component into file system architecture—the network. To

implement a simulation model for a parallel file system, an end-to-end performance model

of the network is developed.

There are many existing parallel file systems. Each of them has a different approach to

how data and metadata are managed and allocated. The Parallel Virtual File System, or

PVFS, is a powerful open-source parallel file system. It has been well received by both the

academic and industrial worlds. Although there are other commercial parallel file systems

on the market, their closed, proprietary source code becomes a significant challenge to the

development of a simulation model. PVFS has been chosen to be the study candidate for

the parallel file system simulation model. The architecture of the file system is presented in

Figure 4.

12

At a basic level, PVFS uses the standard Linux ext3 file system as its foundation. By

utilizing multiple ext3 file systems working in parallel with completely separate metadata

operations, PVFS can achieve massive data bandwidth. These ext3 file systems are located

on several I/O server machines. Each individual ext3 file system is governed by a PVFS

I/O daemon. Many daemons could be stacked on a single physical machine to increase the

size of the PVFS file system, thus lessening the number of physical machines required.

Figure 4: PVFS file system architecture

Similar to the ext3 file system model, the simulation model for PVFS is also divided into

data reading operations and data writing operations. Each operation consists of three major

parts: the client, the network interconnection, and the server. Components are designed to

follow the implementation of the actual PVFS closely to preserve the performance

characteristics of the file system. When a file system access request from an application

arrives at the PVFS client, it will be divided into multiple small chunks of data of a certain

13

size and distributed round-robin fashion into different payloads. The number of payloads is

equal to the number of I/O daemon (IOD) of the PVFS file system. These payloads are

delivered to the I/O daemons over the network using the network model. Each I/O daemon

processes the payload requests and responds back to the PVFS clients individually. The I/O

daemon storage device is simulated using the ext3 simulation model.

1.5 Summary

File system simulation offers the opportunity to investigate novel uses of different types of

file systems and, to some degree, different storage subsystems in computer systems. This

permits forays into the space of hypothetical system configurations without the difficulties

of developing and supporting extensively prototype systems only for evaluation purposes.

This dissertation demonstrates that there is a current and pressing need for a file system

evaluation technique. It also emphasizes that it is feasible to design and construct a file

system simulator and to use a simulation model for interesting systems-level performance

experimentations. The file system performance model is divided into a local file system

model and a parallel file system model. For the local file system model, ext3 is the study

candidate. For the parallel file system model, PVFS is the study candidate. The

performance model is developed using a Colored Petri Nets modeling method and is

implemented using CPN-Tools. A resource model for the interconnection network is also

developed. To evaluate both the local file system model and the parallel file system model,

end-to-end performance validation is performed using different types of workload,

including synthetic workload and I/O traces collected from production systems.

14

C h a p t e r 2

BACKGROUND AND LITERATURE

2.1 Introduction

This chapter presents the background study of related work. Research in the storage

simulation and modeling areas is examined. Work in other areas of storage development,

such as general storage technology, multi-tier storage, and virtual storage, are also studied

to have a thorough understanding while implementing storage component models.

2.2 Related work

This section is organized into three main areas. The first area surveys published models

that capture the behavior and performance of storage devices. The second area surveys

published network modeling studies. The last area examines developments in storage and

file system technologies, the knowledge of which is essential when designing storage

component models.

2.2.1 Storage modeling and simulation surveys

Much work has gone into the development of storage device models. This section

presents major published studies and provides a better understanding of storage modeling

research. It also presents methods and techniques have been used to model storage devices.

Among recent storage modeling research, DiskSim, which has been made publicly

available to the research community, is one of the best-known disk simulation systems.

Described by J.S. Bucy and G.R. Ganger [11], Disksim was developed to support research

on several aspects of the storage subsystem architecture. By providing modules that

15

simulate disks, intermediate controllers, buses, device drivers, request schedulers, disk

block caches, and disk array data organization, Disksim is an efficient, accurate, and highly

configurable disk system simulator that can simulate modern disk drives in great detail and

has been validated against production disks with high accuracy. DiskSim has also been

utilized in many subsequent studies as a foundation.

J.L. Griffin et al. [12] describe a prototype called the Memulator that appears to the

system to be a real storage component with service times similar to the component it is

simulating. This prototype produces service times within 2% of those computed by its

component simulator for over 99% of requests. Memulator was used for performance

measurements on a modern Linux system equipped with a micro-electro-mechanical

system (MEMS)-based storage device and a modern Linux system equipped with a disk

whose firmware had been modified. Griffin also uses timing-accurate storage emulation to

experiment with nonexistent storage components to explore the interactions between

modified computer systems and expanded storage device functionality, and to study

storage-based intrusion detection systems [13]. He demonstrates the incorporation of

intrusion detection capabilities into processing-enhanced disk drives.

Maghraoui et al. [14] presents a method of modeling a Flash device and building a Flash

simulator. The authors capitalize on the throughput behavior of the Flash disk with no

rotary components and develop a linear model for the Flash device. Benchmarks results

show the throughput of the simulation model is within 7% error range compared to a real

Flash disk. The authors also argue that one can simulate Flash-based solid-state drives

16

(SSDs) without having to simulate every minor detail and internal organization of a Flash

device.

Wang and Kaeli [15] offer ParIOSim, a validated execution-driven simulator for

network storage systems. Their simulator provides a flexible simulation environment for

performing storage optimizations. This simulator can also be used to accurately predict the

performance of parallel I/O applications as a function of the underlying storage

architecture. They compared the performance of ParIOsim with the performance of an

actual parallel system to demonstrate the accuracy of the tool and provided results from

running a parallel I/O benchmark application over different storage architectures.

To understand and optimize database performance, a good model of the storage

structure is needed. This is a difficult task because the fundamental role of conceptual-to-

internal mapping in database management system (DBMS) implementations previously

went unrecognized. Batory [16] presents a model of physical databases, called the

transformation model, that makes conceptual-to-internal mappings explicit. The author

shows that by exposing such mappings, it is possible to model the storage architectures

(i.e., the storage structures and mappings) of many commercial DBMSs in a precise,

systematic, and comprehendible way. The transformation model also helps bridge the gap

between physical database theory and practice. The author further believes that the model

also reveals the possibility of a technology to automate the development of physical

database software.

Gomaa [17] introduces a hybrid modeling technique that combined two different

modeling techniques, regression and simulation, to model virtual storage computer

17

systems. This technique uses simulation to model in detail a task‘s arrival, its entering and

dropping from the multiprogramming set, and its termination. The regression techniques

are used to model the rest of the system in much less detail. The authors also describe the

application of the method to model an IBM VM/370 system.

Coffman and Reiman [18] present a model of the storage resource. It is a basic model of

the space-time requirements of jobs in a computer system and a number of its variations

analyzed by means of diffusion approximations. Using the usual heavy-traffic assumptions,

the result of their analysis allows the effects of limitation on both storage capacity and

processing rates to be quantified.

Jacobson and Lazowska [19] offer an approximate solution technique for queueing

network models that includes the simultaneous or overlapped possession of resources. This

issue arises in many computer system contexts and has a significant effect on system

performance. The key idea behind this method is to partition queuing delay according to

which of the simultaneous help resources is responsible. This approach provides a unified,

practical treatment of a diverse set of problems.

In large multimedia document archives, a major fraction of data may be stored in a

tertiary storage library to reduce cost. Kraiss and Weikum [20] present an integrated

approach to the vertical data migration between the tertiary, secondary, and primary

storage. To predict the expected number of accesses to a document within a specified time

horizon, the integrated migration policy is based on a continuous-time Markov-chain

model. The parameters of this model, the probabilities of co-accessing certain documents,

and the interaction times between successive accesses are dynamically estimated and

18

adjusted to evolving workload patterns by keeping online statistics. The authors discuss a

prototype system, which uses the integrated policy for vertical data migration. The

Markov-chain model is also being used in the system for the scheduling of volume

exchanges in the tertiary storage library. The authors also present initial results using

simulation experiments with Web-server-like synthetic workloads. The results show

significant gains in terms of client-response time. The experiments also show that the

overhead of the statistical bookkeeping and the computations for the access predictions is

affordable.

Network-attached storage devices improve I/O performance by separating control and

data paths and eliminating host intervention during data transfer. Devices are attached to a

high-speed network for data transfer and to a slower network for control messages.

Hierarchical mass storage systems use disks to cache the most recently used files and tapes

(robotic and manually mounted) to store the bulk of the files in the file system. Menasce,

Pentakalos, and Yesha [21] explain how queuing network models can be used to assess the

performance of hierarchical mass storage systems that use network-attached storage

devices. The analytic model, validated through simulation, is used to analyze many

different scenarios.

Zhaobin et al. [22] show that Stochastic Petri Net (SPN) models can be used to analyze

the performance of hybrid I/O Data Grid storage systems. The authors discuss their

implementation of a typical storage system SPN modeling. Based on aggregate I/O, they

also simplify the complexity of the model. From case studies, it is shown that the priority

19

schedule can be adjusted by changing the ratio of file I/O and multimedia I/O. Their work

can be used to study complex and irregular I/O patterns of Data Grids applications.

Molero et al. [23] present the model and design of a very flexible and easy to use SAN

simulator. They also discuss the basic modeling mechanisms, the main input parameters,

and the output performance variables of the simulator. The tool can use both real-world I/O

traces and synthetic I/O traffic, messages, faults in links and switches, virtual channels,

different routing algorithms, etc. The authors reveal the preliminary simulation results of

using I/O traces. They show that the storage network increases self-similarity of the traffic

received by servers. A different model for SAN devices is presented by Routrey et al. [24].

The tool can be used to simulate many different management modules, including large

scale multi-vendor heterogeneous SAN for enterprise. Moreover, the simulation model can

also be used for what-if analysis of an enterprise information technology (IT) environment

before any changes. Instead of developing separate tools, Staley et al. [25] use Optimized

Network Engineering Tools (OPNET) as a discrete event simulator to model and simulate

Fibre Channel-based SAN devices. The model is utilized to determine the scaling and

stability issues of a large fabric as the size of the storage area network grows. The authors

also present preliminary simulations. Focusing on the performance of I/O interaction of

host servers and storage subsystems via the SAN fabric in a storage area network,

Aizikowitz et al. offer a study using performance modeling [26]. The work describes a

component-based simulation performance model, which supports a rich variety of both

existing and future storage subsystems. It allows some basic network configurations and

addresses many major I/O aspects of the server operating system. The simulation model

20

has many flexible features, such as easy parameter modifications, configuration

adjustments, architecture manipulations, and experimentation.

The fully distributed nature of peer-to-peer storage architecture allows it to have many

interesting features, such as global scalability, self-configuration, dynamic adaptation, fault

tolerance and anonymity. Hung-Chang et al. [27] study the memory architecture of the

peer-to-peer storage systems, especially the effects of caches and directories on their

performance. The authors describe an abstract model, called the distributed shared memory

(DSM) model. It is used to capture the essence of the peer-to-peer storage architecture from

the memory perspective. The performance of three peer-to-peer storage system models

under different memory pressures, network sizes, and failure degrees is evaluated via

simulation.

DeRosa et al. describe the design and implementation of Vesper, an instructional disk

drive simulator with a high degree of performance realism [28]. While providing timing

statistics close to that of real disk drives, the simulator can still retain its simplicity. The

authors present their method to provide hardware abstractions that are simple, yet capable

of capturing device interactions with major performance impacts. Users of the simulator

can explore the performance consequences of various system designs without the

cumbersome aspects of the real hardware interface.

Ali et al. [29] offer the design and development of a modeling and simulation prototype

for the final assembly of hard disk drives with dynamic and static behavior. The prototype

can develop intelligent dynamic machine knowledge. It can also capture dynamic activities

with fuzzy systems. The model is highly flexible, fast and capable of self-development. It

21

can help improve the system performance significantly. The authors show that modeling

and simulation tools can be used to implement and integrate highly-automated systems for

industrial processes.

2.2.2 Network modeling and simulation surveys

Network modeling is a very large area of research. However, since the network

components are essential components of the parallel file system models, it is important to

understand network modeling. Due to the amount of research that has been done in this

area, only a selection of studies that are closely related to designing the network component

is examined. The similarity between modeling network within parallel file systems and

modeling network within full-system simulation environments suggests that a good

understanding of this area will be very beneficial. The full-system simulation environment

provides complex interactions between applications and systems. However, the simulation

durations are usually very short and require fast simulation turnaround time. Several papers

address and develop methods to overcome this problem while ensuring representative

results [30-32]. Standard network tools are used to extract simplified models that are

statistically validated and, at the same time, compatible with a full-system simulation

environment. Different models are proposed with different accuracy-versus-speed ratios

that compute network latency times according to the estimated traffic and measure those

times on a real-world parallel scientific application.

While well-known packet-based simulators, such as ns-2, still play an important role in

network simulation, the more recently-proposed hybrid systems model for data

communication networks shows promise in achieving performance characteristics

22

comparable to fluid models while retaining the accuracy of discrete models. The key to this

method is that the averaging occurs over short time intervals to continuously approximate

discrete variables, such as congestion window and queue size. Therefore, discrete events,

such as the occurrence of a drop and the consequent reaction by congestion control, can

still be captured [33, 34]. This modeling framework, thus, fills a gap between purely

packet-level and purely fluid-based models. Observations show, in networks with large per-

flow bandwidths, simulations using hybrid models require significantly less computational

resources than ns-2 simulations.

Also using the hybrid systems paradigm, Kavimandan et al. [35] present several models

of Transmission Control Protocol (TCP) behavior and the analysis/simulation of data

communication networks based on these models. An important distinguishing feature of

this study is a faithful accounting of link propagation delays which have been ignored in

previous work for the sake of simplicity. The simulation results are consistent with well-

known packet-based simulators such as ns-2, thus demonstrating the accuracy of the hybrid

model.

The hybrid network model can also allow flows to interact with fluid flows within each

network queue as Liu et al. note [36]. Therefore, it is possible to dynamically change the

composition of traffic flows to allow the simulation to keep up with real time. Experiment

results in the paper show that the model provides a good prediction of the network

behavior. Parallel processing methods can also be used to improve performance when

simulating large-scale networks [37]. Liu et al. demonstrate the benefit of the parallel

23

hybrid model through a series of simulation experiments of a large-scale network,

consisting of over 170,000 hosts and 1.6 million traffic flows on a small parallel cluster.

Verdickt et al. [38] propose a framework that allows modeling of both the software and

the network components separately, using the modeling languages and tools most suited to

those system aspects. The framework can produce a single set of performance evaluations

for the entire system. The key benefit of the model is that it helps in evaluating the network

latency and its relation to the application behavior when assessing the performance of a

distributed system. The authors also offer a case study to illustrate the use of the framework

and its efficacy in predicting system performance.

Yu et al. [39] present an approximate scheme to model and analyze switch networks

with phase-type and bursty traffic, and they describe a traffic aggregation technique to deal

with such traffic, including splitting and merging. To aggregate bursty traffic, the paper

suggests a closed-form solution for two bursty traffics and a recursive algorithm derived in

terms of the buffer size and number of inputs of a switch for more bursty traffics. The

numerical and simulation results in the paper show that the proposed scheme achieves

satisfactory accuracy and computational efficiency.

Kassa et al. [40] offer a simple, fast, and detailed analytical model of the TCP, which is

the dominant transport protocol for the end-to-end control of information transfer. The

model assumes that only basic network parameters, such as the network topology, the

number of TCP connections for large file transfers, link capacity, distance between network

nodes, and router buffer sizes, are known. The paper presents performance metrics obtained

by using TCP and network sub-models and solving them, using a fixed-point algorithm.

24

Comparing against ns-2 simulations, the results show that the model is accurate, simple and

computationally efficient. Therefore, the model can rapidly analyze network topologies

with several bottlenecks and obtain detailed performance metrics.

2.2.3 Storage technology surveys

To accurately develop and implement storage simulation components, in addition to

storage and network modeling research, other storage technology areas also need to be

studied.

2.2.3.1 Buffer cache and pre-fetching research

In the operating-system kernel, buffer cache is a major component that directly affects

I/O performance. Buffer caches are commonly used to reduce the number of slow disk

accesses or network messages. An accurately-designed buffer cache is a vital component of

a file system simulation model. In order to improve the performance of I/O processing, a

buffer cache should be managed with regard to both blocks and files. However, it is

difficult to keep track of both blocks and files together since they are on different levels of

the file system pipeline. Katakami et al. [41] propose an I/O buffer cache mechanism based

on the frequency of file usage. This mechanism calculates the importance of each file. Then

blocks of important files are stored in a protected space and given priority for caching. This

mechanism provides an interesting replacement policy for the buffer cache. Other

researchers also pay much attention to the hierarchy and replacement policy of the buffer

cache [42, 43]. They focus on improving overall buffer cache efficiency and investigating

multiple approaches to effectively managing multi-level buffer caches.

25

Spatial locality of cached blocks in the buffer cache is also looked at by researchers [44,

45]. The authors argue that spatial locality of cached blocks is largely ignored, and only

temporal locality is considered in current system buffer cache management. Thus, disk

performance for workloads without dominant sequential accesses can be seriously

degraded. A method that exploits both temporal and spatial localities in the buffer cache

management is proposed. The placement scheme significantly increases the effectiveness

of I/O scheduling and pre-fetching for disk performance improvements. In addition to

localities, the effect of pre-fetching is also studied. Despite the well-known interactions

between pre-fetching and caching, almost all buffer cache replacement algorithms have

been proposed and studied comparatively, without taking into account file system pre-

fetching, which exists in all modern operating systems. Several works [46-48] show that

pre-fetching can have a significant impact on the relative performance. These results

demonstrate the importance of buffer caching research taking file system pre-fetching into

consideration and comparing the actual disk I/Os and the execution time under different

replacement algorithms. Pre-fetch throttling and data pinning schemes are also proposed to

improve performance of I/O pre-fetching. The impact of compiler-directed I/O pre-fetching

is also studied. A profiler and compiler-assisted adaptive I/O pre-fetching scheme targeting

shared storage caches is proposed and experimentally evaluated. A slightly different

approach is proposed by Subha et al. [49]. The buffer cache is divided into two units, the

main cache unit and the pre-fetch unit. The sizes of both of the units are fixed. The total

sizes of both of the units are a constant. Blocks are fetched in a one-block look-ahead pre-

fetch principle. The block placement and replacement policies are defined. The

26

replacement strategy depends on the most recently-accessed block and the defined miss

counts of the blocks.

2.2.3.2 File system journal research

Journaling systems are used as temporary spaces to store changes to the file systems

before they are written to disks. The journal mechanism reduces the amount of lost

information and protects the integrity of the file systems in case of failure. It is a major

component of a file system and can directly affect I/O performance. There are many

journaling systems available. They have different sets of features and advantages.

Prabhakaran et al. [50] analyze major journaling systems and their evolution, including

Linux ext3, ReiserFS, Journal File System (JFS), and Windows New Technology File

System (NTFS); in the process, they uncover many strengths and weaknesses of these

journaling file systems. This paper illustrates in great detail the characteristics of the Linux

ext3 journaling system.

Since different journaling file systems react differently when disasters happen, it is

important to determine the reliabilities of them under critical conditions. Vijayan et al.

propose a novel method to measure the robustness of journaling file systems under disk

write failures [51]. The authors build models of how journaling file systems order disk

writes under different journaling modes and use these models to inject write failures during

file system updates. They apply their technique to the three important Linux journaling file

systems: ext3, ReiserFS, and IBM JFS.

27

2.2.3.3 I/O workload research

In data intensive operations, workload characteristics are very important. Ensuring

performance isolation and differentiating among workloads that share a storage

infrastructure are basic requirements in consolidated data centers. Existing management

tools rely on resource provisioning to meet performance goals; they require detailed

knowledge of the system characteristics and the workloads. Provisioning is inherently slow

to react to system and workload dynamics and, in the general case, it is not practical to

provision for the worst case.

Ghemawat, Gobioff, and Leung [52] present an approach to designing a file system by

optimizing the file system toward a specific application workload and the system‘s

technological environment. The Google file system has constant monitoring, error

detection, fault tolerance, and automatic recovery. The file system was also designed to

support files with very large size and to optimize appending file operations. It is widely

deployed within Google as the storage platform for the generation and processing of data.

With a slightly different approach that is applicable to a wide range of storage systems

and makes no assumptions about workload characteristics, Karlsson, Karamanolis, and Zhu

[53] propose a software-only solution that ensures predictable performance for storage

access. The authors use an online feedback loop with an adaptive controller that throttles

storage access requests to ensure that the available system throughput is shared among

workloads, according to their performance goals and their relative importance.

Iliya K. Georgiev and Ivo I. Georgiev [54] offer a method to reduce storage latency by

taking advantage of the relative interconnectivity between data objects. The authors follow

28

the locality-of-reference principle to partition interrelated data objects on close disk areas

or network storage nodes. There are two primary parts of the study: a clustering algorithm

that groups related objects together and a read-ahead group-caching algorithm, which will

use the result of the first algorithm. Data objects that are associated together are clustered in

the same group and can be read from disk and cached together. The proposed clustering

and cache algorithms do not use floating point, allowing direct and fast implementation on

a variety of disk controllers.

2.2.3.4 I/O scheduling research

Despite the many technological improvements that have been made, disk speed still lags

behind when compared to processor and memory speed. Disk-scheduling algorithms have,

for the most part, been experimental in the past. To help lessen this performance

bottleneck, Andrews, Bender, and Zhang [55] propose a disk-scheduling algorithm that

appears to give higher throughput than previously existing head-scheduling algorithms. The

authors state that their goal is to schedule the disk head, so that it services all the requests in

the shortest time possible using a 3/2-approximation algorithm. They consider a special

case in which the disk-scheduling problem is related to the special case of the asymmetric

traveling-salesman problem. In this particular case, optimal tour could be found in

polynomial time and could be approximate for the disk-scheduling problem.

Periodic real-time I/O scheduling for continuous data streams and the effect of

scheduling on communication performance are investigated by Altilar and Paker [56] who

examine periodic real-time scheduling, assuming that the application is communication

constrained where input and output data sizes are not equal.

29

Since I/O scheduling helps improve performance between data resources operating at

different speeds, it stands to reason that I/O scheduling research can provide good solutions

for tape systems. Much work has been done in this area [57-59]. New scheduling

algorithms and schemes for the replacement and replication of hot data are developed and

provide improvements over a wide variety of workload characteristics. The issues of

scheduling across multiple tapes or disks, instead of only one or two media, are also

investigated. An efficient algorithm for single-drive libraries that produce optimal

schedules is developed. The scheduling problem for multiple drives is shown to be NP-

complete, and an efficient and effective heuristic algorithm is used. The performance

characteristic of tertiary storage is also considered with respect to efficient retrieval of data

stored in tertiary storage devices with multiple platters. I/O scheduling algorithms use

different heuristic methods for scheduling to reduce the latency involved in retrieving data.

2.2.3.5 Tertiary storage and hierarchy storage research

Tertiary storage has become more and more popular despite the fact that tape library is a

very old technology. The rapid development of online applications results in increasing on-

line access to massive amounts of data. Advanced database applications are also reaching

the limit for a disk storage system in terms of both cost and scalability. Large-scale storage

systems, using only magnetic disks with their high cost and low storage density, can be

impractical or too costly for many applications. Cheaper and denser tertiary storage

systems are being integrated into the storage hierarchies of applications. Applications

utilizing tertiary storage include multimedia databases, data warehouses, scientific

databases, and digital libraries. Much research has been done by the database research

30

community to optimize the performance of tertiary storage. A major part of a tertiary

storage system is tape libraries that have unusual performance characteristics. Although the

system could archive at a very high transfer rate, the access latencies can reach several

minutes. The trend of tertiary storage is presented in detail one report [60, 61] which

summarizes the current state of the art in tertiary storage systems. Their analysis of product

data indicates that in contrast to disk technology, tertiary storage products have significant

variability in terms of data transfer rates as well as other performance figures. With the new

technology, tape storage is two orders of magnitude more efficient than disk in terms of

cost per terabyte and physical volume per terabyte. This certainly is very attractive for the

development of databases with very large volumes of data. A system that seamlessly

combines both disk storage and tape storage would be of great value. However, the biggest

problem with tape storage is that the random access latency of tape is three to four orders of

magnitude slower than disk. Thus, this problem of access latency has to be resolved before

a system of online tape bulk storage could be utilized. Many studies have been done to find

a solution to this problem [62-64]. Detailed measurement of tertiary storage systems, which

included several tape drives and robotic storage libraries, such as Digital Linear Tape

(DLT) 4000, DLT 7000, Ampex 310, IBM 3590, 4mm Digital Audio Tape (DAT), and the

Sony Digital Tape Format (DTF) drive are presented. This mixture of equipment includes

high and low performance drives, serpentine and helical scan drives, and cartridge and

cassette tapes, and gives a big picture of different aspects of tertiary storage systems,

providing a better understanding of issues related to utilizing tertiary storage. Algorithms to

reduce the latency are presented. The results show that the algorithms could improve the

31

latency of random access to tape significantly. A disk-tape join algorithm is also discussed.

The algorithm has three phases: hashing, merging, and probing. Each phase is designed, so

that join results can be produced. The authors show that the algorithm is very efficient.

A different approach to the problem that uses optimal data placement strategies is also

examined [65, 66]. Traditionally, this approach is used for disks and disk arrays. Tertiary

libraries have been neglected, even though tertiary storage remains three orders of

magnitude slower than secondary storage. This issue is addressed by deriving an optimal

placement algorithm for disk libraries and tape libraries. The authors also look at different

scheduling algorithms, different configurations of disk libraries, and different tape library

technologies, and show how these impact the placement strategy. The special attributes of

stored data that have an impact on the optimal placement are also discussed.

A high-level Application Programming Interface (API) for the user is also looked at.

No et al. [67] propose a system that combines the advantages of both file I/O and databases.

By using various I/O optimizations available in Message Passing Interface (MPI) I/O, such

as collective I/O and noncontiguous requests that are transparent, the user can write and

read their data with the performance of parallel file I/O without having to go into the details

of actually optimizing their file I/O.

The database research community is not the only one interested in optimizing tertiary

storage. With the improvement in communication technology, multimedia information

systems have become an important component of many application domains from library

information systems to entertainment technology. The storage system must support several

data types, such as text, image, video, and graphics defined as multimedia objects, which

32

need to be synchronized and to meet some timing requirements. Berson et al. [68] propose

an approach to eliminate the problem of frequent disruptions in multimedia data accessing

by de-clustering multimedia objects across multiple disk drives. This method uses the

aggregate bandwidth of several disks to support the continuous data retrieval. The issue

where data is being continuously uploaded from tertiary storage for display purposes is also

being investigated. Triantafillou and Papadakis [69] present a method which can fully

utilize and reserve the tape drive bandwidth, therefore allowing the secondary storage to

serve more requests without increasing the memory space on the host.

Unlike other researchers who utilize software solutions entirely for their hierarchy

storage system, Wilkes et al. [70] propose a two-level storage hierarchy implemented

inside a single disk-array controller. The technology is used to automatically and

transparently manage migration of data blocks between the two levels of the storage

hierarchy when access patterns change. The system is very easy to use, has full

redundancy, and is suitable for many different workloads. The system could also adapt to

dynamic workload changes and perform very well while being able to keep the amount of

front-end random access memory (RAM) cache and number of spindles relatively small.

Data latency is not the only problem with tertiary storage systems. Cache replacement

and cache filtering could potentially cause some problems as well. Investigated in two

papers [71, 72], the authors introduce a special cache replacement algorithm to maximize

efficiency. They define a utility function for ranking the candidate objects for eviction and

then offer an efficient algorithm for computing the replacement policy based on this

function. They have evaluated the system, using simulation with a wide range of

33

workloads. They also compare their policy with traditional replacement policies, such as

least frequently used (LFU) and least recently used (LRU), using simulations of both

synthetic and real workloads of file accesses to tertiary storage. Also working on improving

this bottleneck, Shoshani et al. [73, 74] describe an architecture designed to optimize the

use of a disk cache and thus minimize the number of files read from tape. The authors use a

specialized index to locate the relevant data on tapes and coordinate file caching over

multiple queries. They also include the results of various tests that demonstrate the benefits

and efficiency gained from using the system. The authors also note a method to identify the

bundling of files before caching. After the file bundles are identified, a scheduler is set up

to schedule bundle caching in such a way that files shared between bundles are not

removed from the cache unnecessarily.

2.2.3.6 Storage virtualization research

In an enterprise storage system, the total capacity could reach a petabyte, and the

number of disk drives and storage devices could reach tens of thousands. These huge

numbers of storage devices could serve thousands of host computers. A system of this scale

could be very difficult to design. There are so many choices to be made, and the

interactions between them are not always predictable. Storage system provisioning is

tedious and complicated to do by hand which usually leads to solutions that are grossly

over-provisioned, substantially under-performing, or, in the worst case, both. Mass storage

systems and cluster storage systems are designed with high performance RAID clusters,

robotic tape libraries, or a combination of both. It is challenging to provide a cluster storage

system, which becomes more and more popular for data-intensive applications with its

34

ability to expand, its high availability and scalability, and its strong consistency. To solve

this configuration nightmare, much work has done in this area [75-79]. The system can be

optimized at design time, using declarative specifications of application requirements and

device capabilities. Another approach is to provide storage systems that can self-organize.

Such systems utilize several techniques, including adaptive storage management methods,

elastic page allocation in multi-size paging architecture, partial analysis controls, partial

swapping, and adaptive pre-paging. Experimental systems could manage hundreds of

terabytes of virtual storage. A self-organizing storage cluster could also exploit data

location schemes to dynamically and rapidly adapt to configuration changes, improving

availability and manageability. When there is a change in server resources caused by failure

or recovery, the system will dynamically add or remove those servers. The system is

adaptive, self-tuning, and able to provide nearly uniform performance across all servers.

The idea of creating virtual storage systems by combining several commodity disk

drives or unused storage pools is also being investigated by several researchers [80-86].

They believe that the storage densities of this type of storage organization could match or

exceed tape libraries while maintaining the performance of disk arrays. The I/O

performance is achieved by using multiple techniques to aggregate desktop network

bandwidth and local I/O bandwidth, such as data striping, a combination of peer-to-peer

storage and network file system, or low-level Internet Small Computer System Interface

(iSCSI) protocol. Different approaches for the bandwidth problem, such as allocating disk

bandwidth based on lexicographic minimization [87], efficiency-aware real-time disk-

scheduling algorithm [88], or virtual storage controller [89] are also receiving attention. In

35

addition to achieving large bandwidth, sophisticated management software is also

developed to make the collection of disks appear to a client as only one storage system.

Virtual storage systems can tolerate and recover from disk, server, and network failure.

This capability proves to be very beneficial in distributed environments.

The idea of virtual storage is also being utilized in tertiary storage systems [90] and

virtual machines [91]. When used in tertiary storage systems, virtual storage allows the

system to hide the details of robotic libraries and media characteristics behind a uniform,

random access, block-oriented interface. It also allows the system to avoid media mount

operations for writes, giving write performance similar to that of secondary storage. When

used in virtual machines (VM), virtual storage provides on-demand cross-domain access to

VM state. It enables private file system channels for VM instantiation and supports user-

level and write-back disk caches. It also leverages application-specific meta-data associated

with files to expedite data transfers.

2.3 Summary

This chapter discusses related work and surveys research in the storage modeling and

simulation area. Previous work in the network modeling and simulation areas is also

examined. These areas of research help to develop the network simulation component in

the PVFS file system simulation model. In addition to storage and network modeling

topics, this part also looks at several studies in other areas of storage technologies, such as

buffer cache, journaling system, I/O scheduling, tertiary and hierarchical storage, and

storage virtualization. Work done in these areas helps accurately develop storage

components in the file system simulation model.

36

C h a p t e r 3

PERFORMANCE MEASUREMENTS AND WORKLOAD STUDY

3.1 Introduction

Before implementing the system simulation model, measurement studies need to be

done to determine the performance characteristics of the targeted systems, which are ext3

and PVFS. Ext3 is the candidate for the local file system simulation model, and PVFS is

the candidate for the parallel file system simulation model.

3.2 Local file system performance study

The objective of the performance measurement study is to analyze the behavior of the

proposed ext3 file system. By studying the ext3 file system performance, we can better

understand the level of detail needed for the simulation model.

3.2.1 Experimental setup

Performance measurement experiments are executed on production computers (Dell

PowerEdge 1850) with the hardware configurations shown in Table 1. The test computers

are set up to have a single drive with no redundant array of independent disks (RAID), two

single drives with RAID 0 configuration, or connections to a SAN, depending on the

experiment. The test computers are located in an isolated environment with dedicated

resources to minimize extra factors affecting performance study. The primary I/O testing

suite used in the following experiments is iozone [92].

37

Table 1: Test system configuration

Processors Dual Intel Xeon processors at 2.8GHz

Front side bus 533MHz

Cache 512KB L2 cache

Chipset ServerWorks GC LE

Memory 4GB DDR-2 400 SDRAM

Drive controller Embedded dual channel Ultra320 SCSI

RAID controller PERC 4/Di

Hard drives Fujitsu MAT3147NC 147GB 10,000 rpm

Seagate ST3146707LC 146GB 10,000 rpm

External array EMC Clariion CX700

HBA card Qlogic 2340

3.2.2 I/O performance study with different file sizes and block sizes

In a real-world environment, a day to day workload could consist of many different file

sizes, and the I/O operations could use many different block sizes. The purpose of this

measurement study is to determine the suitable workload configuration for the model. First,

sequential I/O read performance is examined using a set of small to large size files (from

4Kbytes to 1Gbyte). The results for the sequential I/O read measurement experiments are

presented in Figure 5. Figure 5 is a 3-dimensional graph in which the z-axis represents

throughput of the test file system. The x-axis and y-axis represent test block size and test

file size respectively. Figure 5 shows that file sizes do not affect sequential I/O read

performance.

38

Figure 5: Sequential I/O read performance

For better viewing, Figure 6 presents a closer look at a section of the experiment results.

Figure 6: Detail view - sequential I/O read

performance

64

256

1024

4096

16384
65536
262144

0

500000

1000000

1500000

2000000

4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

Fi
le

 s
iz

e
 (

K
B

)

Th
ro

u
gh

p
u

t
(K

B
/s

)

Block size (KB)

1024

4096

16384

0

500000

1000000

1500000

2000000

4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

Fi
le

 s
iz

e
(K

B
)

Th
ro

u
gh

p
u

t
(K

B
/s

)

Block size (KB)

39

Two observations can be made from the measurements in Figure 5 and Figure 6. First,

because reading is sequential and kernel cache effects are minimized, the I/O read

performance is not affected by file size. There is an exception to this, and it will be

presented at the end of this section. Secondly, the I/O read performance starts to drop after

operation block size reaches around 64Kbytes. More details of this drop in performance are

described in section 3.2.3.

Similar performance behavior can also be observed for I/O write operations. The write

performance, using a similar set of files and block sizes, varies the same way as with read

performance. The results for the sequential I/O write measurement experiments are

presented in Figure 7. Figure 7 is also a 3-dimentional graph similar to Figure 6.

Figure 7: Sequential I/O write performance

64

256

1024

4096

16384

65536

262144

0

50000

100000

150000

200000

250000

300000

4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

Fi
le

 s
iz

e
 (

K
B

)

Th
ro

u
gh

p
u

t
(K

B
/s

)

Block size (KB)

40

For better viewing, a section of the experiment results is displayed in detail in Figure 8.

Figure 8: Detail view- sequential I/O write

performance

Figure 7 and Figure 8 show that file sizes also do not affect I/O write performance.

Overall, in both read and write measurements, results show that file size does not affect I/O

performance. For the sequential workloads used for these measurement experiments, it is

the block size of the I/O operation that affects the I/O performance. This statement holds

true until the file size reaches the physical memory capacity of the machine. If the file size

reaches the memory capacity, memory reclaiming is triggered and swapping also occurs.

The memory reclaiming and swapping process causes disk thrashing, leading to a very

large I/O performance degradation [93].

1024

4096

16384

0

50000

100000

150000

200000

250000

4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

Fi
le

 s
iz

e
(K

B
)

T
h

ro
u

gh
p

u
t

(K
B

/s
)

Block size (KB)

41

Figure 9 shows sequential I/O read performance as the file size is allowed to increase to

the physical memory capacity of the machine. In these experiments, the test machine has

4Gbytes of physical memory.

Figure 9: Physical memory capacity and I/O

performance

Sequential write performance shares the same characteristic. However, under Linux, a

threshold (dirty ratio) is usually in place to synchronously flush data to disk. This threshold

is configurable via the Linux kernel parameters. If this threshold is set equal to total

physical memory capacity of the machine, sequential write will behave the same as

sequential read presented above. In Figure 10 the dirty threshold is set to the default value

put forth by Red Hat (~512MB for the test machine). This shows that the dirty ratio

threshold affects file write performance.

0

500000

1000000

1500000

2000000

64

512

4096

File size (KB)

Th
ro

u
gh

p
u

t
(K

B
/s

)

B
lo

ck
 s

iz
e

(K
B

)

42

Figure 10: Dirty ratio parameter and I/O

performance

For random I/O, because of the nature of the I/O pattern, a set of random I/O requests

are used to study performance instead of trying to read in a whole file using random

requests. Therefore, in the case of random I/O, file size is not a concern.

Generally, an application is designed to avoid processing, all at once, files that are

bigger than its physical memory capacity without breaking them into smaller chunks, since

doing so will degrade the performance of the system. From that assumption, 512Mbytes is

selected to be the standard file size for all models in the performance study. This file size is

large enough to study the performance of the model, yet small enough for the simulation to

run within a reasonable time.

32768 65536 131072 262144 524288 1048576

0

50000

100000

150000

200000

250000

64

256

1024

4096

16384

File size (KB)

Th
ro

u
gh

p
u

t
(K

B
/s

)
B

lo
ck

 s
iz

e
(K

B
)

43

3.2.3 I/O performance behavior of ext3 file system

This section describes the measured performance behavior of an ext3 file system. Figure

11 shows the I/O read performance of the ext3 file system that is measured with different

hardware sub-systems. The measurements in Figure 11 illustrate that the ext3 file system

hides the performance characteristics of the hardware storage sub-systems very well. The

performance curve shapes are very similar in spite of hardware sub-system differences.

Figure 11 also shows that when the block size reaches 64Kbytes, the performance of the

file system starts to drop. Figure 12 shows that the I/O write performance exhibits a similar

behavior, but not as dramatic.

Figure 11: I/O read performance with different

hardware

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

4 16 64 256 1024 4096

Th
ro

u
gh

p
u

t
(K

B
/s

)

Block size (KB)

Fujisu MAT3147NC Seagate ST3146707LC

EMC Clariion CX700 ATA PERC 4e/Si Raid 0

44

To find the root cause behind this drop, kernel tracing was performed, and operation

response times were carefully profiled along the I/O path. The two kernel functions,

copy_to_user and copy_from_user, exhibit interesting response times. Figure 13 shows the

average response times of copy_to_user and copy_from_user functions as I/O block size

increases. This is also the reason why the drop in I/O write performance is not as dramatic

as the performance drop in the I/O read case. The response time of the copy_to_user

function, when compared to the overall I/O read time, is much more significant than the

same response time of the copy_from_user function when compared to the overall I/O

write time.

Figure 12: I/O write performance with different

hardware

0

50000

100000

150000

200000

250000

4 8 16 32 64 128 256 512 1024 2048

Th
ro

u
gh

p
u

t
(K

B
/s

)

Block size (KB)

Fujitsu MAT3147NC Seagate ST3146707LC

EMC Clarrion CX700 ATA PERC 4e/Si Raid 0

45

Examination of the kernel code for the two functions shows no evidence from the

functions‘ codes to support this performance behavior [94]. On the other hand, the shape of

the performance curve suggests that this performance behavior may be caused by

constraints in system resources. To investigate system resource utilization, low-level

profiling of the test system was performed using oProfile [95] while running the I/O

experiments.

Figure 13: Average response time of data

transferring between kernel and user space

The results of L2 cache behavior of the copy_to_user and copy_from_user functions

obtained during I/O benchmark testing are shown in Figure 14. Those measurements show

that the L2 cache misses increase after the block size reaches 64Kbytes and become very

noticeable after the block size of 128Kbytes. The L2 cache misses continue to increase

even after the block size goes beyond 1024Kbytes.

0

1

2

3

4

5

6

7

8

8 16 32 64 128 256 512 1024 2048

R
es

p
o

n
se

 t
im

e
(m

s)

I/O Block size (KB)

kernel/user transfer performance

46

Figure 14: L2 cache misses during I/O with

different block sizes

When the block size is increased beyond 1024Kbytes, the usefulness of the L2 cache in

copying data from kernel space to user space is completely negated, and the response time

levels off, as shown in Figure 13.

Table 2: CPU L2 cache sizes vs. performance

drop off points

CPU L2 cache size

(KB)

I/O Block size

where performance starts to drop

(KB)

512 64

1024 128

2048 256

4096 512

0

500

1000

1500

2000

2500

3000

4 8 16 32 64 128 256 512 1024 2048 4096

N
u

m
b

er
 o

f
m

is
se

s

I/O read block size (KB)

L2 cache misses

47

The I/O block sizes where L2 cache misses become significant are important for the

model. Additional measurements using different central processing units (CPUs) of the

same model (Intel Xeon 2.8 GHz) with different L2 cache size configurations were

performed. The measurements in Table 2 show that when the I/O block size reaches about

1/8 of the total L2 cache size, copy_to_user and copy_from_user performance starts to

drop.

3.3 PVFS file system performance study

The objective of the performance measurement study is to analyze the behavior of the

proposed PVFS file system. By studying the PVFS file system performance; we can better

understand the level of detail needed for the simulation model.

3.3.1 Experimental setup

Performance measurement experiments are executed on the PVFS cluster with the I/O

servers (Dell PowerEdge 1850) configured as shown in Table 3. The I/O servers are set up

to have 5 drives with RAID 5 configuration. The PVFS cluster is located in an isolated

environment with dedicated resources to minimize extra factors that affect performance

study. The primary I/O testing suite used in the following experiments is iozone [92].

Table 3: PVFS test cluster machine configuration

Processors Dual Intel Xeon processors at 2.8GHz

Front side bus 533MHz

Cache 512KB L2 cache

Chipset ServerWorks GC LE

Memory 4GB DDR-2 400 SDRAM

Drive controller Embedded dual channel Ultra320 SCSI

Hard drives Fujitsu MAT3147NC 147GB 10,000 rpm

Seagate ST3146707LC 146GB 10,000 rpm

48

The PVFS cluster is built using the configuration presented in Figure 15. The cluster has

a total of 4 I/O servers with the total capacity of approximately 2 Tbytes. The PVFS cluster

can provide a decent space for testing and enough I/O servers to run performance

evaluation.

Figure 15: PVFS test cluster architecture

3.3.2 I/O workload study

Designed to achieve massive performance by parallelizing I/O accesses, PVFS, like any

other parallel file system, works best with large files, using sequential access with large

49

block size. Knowing this, applications running on PVFS file systems are configured to take

advantage of this behavior as much as possible. Using a very large I/O buffer, an

application sequentially accesses the file system, using large block sizes of up to 100

Mbytes. Observing I/O workload on multiple PVFS file systems in a Shared Production

environment with approximately 276 Tbytes of total capacity, the breakdown of I/O

workload percentage is shown in Table 4.

Table 4: PVFS I/O workload breakdown

Pure random I/O 0.00028%

Mix random I/O and sequential I/O 2.047%

Large block size sequential I/O 97.952%

The pure random I/O accesses are very small in comparison to the sequential accesses.

In order to study the I/O pattern of the sequential accesses, I/O traces are captured on the

PVFS file system. The captured I/O pattern is presented in Figure 16.

50

Figure 16: PVFS captured I/O traces

The I/O traces are a combination of multiple sequential I/O accesses, starting at different

sections of the data. Due to the large block size, the slopes of the access pattern charts are

very steep.

From the real-world workload breakdown, it is clear that pure random I/O occupies a

very small amount of workload on a parallel file system. Of course, I/O access pattern on a

file system is greatly dependent on the user of the file system. However, PVFS obviously

was not designed for a small files, random I/O workload. If one should choose to use PVFS

for such a workload, the performance of the parallel file system will be greatly degraded.

For that reason, only sequential I/O workload is studied and evaluated in the simulation

model.

-

500,000.00

1,000,000.00

1,500,000.00

2,000,000.00

2,500,000.00

3,000,000.00

3,500,000.00

4,000,000.00

4,500,000.00

5,000,000.00

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

D
at

a
O

ff
se

t
(K

B
)

I/O request number

PVFS write traces

51

3.3.3 I/O performance study with different file sizes and block sizes

Similar to the local disk experiment, this measurement study is to observe the I/O

behavior of the PVFS file system when file size and block size are changing. First,

sequential I/O read performance is examined, using a set of small to large size files (from

4Kbytes to 1Gbytes).

The results for the sequential I/O read measurement experiments are presented in Figure

17. These measurements show that, similar to the local file system, the I/O read

performance is not affected by file size.

Figure 17: PVFS sequential I/O read performance

64

256

1024

4096

16384
65536

262144

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

Fi
le

 s
iz

e
(K

B
)

Th
ro

u
gh

p
u

t
(K

B
/s

)

Block size (KB)

52

The write performance uses a similar set of files, and the block sizes vary the same way

as with read performance. However, I/O write performance shows slight differences. The

I/O write throughputs at small file sizes are less than I/O throughput at larger file sizes.

This observation shows that the I/O performances are not at peak level until file size is

equal or greater than 2Mbytes. The nature of PVFS is what causes this performance

behavior. PVFS is a parallel file system. Files stored in a PVFS file system are divided into

multiple stripes and are distributed across multiple I/O servers. By striping file contents

across multiple servers, a client machine can access several pieces of file data at the same

time. For a small file, this mechanism creates some overhead which causes the I/O

performance to become lower until the file size is large enough to receive full advantage

from the workload parallelization as shown in Figure 18. The results for the sequential I/O

write measurement experiments are presented in Figure 18.

53

Figure 18: PVFS sequential I/O write

performance

According to the read and write measurement results, after file sizes become large

enough, PVFS I/O performance does not change when the file size changes to a greater

amount. Reaching this stable level, I/O performance is now affected by the block size of

the I/O operations instead. Of course, similar to local file system behavior, the I/O

performance drops sharply when the file size reaches the physical memory capacity of the

machine. This behavior is caused by memory reclaiming and swapping, which in turn

causes disk thrashing, leading to a very large I/O performance degradation.

3.4 Summary

This chapter presents background performance studies of a local file system – the Linux

ext3 file system. Performance characteristics of the ext3 file system are presented. The

6
4 1
2

8 2
5

6 5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

0

20000

40000

60000

80000

4

32

256

2048

16384

File size (KB)

Th
ro

u
gh

p
u

t
(K

B
/s

)

Block size (KB)

54

relations between file sizes, I/O block sizes, and file system performance are investigated.

The performance behaviors of the ext3 file system are also carefully examined. The

relation between CPU L2 cache and the I/O read and write behavior is also pointed out.

The real-world I/O access pattern and production workload on PVFS file systems are also

studied in this part. The performance measurements of the PVFS file system are also

presented.

55

C h a p t e r 4

DESIGN OF A SIMULATION MODEL FOR LOCAL FILE SYSTEM

4.1 Introduction

The simulation model for the local file system is the most basic foundation for file

system modeling. It mimics the behavior of a local file system over a block device. It

interfaces with higher-level software, such as applications or parallel file system servers,

and provides the response time associated with each I/O request. This chapter discusses the

design of a simulation model for a local file system. The file system model is expected to

be able to provide end-to-end file system performance against a pre-defined workload.

System designers could use the model to evaluate file system performance in different

scenarios and to perform bottle-neck analysis. It could also be used for ‗what-if‘ type of

provisioning analysis. The implementation of the simulation model is presented in a top

down fashion, from application level down to the hard disk level, and each level is

described using Colored Petri Nets.

4.2 Assumptions and model limitations

A complex scientific or business application may have both I/O reads and I/O writes at

the same time. However, a typical I/O pattern often seen is a large read operation followed

by computing which is then followed by a large I/O write. Many times, the phase of

execution where the application is reading is separated from the phase where the

application is writing. With that in mind, the simulation model is divided into an I/O read

56

model and an I/O write model. These are simulated separately to simplify the multiple

conditions when simulating the file system.

The ext3 journaling mechanism has three modes of operation: write back, ordered and

journal modes. Write back mode and ordered mode are quite similar except that ordered

mode guarantees that data is flushed to disk before the metadata is written to disk. Journal

mode, however, is very different as it writes both data and metadata into the journal. The

default mode for ext3 under Linux is ordered mode as it has good protection and

performance. The model is designed to work with all three modes. However, since write

back mode and ordered mode are similar, only the default —ordered mode— and full data

journal mode are examined in detail.

Although no data flushing is needed at the end of the benchmark before the data file is

closed, for stability and validity of the performance result, an fsync() command is enforced

to flush all dirty data to disk at the end of the benchmark and simulation. The performance

study of the ext3 file system, which is discussed in detail in Chapter 3, shows that the

Linux file system does a very good job at hiding the performance characteristics of the

lower level hardware sub-system. As a result of this, simple queuing models are used for

I/O scheduler and disk sub-system model.

4.3 File read model implementation

From the application standpoint, reading a file basically divides the file into smaller

manageable blocks and uses the fread function to read blocks into memory.

while (!feof(file_handle)) {
 bytes_read = fread(buffer, block_size, number_of_block, file_handle);

}

57

The model for this operation is simple. A loop breaks the needed file into multiple

blocks of read requests and passes the list to the fread simulation module. The result of this

operation is an array of data passed back from fread after reading it from the disk. The Petri

Net for this operation is presented in Figure 19.

Figure 19: High level application read model

The implementation of the fread function in standard C library could be described as

dividing the block of read requests into a list of single read requests and passing this list to

the read system call to carry out the actual read from the disk. The result of fread is an array

blocksize

blocksize

bsize

bsize

bsize

blocksize blocksize

(q, blocksize, bsize, compute)

[]^^[q]

i

1`1

trace

tracestrace::traces

q

q

fread function

INT

INT

INT

blocksize
input

INT

1

INT

POOL

testload

TRACES

REQUESTS

REQUESTS

TRACE

fread function

1 1`1

1

58

of data gather from the read system call, and this array is returned back to the application.

The Petri Net implementation of the fread function is presented in Figure 20.

5
9

blocksize

bsize

blocksize

ps

l

p

ps::p

1`[]

ps

1`1

psps Return
to app

@+returndelay[length ps = blocksize]

Read
loop

@+readloopdelay

Read system call

Read system call

blocksize
output

Out
INT

bsize
output

Out
INT

bsize
input

In
INT

blocksize
input

In
INT

fread input

In
POOL

fread result

Out
REQUESTS

Next

1

INT

Result

[]

REQUESTS

Read

REQUESTS

Out
In

In

InOut

Out

Read system call

1 1`1

1

1`[]@0

Figure 20: The fread function model

6
0

bsize

bsize

1`1

(i, j, k)
i

l

if (j = k) then 1`1 else empty

qs

qs^^[i]

i

i if (j = k) then 1`i else empty

(i, j, k)

i

(i, j, k)

j

(i, j, k)

if (j < k) then 1`(i, j+1, k) else empty

(i, j, k)

(i, i, i+ppdegreerand)

i

q i::q

New Cache

Copy

buffer

@+List.nth(cpCost, bsize)

Return

result

@+endloopdelay
Transfer

Update

cache
Disk

DiskApply

Prefetch

@+prefetchdelayrandRequest

[l=1]

bsize

output
Out

INT

bsize

input
In

INT

Next

1

INT

Result

buffer

REQUEST

Temp

INTERNAL

Disk

output

INTERNAL

Do

Prefetch

INTERNAL

Cache

update

REQUEST

Cache

hit

REQUEST

Cache

miss

REQUEST

Wait

REQUEST

Read

In
REQUESTS

Result

Out
REQUESTS

Out

In

InOut

Disk

New Cache

1 1`1

1

1`[]@0

Figure 21: The generic_file_read model

61

In kernel space, the read system call is mapped to the function generic_file_read. The

Petri Net implementation of the generic_file_read function is presented in Figure 21.

The Petri Net shown in Figure 21 is designed to have separate components that can be

easily changed or improved in future work, including the cache component and the disk

component. The functionality of this net follows the flow of the generic_file_read function

closely. It accepts I/O read requests as input, and then compares against the page cache to

see if the page was previously retrieved. If the page exists in cache, it is returned to the

application immediately. The time to do this page copy, including the L2 cache effect

shown in the top right section of Figure 21, is implemented, using a mathematical formula

presented in Section 4.5.

If a page does not exist in cache, it is read into page cache, using a pre-fetch mechanism.

The kernel attempts to pre-fetch a pre-defined value number of pages into cache. This pre-

defined value is a kernel parameter and can be changed using the /proc file system. If the

read pattern is random, the pre-fetch mechanism will reduce the number of read-ahead

pages to a minimum number. This number is also a kernel parameter and can be changed

using the /proc file system.

6
2

bc

i

i

bc

bc

ii

i

bc

bc

bc

j

i

i

ubc

ubc

(c1, c2, c3)

(c1, c2, c3)::bc

(c1, c2, c3)

mbc

ubc

ubc bc

i

bc

bc

bc

ubc

i

bc

if cachemem bc i then 1`i else empty

bc

i

input (ubc);
output (c1, c2, c3);
action migrate ubc;

[c2 > 0]
input (ubc);
output (mbc);

action detach ubc;

input (i,bc);
output (ubc);
action updatecache bc i;

input(i,bc);
output (ubc);
action updatecache bc i;

@+cachedelay

Check

@+cachedelay

REQUESTREQUEST

Cache
Update

In
REQUEST

Cache
Hit

Out
REQUEST

BUFFERCACHELRU BUFFERCACHE

BUFFERCACHEBUFFERCACHE

Cache
Miss

Out
REQUEST

Inactive

Hit

REQUEST

Inactive

1`[]

BUFFERCACHE

Active

1`[]

BUFFERCACHE

Wait

In
REQUEST

Active
Miss

REQUEST

Active
Hit

REQUEST

In Out

Out

In

if cachemem bc i then empty else 1`i

if cachemem bc i then 1`i else empty

if cachemem bc i then empty else 1`i

if mem bc (j,0,0) then bc else (j,0,0)::bc

1 1`[]@01 1`[]@0

Figure 22: Buffer cache component model

63

The Petri Net model of the Linux buffer cache component is presented in Figure 22. It

contains two queues of memory pages: an active queue and an inactive queue. Each entry

of these queues also has two status flags. When a page is introduced into the buffer cache,

it is added into the inactive queue with both flags set to 0. When the page is accessed the

first time, one flag is set to 1, but the page still does not change queue. If the page is

accessed a second time, the second flag is set to 1, and the page is moved to the active

queue. If enough time has passed from the last time the page was accessed, it is moved

back to the inactive queue. When the system runs out of memory, the memory reclaiming

process reclaims pages in the inactive queue first. The model has two outputs ―cache hit‖

and ―cache miss‖. The I/O scheduler and the disk component are implemented using a

simple queuing model and are shown in Figure 23.

Figure 23: Disk component model

4.4 File write model implementation

From the application perspective, the file write model and the file read model are very

similar. They both partition a file into multiple smaller blocks and pass them to the fread

function or the fwrite function. The difference between file read and file write is what is

being transferred.

(i, j, k)

t t

(i, j, k)(i, j, k, t)(i, j, k, t) Return
request

Get
request

Idle

1`255

REQUEST

I/O

DISK

Disk
output

Out
INTERNAL

Do
prefetch

In
INTERNAL

In Out

1 1`255@0

6
4

[]

[]

bbx

1`1

bbx

bbzbbz^^[pg]

pg

blocksize

bsize bsize

bsize

blocksize blocksize

cont

cont

continue

1`1

bz

pg

bz^^[pg]

bx

jsize

jsize

cz

cz

1`1

n

n

n+1
n 1`1

rc

rc

[]^^[wr]

(wr, blocksize, bsize, compute)

trace

tracestrace::traces

[length bbx = 1024]

@+reentry

fsync

[length bx = jsize]

input (cz);
output (jsize);
action(length cz);

fsync

Journal

fsync

fsync
before close

[n=bc]

Buffer Cache

fwrite function

BH

[]

BH

dirty
ratio

BH

PAGE

bsize

out

INT

bsize

in

INT

blocksize
out

INT

blocksize
in

INT

INT

INT

INT

[]

BH

PAGE

INT

journal

commit

BH

to

journal

PAGE

done

PAGE

fsync

INT

0

INT

dirty
pages

BH

to
buffer

PAGE

write
file return

RCODE

RCODE

1

INT

POOL

TRACE

testload

TRACES

fwrite function

Buffer Cache

fsync

Journal

fsync

fsync

1 1`[]@0

1 1`[]@0

1 1`01 1`1

1

Figure 24: High level I/O write model

65

For a file read operation, the application passes a list of requests to the lower levels and

expects an array of data in return. For a write operation, the application passes an array of

data to the lower levels and waits for a set of return codes to ensure that the operation

completes successfully. After receiving return codes, the application can continue its

operations. The Petri Net implementation of the write operation is presented in Figure 24.

The implementation of the fwrite function is similar to the fread function with the

exception of having a buffer of data passed to the write function call. The Petri net

implementation for the fwrite function is presented in Figure 25.

The data, however, may or may not be written to disk right away. If the application

specifies that the write operation is synchronous, the data is written to disk before fwrite

returns to the application. If the application uses the asynchronous write operation, the

actual data is kept in memory and will be written to disk at a later time. This delayed write

operation is implemented and used in most modern UNIX systems. The operating system

(OS) relies on a sync mechanism to flush the data in memory to disk at certain conditions

such as low available memory, periodic timer trigger, dirty pages ratio kernel

configuration, and force flushing using the fsync() function.

6
6

blocksize
blocksize

1`[]

sp

1`1

1`1

wr

wr

n

wr::sp

Write system call

Write system call

Return
to app

@+returndelay
[length wr = blocksize]

Write
loop

@+readloopdelay

blocksize

out
Out

INT

blocksize

in
In

INT

bsize

out
Out

INT

bsize

in
In

INT

from
buffer

In
INT

from journal

In
INT

to journal

Out
PAGE

to
buffer

Out
PAGE

Application
buffer

buffer

BUFFER

Next

1

INT

Result

[]

REQUESTS

Write

REQUESTS

Return
code

Out
RCODE

fwrite input

In
POOL

In

Out

OutOut In In In Out In Out

Write system call

1

1 1`1

1

Figure 25: fwrite function model

6
7

bsize

bsize

pg

pg

pg

pg

cont

pg

pg

pg

pg

pg

continue

pg

1`1

pg

wrwr^ [̂pg]

pgpg

pg

pg

n

buf

pg

wr pg::wr

update
journal

done
buffer

done
journal

dirty
buffer

@+reentry

Return

code

Write
begin

@+preparewritedelay

Copy
buffer

@+List.nth(cpCost, bsize)

Begin
loop

bsize
out

Out
INT

bsize
in

In
INT

wait
journal

PAGE

from
buffer

In
INT

wait
buffer

PAGE

buffer3

PAGE

from
journal

In
INT

to
journal

Out
PAGE

to

buffer
Out

PAGE

Return

Out
REQUESTS

PAGE

Journal
write

PAGE

buffer2

PAGE

Next

1

INT

buffer1

PAGE

Write

In
REQUESTS

Application
buffer

I/O
BUFFER

I/O

In

Out
Out

Out
In In

In Out

1 1`[]@0

1 1`1

1

Figure 26: generic_file_write model

68

The Petri Net implementation of the write system call is presented in Figure 26. The

―Write begin‖ process prepares the system, through tasks such as allocation of memory and

journal tracking, for the data from the user space. Then the array of data is copied to kernel

space from user space memory and combined into full pages. The kernel call for this copy

has an interesting performance behavior that is similar to the call to copy data from kernel

space to user space and is implemented using the formula presented in Section 4.5. The

―Commit write‖ process, implemented in Petri Net by several smaller processes, such as

―update journal‖ and ―dirty buffer,‖ posts changes to the journal, marks the data dirty in the

buffer cache, and submits journal changes. ―Commit write,‖ however, does not write the

data to disk.

Figure 27: Journal component model

1`1

[]

j::c

j c

j

i

[] c

c

c

j::c

Journal
commit

[length c >= journalthreshold]

No
commit

@+cachedelay[length c < journalthreshold]

Check

Continue

Out
INT

Jcommit

Out
BH

fsync

INT

Dirty
page

BH

Journal
Data

1`[]

BH

To
Journal

In
PAGE

In

Out

Out

1

69

The Petri Net implementation of the journal is presented in Figure 27. Data is flushed to

the disk, using a different mechanism which is triggered by several different conditions. A

periodic timer triggers the data flush at a pre-determined moment. The data flush is also

triggered when the amount of dirty data in the buffer cache reaches a certain threshold.

Low memory availability also triggers the data flush. Finally, the data flush can be

manually triggered by the fsync() function. The Petri Net implementation of the data

flushing is presented in Figure 28.

Figure 28: Data flushing component model

pg

1`1

pgpg::wr wr

n

pg

End
loop

Disk

Disk
PAGE

done

Out
PAGE

Dirty
pages

In
BH

1

INT

Commit
write

PAGE

In Out

Disk

1 1`1

70

The write system call implementation also uses a disk component very similar to the

disk component in the read system call. The Petri Net implementation of the component is

shown in Figure 29.

Figure 29: Disk component model

4.5 L2 cache effect model

The measurements in Chapter 3 determine the I/O block size where the performance

starts to drop. The performance drops when the average response times of the copy_to_user

and copy_from_user functions start to increase significantly. For modeling purposes, this is

called Sthreshold. This value is the amount of L2 cache available for copying data from kernel

space to user space. When the I/O block size becomes bigger than this value, data is copied

at a much slower speed. The response time of the copy function, when using L2 cache, is

TL2. The response time of the copy function when not using L2 cache is labeled Tmemory.

The kernel page size is labeled Spage. The default value for page size is 4096 bytes. Data

movement in the kernel is done using pages. The total amount of data needed to be

transferred is labeled Stotal.

n n

pg(pg, n)(pg, n)pg

@+diskwritedelay

Idle

1`255

INT

I/O

DISKREQ

Commit
write

In
PAGE

Return
code

Out
PAGE

OutIn

1 1`255

71

There are two cases. If the I/O block size is less than Sthreshold, the average response time

is

2LTt

If the I/O block size is greater than Sthreshold, the average response time is

x
S

S

TxT
S

S

xt

page

threshold

memoryL
page

threshold
2

)(

With

page

threshold

page

total

S
S

S
S

x

x is the number of pages needed to be transferred and which does not fit within available

L2 cache. When x becomes very large, t approaches Tmemory.

memory

page

threshold

memoryL
page

threshold

xx

T

x
S

S

TxT
S

S

xt

2

lim)(lim

So the response time of the copy functions can be modeled using a step function with

t(x) as defined above

0)(

0
)(

2

xifxt

xifT
xt

L

72

Figure 30 shows a comparison of this model for the L2 cache effect as compared to the

measured data from Figure 13. Figure 30 shows that the response time for the copy_to_user

function is very close to the model calculation in most cases, and that the trend of the effect

of L2 cache on copy_to_user performance is captured well by the model.

Figure 30: L2 cache model validation

4.6 Summary

This chapter presents a set of detailed and hierarchical performance models of the Linux

ext3 file system, using Colored Petri Nets. Studies of the file system read and write

operations, including buffering and caching effect, are performed. A model for the L2

cache behavior captures the behavior of the L2 cache and is used directly in the full model.

Both file read and file write, including buffering effect and caching effect, are modeled. In

future work, this performance model will be extended to model the successor of the ext3

0

1

2

3

4

5

6

7

8

8 16 32 64 128 256 512 1024 2048

R
e

sp
o

n
se

 t
im

e
 (

m
s)

I/O Block size (KB)

copy_to_user performance

model performance

73

file system, ext4. A new detailed I/O scheduler model will be implemented. The ext3

model will be utilized as a basic foundation to model distributed file systems and parallel

file systems.

74

C h a p t e r 5

LOCAL FILE SYSTEM SIMULATION MODEL PERFORMANCE VALIDATION

5.1 Introduction

This chapter discusses the performance validation of the simulation model for a local

file system. Several performance experiments are performed, using different types of

workload. The simulation performance results are compared to the real-world performance

measurements to study the accuracy of the simulation model.

5.2 Validation setup

In order to validate the entire Petri Net file system model against real-world data, the

model hardware parameters, such as memory delay, execution speed, function overhead,

and disk speed, are measured directly from the machines where the real experiments take

place, using kernel traces. This machine is configured with a single SCSI drive Seagate

ST3146707LC. The tracing mechanism used is Ftrace. Ftrace is a powerful kernel-tracing

method and has been a part of the mainline kernel since version 2.6.27. Ftrace supports the

ability to perform function-graph tracing, which tracks both function entry and function

exit as well as providing function duration.

To reduce the simulation time for the L2 cache effect model, the values of the response

function are calculated, using the developed model for a very wide range of block sizes,

and recorded into a table. The values of the function‘s constants (Sthreshold, Spage, TL2,

Tmemory) are measured from the test system. The Petri Net model (Figure 21, top right

75

corner, and Figure 26, center) uses this table in the transition called Buffer Copy to produce

the response time for the data copy from kernel space to user space.

5.3 Synthetic sequential workload

Simulations of sequential workload are run several times, and the average results are

used to compare with iozone benchmark results running on the test system. The simulation

experiments are run, using a set of synthetic I/O requests and simulating sequential I/O.

The I/O requests are grouped into similar block size configurations of the izone benchmark.

Data- write operations in this section are asynchronous. The file system journal mode used

in this section is ordered mode. The result of the I/O read performance model is presented

in Figure 31. The errors bars are set at 10%.

Figure 31: Sequential I/O read performance

validation

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

8 16 32 64 128 256 512 1024 2048

Th
ro

u
gh

p
u

t
(K

B
/s

)

Block size (KB)

Simulation Experiment

76

Most data points fall within a 10% error range or very close to that range, which is a

highly accurate result of an end-to-end model of a system as complex as the Linux ext3 file

system. Figure 31 shows that the Petri Net model result captures the trend of file system

performance well, showing behavior very similar to the real file system.

I/O write performance experiments are performed in the exact same manner. Measured

data from the actual kernel I/O path are inserted into the Petri Net model. The write

simulations are run multiple times, and the average results are compared with the real file

system data. The result of the I/O write Petri Net model is presented in Figure 32. The error

bars are also set at 10%.

Figure 32: Sequential I/O write performance

validation

0

50000

100000

150000

200000

250000

300000

8 16 32 64 128 256 512 1024 2048

Th
ro

u
gh

p
u

t
(K

B
/s

)

Block size (KB)

simulation Experiment

77

The write result is even better than the I/O read performance result. Figure 32 shows that

all data points fall within or very close to a 10% error range. In the case of the write

performance, the Petri Net models the simulation consistently and underestimates the

performance of the actual file system throughput, again by less than 10%. Thus, the model

is a very effective tool for predicting the expected performance of the real file system with

sequential workload. It is useful to designers of new data-intensive computing systems and

for capacity planning of existing systems [96].

5.4 Synthetic random workload

Simulations with random workload are also run several times, and the average results

are used to compare with the real-world results. The simulation experiments are run, using

synthetic I/O requests and simulating random I/O with very small block size to minimize

the sequential characteristic of the workload. The same set of synthetic I/O requests is also

used to feed the iozone benchmark to produce performance results on the test system. Data-

write operations in this section are asynchronous, and the file system journal mode used in

this section is ordered mode. The I/O access pattern of the workload is presented in Figure

33. The Y axis represents the location of the I/O request. The X axis represents the order in

which the I/O requests occur. Figure 33 presents the randomness of the workload very

clearly.

78

Figure 33: Synthetic random workload pattern

The random I/O read performance results are presented in Table 5.

Table 5: Random I/O read performance

validation

Random I/O Read performance result

Block size (Kbytes) 8

Simulation throughput (KB/s) 757,791.04

Measure throughput (KB/s) 631,162.80

Error 20%

The same set of synthetic random I/O requests is also used in the I/O write experiment.

The performance results of random I/O write are presented in Table 6. The result of

random I/O write simulation is not as good as random I/O read simulation and will be

addressed in future work.

0

100000

200000

300000

400000

500000

600000

1
3

7
7

3
1

0
9

1
4

5
1

8
1

2
1

7
2

5
3

2
8

9
3

2
5

3
6

1
3

9
7

4
3

3
4

6
9

5
0

5
5

4
1

5
7

7
6

1
3

6
4

9
6

8
5

7
2

1
7

5
7

7
9

3
8

2
9

8
6

5
9

0
1

9
3

7
9

7
3

D
at

a
o

ff
se

t
(K

b
yt

es
)

I/O request number

I/O request offset pattern

79

Table 6: Random I/O write performance

validation

Random I/O Write performance result

Block size (Kbytes) 8

Simulation throughput (KB/s) 199,004.98

Measure throughput (KB/s) 147,995.60

Error 34%

5.5 Captured I/O traces from production systems

Synthetic workloads are very useful for system performance study. However, they do

not always reflect the real workload in a system under real-world conditions. A captured

I/O request trace can provide a closer presentation of real-world workloads. I/O traces are

captured from live production systems to use in this experiment. Figure 34 presents the I/O

read requests pattern of the first captured trace.

80

Figure 34: I/O read pattern of the first trace

The I/O pattern shows less randomness in I/O read activities. The large block size of the

I/O reads gives the workload a mixed characteristic of both sequential I/O and random I/O.

Figure 35 shows the I/O write request pattern of the first captured trace.

0

500000

1000000

1500000

2000000

1

3
9

7
7

1
1

5

1
5

3

1
9

1

2
2

9

2
6

7

3
0

5

3
4

3

3
8

1

4
1

9

4
5

7

4
9

5

5
3

3

5
7

1

6
0

9

6
4

7

6
8

5

7
2

3

7
6

1

7
9

9

8
3

7

8
7

5

9
1

3

9
5

1

9
8

9

D
at

a
o

ff
se

t
(K

b
yt

es
)

I/O request number

I/O request offset pattern

0

200

400

600

1

3
6

7
1

1
0

6

1
4

1

1
7

6
2

1
1

2
4

6

2
8

1

3
1

6

3
5

1

3
8

6

4
2

1

4
5

6

4
9

1

5
2

6

5
6

1

5
9

6

6
3

1

6
6

6

7
0

1

7
3

6

7
7

1

8
0

6

8
4

1

8
7

6

9
1

1

9
4

6

9
8

1B
lo

ck
 s

iz
e

(K
b

yt
es

)

I/O request number

I/O request block size

81

Figure 35: I/O write pattern of the first trace

In this trace, the I/O write requests are random at the beginning of the trace, but

eventually become sequential in the latter part of the trace. The block sizes of the I/O write,

however, change quite randomly.

Figure 36 presents the I/O read requests from the second captured trace. The I/O read

pattern in this trace has less randomness than the previous trace. This I/O pattern also

shows several mixtures of random accesses and sequential accesses.

0

50000

100000

150000

1
3

7
7

3
1

0
9

1
4

5
1

8
1

2
1

7
2

5
3

2
8

9
3

2
5

3
6

1
3

9
7

4
3

3
4

6
9

5
0

5
5

4
1

5
7

7
6

1
3

6
4

9
6

8
5

7
2

1
7

5
7

7
9

3
8

2
9

8
6

5
9

0
1

9
3

7
9

7
3

D
at

a
o

ff
se

t
(K

b
yt

es
)

I/O request number

I/O request offset pattern

0

20

40

60

80

1

3
6

7
1

1
0

6

1
4

1

1
7

6

2
1

1

2
4

6

2
8

1

3
1

6

3
5

1

3
8

6

4
2

1

4
5

6

4
9

1

5
2

6

5
6

1

5
9

6

6
3

1

6
6

6

7
0

1

7
3

6

7
7

1

8
0

6

8
4

1

8
7

6

9
1

1

9
4

6

9
8

1

B
lo

ck
 s

iz
e

(K
b

yt
es

)

I/O request number

I/O request block size

82

Figure 36: I/O read pattern of the second trace

Figure 37 shows the I/O write request from the second captured trace. The I/O write

pattern in this trace is also a combination of sequential write and random write. The block

sizes of the I/O write are also greatly varied through the duration of the trace.

0

200000

400000

600000

1
3

7
7

3
1

0
9

1
4

5
1

8
1

2
1

7
2

5
3

2
8

9
3

2
5

3
6

1
3

9
7

4
3

3
4

6
9

5
0

5
5

4
1

5
7

7
6

1
3

6
4

9
6

8
5

7
2

1
7

5
7

7
9

3
8

2
9

8
6

5
9

0
1

9
3

7
9

7
3

D
at

a
o

ff
se

t
(K

b
yt

es
)

I/O request number

I/O request offset pattern

0

200

400

600

1

3
6

7
1

1
0

6

1
4

1

1
7

6

2
1

1

2
4

6

2
8

1

3
1

6

3
5

1

3
8

6

4
2

1

4
5

6

4
9

1

5
2

6

5
6

1

5
9

6

6
3

1

6
6

6

7
0

1

7
3

6

7
7

1

8
0

6

8
4

1

8
7

6

9
1

1

9
4

6

9
8

1B
lo

ck
 s

iz
e

(K
b

yt
es

)

I/O request number

I/O request block size

83

Figure 37: I/O write pattern of the second trace

The two captured I/O read traces from Figure 34 and Figure 36 are fed into the model

and the iozone benchmark to produce the I/O read performance comparison. Data-write

operations in this section are asynchronous. The file system journal mode used in this

section is ordered mode. Similar to the previous performance studies, simulations are run

several times and produce the average result. The I/O performances are higher than

previous experiments due to caching effect. Table 7 presents the I/O read performance

results.

0

50000

100000

150000

1
3

7
7

3
1

0
9

1
4

5
1

8
1

2
1

7
2

5
3

2
8

9
3

2
5

3
6

1
3

9
7

4
3

3
4

6
9

5
0

5
5

4
1

5
7

7
6

1
3

6
4

9
6

8
5

7
2

1
7

5
7

7
9

3
8

2
9

8
6

5
9

0
1

9
3

7
9

7
3

D
at

a
o

ff
se

t
(K

b
yt

es
)

I/O request number

I/O request offset pattern

0

20

40

60

80

1

3
6

7
1

1
0

6

1
4

1

1
7

6

2
1

1

2
4

6

2
8

1

3
1

6

3
5

1

3
8

6

4
2

1

4
5

6

4
9

1

5
2

6

5
6

1

5
9

6

6
3

1

6
6

6

7
0

1

7
3

6

7
7

1

8
0

6

8
4

1

8
7

6

9
1

1

9
4

6

9
8

1

B
lo

ck
 s

iz
e

(K
b

yt
es

)

I/O request number

I/O request block size

84

Table 7: Captured traces I/O read validation

I/O Read performance result Trace 1 Trace 2

Simulation Throughput (KB/s) 873,238.11 876,237.20

Measure throughput (KB/s) 991,969.14 1,008,167.15

Error 12% 13%

The two I/O write traces from Figure 35 and Figure 37 are also fed into the model and

the iozone benchmark to produce the I/O write performance. Table 8 shows the I/O write

performance result.

Table 8: Captured traces I/O write validation

I/O Write performance result Trace 1 Trace 2

Simulation throughput (KB/s) 146,644.10 146,813.74

Measure throughput (KB/s) 207,203 180,783.2

Errors percent 29% 19%

5.6 The impact of the dirty-ratio kernel parameter

The kernel parameter—dirty ratio—which is discussed in Chapter 3 influences the I/O

write performance behavior that the model should exhibit correctly. In order to validate this

behavior, an experiment is performed, using a test file with a larger size than the default

value of the dirty-ratio threshold setting on the system (~512MB). Figure 38 shows the

comparison between the measure from the actual system and the simulation result of the

model. The error bars are set to 10%, similar to previous experiments.

85

Figure 38: The impact of dirty ratio parameter

The simulation results are close to the measurements from the actual system. The errors

fall between 10% and 20% for all data points. Similar to the sequential write experiment,

the model consistently underestimates the performance of the actual system for both file

sizes.

5.7 Full data journal mode write performance

In previous validation experiments, from section 5.3 to section 5.6, the file system is

operating under ordered journaling mode. As stated in Chapter 3, the performance

differences of write-back journaling mode and ordered journaling mode are small. Full data

journal mode, however, is a completely different case. Unlike ordered journal mode or

0

50000

100000

150000

200000

250000

300000

8 16 32 64 128 256 512 1024 2048

Th
ro

u
gh

p
u

t
(K

B
/s

)

Block size (KB)

Experiment (512M) Simulation (512M)

Experiment (768M) Simulation (768M)

86

write-back journal mode, full-data journal mode writes data as well as metadata to the

journal, which is located on the disk. As a result of this, the same data are actually written

to the disk twice. As data and metadata are being written into the journal, the amount of

free space allocated for the journal become smaller. When the journal free space reaches a

threshold, a journal checkpoint happens. The exact amount of journal free space that

triggers a checkpoint is not derived in a straightforward manner, as Prabhakaran notes [50].

Journal checkpointing occurs when the amount of journal free space is between ½ and ¼ of

the journal size. For the validation experiments in this section, we use a threshold equals to

approximately ½ of the journal size as it seems to produce best results.

Using the same process described in section 5.3, the first validation experiment uses a

synthetic sequential workload. Simulations are run several times, and the average results

are used to compare with iozone benchmark results, running on the test system. The I/O

requests are grouped into similar block size configurations of the izone benchmark. The

result of the I/O read performance model is presented in Figure 39. The errors bars are set

at 10%.

87

Figure 39: Sequential I/O write validation – full

data journal mode

The errors between simulation data and real-world measurement data are close to 10%.

The performance impact of the full-data journal mode is quite clear. The shapes of the

performance curves are different from the shapes of performance curves in section 5.3. The

effect of L2 cache still exists. However, because the response time of the file system is

slow, the effect is not noticeable any longer.

Following the same order previously presented, an experiment similar to the experiment

in section 5.4 is performed. The simulation experiments are run, using synthetic I/O

requests and simulating random I/O with very small block size to minimize the sequential

characteristic of the workload. The result of the experiment is presented in Table 9.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

8 16 32 64 128 256 512 1024 2048

Th
ro

u
gh

p
u

t
(K

B
/s

)

Block size (KB)

Experiment Simulation

88

Table 9: Random I/O write validation - full data

journal mode

Random I/O Write performance result

Block size (Kbytes) 8

Simulation throughput (KB/s) 30016.45127

Measure throughput (KB/s) 26470.4

Error 13%

The last experiment is similar to the experiment in section 5.5. The two I/O traces are

fed into the model and the iozone benchmark to produce the I/O performance comparison.

Like previous performance studies, simulations are run several times and produce the

average result. The result of the experiment is presented in Table 10.

Table 10: Captured traces I/O write validation -

full data journal mode

I/O Write performance result Trace 1 Trace 2

Simulation throughput (KB/s) 51417.04 63660.53

Measure throughput (KB/s) 46470.4 56593

Errors percent 11% 12%

5.8 Synchronous write performance

In previous validation experiments, up to this section, I/O write operations all use

asynchronous write mode. It provides the best performance for the system, and under

normal circumstances, is the default operating mode for Linux I/O write operations.

However, synchronous write mode is still being used occasionally in situations where data

89

needs to be written to disk after each write request. In this operating mode, the real system,

as well as the model, issues a data synchronization at the end of the write request. Because

data synchronization is done at the end of every write request, the file system journal mode

does not have any effect.

The same process described in section 5.3 is used. Simulations are run, using a synthetic

sequential workload several times, and the average results are used to compare with iozone

benchmark results, running on the test system. The I/O requests are grouped into similar

block-size configurations of the izone benchmark. The file system journal mode is ordered

mode. The result of the I/O write performance model is presented in Figure 40. The errors

bars are set at 10%.

90

Figure 40: Sequential I/O write validation -

synchronous write

The simulation results are very good, even though the errors are bigger than 10% at

multiple data points. The performance impact of the synchronous write mode is also very

clear. The shapes of the performance curves are different from the shapes of performance

curves in section 5.3. Because of the slow response time of the file system, the L2 cache

effect is also insignificant in this experiment.

The next experiment is similar to the experiment in section 5.4. The simulation

experiments are run, using synthetic I/O requests and simulating random I/O with very

small block size to minimize the sequential characteristic of the workload. The result of the

experiment is presented in Table 11.

0

10000

20000

30000

40000

50000

60000

70000

8 16 32 64 128 256 512 1024 2048

Th
ro

u
gh

p
u

t
(K

B
/s

)

Block size (KB)

Experiment simulation

91

Table 11: Random I/O write validation -

synchronous write

Random I/O Write performance result

Block size (Kbytes) 8

Simulation throughput (KB/s) 6689.75

Measure throughput (KB/s) 5388.8

Error 24%

The last experiment is similar to the experiment in section 5.5. The two I/O traces are

fed into the model and iozone benchmark to produce the I/O performance comparison. Like

previous performance studies, simulations are run several times and produce the average

result. The result of the experiment is presented in Table 12.

Table 12: Captured traces I/O write validation -

synchronous write

I/O Write performance result Trace 1 Trace 2

Simulation throughput (KB/s) 18,196.46 25,633.22

Measure throughput (KB/s) 14,856.8 20,628.2

Errors percent 22% 24%

5.9 Summary

This chapter presents a set of detailed performance validation experiments of the Linux

ext3 file system model. To validate the performance behavior of the file system model,

several types of workload are utilized. A synthetic sequential workload is generated to

study the simulation model behavior and to compare the model with real file system

92

performance. A random synthetic workload is also generated to study the behavior of the

simulation model when random accessing is involved. In addition to synthetic workload,

I/O traces captured from production systems are also utilized to study the performance

behavior of the simulation model in a real-world environment.

The validation experiments are run under both ordered journal mode and full data

journal mode. The results for ordered journal mode are very good. For sequential file read

and file write, the simulation performances are within 10% of the real file system in most

cases. For random file read, the simulation performances are within 20% of the real file

system. For random file write, the simulation performances differ less than 35% of the real

file system. For I/O traces captured from live systems, the simulation performances differ

less than 20% in most cases. An additional performance factor— dirty ratio threshold—is

also modeled and validated. The results for full-data journal mode are very good. In all

experiments for this mode, the errors are less than 15%. In good cases, the errors are

between 10% and 12%.

Synchronous I/O write operation is also validated. The results are very good, as the

errors are less than 10% in many cases. However, for random synthetic workload and

captured I/O traces workload, the errors are approximately 24%.

93

C h a p t e r 6

DESIGN OF A SIMULATION MODEL FOR PARALLEL FILE SYSTEM

6.1 Introduction

The first and foremost goal for a parallel file system is to achieve massive I/O

throughput. This is done by providing access to multiple I/O resources in parallel. PVFS as

well as many other parallel file systems implements this by utilizing multiple connected

local file systems as foundation. The simulation model for the parallel file system is

developed using similar concept. It utilizes multiple connected local file system simulation

models as its foundation. It interfaces with higher level applications and provides them the

response time associated with each I/O request. This chapter discusses the design of a

simulation model for PVFS – a parallel file system. The implementation of the simulation

model is presented in a top down fashion, from application level down to the local file

system level, and each level is described using Colored Petri Nets.

6.2 Assumptions and model limitations

Similar to the local file system simulation model, the parallel simulation is also divided

into an I/O read model and an I/O write model. Read operations and write operations are

simulated separately to simplify the multiple conditions when simulating the file system.

A key difference between a parallel file system and a local file system is the network

component. Parallel file systems use network to simultaneously access multiple local file

system at the same time. A parallel file system simulation model must contain a network

model. Although the network simulation model is an important component in the parallel

94

file system simulation model, it only serves as a transport from the client model to the

server model. The network model does not need to model every network operations in

detail. Instead, a resource model is used to simulate network end-to-end performance.

A PVFS cluster has a certain number of I/O servers. This number is determined at the

time the cluster is built. After the cluster goes into production, the number of I/O servers is

relatively fixed. Although, under a certain circumstance, I/O servers can be added or

removed from the cluster, but this procedure usually cause the original data on the cluster

to be destroyed. For the simulation model, the PVFS cluster has 4 I/O servers. In real-world

situation, A 4 I/O servers cluster could house approximately 4 Tbytes of data.

6.3 File read model implementation

From the application standpoint, reading a file from a parallel file system is no different

than reading a file from a local file system. The way an application reads a file is similar to

the following illustration.

From this level, the operation is divided into three main components: the client

component, the network component and the server component.

6.3.1 File read model client component

At the top level, the model is simple. A loop breaks the needed file into multiple blocks

of read requests and passes the list to the client simulation component. The client

component processes the data then passes them on to the network component. The result of

while (!feof(file_handle)) {
 bytes_read = fread(buffer, block_size, number_of_block, file_handle);

}

95

the read operation is an array of data passed back from the network model. The Petri net for

this operation is presented in Figure 41.

The implementation of the client component could be described as dividing the block of

read requests into a list of payloads and passing this list to the network component to send

over the network to the server component. The number of payloads depends on the number

of I/O servers in the file system. The Petri net implementation of the client component is

presented in Figure 42.

Payloads are created by striping request data into multiple chunks according to the file

system‘s stripe depth parameter. Stripe depth in PVFS usually is 64 Kbytes. The

distribution of data chunks in a payload is done using round-robin mechanism. The Petri

Net implementation of the payload creation process is presented in Figure 43.

9
6

Client

Client

Client

Client

Client

Client

Client

IOD

IOD

IOD

IOD

RX Switch

RX Switch

Client

TX Switch

TX Switch

BUFFER

testload8

FILE

BUFFER

testload7

FILE

BUFFER
testload6

FILE

testload5

FILE

BUFFER

BUFFER
testload4

FILE

BUFFER

testload3

FILE

BUFFERBUFFERBUFFERBUFFERBUFFERBUFFER

PACKET PACKET PACKETPACKETPACKETPACKET

BUFFER

testload2

FILE

BUFFERBUFFER

BUFFER

testload1

FILE

PACKETPACKET

PACKET PACKETPACKETPACKET

PACKETPACKETPACKET PACKET

TX Switch

Client

RX Switch

IOD

IOD

IOD

IOD

Client

Client

Client

Client

Client

Client

Client

1

1

1

1

1

1

1

1

Figure 41: High level PVFS application read model

97

Figure 42: PVFS client component model for file

read

bf

bf

bf

bf

bf

(id, bf, dst)

(4, bf4, 0)(3, bf3, 0)

(2, bf2, 0)(1, bf1, 0)

tbfbf^ t̂bf

sort INT.lt bf

[]

bf

(id, bf, dst)

bf4bf3bf2bf1

bf4

bf3

bf2

bf1

[]

bf4

[]

[]

[]

bf3bf2bf1

sort INT.lt bf4

bf4

sort INT.lt bf3

bf3

sort INT.lt bf2sort INT.lt bf1

bf2bf1

bf

1`1

next

fl bf::fl

@+processingdelay

@+wiredelay

@+wiredelay

[length bf4 > 0][length bf3 > 0][length bf2 > 0][length bf1 > 0]

[length bf1 > 0 orelse length bf2 > 0 orelse length bf3 > 0 orelse length bf4 > 0]

[(iosize <= 3* stripesize andalso length bf4 = 0)
orelse (iosize <= clientnum*stripesize andalso length bf4 = stripesize)
orelse (length bf4 > 0 andalso length bf4 mod stripesize = 0 andalso length bf4 = iosize div clientnum)]

[(iosize <= 2* stripesize andalso length bf3 = 0)
orelse (iosize <= clientnum*stripesize andalso length bf3 = stripesize)
orelse (length bf3 > 0 andalso length bf3 mod stripesize = 0 andalso length bf3 = iosize div clientnum)]

[(iosize <= stripesize andalso length bf2 = 0)
orelse (iosize <= clientnum*stripesize andalso length bf2 = stripesize)
orelse (length bf2 > 0 andalso length bf2 mod stripesize = 0 andalso length bf2 = iosize div clientnum)]

[(iosize <= stripesize andalso length bf1 = iosize)
orelse (iosize <= clientnum*stripesize andalso length bf1 = stripesize)
orelse (length bf1 > 0 andalso length bf1 mod stripesize = 0 andalso length bf1 = iosize div clientnum)]

Create payload

Create payload

[length bf = iosize]

BUFFER

BUFFER

PACKET

Out
BUFFER

[]

BUFFER

In
BUFFER

Out
PACKET

BUFFERBUFFERBUFFERBUFFER

BUFFERBUFFERBUFFERBUFFER

[]

BUFFER

IOD3

[]

BUFFER

IOD2

[]

BUFFER

IOD1

[]

BUFFER

BUFFER

1

INT

In
FILE

In

Out

In

Out

Create payload

1 1`[]@01 1`[]@01 1`[]@01 1`[]@01 1`[]@0

1 1`1

1

98

Figure 43: Payload creation component model for

PVFS file read

After the payloads are created, the client component prepares the packet before sending

them to the network component. This process represents the network stack on the client

computer. While this process could be considered a part of the network component, it uses

physical resources on the client machine and thus is more closely related to the client

BUFFER

INT

1

PAGE PAGE

IOD1

Out
BUFFER

[]

Out

IOD2

Out
BUFFER

[]

Out

PAGE

IOD3

Out
BUFFER

[]

Out Out
BUFFER

[]

Out

PAGE

pg::bf
bf

pagenum

pg pg

bf^^[pg]

bf

bf^^[pg]

bf

pg

bf^^[pg]

bf

pg

bf^^[pg]
bf

InIn

if (length bf = 0) then 1`1 else if (pagenum >= stripesize*clientnum) then 1`1 else 1`(pagenum + 1)

if ((pagenum > stripesize*3) andalso (pagenum <= stripesize*4)) then 1`pg else empty

if ((pagenum > stripesize*2) andalso (pagenum <= stripesize*3)) then 1`pg else empty

if ((pagenum > stripesize) andalso (pagenum <= stripesize*2)) then 1`pg else empty

if (pagenum <= stripesize) then 1`pg else empty

1 1`[]@0 1 1`[]@0 1 1`[]@0 1 1`[]@0

1 1`1

99

component. Taking the payloads and building network packet around this data, the client

component adds the network identifications of the I/O servers to the data. The network

component will later use this information to deliver the packet to the correct I/O server. For

an I/O read operation, the client component only sends read requests to the servers. Read

requests are very small and will not need to be broken down into smaller fragments. After

the network packets are created, they are sent to the network device buffer.

In addition to sending read requests to the I/O servers, the client component also

receives data being sent back from the I/O servers. From the network device receiving

buffer, the client component gathers the network packets. It assembles the data from these

network packets received from different I/O servers into the needed result and sends it back

to the application.

6.3.2 File read model network component

The network component provides the transportation for the data packets from the client

to the I/O servers. Since only end-to-end performance characteristics of the network

component are needed, the network component will not model switches and routers in

detail. Instead, the network component is designed using multiplexer model. The client

packets are examined and routed to the correct I/O servers.

When the result data are sending back to the clients, a similar mechanism is used. The

server component, depends on the result data, will send data packets back to the original

requested client. The network component examines the packet and route them to the correct

clients. The Petri Net models of the sending and the receiving network components for

PVFS file read operation are presented in Figure 44 and Figure 45.

1
0
0

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)
(id, bf, dst)

(id, bf, dst)(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, outdst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, outdst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, outdst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, outdst)

(id, bf, dst)(id, bf, dst)

(id, bf, dst)(id, bf, dst)(id, bf, dst)(id, bf, dst)

(id, bf, dst)(id, bf, dst)(id, bf, dst)
(id, bf, dst)

(id, bf, dst)
(id, bf, outdst)

(id, bf, dst)

(id, bf, outdst)

(id, bf, dst)

[id=4][id=3][id=2][id=1]

input ();
output (outdst);
action
(8);

[id=4][id=3][id=2][id=1]

input ();
output (outdst);
action
(7);

[id=4][id=3][id=2][id=1]

input ();
output (outdst);
action
(6);

[id=4][id=3][id=2][id=1]

input ();
output (outdst);
action
(5);

[id=4][id=3][id=2][id=1]

input ();
output (outdst);
action
(4);

[id=4][id=3][id=2][id=1]

input ();
output (outdst);
action
(3);

[id=4][id=3][id=2][id=1]

[id=4][id=3][id=2][id=1]

input ();
output (outdst);
action
(1);

PACKET

PACKET

PACKET

PACKET

PACKET

PACKET

PACKET

PACKET

PACKET

PACKET

PACKET

PACKET

PACKETPACKET

PACKET

Out
PACKET

Out
PACKET

Out
PACKET

Out
PACKET

PACKET

Out Out Out Out

(id, bf, dst)

InIn

(id, bf, dst)
(id, bf, dst)
(id, bf, dst)

InIn

(id, bf, outdst)

(id, bf, dst)
(id, bf, dst)

(id, bf, dst)

input ();
output (outdst);
action
(2);

InIn InIn InIn InIn InIn InIn

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, outdst)

Figure 44: Sending network component for PVFS file read

1
0
1

(id, bf, dst)
(id, bf, dst)

(id, bf, dst)(id, bf, dst)
(id, bf, dst)(id, bf, dst)

bfbfbfbfbfbf

(id, bf, dst)

bfbf

(id, bf, dst)

pk
pk

pkpk

pkpkpkpk

[dst=8][dst=7][dst=6][dst=5][dst=4][dst=3][dst=2][dst=1]

Out
BUFFER

Out
BUFFER

Out
BUFFER

Out
BUFFER

Out
BUFFER

Out
BUFFER

Out
BUFFER

Out
BUFFER

PACKET

In
PACKET

In
PACKET

In
PACKET

In
PACKET

In In In In

Out Out Out Out Out Out Out Out

Figure 45: Receiving network component for PVFS file read

102

6.3.3 File read model server component

I/O servers are where the actual I/O operations are performed. Each PVFS file system

has multiple I/O servers that work independently in parallel to provide large I/O bandwidth

that local file system could never achieve.

Each I/O server, similarly to the client side, has a network layer to process network

packets from the network component. A network packet, after arriving at the I/O server, is

examined and categorized into different receive buffers, using a first-come-first-served

(FCFS) mechanism. This process is designed following the same implementation in the

real system. Each client has its own receive buffer.

The server component, following a FCFS order, takes read requests from the receive

buffers and sends them to the local file system. The requests are sending in chunk of 64

Kbytes, which is the PVFS default stripe depth. If the PVFS file system is built with a

different stripe depth, this chunk size is changed. The local file system on the I/O server

performs a sequential read operation. Since the I/O server component takes read request

from the receive buffers using FCFS order, the read request chunks are mixed together. The

next chunk of read requests may not be from the same client as the chunk before it. Two

different clients rarely try to read the same file at the same location. This causes the read

requests stream sending to the local file system to have a very special pattern. This pattern

is multiple session of sequential read requests. Each session may start at a random location.

The Petri Net model for the server component for PVFS file read operation is presented in

Figure 46.

1
0
3

In
PACKET

In

Read

entry

FILE

Read

exit

BUFFER

PACKET
FILE

[]

FILE

[]

FILEWDST

INT

1

INT

Out
PACKET

Out

PACKET

FILE

[]

FILE

[]

FILE

[]

FILE

[]

FILE

[]

FILE

[]

[dst=1]

S1

Local file systemLocal file system

[(iosize <= stripesize andalso length bf = iosize)

orelse (iosize <= clientnum*stripesize andalso length bf = stripesize)

orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

EncapsulateEncapsulate

[dst=2]

[length fl > 0]

[length fl > 0]

[dst=3]

[length fl > 0]

[dst=4]

[length fl > 0]

[dst=5]

[length fl > 0]

[dst=6]

[length fl > 0]

[dst=7]

[length fl > 0]

[dst=8]

[length fl > 0]

(id, bf, dst)

bf

(0, bf, dst)

(id, bf, dst)

fl̂ ^[bf]fl

fl

fl̂ ^[bf]
fl

fl

(fl, 1) (fl, 2)

(fl, dst)

fl

next

1`1

dst

(0, bf, dst)

(0, bf, dst)(id, bf, dst)

fl̂ ^[bf]fl

fl

(fl, 3)

dst

[]

[]

[]

fl̂ ^[bf]fl

fl

[]

fl̂ ^[bf]fl

fl

[]

fl̂ ^[bf]fl

fl

[]

fl̂ ^[bf]fl

fl

[]

(id, bf, dst)

(fl, 4)

(id, bf, dst)

(fl, 5)

(id, bf, dst)

(fl, 6)

(id, bf, dst)

(fl, 7)

fl̂ ^[bf]fl

fl

[]

(id, bf, dst)

(fl, 8)

1

1`[]@0

1

1`[]@0

1 1`1

1

1`[]@0 1

1`[]@0 1

1`[]@0

1

1`[]@0 1

1`[]@0
1

1`[]@0

Figure 46: Server component for PVFS file read

104

After read requests passing through the local file system component, it returns the result

data read from disk. At this step, the I/O server component sends these data through a

network packet creation process similar to the client component. However, when the client

component send the read requests over the network, the size of these read requests are

relatively small and can fit within a standard frame. The result data, however, do not. They

need to be divided into multiple segments before they are attached the headers and network

addresses. The Petri Net model for dividing data into segments is presented in Figure 47.

Figure 47: Data segmentation component for

PVFS file read

The segment size of a packet is limited by the MTU of the network. Usually, in a

Gigabit Ethernet network, the MTU is set to 1500. This means that a network packet

maximum size is 1500 bytes.

6.4 File write model implementation

From the application standpoint, writing a file to a parallel file system is no different

than writing a file to a local file system. The way an application writes a file is similar to

the following illustration.

In
PACKET

In Out
PACKET

Out

PACKET

[length bf > 0]

(0, bf, dst)

if (length bf > tcp_mss) then (0, List.take(bf, tcp_mss), dst) else (0, List.take(bf, length bf), dst)

if (length bf > tcp_mss) then (0, List.drop(bf, tcp_mss), dst) else (0, List.drop(bf, length bf), dst)

(0, bf, dst)

(0, bf, dst)

105

The top level model is very similar to the I/O read model. The operation is divided into

three main components: the client component, the network component and the server

component. The Petri Net implementation of the top level model is presented in Figure 48.

6.4.1 File write model client component

The top level of the file write model client component is simple. The file data needed to

be written to disk are broken into multiple blocks of write requests. These write requests

are passed to the client simulation component. The client component will process the data

then send the packaged data to the network component. The result of the write operation is

a series of return codes received from the network model.

The implementation of the client component for file write operation is quite similar to

the client component of the file read operation. However, write requests not only contain

requests to write data to disk but also contain the actual data needed to be written. The

client component needs to divide these blocks of data into multiple payloads. The number

of actual payloads is determined by the number of I/O servers in the system. The Petri Net

model for the PVFS client component is presented in Figure 49.

Payloads are created by striping request data into multiple chunks according to the file

system‘s stripe depth parameter. Stripe depth in PVFS usually is 64 Kbytes. The

distribution of data chunks in a payload is done using round-robin mechanism. The Petri

Net implementation of the payload creation process is presented in Figure 50.

bytes_write = fwrite(buffer, block_size, number_of_block, file_handle);

1
0
6

Client

Client

Client

Client

Client

Client

Client

IOD

IOD

IOD

IOD

Rx switch

Client

TX Switch

Tx switch

BUFFER

testload8

FILE

BUFFER

testload7

FILE

BUFFER

testload6

FILE

BUFFER
testload5

FILE

testload4

FILE

BUFFER

testload3

FILE

BUFFER

BUFFER

BUFFER

BUFFER

BUFFER

BUFFER

BUFFER

PACKETPACKETPACKETPACKETPACKETPACKET

BUFFER
testload2

FILE BUFFER

BUFFER

BUFFER

PACKET

testload1

FILE

PACKETPACKETPACKETPACKET

PACKET

PACKET

PACKET

PACKET

PACKET

Tx switch

Client

Rx switch

IOD

IOD

IOD

IOD

Client

Client

Client

Client

Client

Client

Client

1

1

1

1

1

1

1

1

Figure 48: High level PVFS application write model

1
0
7

(id, bf, 0)@+ networkdelay

(id, bf, 0)

(4, bf4, 0)(3, bf3, 0)(2, bf2, 0)

(1, bf1, 0)

bf4bf3bf2bf1

[]

[][]

[]

bf4bf3bf2bf1

bf4bf3
bf2bf1

sort INT.lt bf4sort INT.lt bf3sort INT.lt bf2sort INT.lt bf1

bf4

[]1` 1

sort INT.lt bf

bf

tbfbf^ ^ tbf

bf

bf3bf2bf1

next

bf

fl bf:: fl

@+ processingdelay

[length bf1 > 0 orelse length bf2 > 0 orelse length bf3 > 0 orelse length bf4 > 0]

Encapsulate (2)Encapsulate Encapsulate (4)Encapsulate (3)

[(iosize < = 3* stripesize andalso length bf4 = 0)

orelse (iosize < = clientnum* stripesize andalso length bf4 = stripesize)

orelse (length bf4 > 0 andalso length bf4 mod stripesize = 0 andalso length bf4 = iosize div clientnum)]

[length bf = iosize]

[(iosize < = 2* stripesize andalso length bf3 = 0)

orelse (iosize < = clientnum* stripesize andalso length bf3 = stripesize)

orelse (length bf3 > 0 andalso length bf3 mod stripesize = 0 andalso length bf3 = iosize div clientnum)]

[(iosize < = stripesize andalso length bf2 = 0)

orelse (iosize < = clientnum* stripesize andalso length bf2 = stripesize)

orelse (length bf2 > 0 andalso length bf2 mod stripesize = 0 andalso length bf2 = iosize div clientnum)]

[(iosize < = stripesize andalso length bf1 = iosize)

orelse (iosize < = clientnum* stripesize andalso length bf1 = stripesize)

orelse (length bf1 > 0 andalso length bf1 mod stripesize = 0 andalso length bf1 = iosize div clientnum)]

Create payload

Create payload

Out
PACKET

PACKET

BUFFERBUFFER
BUFFERBUFFER

BUFFER BUFFERBUFFER BUFFER

BUFFER

[]

BUFFER

Out
BUFFER

[]

BUFFER

In
BUFFER

BUFFERBUFFERBUFFER

1

INT

IOD2

[]

BUFFER

IOD3

[]

BUFFER

IOD1

[]

BUFFER

BUFFER

In
FILE

In

In

Out

Out

Create payload

Encapsulate (3) Encapsulate (4)Encapsulate Encapsulate (2)

1 1` []@0

1 1` []@0

1 1` 1

1 1` []@0 1 1` []@01 1` []@0

1

Figure 49: PVFS client component for file write

108

Figure 50: Payload creation component for PVFS

file write

After creating the payloads, the client component attaches network addresses and

control information to the payloads to create network packets. Since the packet size

depends on the MTU of the network, the client component has to split the payloads into

BUFFER

INT

1

PAGE PAGE

IOD1

Out
BUFFER

[]

Out

IOD2

Out
BUFFER

[]

Out

PAGE

IOD3

Out
BUFFER

[]

Out Out
BUFFER

[]

Out

PAGE

pg::bf
bf

pagenum

pg pg

bf^^[pg]

bf

bf^^[pg]

bf

pg

bf^^[pg]

bf

pg

bf^^[pg]
bf

InIn

if ((pagenum > stripesize*2) andalso (pagenum <= stripesize*3)) then 1`pg else empty

if ((pagenum > stripesize) andalso (pagenum <= stripesize*2)) then 1`pg else empty

if ((pagenum > stripesize*3) andalso (pagenum <= stripesize*4)) then 1`pg else empty

if (pagenum <= stripesize) then 1`pg else empty

if (length bf = 0) then 1`1 else if (pagenum >= stripesize*clientnum) then 1`1 else 1`(pagenum + 1)

109

multiple segments. The Petri Net model for dividing data into segments is presented in

Figure 51.

Figure 51: Data segmentation component for

PVFS file write

 Typically, the MTU is set to 1500 in a Gigabit Ethernet network, so the packet size for

data sending from clients to I/O servers is at the maximum size of 1500 bytes.

6.4.2 File write model network component

The network component model in the file write operation is very similar to the network

component model in the file read operation. There are only some slight differences in the

model due to the data flow of the operation being different. The network packets from the

client component are examined, the destination addresses are checked and the packets are

routed to the correct receiver. The network component provides the transportation for the

packets and also simulates the wire-delay on the network medium. The Petri Net model for

the sending and the receiving network component for PVFS file write are presented in

Figure 52 and Figure 53.

In
BUFFER

In Out
BUFFER

Out

BUFFER

[length bf > 0]

bf

if (length bf > tcp_mss) then List.take(bf, tcp_mss) else List.take(bf, length bf)

if (length bf > tcp_mss) then List.drop(bf, tcp_mss) else List.drop(bf, length bf)

bf

bf

1
1
0

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)
(id, bf, dst)

(id, bf, dst)

(id, bf, dst)
(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)
(id, bf, dst)
(id, bf, dst)

(id, bf, dst)

(id, bf, outdst)

(id, bf, dst)

(id, bf, dst)
(id, bf, dst)
(id, bf, dst)

(id, bf, dst)

(id, bf, outdst)

(id, bf, dst)

(id, bf, dst)
(id, bf, dst)
(id, bf, dst)

(id, bf, dst)

(id, bf, outdst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)
(id, bf, dst)

(id, bf, outdst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)
(id, bf, dst)

(id, bf, dst)

(id, bf, dst)
(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)(id, bf, dst)

(id, bf, dst)

(id, bf, dst)
(id, bf, dst)(id, bf, dst)

(id, bf, dst)(id, bf, dst)

(id, bf, dst)

(id, bf, dst)
(id, bf, dst)

(id, bf, dst)

(id, bf, outdst)

(id, bf, dst)

(id, bf, dst)

(id, bf, outdst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, outdst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, outdst)

(id, bf, dst)

[id= 4]

[id= 3]

[id= 2]

[id= 1]

input ();
output (outdst);

action (8);

[id= 4]

[id= 3]

[id= 2]

[id= 1]

input ();

output (outdst);
action (7);

[id= 4]

[id= 3]

[id= 2]

[id= 1]

input ();

output (outdst);
action (6);

[id= 4]

[id= 3]

[id= 2]

[id= 1]

input ();

output (outdst);
action (5);

[id= 4][id= 4][id= 4]

[id= 3][id= 3][id= 3]

[id= 2][id= 2][id= 2]

[id= 1][id= 1][id= 1]

input ();

output (outdst);
action (3);

[id= 4]

input ();

output (outdst);
action (4);

[id= 3]

[id= 2]

input ();

output (outdst);
action (2);

[id= 1]

input ();

output (outdst);
action (1);

PACKET

In 8

In
PACKET

PACKET

In 7

In
PACKET

PACKET

In 6

In
PACKET

PACKET

In 5

In
PACKET

In 3

In
PACKET

PACKET PACKET

In 4

In
PACKET

PACKET

In 2

In
PACKET

Out 4

Out
PACKET

Out 3

Out
PACKET

Out 2

Out
PACKET

Out 1

Out
PACKET

PACKET

In 1

In
PACKET

In

Out Out Out Out

In InIn In In In In

Figure 52: The sending network component for PVFS file write

1
1
1

bfbfbfbfbfbfbfbf bfbfbf

bfbfbfbfbf

(0, bf, dst)(0, bf, dst)(0, bf, dst)(0, bf, dst)(0, bf, dst)(0, bf, dst)(0, bf, dst)(0, bf, dst) (0, bf, dst)(0, bf, dst)(0, bf, dst)(0, bf, dst)(0, bf, dst)(0, bf, dst)(0, bf, dst)(0, bf, dst)

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf bf

bf bf

bfbfbfbfbfbfbfbf

(0, bf, dst)(0, bf, dst)(0, bf, dst)(0, bf, dst)
(0, bf, dst)(0, bf, dst)

(0, bf, dst)
(0, bf, dst)

bfbfbfbfbfbfbfbf

bfbfbfbfbfbfbfbf

bf

(0, bf, dst)

bf

bf

bfbfbfbfbf

(0, bf, dst)(0, bf, dst)(0, bf, dst)(0, bf, dst)(0, bf, dst)

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bfbf

(0, bf, dst)(0, bf, dst)

bf

bf

bf

bf

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[dst= 8][dst= 7][dst= 6][dst= 5][dst= 4][dst= 3][dst= 2][dst= 1][dst= 8][dst= 7][dst= 6][dst= 5][dst= 4][dst= 3][dst= 2][dst= 1]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[dst= 8][dst= 7][dst= 6][dst= 5][dst= 4][dst= 3][dst= 2][dst= 1]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[dst= 8]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[dst= 7]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[dst= 6]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[dst= 5]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[dst= 4]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[dst= 3]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[dst= 2][dst= 1]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

BUFFER BUFFER BUFFER BUFFER BUFFER BUFFER BUFFER BUFFER BUFFER BUFFER BUFFER BUFFER BUFFER BUFFER BUFFER BUFFER

BUFFERBUFFERBUFFERBUFFERBUFFERBUFFERBUFFERBUFFERBUFFERBUFFERBUFFERBUFFERBUFFERBUFFER

Out
BUFFER

BUFFER

Out
BUFFER

BUFFER

Out
BUFFER

BUFFER

Out
BUFFER

BUFFER

Out
BUFFER

BUFFER

Out
BUFFER

BUFFER

BUFFERBUFFER

Out
BUFFER

BUFFER

Out
BUFFER

Write
exit 4

In
PACKET

Write
exit 3

In
PACKET

Write
exit 2

In
PACKET

BUFFER

Write
exit

In
PACKET

In In In In

Out Out Out Out Out Out Out Out

Figure 53: The receiving network component for PVFS file write

112

6.4.3 File write model server component

The file write server component is built upon the local write model. The local write

model is the foundation of the file write server model. A network packet, after arriving at

the I/O server, is processed and sent to the local file write model. The server creates a

receive buffer for each client sending in requests. The server model examines the network

packets and moves the request data into the correct buffers using FCFS mechanism. This

process is designed to follow the same implementation in the real system.

Since each packet is limited by the maximum segmentation size of the network, the

server component combines multiple packet data into the original request sent by the client.

Unlike the file read server model, the file write server model does not attempt to combine

the original request into 64Kbytes chunk. Instead the server model combines the

fragmented data into the original request and sends it to the local file write model. Because

of this, the block sizes of the write requests sent to the local file write model are not fixed.

PVFS is relied on the delay write mechanism of the local file system to combine multiple

different small write requests into big and sequential write requests. The local file system

on the I/O server performs the write operation. Since the server model sends the write

requests to the local file system model as it receives in a FCFS order, the block size of the

write requests are quite random. Even though, the write requests could be in sequential

order, the block sizes of the requests are not. This creates a special I/O access pattern. The

Petri Net model for PVFS file write server model is presented in Figure 54.

1
1
3

(id, bf, dst)(id, bf, dst)(id, bf, dst)

(id, bf, dst)

(fl, 8)
(fl, 7)

(fl, 6)(fl, 5)

[]

fl

fl

fl^ ^ [sort INT.lt tbf]

[]

tbf

tbf

tbf

tbfbf^ ^ tbf

[]

fl

fl

fl^ ^ [sort INT.lt tbf]

[]

tbf

tbf

tbf

tbfbf^ ^ tbf

[]

fl

fl

fl^ ^ [sort INT.lt tbf]

[]

tbf

tbf

tbf

tbfbf^ ^ tbf

[]

fl

fl

fl^ ^ [sort INT.lt tbf]

[]

tbf

tbf

tbf

tbfbf^ ^ tbf

(id, bf, dst)

(fl, 4)

(fl, 3)

(id, bf, dst)

(fl, 2)

(id, bf, dst)

[]

fl

fl

fl^ ^ [sort INT.lt tbf]

[]

tbf

tbf

tbf

tbfbf^ ^ tbf

[]

fl

fl

fl^ ^ [sort INT.lt tbf]

[]

tbf

tbf

tbf

tbfbf^ ^ tbf

[]

fl

fl

fl^ ^ [sort INT.lt tbf]

[]

tbf

tbf

tbf

tbfbf^ ^ tbf

next

1` 1 dst

dst

[]

(0, bf, dst)

bf

fl

(fl, dst)

(fl, 1)

fl

fl fl^ ^ [sort INT.lt tbf]

[]

tbf

tbf

tbf

tbfbf^ ^ tbf

(id, bf, dst)

[length fl > 0]

[(length tbf > 0)
andalso
((iosize < = stripesize andalso length tbf = iosize)
orelse (iosize < = clientnum* stripesize andalso length tbf = stripesize)

orelse (length tbf > 0 andalso length tbf mod stripesize = 0 andalso length tbf = iosize div clientnum))]

[dst = 8]

[length fl > 0]

[(length tbf > 0)
andalso
((iosize < = stripesize andalso length tbf = iosize)

orelse (iosize < = clientnum* stripesize andalso length tbf = stripesize)
orelse (length tbf > 0 andalso length tbf mod stripesize = 0 andalso length tbf = iosize div clientnum))]

[dst = 7]

[length fl > 0]

[(length tbf > 0)
andalso
((iosize < = stripesize andalso length tbf = iosize)
orelse (iosize < = clientnum* stripesize andalso length tbf = stripesize)

orelse (length tbf > 0 andalso length tbf mod stripesize = 0 andalso length tbf = iosize div clientnum))]

[dst = 6]

[length fl > 0]

[(length tbf > 0)
andalso

((iosize < = stripesize andalso length tbf = iosize)
orelse (iosize < = clientnum* stripesize andalso length tbf = stripesize)
orelse (length tbf > 0 andalso length tbf mod stripesize = 0 andalso length tbf = iosize div clientnum))]

[dst = 5]

[length fl > 0]

[(length tbf > 0)
andalso
((iosize < = stripesize andalso length tbf = iosize)

orelse (iosize < = clientnum* stripesize andalso length tbf = stripesize)
orelse (length tbf > 0 andalso length tbf mod stripesize = 0 andalso length tbf = iosize div clientnum))]

[dst = 3]

[length fl > 0]

[(length tbf > 0)

andalso
((iosize < = stripesize andalso length tbf = iosize)
orelse (iosize < = clientnum* stripesize andalso length tbf = stripesize)
orelse (length tbf > 0 andalso length tbf mod stripesize = 0 andalso length tbf = iosize div clientnum))]

[dst = 4]

[length fl > 0]

[(length tbf > 0)

andalso
((iosize < = stripesize andalso length tbf = iosize)
orelse (iosize < = clientnum* stripesize andalso length tbf = stripesize)
orelse (length tbf > 0 andalso length tbf mod stripesize = 0 andalso length tbf = iosize div clientnum))]

[dst = 2]

[length fl > 0]

Local File System

[(length tbf > 0)

andalso
((iosize < = stripesize andalso length tbf = iosize)
orelse (iosize < = clientnum* stripesize andalso length tbf = stripesize)
orelse (length tbf > 0 andalso length tbf mod stripesize = 0 andalso length tbf = iosize div clientnum))]

[dst = 1]

[]

FILE

BUFFER

[]

BUFFER

[]

FILE

BUFFER

[]

BUFFER

[]

FILE

BUFFER

[]

BUFFER

[]

FILE

BUFFER

[]

BUFFER

[]

FILE

BUFFER

[]

BUFFER

[]

FILE

BUFFER

[]

BUFFER

[]

FILE

BUFFER

[]

BUFFER

1

INT

INT

Out
PACKET

[]

FILE

FILEWDST

Write
exit

BUFFER

[]

FILE

BUFFER

[]

BUFFER

In
PACKET

In

Out

Local File System

1 1` []@0

1 1` []@0

1 1` []@0

1 1` []@0

1 1` []@0

1 1` []@0

1 1` []@0

1 1` []@0

1 1` []@0

1 1` []@0

1 1` []@0

1 1` []@0

1 1` []@0

1 1` []@0

1 1` 1
1 1` []@0

1

1 1` []@0

Figure 54: Server component for PVFS file write

114

After read requests pass through the local file system component, it returns the result

data read from disk.

6.5 Summary

This chapter presents a set of detailed and hierarchical performance models of the PVFS

file system using Colored Petri Nets. PVFS read operation and PVFS write operation are

studied and their models are built. Each operation is divided into sub-components: client,

network and server. The models of these components are presented. The client components

are where the read requests and write requests from applications are received. The client

components take these read requests and write requests and create several network packets.

The network packets are sent to the servers using the network component. The server

component built upon the local file system model processes the request data and performs

actual I/O operations. The results of the I/O operations are sent to the clients using the

network component.

The current PVFS model is setup to have eight clients and four servers. This is equal to

a small size production file system. The model can be extended to have more clients and

servers. The model currently uses TCP/IP protocol over a Gigabit Ethernet network. It can

also be modified to simulate a different network protocol and different network hardware.

115

C h a p t e r 7

PARALLEL FILE SYSTEM SIMULATION MODEL PERFORMANCE

VALIDATION

7.1 Introduction

This chapter presents the performance validation of the simulation model for a PVFS

file system. Because PVFS is a parallel file system, the number of clients accessing the file

system at the same time is important. The file system is designed to provide a massive I/O

bandwidth and throughput by allowing multiple I/O servers to work with multiple clients at

the same time. The performance measurements are performed similarly to the way the local

file system performance experiments are done.

7.2 Validation setup

In order to validate the entire Petri Net file system model against real-world data, the

model hardware parameters, such as memory delay, execution speed, function overhead,

and disk speed, are measured directly from the machines where the real experiments take

place, using kernel traces. The same Ftrace mechanism as described in Chapter 5 is

utilized. Since PVFS is a parallel file system, a network is involved. The performance

parameters of the network stack on the client and server machines are also measured, using

the Ftrace facility. Network performance parameters on the wire are recorded, using

network monitoring tools, including ping, traceroute and packet sniffer. The performance

validations are executed, starting with one client accessing the file system. The number of

clients is increased until the number of clients equals eight. The PVFS file system model is

116

implemented with four I/O servers. With eight clients (double the amount of servers)

accessing the file system simultaneously, the file system level of stress is high enough to

produce good performance results.

7.3 Performance validation experiments

Simulations are run several times, and the average results are used to compare with

iozone benchmark results running on the test system. The simulation experiments are run

using a set of synthetic I/O requests and simulating sequential I/O. The I/O requests are

grouped into similar block-size configurations of the iozone benchmark.

7.3.1 Single client performance experiment

In this performance measurement, one client reads and writes to the PVFS file system.

The result of the I/O read performance in the experiment is presented in Figure 55. The

error bars are set at 20%.

Figure 55: Single client I/O read validation

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

8 16 32 64 128 256 512 1024 2048

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Block size (KB)

Simulation

Experiment

117

All points, except the last one, are within or very close to 20% of the real-world

measurement. Even though the last data point is farther away than other data points, it is

still a very good result, and the error is likely to come from measurement inaccuracy. The

simulation data points are consistently lower than real-world data.

The result of the I/O write performance in the experiment is presented in Figure 56. The

error bars are set at 20%.

Figure 56: Single client I/O write validation

Like the I/O read result, the I/O write result is also very good. The majority of data

points are within 20% of the real system measurement. Simulation data in this experiment

are not consistently lower than real-world data like we have observed in the I/O read result.

0

10000

20000

30000

40000

50000

60000

70000

80000

8 16 32 64 128 256 512 1024 2048

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Block size (KB)

Simulation

Experiment

118

At small block size, the simulation results are higher than real-world data, but at bigger

block size, the simulation results become lower.

The reason for this performance behavior comes from the buffer design of the I/O server

model. The I/O server has a receive buffer for every client sending requests to the server.

Data are taken out of the buffers, using a first-come-first-served (FCFS) order. The receive

buffers in the real server are implemented, using a linked-list data structure. The larger the

buffer, the slower an item in the buffer can be accessed. Currently, the buffers of the

simulation model are implemented to have a fixed operating cost. This means that the time

it takes to access an item in the buffer stays the same, regardless of the size of the buffer.

The number of write requests needed to write a file when using a small block size is

much larger than the number of write requests when using a large block size. In the

simulation model, this does not change the time it takes to de-queue requests. This causes

the simulation model to run faster than the real system at the small block sizes and slower

than the real system at the large block sizes.

7.3.2 Two clients performance experiment

In this experiment, two clients read and write to the PVFS model. The result of the I/O

read performance in the experiment is presented in Figure 57. The error bars are set at 20%.

119

Figure 57: Two clients I/O read validation

The result is consistent with the I/O read result presented in the single client experiment.

All data points, except two at the highest block size are within or close to 20% of the real-

world data. The shapes of the performance curves are also similar to the single client result.

The simulation data points are consistently lower than the real-world data. The

performances of the clients show only slight differences. This shows the workload is

balanced well in the PVFS file system, and the file system level of stress is still low.

The result of the I/O write performance in the experiment is presented in Figure 58. The

error bars are set at 20%.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

8 16 32 64 128 256 512 1024 2048

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Block size (KB)

Simulation1

Experiment1

Simulation2

Experiment2

120

Figure 58: Two clients I/O write validation

I/O write also exhibits similar behavior as the single client experiment. All data points,

except two at the small block sizes, are within 20% of the real-world data. The two

exception data points are also very close to 20% of the real-world data. The performance

curves are also similar to the single client experiment. The data points for small block-size

simulation are higher than the real-world data, but the data points for bigger block-size

simulation are lower than the real-world data.

7.3.3 Three clients performance experiment

In this experiment, three clients read and write to the PVFS model. The result of the I/O

read performance in the experiment is presented in Figure 59. The error bars are set at 20%.

0

10000

20000

30000

40000

50000

60000

70000

80000

8 16 32 64 128 256 512 1024 2048

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Block size (KB)

Simulation1

Experiment1

Simulation2

Experiment2

121

Figure 59: Three clients I/O read validation

In general, the performance behavior is similar to what we have observed so far. The

simulation data points are also consistently lower than the real-world data points. The

performance curves are also very close together. This shows the file system is responding

well, and the stress level is not high enough to make a difference.

The result of the I/O write performance in the experiment is presented in Figure 60. The

error bars are set at 20%.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

8 16 32 64 128 256 512 1024 2048

Th
ro

u
gh

p
u

t
(K

B
/s

)

Block size (KB)

Simulator1

Experiment1

Simulator2

Experiment2

Simulator3

Experiment3

122

Figure 60: Three clients I/O write validation

The I/O write performance in the experiment confirms what was observed in the I/O

read portion of the experiment. The file system stress level with three clients is still not

high enough to make a difference in performance behavior. However, there are some slight

differences from the previous I/O write performance chart at the bigger block sizes. These

differences become more visible when the stress level becomes high enough. For the most

part, data points are within 20% of the real-world data or very close.

7.3.4 Four clients performance experiment

In this experiment, four clients read and write to the PVFS model. The result of the I/O

read performance in the experiment is presented in Figure 61. The error bars are set at 20%.

0

10000

20000

30000

40000

50000

60000

70000

80000

8 16 32 64 128 256 512 1024 2048

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Block size (KB)

Simulator1

Experiment1

Simulator2

Experiment2

Simulator3

Experiment3

123

Figure 61: Four clients I/O read validation

With four clients accessing the PVFS file system at the same time, we start to notice

variations within the data points, especially in the real-world data. The simulation data,

however, are still very consistent. This is due to the simulation model having fewer factors

affecting the result. The more clients accessing the PVFS file system, the more outside

factors are introduced to the real-world data.

Even with the increasing variation of the data points, the experiment result is still very

good. The performance behavior is still similar to what we have observed in previous

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

8 16 32 64 128 256 512 1024 2048

Th
ro

u
gh

p
u

t
(K

B
/s

)

Block size (KB)

Simulation1

Simulation2

Simulation3

Simulation4

Experiment1

Experiment2

Experiment3

Experiment4

124

experiments. The last two data points are not within 20% of the real-world data, but are still

very close to them.

The result of the I/O write performance in the experiment is presented in Figure 62. The

error bars are set at 20%.

Figure 62: Four clients I/O write validation

The I/O write experiment result also has variations. The amount of variations is slightly

more than in the I/O read experiment. In general, the performance behavior is slightly

different to what we have previously observed. The simulation data points are higher than

the real-world data points at small block sizes. The simulation data points are lower than

the real-world data points at larger block sizes. The cross-over point is slightly shifted

toward the larger block sizes.

0

10000

20000

30000

40000

50000

60000

70000

80000

8 16 32 64 128 256 512 1024 2048

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Block size (KB)

Simulation1

Simulation2

Simulation3

Simulation4

Experiment1

Experiment2

Experiment3

Experiment4

125

The simulation data points are still within 20% of the real-world data points or close to

them. The two data points at smallest block sizes are somewhat farther away from the real-

world data points.

7.3.5 Five clients performance experiment

In this experiment, five clients read and write to the PVFS model. The result of the I/O

read performance in the experiment is presented in Figure 63. The error bars are set at 20%.

Figure 63: Five clients I/O read validation

The experiment result is still very consistent, even when five clients are reading the

PVFS file system at the same time. The variations are there, but they do not badly affect the

overall performance. Most data points, except the last two points at large block sizes, are

within 20% of the real-world data.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

8 16 32 64 128 256 512 1024 2048

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Block size (KB)

Simulation1

Simulation2

Simulation3

Simulation4

Simulation5

Experiment1

Experiment2

Experiment3

Experiment4

Experiment5

126

The result of the I/O write performance in the experiment is presented in Figure 64. The

error bars are set at 20%.

Figure 64: Five clients I/O write validation

Compared to the I/O read experiment, the I/O write experiment has more variations, and

the effect of them on the overall performance is more visible. This is due to I/O write

operations generating more stress on the file system than I/O read operations. In general,

I/O write operations are slower and more resource intensive than I/O read operations.

The performance curves are still following the same trend. Simulation data points are

higher than real-world data points at small block sizes and lower than real-world data at big

block sizes. However, the stress on the file system has caused the error to become bigger,

0

10000

20000

30000

40000

50000

60000

70000

80000

8 16 32 64 128 256 512 1024 2048

Th
ro

u
gh

p
u

t
(K

B
/s

)

Block size (KB)

Simulation1

Simulation2

Simulation3

Simulation4

Simulation5

Experiment1

Experiment2

Experiment3

Experiment4

Experiment5

127

especially the data points at small block sizes. The gap between the simulation data points

and the real-world data points has become significant. There are also more variations at the

large block sizes than previously observed.

7.3.6 Six clients performance experiment

In this experiment, six clients read and write to the PVFS model. The result of the I/O

read performance in the experiment is presented in Figure 65. The error bars are set at 20%.

Figure 65: Six clients I/O read validation

Compared to the previous experiment, it is clear that the amount of variations increases

consistently every time the number of clients increases. This supports the assumption,

which seems to be obvious, that the level of stress on the file system increases when the

number of clients, accessing the file system at the same time, increases.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

8 16 32 64 128 256 512 1024 2048

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Block size (KB)

Simulation1

Simulation2

Simulation3

Simulation4

Simulation5

Simulation6

Experiment1

Experiment2

Experiment3

Experiment4

Experiment5

Experiment6

128

However, the performance curves are still grouped together quite nicely. All data points,

except the last two points, are still within 20% of the real-world data. In the next few

experiments, we start to see significant changes in the performance behavior.

The result of the I/O write performance in the experiment is presented in Figure 66. The

error bars are set at 20%.

Figure 66: Six clients I/O write validation

The variations and the effects of the file-system stress level are very visible in this

experiment. This shows that the file system stress level has become significant. At large

block sizes, simulation data points are still within 20% of real-world data points. However,

at small block sizes, the errors have become quite large. The performance curves are also

not as smooth as before, even though they are still staying very close to each other.

0

10000

20000

30000

40000

50000

60000

70000

80000

8 16 32 64 128 256 512 1024 2048

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Block size (KB)

Simulation1

Simulation2

Simulation3

Simulation4

Simulation5

Simulation6

Experiment1

Experiment2

Experiment3

Experiment4

Experiment5

Experiment6

129

7.3.7 Seven clients performance experiment

In this experiment, seven clients read and write to the PVFS model. The result of the I/O

read performance in the experiment is presented in Figure 67. The error bars are set at 20%.

Figure 67: Seven clients I/O read validation

When seven clients are reading the PVFS file system at the same time, the workload has

become high enough to visibly affect the file system performance behavior. Comparing to

the previous experiment with six clients, this experiment shows much more variations and

distortions. Simulation data points started to show outside of the 20% range, not only at the

big block sizes, but also at the small block sizes.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

8 16 32 64 128 256 512 1024 2048

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Block size (KB)

Simulation1

Simulation2

Simulation3

Simulation4

Simulation5

Simulation6

Simulation7

Experiment1

Experiment2

Experiment3

Experiment4

Experiment5

Experiment6

Experiment7

130

The result of the I/O write performance in the experiment is presented in Figure 68. The

error bars are set at 20%.

Figure 68: Seven clients I/O write validation

The variations and distortions are becoming even more visible in this experiment.

However, similarly to previous experiments, the block sizes in the middle are the most

stable. Data points of the middle block sizes are all stay within 20% of the real-world data

points. Errors and distortions are happening at the small block sizes and large block sizes.

At small block sizes, data points stay very close to each other. This allows the errors to be

observed easily. At large block sizes, data points are more dispersed with large variations.

It is harder to observe the error at the large block sizes.

0

10000

20000

30000

40000

50000

60000

70000

80000

8 16 32 64 128 256 512 1024 2048

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Block size (KB)

Simulation1

Simulation2

Simulation3

Simulation4

Simulation5

Simulation6

Simulation7

Experiment1

Experiment2

Experiment3

Experiment4

Experiment5

Experiment6

Experiment7

131

7.3.8 Eight clients performance experiment

In this experiment, eight clients read and write to the PVFS model. The result of the I/O

read performance in the experiment is presented in Figure 69. The error bars are set at 20%.

Figure 69: Eight clients I/O read validation

When the number of clients simultaneously reading the PVFS file system reaches 8

clients, we expect the stress level of the file system to be very high, and the experiment

supports that expectation. At this level of stress, even the middle block sizes data points,

which have stayed very stable until now, start to show variations and distortions. Many

data points have now fallen well outside of the 20% error range. The biggest changes are at

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

8 16 32 64 128 256 512 1024 2048

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Block size (KB)

Simulation1

Simulation2

Simulation3

Simulation4

Simulation5

Simulation6

Simulation7

Simulation8

Experiment1

Experiment2

Experiment3

Experiment4

Experiment5

Experiment6

Experiment7

132

the big block sizes. As the number of client increases, the errors at the big block sizes also

increase, especially at the largest block size.

As stated in the previous experiment, simulation data points are showing much less

variations and distortions. This makes perfect sense, as the simulation model has much

fewer outside factors. Simulation experiments are also performed under well-controlled and

precise conditions. The result of the I/O write performance in the experiment is presented

in Figure 70. The error bars are set at 20%.

Figure 70: Eight clients I/O write validation

Even at eight clients writing to the PVFS file system at the same time, with the only

exception at the 64Kbytes block size, the simulation performance behavior is still quite

0

10000

20000

30000

40000

50000

60000

70000

80000

8 16 32 64 128 256 512 1024 2048

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Block size (KB)

Simulation1

Simulation2

Simulation3

Simulation4

Simulation5

Simulation6

Simulation7

Simulation8

Experiment1

Experiment2

Experiment3

Experiment4

Experiment5

Experiment6

133

consistent with what was observed previously. In this experiment, many data points fall

outside of the 20% error range; however, simulation data points still group together very

well, especially at the small block sizes. Even though there are variations among simulation

data points, the magnitude of errors at the small block size have stayed relatively the same

since the beginning. The magnitude of errors at the large block sizes, however, increases

when the number of clients simultaneously writing to the PVFS file system increases.

7.4 Summary

This chapter presents a set of detailed performance validation experiments of the

simulation model of the PVFS file system. The workload for the parallel file system, as

observed in Chapter 3, primarily consists of very-large-block-size sequential I/O.

Therefore, the performance validation utilizes synthetic sequential I/O workload to study

the simulation model and to compare with real-world data. Performance validations are set

up with eight separate experiments. Each experiment uses a different number of clients

accessing the PVFS file system. The number of clients is increased from one to eight. The

last experiment uses eight clients, which is double the number of I/O servers,

simultaneously accessing the PVFS file system. By increasing the number of clients from

small to large, we observe the behavior of the simulation model when the stress level of the

file system increases.

For the single client experiment, the simulation performances are within 20% of the real

file system in most cases. When the number of clients increases, we observe the

performance curves start to change, as the stress level of the file system increases. Up to

three clients accessing the PVFS file system at the same time, the performance curves stay

134

very close together. When the numbers of clients become equal to or larger than four

clients, the variations and distortions become visible. The simulation data points group

together much better than the real-world data points because the affecting factors are much

less in the simulation environment. The magnitude of errors stays relatively the same at

small block sizes. The errors become larger at the large block sizes when the number of

client increases.

In general, the performance behavior is consistent throughout the performance

validation process. The performance validation results are also very good, considering that

this is a very complex environment, involving a parallel file system and multiple clients

accessing simultaneously.

135

C h a p t e r 8

CONCLUSION

We conclude this dissertation by summarizing the importance of file system simulation

models, presenting some of the implications of this research, discussing what will be

required for file system simulation models to achieve user acceptance in computer systems

analysis, and identifying several promising avenues for continuing work.

8.1 The importance of the file system simulation models

Existing file system evaluation techniques have limitations and disadvantages in

evaluating the role and performance of hypothetical file systems within complex computer

environments. This dissertation describes the simulation models of the local and parallel

file system and its role in providing alternative evaluation techniques in addition to existing

ones. The file system simulation model enables end-to-end performance experiments of

complex file systems, using different workloads which include real-system production

workloads. This technique will provide an opportunity to analyze the interaction of

different system components as well as different performance behavior introduced by the

operating system.

8.2 Implications of this research

The file system simulation models offer the opportunity to investigate the performance

behavior of different file systems in different type of storages in computer systems. It

permits forays into the space of hypothetical file system functionalities without the

difficulties of developing and supporting a prototype system or a proof of concept study. It

136

also helps in eliminating the cost of purchasing and deploying actual hardware to build the

actual system. This is especially relevant when considering the number of technologies

available today and the recent trend toward the development of application-specific storage

systems. Examples of these systems include, but are not limited to, audio and video

recording and playback systems, scientific data processing, business data factory

processing, and database housing, where support for application-specific features in

individual system often play a key role in the success of the products in the market.

8.3 Keys to the acceptance of the file system simulation models

The benefits of the file system simulation models as an evaluation technique will not

come without investments toward the development and maintenance of the simulation

components. These investments include those of developing accurate and computationally

inexpensive simulation models for storage devices and other components of the file

systems. It also includes extending and creating a broader set of evaluation workloads that

are more representative of the systems to be deployed or the existing systems which need to

be analyzed.

For the file system simulation models to remain effective, new storage device models,

new network models, and new operating system models need to continue to be created.

Simulation experiments require validated or high-confidence component models in order to

provide useful experimental results. This is not likely to be a problem, since the current

simulation models are built with expansion and improvement in mind. Simulation

components are designed to be as modular as possible, providing the flexibility and

freedom to improve or replace. Depending on the type of component, in addition to the

137

component architecture, the operating characteristics and performance parameters of the

component also need to be captured. They include, but are not limited to, memory access

time, instructions execution time, device seek time, and device access time. A physical

device‘s attributes and characteristics can be obtained from the technical data of the device

released by the manufacturer. Operating system component parameters can be gathered by

profiling and monitoring tools as well as kernel traces. Looking to the future, Section 8.4

discusses possible advancements in the file system simulation models through

improvements in existing components and explores new component implementation

options.

Additionally, application-level workloads will need to be carefully developed in order to

gain the full usefulness of the file system simulation models. Availability of such

workloads could potentially lead to better characterization of real-system workloads and

better benchmarks for storage systems. Even though well-accepted workloads exist, they

are proprietary and belong to a few organizations. The lack of diverse and representative

workloads for storage evaluation has been and continues to be a problem in the storage

systems community [97, 98].

8.4 Opportunities for future work

In this section we discuss groups of improvements and developments for the simulation

models centered on the themes of existing component improvement and new component

implementation.

138

8.4.1 Improving existing simulation components

As demonstrated by the evaluations in this dissertation, the simulation models could

produce very similar performance results to the real-world measurements. However, many

components within the simulation models could still be improved to create even better

result. An important component whose improvement benefits the simulation models greatly

is the read-ahead mechanism. Usually, regular files are stored on disk in large groups of

adjacent sectors, so that they can be retrieved quickly with few moves of the disk heads.

Therefore, many disk accesses are sequential. Accordingly, read-ahead consists of reading

several adjacent pages of data of a regular file or block device file before they are actually

requested. In most cases, read-ahead significantly improves I/O read operation

performance. Consequently, it improves system performance. An application, when

sequentially reading a file, does not have to wait for the requested data because they are

already available in memory. However, when the application accesses files randomly, read-

ahead does not help improving performance. In the case of random I/O, it is actually

detrimental because it not only wastes space in the page cache with useless information, but

also spends more time to read them into memory. Therefore, the read-ahead component

needs to reduce or stop read-ahead when it detects that the most recently I/O access is not

sequential to the previous one. The current model component could be switched from

sequential I/O access to random I/O access. However, it does not have all needed features

currently implemented. The improved read-ahead component needs to implement the

following features:

139

- Read-ahead may be gradually increased as long as the process keeps accessing the

file sequentially.

- Read-ahead must be scaled down or even disabled when the current access is not

sequential with respect to the previous one (random access).

- Read-ahead should be stopped when a process keeps accessing the same pages over

and over again (only a small portion of the file is being used), or when almost all

pages of the file are already in the page cache.

Another important simulation component to improve is the memory reclaiming

mechanism. This mechanism is currently implemented partially in the page cache

component. A more complete implementation of the memory reclaiming mechanism could

help the model more accurately present the state of the I/O memory buffer.

Unfortunately, due to the empirical nature of the memory reclaiming design in Linux, its

code changes very quickly. However, the general ideas and most major heuristic rules

should continue to be valid. The design ideals of the memory reclaiming mechanism are:

- Pages in disk and memory caches not referenced by any process have priority.

These pages are considered ―harmless.‖ They should be reclaimed before pages

belonging to processes in the user spaces. Also, non-dirty pages have higher

priority than dirty pages because they do not have to be written to disk.

- Except locked pages, all pages of user space processes are reclaimable. The

memory reclaiming process must be able to steal any page of a user space process,

including anonymous pages. If a process has been sleeping for a long period of

time, it will progressively lose all its page frames.

140

- If a page is shared by several processes, the memory reclaiming process clears all

page table entries that refer to the page frame before reclaiming the page.

- The memory reclaiming process uses a Least Recently Used (LRU) replacement

algorithm and two lists (active and inactive) to identify which pages to reclaim. If a

page has not been accessed for a long time, the probability that it will be accessed

in the near future is low, and it can be considered inactive page. On the other hand,

if a page has been accessed recently, the probability that it will continue to be

accessed is high, and it must be considered as active page. The reclaiming process

will only reclaim inactive pages.

On the server component of the simulation models, the receiving buffer component also

needs some improvements. Currently, the receiving buffer component is implemented,

using a cost model with computational complexity of O(1) for inserting and searching

incoming packets. In Linux, the implementations of the network receiving buffer models

are usually a linked list with the computational complexity of O(n) for inserting and

searching packets. This is the reason why the simulation models have slower performance

than the real-world measurement when using small block size and faster performance than

the real-world measurement when using big block size. Due to the flow nature of Petri Net,

there are some difficulties in modifying the model from a constant cost model to a linear

cost model. However, the change can reduce the errors of the simulation models when

comparing to the real-world measurement.

141

8.4.2 Implementing new components

In addition to improving existing model components, implementing new model

components is another direction to extend the capability of the simulation models. One

interesting component that has not been implemented is the Linux I/O scheduler. The I/O

scheduler controls the way I/O reads and writes are committed to disk. The goal of the I/O

scheduler is to provide better optimization for different classes of workload by allowing the

operating system to utilize many different scheduling mechanisms.

Each scheduling mechanism is designed to improve a certain aspect of the I/O

operations. The techniques used by the scheduler to improve performance include, but are

not limited to, merging request, elevator, and prioritization. Merging request is a technique

where adjacent requests are merged together to reduce disk seeking. Elevator is a technique

where requests are ordered, based on their physical location, and the requests are usually

traversed in one direction from the closest location to the farthest or vice versa.

Prioritization is a technique where the priorities of requests are manipulated to improve

performance. There are currently four I/O schedulers available. They are the no-op

scheduler, the anticipatory I/O scheduler (AS), the deadline scheduler and the complete fair

queuing scheduler (CFQ).

The no-op scheduler is the simplest scheduling scheme. It only has the merging request

technique implemented. All I/O requests are put into a simple first-in-first-out (FIFO)

queue. Perhaps, the no-op scheduler works best with solid state devices that do not depend

on mechanical movement to access data.

142

The anticipatory I/O scheduler is the former default scheduling scheme in the Linux

kernel. It implements the merging request technique, the elevator technique and an

anticipating read operation technique. Basically, it pauses for a short time (usually a few

milliseconds) after a read operation in anticipation of another read request.

The deadline scheduler implements request merging and elevator queues. More

importantly, it imposes a deadline on all operations to prevent resource starvation by

maintaining two deadline queues, in addition to the elevator queues (both read and write).

Deadline queues are basically sorted by their deadline, while the elevator queues are sorted

by the sector number. The deadline scheduler decides which queue to use before processing

any request. Read queues are given a higher priority, because processes usually block on

read operations. After that, the deadline scheduler checks if the first request in the deadline

queue has expired. If none of the requests in the deadline queue is close to expiration, the

scheduler will process requests from the elevator queue.

The complete fair queuing (CFQ) scheduler also implements request merging and

elevator queues. It additionally attempts to give all users of a particular device the same

number of I/O requests over a particular time interval. CFQ categorizes incoming requests

into synchronous type and asynchronous type. According to I/O priority of the requesting

process, asynchronous requests are distributed into multiple priority queues, one queue per

I/O priority. Each queue is assigned a time slice which depends on the I/O priority of the

submitting process. The scheduler accesses these queues in a round-robin order.

Synchronous requests are distributed into a number of per-process queues. The number of

requests in a queue is also restricted, based on the I/O priority.

143

Obviously, depending on which scheduling scheme is in use, the I/O performance

behavior of the system can have different characteristics. By implementing the I/O

scheduler, the file system simulation models can accurately mimic the performance

behavior of the actual file system and storage subsystems. The I/O scheduler is complex,

but the current file system simulation models have many existing components that could be

reused to make the implementation easier.

Another interesting component to implement is a simulation model for different network

hardware. InfiniBand is a very good one with which to start, since there are PVFS

modifications to operate successfully, using InfiniBand as the network hardware [99-101].

InfiniBand is a powerful network architecture, designed to support I/O connectivity for the

Internet infrastructure. Uniquely providing both backplane solutions and also traditional

networking interconnects, InfiniBand offers communication and management infrastructure

for inter-processor communication and I/O. By unifying the network‘s interconnect with a

feature-rich managed architecture, it manages to provide native cluster connectivity, thus

simplifying application cluster connections, supporting scalability, and sustaining

reliability. With QoS mechanisms built in, InfiniBand can provide virtual lanes on each

link and define service levels for individual packets.

The current network hardware implemented in the simulation models is Ethernet, which

uses a hierarchical switched topology. Unlike Ethernet, InfiniBand uses a switched fabric

topology. Other commonly-used network topologies are Fat-Tree (Clos), mesh, and 3D-

Torus. Any of the previously mentioned topologies, after implementation, would create a

very different interconnection simulation component, in comparison to the current

144

component. InfiniBand also transmits data in large packets (maximum size of 4 Kbytes).

Packets are used to form messages, which could be as large as 2 Gbytes. There are multiple

types of messages, such as direct memory access (RDMA), channel send or receive,

transaction-based operation, multicast transmission, and atomic operation. Due to

implementation complexity reasons, PVFS over InfiniBand implementations are using

Internet Protocol (IP) over InfiniBand technology [102]. This is also a very good basis for

the PVFS simulation model. Many network components and client components as well as

server components can be reused.

Based on the same principle as PVFS, a much improved PVFS2 is also a very nice

addition to the file system simulation models. A PVFS2 improvement that has a significant

impact on the simulation models is how the file system interacts with networks and

storages. PVFS1 relies on the socket networking interface and local file systems for data

and metadata storage. PVFS2 uses the Buffered Messaging Interface (BMI) and the Trove

storage interface to provide Application Programming Interfaces (APIs) to network and

storage technologies respectively. PVFS2 can support several different network types, such

as TCP/IP, Myricom's GM message passing system, and InfiniBand (both Mellanox VAPI

and OpenIB APIs) via BMI. Supporting multiple networking technologies efficiently is a

very important feature of PVFS2. As a result, implementing the BMI model is a key to

successful implementation of the PVFS2 simulation model.

Similar to network technologies, many different storage technologies are also available.

PVFS2 uses the Trove storage interface to efficiently support multiple storage back-end

technologies. In addition to storing file data, metadata has also received much attention in

145

PVFS2. Instead of using a flat file on the local file system to store metadata as PVFS does,

PVFS2 is using Berkeley DB database technologies for the metadata storage. In PVFS,

there is only one metadata server. This creates a single point of failure, as well as a

performance bottleneck. PVFS2 can distribute metadata to multiple I/O servers (which

might or might not also serve data). This allows metadata for different files to be placed on

different servers and reduces the congestion to the metadata servers.

146

BIBLIOGRAPHY

[1] I. Gorton, P. Greenfield, A. Szalay, and R. Williams, "Data-Intensive Computing in

the 21st Century," Computer, vol. 41, pp. 30-32, 2008.

[2] I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy of the Grid: Enabling

Scalable Virtual Organizations," International Journal of High Performance

Computing Applications, vol. 15, pp. 200-222, 2001.

[3] A. Hutflesz, H.-W. Sis, and P. Wildmayer, "Twin Grid Files: Space Optimizing

Access Schemes," in Proceedings of the 1988 ACM SIGMOD international

conference on Management of data, 1988, pp. 183-190.

[4] E. Morenoff and J. B. McLean, "Application of Level Changing to a Multilevel

Storage Organization," Communications of the ACM, vol. 10, pp. 149-154, 1967.

[5] B. Randell and C. J. Kuehner, "Dynamic Storage Allocation Systems,"

Communications of the ACM, vol. 11, pp. 297-306, 1968.

[6] G. A. Gibson and R. V. Meter, "Network Attached Storage Architecture,"

Communications of the ACM, vol. 43, pp. 37-45, 2000.

[7] K. Jensen, Coloured Petri nets (2nd ed.): basic concepts, analysis methods and

practical use: volume 1. London, UK: Springer-Verlag, 1996.

[8] L. M. Kristensen, S. Christensen, and K. Jensen, "The practitioner's guide to

coloured Petri nets," International Journal on Software Tools for Technology

Transfer, vol. 2, pp. 98-132, 1998.

[9] A. V. Ratzer, et al., "CPN tools for editing, simulating, and analysing coloured Petri

nets," in Proceedings of the 24th international conference on Applications and

theory of Petri nets, Eindhoven, The Netherlands, 2003, pp. 450-462.

[10] M. K. Johnson. (2001). Whitepaper: Red Hat's New Journaling File System: ext3.

Available: http://www.redhat.com/support/wpapers/redhat/ext3/

[11] J. S. Bucy and G. R. Ganger, The DiskSim simulation environment version 3.0

reference manual. Pittsburgh, Pa.: School of Computer Science, Carnegie Mellon

University, 2003.

[12] J. L. Griffin, J. Schindler, S. W. Schlosser, J. C. Bucy, and G. R. Ganger, "Timing-

accurate Storage Emulation," in Proceedings of the 1st USENIX Conference on File

and Storage Technologies, Monterey, CA, 2002, p. 6.

147

[13] J. L. Griffin and G. R. Ganger, "Timing-accurate storage emulation : evaluating

hypothetical storage components in real computer systems," Thesis (Ph D),

Carnegie Mellon University, Carnegie Mellon University, 2004., Pittsburgh, PA,

2004.

[14] K. E. Maghraoui, G. Kandiraju, J. Jann, and P. Pattnaik, "Modeling and simulating

flash based solid-state disks for operating systems," in Proceedings of the first joint

WOSP/SIPEW international conference on Performance engineering, San Jose,

California, USA, 2010, pp. 15-26.

[15] Y. Wang and D. Kaeli, "Execution-Driven Simulation of Network Storage

Systems," in Proceedings of the The IEEE Computer Society's 12th Annual

International Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunications Systems, 2004, pp. 604-611.

[16] D. S. Batory, "Modeling the Storage Architectures of Commercial Database

Systems," ACM Transactions on Database Systems (TODS), vol. 10, pp. 463-528,

1985.

[17] H. Gomaa, "A Simulation Based Model Of A Virtual Storage System," in

Proceedings of the 12th annual symposium on Simulation, 1979, pp. 273-303.

[18] J. E.G. Coffman and M. I. Reiman, "Diffusion approximations for storage processes

in computer systems," in Proceedings of the 1983 ACM SIGMETRICS conference

on Measurement and modeling of computer systems, 1983, pp. 93-117.

[19] P. Jacobson and E. Lazowska, "Analyzing queueing networks with simultaneous

resource possession," Communications of the ACM, vol. 25, pp. 142-151, 1982.

[20] A. Kraiss and G. Weikum, "Integrated document caching and pre-fetching in

storage hierarchies based on Markov-chain predictions," The VLDB Journal — The

International Journal on Very Large Data Bases, vol. 7, pp. 141-162, 1998.

[21] D. Menasce, O. Pentakalos, and Y. Yesha, "An analytic model of hierarchical mass

storage systems with network-attached storage devices," in Proceedings of the 1996

ACM SIGMETRICS international conference on Measurement and modeling of

computer systems, 1996, pp. 180-189.

[22] L. Zhaobin and L. Haitao, "Modeling and Performance Evaluation of Hybrid

Storage I/O in Data Grid," in Network and Parallel Computing Workshops, 2007.

NPC Workshops. IFIP International Conference on, 2007, pp. 624-629.

[23] X. Molero, F. Silla, V. Santonja, and J. Duato, "Modeling and simulation of storage

area networks," in Modeling, Analysis and Simulation of Computer and

148

Telecommunication Systems, 2000. Proceedings. 8th International Symposium on,

2000, pp. 307-314.

[24] R. Routray, S. Gopisetty, P. Galgali, A. Modi, and S. Nadgowda, "iSAN: Storage

Area Network Management Modeling Simulation," in Networking, Architecture,

and Storage, 2007. NAS 2007. International Conference on, 2007, pp. 199-208.

[25] J. Staley, S. Muknahallipatna, and H. Johnson, "Fibre Channel based Storage Area

Network Modeling using OPNET for Large Fabric Simulations: Preliminary

Work," in Local Computer Networks, 2007. LCN 2007. 32nd IEEE Conference on,

2007, pp. 234-236.

[26] N. Aizikowitz, A. Glikson, A. Landau, B. Mendelson, and T. Sandbank,

"Component-based performance modeling of a storage area network," in

Proceedings of the 37th conference on Winter simulation, Orlando, Florida, 2005,

pp. 2417-2426.

[27] H. Hung-Chang and K. Chung-Ta, "Modeling and evaluating peer-to-peer storage

architectures," in Parallel and Distributed Processing Symposium., Proceedings

International, IPDPS 2002, Abstracts and CD-ROM, 2002, pp. 24-29.

[28] P. DeRosa, K. Shen, C. Stewart, and J. Pearson, "Realism and simplicity: disk

simulation for instructional OS performance evaluation," in Proceedings of the 37th

SIGCSE technical symposium on Computer science education, Houston, Texas,

USA, 2006, pp. 308-312.

[29] A. Ali and R. d. Souza, "Modeling and simulation of hard disk dive final assembly

using a HDD template," in Proceedings of the 39th conference on Winter

simulation: 40 years! The best is yet to come, Washington D.C., 2007, pp. 1641-

1650.

[30] D. Lugones, et al., "High-speed network modeling for full system simulation," in

Workload Characterization, 2009. IISWC 2009. IEEE International Symposium on,

2009, pp. 24-33.

[31] N. Agarwal, L.-S. Peh, and N. Jha, "Garnet: A Detailed Interconnection Network

Model inside a Full-system Simulation Framework," Princeton University CE-P08-

001, 2008.

[32] E. Argollo, et al., "COTSon: infrastructure for full system simulation," SIGOPS

Oper. Syst. Rev., vol. 43, pp. 52-61, 2009.

[33] J. Lee, et al., "Modeling communication networks with hybrid systems,"

IEEE/ACM Trans. Netw., vol. 15, pp. 630-643, 2007.

149

[34] S. Bohacek, et al., "A hybrid systems modeling framework for fast and accurate

simulation of data communication networks," SIGMETRICS Perform. Eval. Rev.,

vol. 31, pp. 58-69, 2003.

[35] A. Kavimandan, W. Lee, M. Thottan, A. Gokhale, and R. Viswanathan, "Network

simulation via hybrid system modeling: a time-stepped approach," in Computer

Communications and Networks, 2005. ICCCN 2005. Proceedings. 14th

International Conference on, 2005, pp. 531-536.

[36] J. Liu, "Packet-level integration of fluid TCP models in real-time network

simulation," in Proceedings of the 38th conference on Winter simulation, Monterey,

California, 2006, pp. 2162-2169.

[37] J. Liu, "Parallel Simulation of Hybrid Network Traffic Models," in Proceedings of

the 21st International Workshop on Principles of Advanced and Distributed

Simulation, 2007, pp. 141-151.

[38] T. Verdickt, B. Dhoedt, F. D. Turck, and P. Demeester, "Hybrid performance

modeling approach for network intensive distributed software," in Proceedings of

the 6th international workshop on Software and performance, Buenes Aires,

Argentina, 2007, pp. 189-200.

[39] M. Yu and M. Zhou, "A performance modeling scheme for multistage switch

networks with phase-type and bursty traffic," IEEE/ACM Trans. Netw., vol. 18, pp.

1091-1104, 2010.

[40] D. F. Kassa and A. E. Krzesinski, "A queueing network model of TCP

performance," in Proceedings of the 2005 annual research conference of the South

African institute of computer scientists and information technologists on IT

research in developing countries, White River, South Africa, 2005, pp. 56-65.

[41] T. Katakami, T. Tabata, and H. Taniguchi, "I/O Buffer Cache Mechanism Based on

the Frequency of File Usage," in Convergence and Hybrid Information Technology,

2008. ICCIT '08. Third International Conference on, 2008, pp. 76-82.

[42] Y. Zhou, Z. Chen, and K. Li, "Second-level buffer cache management," Parallel

and Distributed Systems, IEEE Transactions on, vol. 15, pp. 505-519, 2004.

[43] W. Shenggang, C. Qiang, H. Xubin, X. Changsheng, and W. Chentao, "An

Adaptive Cache Management Using Dual LRU Stacks to Improve Buffer Cache

Performance," in Performance, Computing and Communications Conference, 2008.

IPCCC 2008. IEEE International, 2008, pp. 43-50.

[44] X. Ding, S. Jiang, and F. Chen, "A buffer cache management scheme exploiting

both temporal and spatial localities," Trans. Storage, vol. 3, p. 5, 2007.

150

[45] S. Jiang, X. Ding, F. Chen, E. Tan, and X. Zhang, "DULO: an effective buffer

cache management scheme to exploit both temporal and spatial locality," in

Proceedings of the 4th conference on USENIX Conference on File and Storage

Technologies - Volume 4, San Francisco, CA, 2005, pp. 8-8.

[46] A. R. Butt, C. Gniady, and Y. C. Hu, "The Performance Impact of Kernel Pre-

fetching on Buffer Cache Replacement Algorithms," IEEE Trans. Comput., vol. 56,

pp. 889-908, 2007.

[47] O. Ozturk, S. W. Son, M. Kandemir, and M. Karakoy, "Pre-fetch throttling and data

pinning for improving performance of shared caches," in Proceedings of the 2008

ACM/IEEE conference on Supercomputing, Austin, Texas, 2008, pp. 1-12.

[48] S. W. Son, et al., "Profiler and compiler assisted adaptive I/O pre-fetching for

shared storage caches," in Proceedings of the 17th international conference on

Parallel architectures and compilation techniques, Toronto, Ontario, Canada, 2008,

pp. 112-121.

[49] S. Subha, "An Algorithm for Buffer Cache Management," in Information

Technology: New Generations, 2009. ITNG '09. Sixth International Conference on,

2009, pp. 889-893.

[50] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, "Analysis and

evolution of journaling file systems," in Proceedings of the annual conference on

USENIX Annual Technical Conference, Anaheim, CA, 2005, pp. 8-8.

[51] P. Vijayan, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, "Model-based failure

analysis of journaling file systems," in Dependable Systems and Networks, 2005.

DSN 2005. Proceedings. International Conference on, 2005, pp. 802-811.

[52] S. Ghemawat, H. Gobioff, and S.-T. Leung, "The Google File System," in

Proceedings of the nineteenth ACM symposium on Operating systems principles,

2003, pp. 29-43.

[53] M. Karlsson, C. Karamanolis, and X. Zhu, "Triage: Performance Differentiation for

Storage Systems Using Adaptive Control," ACM Transactions on Storage (TOS),

vol. 1, pp. 457-480, 2005.

[54] I. K. Georgiev and I. I. Georgiev, "An Information-Interconnectivity-Based

Retrieval Method for Network Attached Storage," in Proceedings of the 1st

conference on Computing frontiers, 2004, pp. 268-275.

[55] M. Andrews, M. A. Bender, and L. Zhang, "New algorithms for the disk scheduling

problem," in Proceedings of the 37th Annual Symposium on Foundations of

Computer Science, 1996, p. 550.

151

[56] D. T. Altilar and Y. Paker, "Optimal Scheduling Algorithms for Communication

Constrained Parallel Processing," in Proceedings of the 8th International Euro-Par

Conference on Parallel Processing, 2002, pp. 197-206.

[57] B. Hillyer, R. Rastogi, and A. Silverschatz, "Scheduling and Data Replication to

Improve Tape Jukebox Performance," in 15th International Conference on Data

Engineering (ICDE'99), 1999, p. 532.

[58] S. Prabhakar, D. Agrawal, and A. E. Abbadi, "Optimal Scheduling Algorithms for

Tertiary Storage," Distributed and Parallel Databases, vol. 14, pp. 255-282, 2003.

[59] C. Moon and H. Kang, "Heuristic Algorithms for I/0 Scheduling for Efficient

Retrieval of Large Objects from Tertiary Storage," in Proceedings of the 12th

Australasian conference on Database technologies, 2001, pp. 145-152.

[60] S. Prabhakar, D. Agrawal, A. E. Abbadi, and A. Singh, "Tertiary Storage: Current

Status and Future Trends," Dept. of Computer Science, Univ. of Calilfornia, Santa

Barbara1996.

[61] S. Prabhakar, D. Agrawal, A. E. Abbadi, and A. Singh, "A brief survey of tertiary

storage systems and research," in Proceedings of the 1997 ACM symposium on

Applied computing, 1997, pp. 155-157.

[62] B. Hillyer and A. Silberschatz, "Random I/O scheduling in online tertiary storage

systems," in Proceedings of the 1996 ACM SIGMOD international conference on

Management of data, 1996, pp. 195-204.

[63] T. Johnson and E. Miller, "Performance Measurements of Tertiary Storage

Devices," in Proceedings of the 24rd International Conference on Very Large Data

Bases, 1998, pp. 50-61.

[64] B. Liu, J. Li, L. Nie, and Y. Zhang, "Non-blocking Disk-Tape Join Algorithm for

Data on Tertiary Storage Systems," in Proceedings of the The Fifth International

Conference on Computer and Information Technology, 2005, pp. 58-64.

[65] S. Christodoulakis, P. Triantafillou, and F. Zioga, "Principles of Optimally Placing

Data in Tertiary Storage Libraries," in Proceedings of the 23rd International

Conference on Very Large Data Bases, 1997, pp. 236-245.

[66] A. Vakali and E. Terzi, "Multimedia Data Storage and Representation Issues on

Tertiary Storage Subsystems" An Overview," ACM SIGOPS Operating Systems

Review, vol. 35, pp. 61-77, 2001.

152

[67] J. No, R. Thakur, and A. Choudhary, "Integrating parallel file I/O and database

support for high-performance scientific data management," in Proceedings of the

2000 ACM/IEEE conference on Supercomputing, 2000, p. 57.

[68] S. Berson, S. Ghandeharizadeh, R. Muntz, and X. Ju, "Staggered striping in

multimedia information systems," in Proceedings of the 1994 ACM SIGMOD

international conference on Management of data, 1994, pp. 79-90.

[69] P. Triantafillou and T. Papadakis, "Continuous Data Block Placement in and

Elevation from Tertiary Storage in Hierarchical Storage Servers," Cluster

Computing, vol. 4, pp. 157-172, 2001.

[70] J. Wilkes, R. Gelding, C. Staelin, and T. Sullivan, "The HP AutoRAID hierarchical

storage system," ACM Transactions on Computer Systems (TOCS), vol. 24, pp.

108-136, 1996.

[71] K. Holtman, P. v. d. Stok, and I. Willers, "A cache filtering optimisation for queries

to massive datasets on tertiary storage," in Proceedings of the 2nd ACM

international workshop on Data warehousing and OLAP, 1999, pp. 94-100.

[72] E. Otoo, F. Olken, and A. Shoshani, "Disk cache replacement algorithm for storage

resource managers in data grids," in Proceedings of the 2002 ACM/IEEE

conference on Supercomputing, 2002, pp. 1-15.

[73] A. Shoshani, A. Sim, L. M. Bernardo, D. Rotem, and H. Nordberg,

"Multidimensional Indexing and Query Coordination for Tertiary Storage

Management," in Proceedings of the 11th International Conference on Scientific on

Scientific and Statistical Database Management, 1999, p. 214.

[74] A. Shoshani, A. Sim, L. M. Bernardo, and H. Nordberg, "Coordinating

Simultaneous Caching of File Bundles from Tertiary Storage," in Proceedings of

the 12th International Conference on Scientific and Statistical Database

Management (SSDBM'00), 2000, p. 196.

[75] G. A. Alvarez, et al., "MINERVA: An Automated Resource Provisioning Tool for

Large-Scale Storage Systems," ACM Transactions on Computer Systems (TOCS),

pp. 483-518, 2001.

[76] T. Kagimasa, K. Takahashi, and T. Mori, "Adaptive Storage Management for Very

Large Virtual/Real Storage Systems," in Proceedings of the 18th annual

international symposium on Computer architecture, 1991, pp. 372-379.

[77] H. Tang and T. Yang, "An Efficient Data Location Protocol for Self-organizing

Storage Clusters," in Proceedings of the 2003 ACM/IEEE conference on

Supercomputing, 2003, p. 53.

153

[78] C. Wu and R. Burns, "Tunable Randomization for Load Management in Shared-

Disk Clusters," ACM Transactions on Storage (TOS), pp. 108-131, 2005.

[79] H. Tang, et al., "A Self-Organizing Storage Cluster for Parallel Data-Intensive

Applications," in Proceedings of the 2004 ACM/IEEE conference on

Supercomputing, 2004, p. 52.

[80] S. S. Vazhkudai, et al., "FreeLoader: Scavenging Desktop Storage Resources for

Scientific Data," in Proceedings of the 2005 ACM/IEEE conference on

Supercomputing, 2005, p. 56.

[81] A. R. Butt, T. A. Johnson, Y. Zheng, and Y. C. Hu, "Kosha: A Peer-to-Peer

Enhancement for the Network File System," in Proceedings of the 2004 ACM/IEEE

conference on Supercomputing, 2004, p. 51.

[82] D. Colarelli and D. Grunwald, "Massive Arrays of Idle Disks For Storage

Archives," in Proceedings of the 2002 ACM/IEEE conference on Supercomputing,

2002, pp. 1-11.

[83] K. Hiraki, et al., "Data Reservoir: Utilization of Multi-Gigabit Backbone Network

for Data-Intensive Research," in Proceedings of the 2002 ACM/IEEE conference on

Supercomputing, 2002, pp. 1-9.

[84] E. K. Lee and C. A. Thekkath, "Petal: Distributed Virtual Disks," in Proceedings of

the seventh international conference on Architectural support for programming

languages and operating systems, 1996, pp. 84-92.

[85] W. H. Min, et al., "Dynamic Storage Resource Management Framework for the

Grid," in Proceedings of the 22nd IEEE / 13th NASA Goddard Conference on Mass

Storage Systems and Technologies (MSST'05), 2005, pp. 286-293.

[86] Y. Feng, Y.-y. Zhang, and R.-y. Jia, "EPYFQ: A Novel Scheduling Algorithm for

Performance Virtualization in Shared Storage Environment," in Proceedings of the

5th international workshop on Software and performance, 2005, pp. 263-264.

[87] A. Gulati and P. Varman, "Lexicographic QoS Scheduling for Parallel I/O," in

Proceedings of the 17th annual ACM symposium on Parallelism in algorithms and

architectures, 2005, pp. 29-38.

[88] L. Huang, G. Peng, and T. Chiueh, "MultiDimensional Storage Virtualization," in

Proceedings of the joint international conference on Measurement and modeling of

computer systems, 2004, pp. 14-24.

154

[89] C. R. Lumb, A. Merchant, and G. A. Alvarez, "Facade: virtual storage devices with

performance guarantees," in Proceedings of the 2nd USENIX Conference on File

and Storage Technologies, 2003, pp. 131-144.

[90] D. A. Ford and J. Myllymaki, "A Log-Structured Organization for Tertiary

Storage," in Proceedings of the Twelfth International Conference on Data

Engineering, 1996, pp. 20-27.

[91] M. Zhao, J. Zhang, and R. J. Figueiredo, "Distributed File System Virtualization

Techniques Supporting On-Demand Virtual Machine Environments for Grid

Computing," Cluster Computing, vol. 9, pp. 45-56, 2006.

[92] W. D. Norcott and D. Capps. (2011). IOzone Filesystem Benchmark. Available:

www.iozone.org

[93] N. Murray and N. Horman. (2004). Understanding virtual memory. Available:

http://www.redhat.com/magazine/001nov04/features/vm/

[94] J. Pommnitz. (2010). Kernel level exception handing in linux 2.1.8. Available:

http://www.mjmwired.net/kernel/Documentation/exception.txt

[95] J. Levon. (2009). Oprofile - a system profiler for linux. Available:

http://oprofile.sourceforge.net/

[96] B. Lu, et al., "A case study on grid performance modeling," in The 18th IASTED

International Conference on Parallel And Distributed Computing And Systems

(PDCS 2006), Dallas, Texas, USA, 2006.

[97] A. Traeger, E. Zadok, N. Joukov, and C. P. Wright, "A nine year study of file

system and storage benchmarking," Trans. Storage, vol. 4, pp. 1-56, 2008.

[98] N. Joukov, T. Wong, and E. Zadok, "Accurate and efficient replaying of file system

traces," in Proceedings of the 4th conference on USENIX Conference on File and

Storage Technologies - Volume 4, San Francisco, CA, 2005, pp. 25-25.

[99] J. Wu, P. Wyckoff, and P. Dhabaleswar, "PVFS over InfiniBand: design and

performance evaluation," in Parallel Processing, 2003. Proceedings. 2003

International Conference on, 2003, pp. 125-132.

[100] W. Jiseheng, P. Wyckoff, and D. Panda, "Supporting efficient noncontiguous

access in PVFS over Infiniband," in Cluster Computing, 2003. Proceedings. 2003

IEEE International Conference on, 2003, pp. 344-351.

[101] W. Jiesheng, P. Wyckoff, D. Panda, and R. Ross, "Unifier: unifying cache

management and communication buffer management for PVFS over InfiniBand,"

155

in Cluster Computing and the Grid, 2004. CCGrid 2004. IEEE International

Symposium on, 2004, pp. 523-530.

[102] R. E. Grant, P. Balaji, and A. Afsahi, "A study of hardware assisted IP over

InfiniBand and its impact on enterprise data center performance," in Performance

Analysis of Systems & Software (ISPASS), 2010 IEEE International Symposium on,

2010, pp. 144-153.

	University of Arkansas, Fayetteville
	ScholarWorks@UARK
	8-2011

	File System Simulation: Hierarchical Performance Measurement and Modeling
	Hai Quang Nguyen
	Recommended Citation

	tmp.1460566455.pdf.URkaJ

