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ABSTRACT 

 

File systems are very important components in a computer system. File system simulation 

can help to predict the performance of new system designs. It offers the advantages of the 

flexibility of modeling and the cost and time savings of utilizing simulation instead of full 

implementation. Being able to predict end-to-end file system performance against a pre-

defined workload can help system designers to make decisions that could affect their entire 

product line, involving several million dollars of investment.  

This dissertation presents detailed simulation-based performance models of the Linux ext3 

file system and the PVFS parallel file system. The models are developed using Colored 

Petri Nets. A performance study, using the models, shows that the obtained results are close 

to the expected behavior of the real file system. The model shows that file system 

parameters have significant impact on the performance of the I/O when compared to the 

parameters of the disk subsystem. 
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C h a p t e r  1  

INTRODUCTION 

This dissertation promotes simulation modeling, using Colored Petri Nets as a tool for the 

evaluation of file systems performance with different architectures, including local and 

parallel file systems. 

1.1 Problem definition 

Today‘s scientific data-intensive research applications place very high demands on 

storage systems in both performance and capacity [1, 2] with much attention paid to large-

scale resource sharing and allocation. Even though big and powerful mainframe systems 

are still being built and deployed, data-intensive clusters of computers utilizing cloud-

computing technology are growing at an impressive rate. Although storage systems are 

well-established research areas [3-5], modern storage system development still lags behind 

processor technologies. When comparing the latency before data are available and the 

bandwidth of data transferring with the data processing rate of state of the art data-intensive 

clusters utilizing the most current processor technology, storage systems cannot keep up. 

As a result, storage systems are often considered the bottlenecks of many data-intensive 

applications. In other words, the overall system performance is adversely affected by the 

time required for accessing data from secondary storage components. Many applications 

spend a significant amount of run time in I/O wait as opposed to actual processing, 

computing and transforming data. In order to meet the storage capacity and performance 

demands of these applications, storage research has pushed aggressively on multiple fronts. 
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High- performance magnetic disks have become so inexpensive that users are finding new, 

previously unaffordable uses for storage. Multi-tier storage systems have included more 

layers of different types of magnetic storage. This introduces even better transition with 

more granularities between the high, but expensive performance of solid-state storage and 

the low, but cheap performance of the tape library. As a consequence, operational 

personnel costs for storage management and performance tuning now dominate over 

capital costs of the equipment over its useful lifetime [6]. The utilization of cloud 

computing and the concept of resource-on-demand push the issues even further, causing the 

management of storage performance and capacity to become even more challenging. 

Because of the critical role of the storage system in overall system performance, 

choosing and integrating a storage component is usually a difficult challenge for a system 

designer. Typically, a storage configuration fits best with a certain type of application due 

to the I/O access pattern. Therefore, by choosing the right storage configuration, one can 

maximize the most important performance metrics for the targeted application. For 

example, scientific applications such as geospatial analysis and modeling, high density 

survey, and digital photogrammetry often use a sequential access pattern over very large 

data sets. This type of I/O pattern performs well with storage configurations using parallel 

or distributed file systems over highly redundant disk array subsystems. However, the same 

type of storage configuration will perform badly when utilized by business-reporting 

applications that randomly process a large quantity of medium or small files. Moreover, the 

whole system, once built, is so complex; it is not easy to make modifications or 

improvements to core components like storage systems. The consequence of a poor 
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decision could significantly increase the cost to operate and maintain the system throughout 

its lifetime. As a result, many techniques have been developed to assist with such decisions. 

At the laboratory bench, real system interactions can be studied utilizing prototype or test-

built systems. These experiments could provide accurate system behaviors and 

performances. However, a typical storage system used in a high performance data-intensive 

environment consists of many components, and they usually are not cheap. In addition to 

the initial investment, hardware deployment is time consuming as well. As a consequence, 

experiments with real hardware are sometimes not very attractive, even for big companies 

or research groups and especially when only proofs of concepts are needed. At the drawing 

board, analytical techniques or computer simulation models can be used in conjunction 

with models of different workloads to evaluate the expected consequences of a proposed 

device. Under this technique, the system is simulated in enough detail to evaluate the 

performance and behavioral response of the storage system. This technique offers the dual 

advantage that any or all of the individual system components can be speculative and 

hypothetical; in addition to looking at next year‘s storage device, components such as the 

processors and memory can be scaled up according to expected trends to simulate the 

overall system that will be available next year. Unfortunately, substantial effort is required 

to build and maintain a complete machine simulator, both in terms of correctly executing 

programs and correctly accounting for time. Additionally, such simulators usually run 

much slower than real systems, which limit the overall scope of what architectural designs 

can be considered. Among several storage architectures, the three most common ones are 

Direct-Attached Storage (DAS), Network-Attached Storage (NAS), and Storage Area 
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Networks (SANs). These storage architectures prove to be able to provide a shared, 

adaptable, and high-performance storage system for data-intensive applications. The 

performance of each of these classes of storage architectures has a strong impact on the 

overall performance of the system. An accurate, well-developed simulation modeling 

environment could allow researchers to fine tune both the performance and the workload of 

network storage architecture. 

Perhaps more so than in the past, now is a particularly pertinent time for needing this 

sort of evaluation technology. The gap between high-end and low-end storage hardware is 

significant enough to make system designers rethink their design strategy toward 

application-specific storage. Large and non-critical data sets will be put on consumer-

grade, low-cost, high-capacity storages while small but very fast, high-end multi-disk 

arrays will be used for mission critical and database operations. Both product divisions are 

areas in which the performance implications and the impact of new system configurations 

of file systems and storage devices could be readily examined under file system simulation 

models.  

1.2 Thesis statement 

Current approaches to storage system evaluation using hardware are limited in that 

they are expensive and usually take time to deploy. In order to sufficiently perform system-

level evaluation of system designs or architectural decisions, system designers need to 

consider both budgets and timelines, which proves to be quite a challenge. In response to 

these limitations, this dissertation advocates that simulation models for file systems are 
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feasible and enable end-to-end performance experimentation while supporting both local 

file systems as well as parallel file systems.  

1.3 Contributions of this dissertation 

This dissertation advances four primary contributions: 

1. It presents and validates the model of file system simulation for both local file 

systems and parallel file systems. 

2. It demonstrates the feasibility of file system simulation in the context of end-to-end 

complex system performance evaluation. 

3. It describes a general architecture for a file system simulation model and 

mechanisms for making it flexible enough to simulate an existing complex parallel 

file system. The architecture can also be used as a framework to develop other local 

file systems and parallel file systems. 

4. It details concrete examples of the use of storage and file system simulation for 

explorations of system configurations and functionalities. 

1.4 Overview of this dissertation 

The text of this dissertation is presented in three conceptual parts, corresponding 

roughly to background and motivations, the local file system simulation model, and the 

parallel file system simulation model. 

Chapter 2 discusses the background of the modern storage subsystem, storage 

improvement in general, and the role of file system in overall system-level evaluations.  
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Chapter 3 presents measurement studies of the local file system candidate—the third 

extended file system, or ext3—as well as the parallel study candidate—the parallel virtual 

file system, or PVFS. 

Chapter 4 and Chapter 5 discuss the design and implementation of a simulation model 

for the ext3 file system and the performance evaluation of that system using the model. 

Chapter 6 and Chapter 7 discuss the design and implementation of a simulation model 

for the PVFS file system and the performance studies of that system using the model. 

Chapter 8 concludes by looking to the future of file system simulation.  

1.4.1 File system simulation in system-level evaluation 

The file system is a very important component in a computer system, yet file system 

simulation is rarely used for performance evaluation of new system designs. We argue for 

more frequent use, noting that file system simulation offers significant advantages: the 

flexibility of simulation and the cost and time savings when utilizing simulation.  

The applications for a file system simulation model are many. End-to-end file system 

performance measurement for existing workload is one example of such applications. 

Modern scientific and business applications could be divided into multiple categories; each 

has every specific type of workload. While a system designer could certainly use one type 

of file system for all of his or her applications and customers, the performance results are 

usually not adequate. This is particularly true when network file systems are involved. 

There are many commercial network file systems as well as open-source ones. They are all 

designed to support a broad range of applications; however, each of them has certain 

strengths and weaknesses. Being able to measure end-to-end file system performances 
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against pre-defined workloads could help system designers to make decisions that could 

affect their entire product line and be worth several million dollars of investment. 

Another application for a file system simulation model is bottle-neck analysis. In a 

complex high-performance parallel file system, identifying where the bottle-necks are that 

need to be upgraded or expanded could be very difficult. Components in such a system 

could be well integrated into the whole system and very hard and expensive to upgrade. It 

is in a system designer‘s best interest to identify the correct bottle-necks of the system to 

upgrade. File system simulation models could be used to analyze the I/O flow and identify 

bottle-necks. It could also be used for ‗what-if‘ type of provisioning analysis. 

1.4.2 Modeling using Colored Petri Nets 

K. Jensen proposed an extended version of classical Petri Net called Colored Petri Net 

[7]. Colored Petri Net, or CPN, is a graphical-oriented language for design, specification, 

simulation and verification of systems. This language is particularly well suited to 

illustrating and simulating systems in which communication, synchronization between 

components, and resource sharing are primary concerns [8]. This offers a flexible 

framework that is well adapted for the analysis of I/O flow performance. CPNTools [9] is 

utilized for simulation and analysis. 

In addition to places, transitions and tokens, the concepts of colors, guards and 

expressions are introduced, so that computed data values can be carried by the tokens. For 

simplicity, the color of a token can be described as a data type. It defines the types of data 

that can be carried by tokens. Each place in the net is also assigned a data type, and can 
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only hold tokens of its assigned type. For example, Figure 1 presents a place of type 

integer. This place contains an initial token with a value of 1.  

 

Figure 1: Integer type place 

Each arc in the net is also assigned an expression that evaluates to a certain data type. 

The data type of the arc must match the color set of the place attached to the arc. For 

example, Figure 2 presents an arc connected to a place with integer type. The arc has an 

expression that is an integer variable named i. 

 

Figure 2: Arc with integer variable 

A transition in the net has similar functionality to a subroutine in a program. Incoming 

arcs define input parameters to the transition. Outgoing arcs are results from the transition. 

A transition can have a guard which is a Boolean expression. Guards are used for testing 

the input arcs enabling conditions or restrictions. A transition can also have a code 

segment. Code segments are executed when tokens go through the transitions. Figure 3 

presents a transition with a guard and a code segment. The guard restricts the value of the 

input tokens to less than 10. The code segments produce two output results. One is equal to 

the input plus 1. The other is equal to the input plus 2. 

INT

1

1 1`1

INT

1
i

1 1`1
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Figure 3: Transition in a Colored Petri Net 

These concepts prove to be incredibly powerful since tokens can now carry 

information that is simple or complex. This feature is used extensively to carry time stamps 

with tokens flowing within the simulation model. 

1.4.3 Design of a simulation model for local file systems 

Linux, as an open-source operating system, offers a very flexible system that supports 

a large number of file systems, including journaling file systems, clustering file systems, 

and cryptographic file systems. The architecture for a file system under Linux was 

designed with an abstract layer to support a large variety of file systems on a large variety 

of storage devices. The application, when using the abstract layer function, is completely 

unaware of the true file system types or the storage medium. In this clean and well-

designed layer system, an upper component often hides the details of the lower components 

and presents more unified and simpler information to the layer above it. The ext3 file 

system has been chosen to be the study candidate for this simulation model. Ext3 is a 

standard file system on every Linux distribution. It was released and officially supported by 
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Red Hat since 2001 [10]. Ext4, the successor of ext3, was introduced into Red Hat 

Enterprise Linux very recently as a technology review. It takes time for industry to adopt 

and migrate to a new file system. For the time being and in the near future, ext3 will 

continue to be deployed and utilized in industrial settings. 

The model provides simulation implementations for most components in the ext3 file 

system, such as data pre-fetching, buffer cache, and data journaling. Components are 

designed to follow the implementation in Linux closely to preserve the performance 

characteristics of the file system. The simulation model is organized into two main I/O 

operations: data reading and data writing. Since the Linux abstract layer hides the details of 

the lower components, instead of having to model the lower hardware layer of storage 

devices in detail, the model uses a more simple queuing approach. Without going into the 

device drivers level, a direct attach disk drive is similar to a SAN storage array. This design 

helps the simulation model to be more flexible and to support multiple types of storage 

devices.  

The ext3 file system simulation model is validated using different types of workload to 

make sure the model behaves similarly to the real file system under different situations. A 

synthetic workload, such as a sequential I/O access pattern and a random I/O access 

pattern, is generated and used in both the simulation model and the real system. In addition 

to the synthetic workload, I/O traces are collected from production systems and used to 

study the behavior of the simulation model under real-world situations. 



 

11 

1.4.4 Design of a simulation model for parallel file systems 

While local file systems play a very important role in a modern datacenter, scientific 

and business applications put forth many challenges to computer system designers. Two 

pinnacles of those challenges are processing power and storage capacity. Parallel file 

systems are being developed to fill the gap between data accessing speed from secondary 

storage and the processing speed of a high-performance cluster. 

Parallel file systems bring many advanced features to high-performance computing. 

Two major ones are providing unified name space across multiple machines (or nodes) and 

providing parallel accessing to storage devices. These two characteristics create a many-to-

many relationship between high-performance clusters and storage devices, enabling high 

enough I/O throughput to satisfy state-of-the-art clusters. These characteristics, however, 

also bring another important component into file system architecture—the network. To 

implement a simulation model for a parallel file system, an end-to-end performance model 

of the network is developed.  

There are many existing parallel file systems. Each of them has a different approach to 

how data and metadata are managed and allocated.  The Parallel Virtual File System, or 

PVFS, is a powerful open-source parallel file system. It has been well received by both the 

academic and industrial worlds. Although there are other commercial parallel file systems 

on the market, their closed, proprietary source code becomes a significant challenge to the 

development of a simulation model. PVFS has been chosen to be the study candidate for 

the parallel file system simulation model. The architecture of the file system is presented in 

Figure 4. 
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At a basic level, PVFS uses the standard Linux ext3 file system as its foundation. By 

utilizing multiple ext3 file systems working in parallel with completely separate metadata 

operations, PVFS can achieve massive data bandwidth. These ext3 file systems are located 

on several I/O server machines. Each individual ext3 file system is governed by a PVFS 

I/O daemon. Many daemons could be stacked on a single physical machine to increase the 

size of the PVFS file system, thus lessening the number of physical machines required.  

 

Figure 4: PVFS file system architecture 

Similar to the ext3 file system model, the simulation model for PVFS is also divided into 

data reading operations and data writing operations. Each operation consists of three major 

parts: the client, the network interconnection, and the server. Components are designed to 

follow the implementation of the actual PVFS closely to preserve the performance 

characteristics of the file system. When a file system access request from an application 

arrives at the PVFS client, it will be divided into multiple small chunks of data of a certain 
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size and distributed round-robin fashion into different payloads. The number of payloads is 

equal to the number of I/O daemon (IOD) of the PVFS file system. These payloads are 

delivered to the I/O daemons over the network using the network model. Each I/O daemon 

processes the payload requests and responds back to the PVFS clients individually. The I/O 

daemon storage device is simulated using the ext3 simulation model.  

1.5 Summary 

File system simulation offers the opportunity to investigate novel uses of different types of 

file systems and, to some degree, different storage subsystems in computer systems. This 

permits forays into the space of hypothetical system configurations without the difficulties 

of developing and supporting extensively prototype systems only for evaluation purposes. 

This dissertation demonstrates that there is a current and pressing need for a file system 

evaluation technique.  It also emphasizes that it is feasible to design and construct a file 

system simulator and to use a simulation model for interesting systems-level performance 

experimentations. The file system performance model is divided into a local file system 

model and a parallel file system model. For the local file system model, ext3 is the study 

candidate. For the parallel file system model, PVFS is the study candidate. The 

performance model is developed using a Colored Petri Nets modeling method and is 

implemented using CPN-Tools. A resource model for the interconnection network is also 

developed. To evaluate both the local file system model and the parallel file system model, 

end-to-end performance validation is performed using different types of workload, 

including synthetic workload and I/O traces collected from production systems. 
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C h a p t e r  2  

BACKGROUND AND LITERATURE 

2.1 Introduction 

This chapter presents the background study of related work. Research in the storage 

simulation and modeling areas is examined. Work in other areas of storage development, 

such as general storage technology, multi-tier storage, and virtual storage, are also studied 

to have a thorough understanding while implementing storage component models. 

2.2 Related work 

This section is organized into three main areas. The first area surveys published models 

that capture the behavior and performance of storage devices. The second area surveys 

published network modeling studies. The last area examines developments in storage and 

file system technologies, the knowledge of which is essential when designing storage 

component models.  

2.2.1 Storage modeling and simulation surveys 

Much work has gone into the development of storage device models. This section 

presents major published studies and provides a better understanding of storage modeling 

research. It also presents methods and techniques have been used to model storage devices. 

Among recent storage modeling research, DiskSim, which has been made publicly 

available to the research community, is one of the best-known disk simulation systems. 

Described by J.S. Bucy and G.R. Ganger [11], Disksim was developed to support research 

on several aspects of the storage subsystem architecture. By providing modules that 
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simulate disks, intermediate controllers, buses, device drivers, request schedulers, disk 

block caches, and disk array data organization, Disksim is an efficient, accurate, and highly 

configurable disk system simulator that can simulate modern disk drives in great detail and 

has been validated against production disks with high accuracy. DiskSim has also been 

utilized in many subsequent studies as a foundation.  

J.L. Griffin et al. [12] describe a prototype called the Memulator that appears to the 

system to be a real storage component with service times similar to the component it is 

simulating. This prototype produces service times within 2% of those computed by its 

component simulator for over 99% of requests. Memulator was used for performance 

measurements on a modern Linux system equipped with a micro-electro-mechanical 

system (MEMS)-based storage device and a modern Linux system equipped with a disk 

whose firmware had been modified. Griffin also uses timing-accurate storage emulation to 

experiment with nonexistent storage components to explore the interactions between 

modified computer systems and expanded storage device functionality, and to study 

storage-based intrusion detection systems [13]. He demonstrates the incorporation of 

intrusion detection capabilities into processing-enhanced disk drives. 

Maghraoui et al. [14] presents a method of modeling a Flash device and building a Flash 

simulator. The authors capitalize on the throughput behavior of the Flash disk with no 

rotary components and develop a linear model for the Flash device. Benchmarks results 

show the throughput of the simulation model is within 7% error range compared to a real 

Flash disk. The authors also argue that one can simulate Flash-based solid-state drives 
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(SSDs) without having to simulate every minor detail and internal organization of a Flash 

device. 

Wang and Kaeli [15] offer ParIOSim, a validated execution-driven simulator for 

network storage systems. Their simulator provides a flexible simulation environment for 

performing storage optimizations. This simulator can also be used to accurately predict the 

performance of parallel I/O applications as a function of the underlying storage 

architecture. They compared the performance of ParIOsim with the performance of an 

actual parallel system to demonstrate the accuracy of the tool and provided results from 

running a parallel I/O benchmark application over different storage architectures. 

To understand and optimize database performance, a good model of the storage 

structure is needed. This is a difficult task because the fundamental role of conceptual-to-

internal mapping in database management system (DBMS) implementations previously 

went unrecognized. Batory [16] presents a model of physical databases, called the 

transformation model, that makes conceptual-to-internal mappings explicit. The author 

shows that by exposing such mappings, it is possible to model the storage architectures 

(i.e., the storage structures and mappings) of many commercial DBMSs in a precise, 

systematic, and comprehendible way. The transformation model also helps bridge the gap 

between physical database theory and practice. The author further believes that the model 

also reveals the possibility of a technology to automate the development of physical 

database software.  

Gomaa [17] introduces a hybrid modeling technique that combined two different 

modeling techniques, regression and simulation, to model virtual storage computer 
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systems. This technique uses simulation to model in detail a task‘s arrival, its entering and 

dropping from the multiprogramming set, and its termination. The regression techniques 

are used to model the rest of the system in much less detail. The authors also describe the 

application of the method to model an IBM VM/370 system.  

Coffman and Reiman [18] present a model of the storage resource. It is a basic model of 

the space-time requirements of jobs in a computer system and a number of its variations 

analyzed by means of diffusion approximations. Using the usual heavy-traffic assumptions, 

the result of their analysis allows the effects of limitation on both storage capacity and 

processing rates to be quantified.  

Jacobson and Lazowska [19] offer an approximate solution technique for queueing 

network models that includes the simultaneous or overlapped possession of resources. This 

issue arises in many computer system contexts and has a significant effect on system 

performance. The key idea behind this method is to partition queuing delay according to 

which of the simultaneous help resources is responsible. This approach provides a unified, 

practical treatment of a diverse set of problems.  

In large multimedia document archives, a major fraction of data may be stored in a 

tertiary storage library to reduce cost. Kraiss and Weikum [20] present an integrated 

approach to the vertical data migration between the tertiary, secondary, and primary 

storage. To predict the expected number of accesses to a document within a specified time 

horizon, the integrated migration policy is based on a continuous-time Markov-chain 

model. The parameters of this model, the probabilities of co-accessing certain documents, 

and the interaction times between successive accesses are dynamically estimated and 
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adjusted to evolving workload patterns by keeping online statistics.  The authors discuss a 

prototype system, which uses the integrated policy for vertical data migration. The 

Markov-chain model is also being used in the system for the scheduling of volume 

exchanges in the tertiary storage library. The authors also present initial results using 

simulation experiments with Web-server-like synthetic workloads. The results show 

significant gains in terms of client-response time. The experiments also show that the 

overhead of the statistical bookkeeping and the computations for the access predictions is 

affordable. 

Network-attached storage devices improve I/O performance by separating control and 

data paths and eliminating host intervention during data transfer. Devices are attached to a 

high-speed network for data transfer and to a slower network for control messages. 

Hierarchical mass storage systems use disks to cache the most recently used files and tapes 

(robotic and manually mounted) to store the bulk of the files in the file system. Menasce, 

Pentakalos, and Yesha [21] explain how queuing network models can be used to assess the 

performance of hierarchical mass storage systems that use network-attached storage 

devices. The analytic model, validated through simulation, is used to analyze many 

different scenarios. 

Zhaobin et al. [22] show that Stochastic Petri Net (SPN) models can be used to analyze 

the performance of hybrid I/O Data Grid storage systems. The authors discuss their 

implementation of a typical storage system SPN modeling. Based on aggregate I/O, they 

also simplify the complexity of the model. From case studies, it is shown that the priority 
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schedule can be adjusted by changing the ratio of file I/O and multimedia I/O. Their work 

can be used to study complex and irregular I/O patterns of Data Grids applications. 

Molero et al. [23] present the model and design of a very flexible and easy to use SAN 

simulator. They also discuss the basic modeling mechanisms, the main input parameters, 

and the output performance variables of the simulator. The tool can use both real-world I/O 

traces and synthetic I/O traffic, messages, faults in links and switches, virtual channels, 

different routing algorithms, etc. The authors reveal the preliminary simulation results of 

using I/O traces. They show that the storage network increases self-similarity of the traffic 

received by servers. A different model for SAN devices is presented by Routrey et al. [24]. 

The tool can be used to simulate many different management modules, including large 

scale multi-vendor heterogeneous SAN for enterprise. Moreover, the simulation model can 

also be used for what-if analysis of an enterprise information technology (IT) environment 

before any changes. Instead of developing separate tools, Staley et al. [25] use Optimized 

Network Engineering Tools (OPNET) as a discrete event simulator  to model and simulate 

Fibre Channel-based SAN devices. The model is utilized to determine the scaling and 

stability issues of a large fabric as the size of the storage area network grows. The authors 

also present preliminary simulations. Focusing on the performance of I/O interaction of 

host servers and storage subsystems via the SAN fabric in a storage area network, 

Aizikowitz et al. offer a study using performance modeling [26]. The work describes a 

component-based simulation performance model, which supports a rich variety of both 

existing and future storage subsystems. It allows some basic network configurations and 

addresses many major I/O aspects of the server operating system. The simulation model 
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has many flexible features, such as easy parameter modifications, configuration 

adjustments, architecture manipulations, and experimentation.   

The fully distributed nature of peer-to-peer storage architecture allows it to have many 

interesting features, such as global scalability, self-configuration, dynamic adaptation, fault 

tolerance and anonymity. Hung-Chang et al. [27] study the memory architecture of the 

peer-to-peer storage systems, especially the effects of caches and directories on their 

performance. The authors describe an abstract model, called the distributed shared memory 

(DSM) model. It is used to capture the essence of the peer-to-peer storage architecture from 

the memory perspective. The performance of three peer-to-peer storage system models 

under different memory pressures, network sizes, and failure degrees is evaluated via 

simulation. 

DeRosa et al. describe the design and implementation of Vesper, an instructional disk 

drive simulator with a high degree of performance realism [28]. While providing timing 

statistics close to that of real disk drives, the simulator can still retain its simplicity. The 

authors present their method to provide hardware abstractions that are simple, yet capable 

of capturing device interactions with major performance impacts. Users of the simulator 

can explore the performance consequences of various system designs without the 

cumbersome aspects of the real hardware interface.  

Ali et al. [29] offer the design and development of  a modeling and simulation prototype 

for the final assembly of hard disk drives with dynamic and static behavior. The prototype 

can develop intelligent dynamic machine knowledge. It can also capture dynamic activities 

with fuzzy systems. The model is highly flexible, fast and capable of self-development. It 
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can help improve the system performance significantly. The authors show that modeling 

and simulation tools can be used to implement and integrate highly-automated systems for 

industrial processes.  

2.2.2 Network modeling and simulation surveys 

Network modeling is a very large area of research. However, since the network 

components are essential components of the parallel file system models, it is important to 

understand network modeling. Due to the amount of research that has been done in this 

area, only a selection of studies that are closely related to designing the network component 

is examined. The similarity between modeling network within parallel file systems and 

modeling network within full-system simulation environments suggests that a good 

understanding of this area will be very beneficial. The full-system simulation environment 

provides complex interactions between applications and systems. However, the simulation 

durations are usually very short and require fast simulation turnaround time. Several papers 

address and develop methods to overcome this problem while ensuring representative 

results [30-32]. Standard network tools are used to extract simplified models that are 

statistically validated and, at the same time, compatible with a full-system simulation 

environment. Different models are proposed with different accuracy-versus-speed ratios 

that compute network latency times according to the estimated traffic and measure those 

times on a real-world parallel scientific application. 

While well-known packet-based simulators, such as ns-2, still play an important role in 

network simulation, the more recently-proposed hybrid systems model for data 

communication networks shows promise in achieving performance characteristics 
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comparable to fluid models while retaining the accuracy of discrete models. The key to this 

method is that the averaging occurs over short time intervals to continuously approximate 

discrete variables, such as congestion window and queue size. Therefore, discrete events, 

such as the occurrence of a drop and the consequent reaction by congestion control, can 

still be captured [33, 34]. This modeling framework, thus, fills a gap between purely 

packet-level and purely fluid-based models. Observations show, in networks with large per-

flow bandwidths, simulations using hybrid models require significantly less computational 

resources than ns-2 simulations. 

Also using the hybrid systems paradigm, Kavimandan et al. [35] present several models 

of Transmission Control Protocol (TCP) behavior and the analysis/simulation of data 

communication networks based on these models. An important distinguishing feature of 

this study is a faithful accounting of link propagation delays which have been ignored in 

previous work for the sake of simplicity. The simulation results are consistent with well-

known packet-based simulators such as ns-2, thus demonstrating the accuracy of the hybrid 

model. 

The hybrid network model can also allow flows to interact with fluid flows within each 

network queue as Liu et al. note [36].  Therefore, it is possible to dynamically change the 

composition of traffic flows to allow the simulation to keep up with real time. Experiment 

results in the paper show that the model provides a good prediction of the network 

behavior. Parallel processing methods can also be used to improve performance when 

simulating large-scale networks [37]. Liu et al. demonstrate the benefit of the parallel 
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hybrid model through a series of simulation experiments of a large-scale network, 

consisting of over 170,000 hosts and 1.6 million traffic flows on a small parallel cluster. 

Verdickt et al. [38] propose a framework that allows modeling of both the software and 

the network components separately, using the modeling languages and tools most suited to 

those system aspects. The framework can produce a single set of performance evaluations 

for the entire system. The key benefit of the model is that it helps in evaluating the network 

latency and its relation to the application behavior when assessing the performance of a 

distributed system. The authors also offer a case study to illustrate the use of the framework 

and its efficacy in predicting system performance. 

Yu et al. [39] present an approximate scheme to model and analyze switch networks 

with phase-type and bursty traffic, and they describe a traffic aggregation technique to deal 

with such traffic, including splitting and merging. To aggregate bursty traffic, the paper 

suggests a closed-form solution for two bursty traffics and a recursive algorithm derived in 

terms of the buffer size and number of inputs of a switch for more bursty traffics. The 

numerical and simulation results in the paper show that the proposed scheme achieves 

satisfactory accuracy and computational efficiency. 

Kassa et al. [40] offer a simple, fast, and detailed analytical model of the TCP, which is 

the dominant transport protocol for the end-to-end control of information transfer. The 

model assumes that only basic network parameters, such as the network topology, the 

number of TCP connections for large file transfers, link capacity, distance between network 

nodes, and router buffer sizes, are known. The paper presents performance metrics obtained 

by using TCP and network sub-models and solving them, using a fixed-point algorithm. 
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Comparing against ns-2 simulations, the results show that the model is accurate, simple and 

computationally efficient. Therefore, the model can rapidly analyze network topologies 

with several bottlenecks and obtain detailed performance metrics.  

2.2.3 Storage technology surveys 

To accurately develop and implement storage simulation components, in addition to 

storage and network modeling research, other storage technology areas also need to be 

studied.  

2.2.3.1 Buffer cache and pre-fetching research 

In the operating-system kernel, buffer cache is a major component that directly affects 

I/O performance. Buffer caches are commonly used to reduce the number of slow disk 

accesses or network messages. An accurately-designed buffer cache is a vital component of 

a file system simulation model. In order to improve the performance of I/O processing, a 

buffer cache should be managed with regard to both blocks and files. However, it is 

difficult to keep track of both blocks and files together since they are on different levels of 

the file system pipeline. Katakami et al. [41] propose an I/O buffer cache mechanism based 

on the frequency of file usage. This mechanism calculates the importance of each file. Then 

blocks of important files are stored in a protected space and given priority for caching. This 

mechanism provides an interesting replacement policy for the buffer cache. Other 

researchers also pay much attention to the hierarchy and replacement policy of the buffer 

cache [42, 43]. They focus on improving overall buffer cache efficiency and investigating 

multiple approaches to effectively managing multi-level buffer caches.  
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Spatial locality of cached blocks in the buffer cache is also looked at by researchers [44, 

45].  The authors argue that spatial locality of cached blocks is largely ignored, and only 

temporal locality is considered in current system buffer cache management. Thus, disk 

performance for workloads without dominant sequential accesses can be seriously 

degraded. A method that exploits both temporal and spatial localities in the buffer cache 

management is proposed. The placement scheme significantly increases the effectiveness 

of I/O scheduling and pre-fetching for disk performance improvements. In addition to 

localities, the effect of pre-fetching is also studied. Despite the well-known interactions 

between pre-fetching and caching, almost all buffer cache replacement algorithms have 

been proposed and studied comparatively, without taking into account file system pre-

fetching, which exists in all modern operating systems. Several works [46-48] show that 

pre-fetching can have a significant impact on the relative performance. These results 

demonstrate the importance of buffer caching research taking file system pre-fetching into 

consideration and comparing the actual disk I/Os and the execution time under different 

replacement algorithms. Pre-fetch throttling and data pinning schemes are also proposed to 

improve performance of I/O pre-fetching. The impact of compiler-directed I/O pre-fetching 

is also studied. A profiler and compiler-assisted adaptive I/O pre-fetching scheme targeting 

shared storage caches is proposed and experimentally evaluated. A slightly different 

approach is proposed by Subha et al. [49]. The buffer cache is divided into two units, the 

main cache unit and the pre-fetch unit. The sizes of both of the units are fixed. The total 

sizes of both of the units are a constant. Blocks are fetched in a one-block look-ahead pre-

fetch principle. The block placement and replacement policies are defined. The 
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replacement strategy depends on the most recently-accessed block and the defined miss 

counts of the blocks.  

2.2.3.2 File system journal research 

Journaling systems are used as temporary spaces to store changes to the file systems 

before they are written to disks. The journal mechanism reduces the amount of lost 

information and protects the integrity of the file systems in case of failure. It is a major 

component of a file system and can directly affect I/O performance. There are many 

journaling systems available. They have different sets of features and advantages. 

Prabhakaran et al. [50] analyze major journaling systems and their evolution, including 

Linux ext3, ReiserFS, Journal File System (JFS), and Windows New Technology File 

System (NTFS); in the process, they uncover many strengths and weaknesses of these 

journaling file systems. This paper illustrates in great detail the characteristics of the Linux 

ext3 journaling system. 

Since different journaling file systems react differently when disasters happen, it is 

important to determine the reliabilities of them under critical conditions. Vijayan et al. 

propose a novel method to measure the robustness of journaling file systems under disk 

write failures [51]. The authors build models of how journaling file systems order disk 

writes under different journaling modes and use these models to inject write failures during 

file system updates. They apply their technique to the three important Linux journaling file 

systems: ext3, ReiserFS, and IBM JFS. 
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2.2.3.3 I/O workload research 

In data intensive operations, workload characteristics are very important. Ensuring 

performance isolation and differentiating among workloads that share a storage 

infrastructure are basic requirements in consolidated data centers. Existing management 

tools rely on resource provisioning to meet performance goals; they require detailed 

knowledge of the system characteristics and the workloads. Provisioning is inherently slow 

to react to system and workload dynamics and, in the general case, it is not practical to 

provision for the worst case. 

Ghemawat, Gobioff, and Leung [52] present an approach to designing a file system by 

optimizing the file system toward a specific application workload and the system‘s 

technological environment. The Google file system has constant monitoring, error 

detection, fault tolerance, and automatic recovery. The file system was also designed to 

support files with very large size and to optimize appending file operations. It is widely 

deployed within Google as the storage platform for the generation and processing of data.  

With a slightly different approach that is applicable to a wide range of storage systems 

and makes no assumptions about workload characteristics, Karlsson, Karamanolis, and Zhu 

[53] propose a software-only solution that ensures predictable performance for storage 

access. The authors use an online feedback loop with an adaptive controller that throttles 

storage access requests to ensure that the available system throughput is shared among 

workloads, according to their performance goals and their relative importance. 

Iliya K. Georgiev and Ivo I. Georgiev [54] offer a method to reduce storage latency by 

taking advantage of the relative interconnectivity between data objects. The authors follow 
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the locality-of-reference principle to partition interrelated data objects on close disk areas 

or network storage nodes. There are two primary parts of the study: a clustering algorithm 

that groups related objects together and a read-ahead group-caching algorithm, which will 

use the result of the first algorithm. Data objects that are associated together are clustered in 

the same group and can be read from disk and cached together. The proposed clustering 

and cache algorithms do not use floating point, allowing direct and fast implementation on 

a variety of disk controllers.  

2.2.3.4 I/O scheduling research 

Despite the many technological improvements that have been made, disk speed still lags 

behind when compared to processor and memory speed. Disk-scheduling algorithms have, 

for the most part, been experimental in the past. To help lessen this performance 

bottleneck, Andrews, Bender, and Zhang [55] propose a disk-scheduling algorithm that 

appears to give higher throughput than previously existing head-scheduling algorithms. The 

authors state that their goal is to schedule the disk head, so that it services all the requests in 

the shortest time possible using a 3/2-approximation algorithm. They consider a special 

case in which the disk-scheduling problem is related to the special case of the asymmetric 

traveling-salesman problem. In this particular case, optimal tour could be found in 

polynomial time and could be approximate for the disk-scheduling problem.  

Periodic real-time I/O scheduling for continuous data streams and the effect of 

scheduling on communication performance are investigated by Altilar and Paker [56] who 

examine periodic real-time scheduling, assuming that the application is communication 

constrained where input and output data sizes are not equal. 
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Since I/O scheduling helps improve performance between data resources operating at 

different speeds, it stands to reason that I/O scheduling research can provide good solutions 

for tape systems. Much work has been done in this area [57-59]. New scheduling 

algorithms and schemes for the replacement and replication of hot data are developed and 

provide improvements over a wide variety of workload characteristics. The issues of 

scheduling across multiple tapes or disks, instead of only one or two media, are also 

investigated. An efficient algorithm for single-drive libraries that produce optimal 

schedules is developed. The scheduling problem for multiple drives is shown to be NP-

complete, and an efficient and effective heuristic algorithm is used. The performance 

characteristic of tertiary storage is also considered with respect to efficient retrieval of data 

stored in tertiary storage devices with multiple platters. I/O scheduling algorithms use 

different heuristic methods for scheduling to reduce the latency involved in retrieving data. 

2.2.3.5 Tertiary storage and hierarchy storage research 

Tertiary storage has become more and more popular despite the fact that tape library is a 

very old technology. The rapid development of online applications results in increasing on-

line access to massive amounts of data. Advanced database applications are also reaching 

the limit for a disk storage system in terms of both cost and scalability. Large-scale storage 

systems, using only magnetic disks with their high cost and low storage density, can be 

impractical or too costly for many applications. Cheaper and denser tertiary storage 

systems are being integrated into the storage hierarchies of applications. Applications 

utilizing tertiary storage include multimedia databases, data warehouses, scientific 

databases, and digital libraries. Much research has been done by the database research 
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community to optimize the performance of tertiary storage. A major part of a tertiary 

storage system is tape libraries that have unusual performance characteristics. Although the 

system could archive at a very high transfer rate, the access latencies can reach several 

minutes. The trend of tertiary storage is presented in detail one report [60, 61] which 

summarizes the current state of the art in tertiary storage systems. Their analysis of product 

data indicates that in contrast to disk technology, tertiary storage products have significant 

variability in terms of data transfer rates as well as other performance figures. With the new 

technology, tape storage is two orders of magnitude more efficient than disk in terms of 

cost per terabyte and physical volume per terabyte. This certainly is very attractive for the 

development of databases with very large volumes of data. A system that seamlessly 

combines both disk storage and tape storage would be of great value. However, the biggest 

problem with tape storage is that the random access latency of tape is three to four orders of 

magnitude slower than disk. Thus, this problem of access latency has to be resolved before 

a system of online tape bulk storage could be utilized. Many studies have been done to find 

a solution to this problem [62-64]. Detailed measurement of tertiary storage systems, which 

included several tape drives and robotic storage libraries, such as Digital Linear Tape 

(DLT) 4000, DLT 7000, Ampex 310, IBM 3590, 4mm Digital Audio Tape (DAT), and the 

Sony Digital Tape Format (DTF) drive are presented. This mixture of equipment includes 

high and low performance drives, serpentine and helical scan drives, and cartridge and 

cassette tapes, and gives a big picture of different aspects of tertiary storage systems, 

providing a better understanding of issues related to utilizing tertiary storage. Algorithms to 

reduce the latency are presented. The results show that the algorithms could improve the 
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latency of random access to tape significantly. A disk-tape join algorithm is also discussed. 

The algorithm has three phases: hashing, merging, and probing. Each phase is designed, so 

that join results can be produced. The authors show that the algorithm is very efficient.  

A different approach to the problem that uses optimal data placement strategies is also 

examined [65, 66]. Traditionally, this approach is used for disks and disk arrays. Tertiary 

libraries have been neglected, even though tertiary storage remains three orders of 

magnitude slower than secondary storage. This issue is addressed by deriving an optimal 

placement algorithm for disk libraries and tape libraries. The authors also look at different 

scheduling algorithms, different configurations of disk libraries, and different tape library 

technologies, and show how these impact the placement strategy. The special attributes of 

stored data that have an impact on the optimal placement are also discussed. 

A high-level Application Programming Interface (API) for the user is also looked at.  

No et al. [67] propose a system that combines the advantages of both file I/O and databases. 

By using various I/O optimizations available in Message Passing Interface (MPI) I/O, such 

as collective I/O and noncontiguous requests that are transparent, the user can write and 

read their data with the performance of parallel file I/O without having to go into the details 

of actually optimizing their file I/O. 

The database research community is not the only one interested in optimizing tertiary 

storage. With the improvement in communication technology, multimedia information 

systems have become an important component of many application domains from library 

information systems to entertainment technology. The storage system must support several 

data types, such as text, image, video, and graphics defined as multimedia objects, which 
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need to be synchronized and to meet some timing requirements. Berson et al. [68] propose 

an approach to eliminate the problem of frequent disruptions in multimedia data accessing 

by de-clustering multimedia objects across multiple disk drives. This method uses the 

aggregate bandwidth of several disks to support the continuous data retrieval. The issue 

where data is being continuously uploaded from tertiary storage for display purposes is also 

being investigated. Triantafillou and Papadakis [69] present a method which can fully 

utilize and reserve the tape drive bandwidth, therefore allowing the secondary storage to 

serve more requests without increasing the memory space on the host.   

Unlike other researchers who utilize software solutions entirely for their hierarchy 

storage system, Wilkes et al. [70] propose a two-level storage hierarchy implemented 

inside a single disk-array controller. The technology is used to automatically and 

transparently manage migration of data blocks between the two levels of the storage 

hierarchy when access patterns change. The system is very easy to use, has full 

redundancy, and is suitable for many different workloads. The system could also adapt to 

dynamic workload changes and perform very well while being able to keep the amount of 

front-end random access memory (RAM) cache and number of spindles relatively small.  

Data latency is not the only problem with tertiary storage systems. Cache replacement 

and cache filtering could potentially cause some problems as well. Investigated in two 

papers [71, 72], the authors introduce a special cache replacement algorithm to maximize 

efficiency. They define a utility function for ranking the candidate objects for eviction and 

then offer an efficient algorithm for computing the replacement policy based on this 

function. They have evaluated the system, using simulation with a wide range of 
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workloads. They also compare their policy with traditional replacement policies, such as 

least frequently used (LFU) and least recently used (LRU), using simulations of both 

synthetic and real workloads of file accesses to tertiary storage. Also working on improving 

this bottleneck, Shoshani et al. [73, 74] describe an architecture designed to optimize the 

use of a disk cache and thus minimize the number of files read from tape. The authors use a 

specialized index to locate the relevant data on tapes and coordinate file caching over 

multiple queries. They also include the results of various tests that demonstrate the benefits 

and efficiency gained from using the system. The authors also note a method to identify the 

bundling of files before caching. After the file bundles are identified, a scheduler is set up 

to schedule bundle caching in such a way that files shared between bundles are not 

removed from the cache unnecessarily.  

2.2.3.6 Storage virtualization research 

In an enterprise storage system, the total capacity could reach a petabyte, and the 

number of disk drives and storage devices could reach tens of thousands. These huge 

numbers of storage devices could serve thousands of host computers. A system of this scale 

could be very difficult to design. There are so many choices to be made, and the 

interactions between them are not always predictable. Storage system provisioning is 

tedious and complicated to do by hand which usually leads to solutions that are grossly 

over-provisioned, substantially under-performing, or, in the worst case, both. Mass storage 

systems and cluster storage systems are designed with high performance RAID clusters, 

robotic tape libraries, or a combination of both. It is challenging to provide a cluster storage 

system, which becomes more and more popular for data-intensive applications with its 
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ability to expand, its high availability and scalability, and its strong consistency. To solve 

this configuration nightmare, much work has done in this area [75-79].  The system can be 

optimized at design time, using declarative specifications of application requirements and 

device capabilities. Another approach is to provide storage systems that can self-organize. 

Such systems utilize several techniques, including adaptive storage management methods, 

elastic page allocation in multi-size paging architecture, partial analysis controls, partial 

swapping, and adaptive pre-paging. Experimental systems could manage hundreds of 

terabytes of virtual storage. A self-organizing storage cluster could also exploit data 

location schemes to dynamically and rapidly adapt to configuration changes, improving 

availability and manageability. When there is a change in server resources caused by failure 

or recovery, the system will dynamically add or remove those servers. The system is 

adaptive, self-tuning, and able to provide nearly uniform performance across all servers.  

The idea of creating virtual storage systems by combining several commodity disk 

drives or unused storage pools is also being investigated by several researchers [80-86]. 

They believe that the storage densities of this type of storage organization could match or 

exceed tape libraries while maintaining the performance of disk arrays. The I/O 

performance is achieved by using multiple techniques to aggregate desktop network 

bandwidth and local I/O bandwidth, such as data striping, a combination of peer-to-peer 

storage and network file system, or low-level Internet Small Computer System Interface 

(iSCSI) protocol. Different approaches for the bandwidth problem, such as allocating disk 

bandwidth based on lexicographic minimization [87], efficiency-aware real-time disk-

scheduling algorithm [88], or virtual storage controller [89] are also receiving attention. In 
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addition to achieving large bandwidth, sophisticated management software is also 

developed to make the collection of disks appear to a client as only one storage system.  

Virtual storage systems can tolerate and recover from disk, server, and network failure. 

This capability proves to be very beneficial in distributed environments. 

The idea of virtual storage is also being utilized in tertiary storage systems [90] and 

virtual machines [91]. When used in tertiary storage systems, virtual storage allows the 

system to hide the details of robotic libraries and media characteristics behind a uniform, 

random access, block-oriented interface. It also allows the system to avoid media mount 

operations for writes, giving write performance similar to that of secondary storage. When 

used in virtual machines (VM), virtual storage provides on-demand cross-domain access to 

VM state. It enables private file system channels for VM instantiation and supports user-

level and write-back disk caches. It also leverages application-specific meta-data associated 

with files to expedite data transfers.  

2.3 Summary 

This chapter discusses related work and surveys research in the storage modeling and 

simulation area. Previous work in the network modeling and simulation areas is also 

examined. These areas of research help to develop the network simulation component in 

the PVFS file system simulation model. In addition to storage and network modeling 

topics, this part also looks at several studies in other areas of storage technologies, such as 

buffer cache, journaling system, I/O scheduling, tertiary and hierarchical storage, and 

storage virtualization. Work done in these areas helps accurately develop storage 

components in the file system simulation model.  
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C h a p t e r 3  

PERFORMANCE MEASUREMENTS AND WORKLOAD STUDY 

3.1 Introduction 

Before implementing the system simulation model, measurement studies need to be 

done to determine the performance characteristics of the targeted systems, which are ext3 

and PVFS. Ext3 is the candidate for the local file system simulation model, and PVFS is 

the candidate for the parallel file system simulation model. 

3.2 Local file system performance study 

The objective of the performance measurement study is to analyze the behavior of the 

proposed ext3 file system. By studying the ext3 file system performance, we can better 

understand the level of detail needed for the simulation model. 

3.2.1 Experimental setup 

Performance measurement experiments are executed on production computers (Dell 

PowerEdge 1850) with the hardware configurations shown in Table 1. The test computers 

are set up to have a single drive with no redundant array of independent disks (RAID), two 

single drives with RAID 0 configuration, or connections to a SAN, depending on the 

experiment. The test computers are located in an isolated environment with dedicated 

resources to minimize extra factors affecting performance study. The primary I/O testing 

suite used in the following experiments is iozone [92]. 
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Table 1: Test system configuration 

Processors Dual Intel Xeon processors at 2.8GHz 

Front side bus 533MHz 

Cache 512KB L2 cache 

Chipset ServerWorks GC LE 

Memory 4GB DDR-2 400 SDRAM 

Drive controller Embedded dual channel Ultra320 SCSI 

RAID controller PERC 4/Di 

Hard drives Fujitsu MAT3147NC 147GB 10,000 rpm 

 

Seagate ST3146707LC 146GB 10,000 rpm 

External array EMC Clariion CX700 

HBA card Qlogic 2340 

 

3.2.2 I/O performance study with different file sizes and block sizes 

In a real-world environment, a day to day workload could consist of many different file 

sizes, and the I/O operations could use many different block sizes. The purpose of this 

measurement study is to determine the suitable workload configuration for the model. First, 

sequential I/O read performance is examined using a set of small to large size files (from 

4Kbytes to 1Gbyte). The results for the sequential I/O read measurement experiments are 

presented in Figure 5. Figure 5 is a 3-dimensional graph in which the z-axis represents 

throughput of the test file system. The x-axis and y-axis represent test block size and test 

file size respectively. Figure 5 shows that file sizes do not affect sequential I/O read 

performance.  
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Figure 5: Sequential I/O read performance 

For better viewing, Figure 6 presents a closer look at a section of the experiment results. 

 

Figure 6: Detail view - sequential I/O read 

performance 
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Two observations can be made from the measurements in Figure 5 and Figure 6. First, 

because reading is sequential and kernel cache effects are minimized, the I/O read 

performance is not affected by file size. There is an exception to this, and it will be 

presented at the end of this section. Secondly, the I/O read performance starts to drop after 

operation block size reaches around 64Kbytes. More details of this drop in performance are 

described in section 3.2.3. 

Similar performance behavior can also be observed for I/O write operations. The write 

performance, using a similar set of files and block sizes, varies the same way as with read 

performance. The results for the sequential I/O write measurement experiments are 

presented in Figure 7. Figure 7 is also a 3-dimentional graph similar to Figure 6. 

 

Figure 7: Sequential I/O write performance 
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For better viewing, a section of the experiment results is displayed in detail in Figure 8. 

 

Figure 8: Detail view- sequential I/O write 

performance 

Figure 7 and Figure 8 show that file sizes also do not affect I/O write performance. 
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Figure 9 shows sequential I/O read performance as the file size is allowed to increase to 

the physical memory capacity of the machine. In these experiments, the test machine has 

4Gbytes of physical memory. 

 

Figure 9: Physical memory capacity and I/O 

performance 
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Figure 10: Dirty ratio parameter and I/O 

performance 
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3.2.3 I/O performance behavior of ext3 file system 

This section describes the measured performance behavior of an ext3 file system. Figure 

11 shows the I/O read performance of the ext3 file system that is measured with different 

hardware sub-systems. The measurements in Figure 11 illustrate that the ext3 file system 

hides the performance characteristics of the hardware storage sub-systems very well. The 

performance curve shapes are very similar in spite of hardware sub-system differences. 

Figure 11 also shows that when the block size reaches 64Kbytes, the performance of the 

file system starts to drop. Figure 12 shows that the I/O write performance exhibits a similar 

behavior, but not as dramatic. 

 

Figure 11: I/O read performance with different 

hardware 
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To find the root cause behind this drop, kernel tracing was performed, and operation 

response times were carefully profiled along the I/O path. The two kernel functions, 

copy_to_user and copy_from_user, exhibit interesting response times. Figure 13 shows the 

average response times of copy_to_user and copy_from_user functions as I/O block size 

increases. This is also the reason why the drop in I/O write performance is not as dramatic 

as the performance drop in the I/O read case. The response time of the copy_to_user 

function, when compared to the overall I/O read time, is much more significant than the 

same response time of the copy_from_user function when compared to the overall I/O 

write time. 

 

Figure 12: I/O write performance with different 

hardware 
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Examination of the kernel code for the two functions shows no evidence from the 

functions‘ codes to support this performance behavior [94]. On the other hand, the shape of 

the performance curve suggests that this performance behavior may be caused by 

constraints in system resources. To investigate system resource utilization, low-level 

profiling of the test system was performed using oProfile [95] while running the I/O 

experiments.   

 

Figure 13: Average response time of data 

transferring between kernel and user space 
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Figure 14: L2 cache misses during I/O with 

different block sizes 
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copying data from kernel space to user space is completely negated, and the response time 

levels off, as shown in Figure 13. 
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The I/O block sizes where L2 cache misses become significant are important for the 

model. Additional measurements using different central processing units (CPUs) of the 

same model (Intel Xeon 2.8 GHz) with different L2 cache size configurations were 

performed. The measurements in Table 2 show that when the I/O block size reaches about 

1/8 of the total L2 cache size, copy_to_user and copy_from_user performance starts to 

drop. 

3.3 PVFS file system performance study 

The objective of the performance measurement study is to analyze the behavior of the 

proposed PVFS file system. By studying the PVFS file system performance; we can better 

understand the level of detail needed for the simulation model. 

3.3.1 Experimental setup 

Performance measurement experiments are executed on the PVFS cluster with the I/O 

servers (Dell PowerEdge 1850) configured as shown in Table 3. The I/O servers are set up 

to have 5 drives with RAID 5 configuration. The PVFS cluster is located in an isolated 

environment with dedicated resources to minimize extra factors that affect performance 

study. The primary I/O testing suite used in the following experiments is iozone [92]. 

Table 3: PVFS test cluster machine configuration 

Processors Dual Intel Xeon processors at 2.8GHz 

Front side bus 533MHz 

Cache 512KB L2 cache 

Chipset ServerWorks GC LE 

Memory 4GB DDR-2 400 SDRAM 

Drive controller Embedded dual channel Ultra320 SCSI 

Hard drives Fujitsu MAT3147NC 147GB 10,000 rpm 

 

Seagate ST3146707LC 146GB 10,000 rpm 
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The PVFS cluster is built using the configuration presented in Figure 15. The cluster has 

a total of 4 I/O servers with the total capacity of approximately 2 Tbytes. The PVFS cluster 

can provide a decent space for testing and enough I/O servers to run performance 

evaluation. 

 

Figure 15: PVFS test cluster architecture 

3.3.2 I/O workload study 

Designed to achieve massive performance by parallelizing I/O accesses, PVFS, like any 

other parallel file system, works best with large files, using sequential access with large 



 

49 

block size. Knowing this, applications running on PVFS file systems are configured to take 

advantage of this behavior as much as possible. Using a very large I/O buffer, an 

application sequentially accesses the file system, using large block sizes of up to 100 

Mbytes. Observing I/O workload on multiple PVFS file systems in a Shared Production 

environment with approximately 276 Tbytes of total capacity, the breakdown of I/O 

workload percentage is shown in Table 4. 

Table 4: PVFS I/O workload breakdown 

Pure random I/O 0.00028% 

Mix random I/O and sequential I/O 2.047% 

Large block size sequential I/O 97.952% 

 

The pure random I/O accesses are very small in comparison to the sequential accesses. 

In order to study the I/O pattern of the sequential accesses, I/O traces are captured on the 

PVFS file system. The captured I/O pattern is presented in Figure 16. 
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Figure 16: PVFS captured I/O traces 
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3.3.3 I/O performance study with different file sizes and block sizes 

Similar to the local disk experiment, this measurement study is to observe the I/O 

behavior of the PVFS file system when file size and block size are changing. First, 

sequential I/O read performance is examined, using a set of small to large size files (from 

4Kbytes to 1Gbytes). 

The results for the sequential I/O read measurement experiments are presented in Figure 

17. These measurements show that, similar to the local file system, the I/O read 

performance is not affected by file size.   

 

 

Figure 17: PVFS sequential I/O read performance 
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The write performance uses a similar set of files, and the block sizes vary the same way 

as with read performance. However, I/O write performance shows slight differences. The 

I/O write throughputs at small file sizes are less than I/O throughput at larger file sizes. 

This observation shows that the I/O performances are not at peak level until file size is 

equal or greater than 2Mbytes. The nature of PVFS is what causes this performance 

behavior. PVFS is a parallel file system. Files stored in a PVFS file system are divided into 

multiple stripes and are distributed across multiple I/O servers. By striping file contents 

across multiple servers, a client machine can access several pieces of file data at the same 

time. For a small file, this mechanism creates some overhead which causes the I/O 

performance to become lower until the file size is large enough to receive full advantage 

from the workload parallelization as shown in Figure 18. The results for the sequential I/O 

write measurement experiments are presented in Figure 18. 
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Figure 18: PVFS sequential I/O write 

performance 
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relations between file sizes, I/O block sizes, and file system performance are investigated. 

The performance behaviors of the ext3 file system are also carefully examined. The 

relation between CPU L2 cache and the I/O read and write behavior is also pointed out. 

The real-world I/O access pattern and production workload on PVFS file systems are also 

studied in this part. The performance measurements of the PVFS file system are also 

presented. 
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C h a p t e r  4  

DESIGN OF A SIMULATION MODEL FOR LOCAL FILE SYSTEM 

4.1 Introduction 

The simulation model for the local file system is the most basic foundation for file 

system modeling. It mimics the behavior of a local file system over a block device. It 

interfaces with higher-level software, such as applications or parallel file system servers, 

and provides the response time associated with each I/O request. This chapter discusses the 

design of a simulation model for a local file system. The file system model is expected to 

be able to provide end-to-end file system performance against a pre-defined workload. 

System designers could use the model to evaluate file system performance in different 

scenarios and to perform bottle-neck analysis. It could also be used for ‗what-if‘ type of 

provisioning analysis. The implementation of the simulation model is presented in a top 

down fashion, from application level down to the hard disk level, and each level is 

described using Colored Petri Nets. 

4.2 Assumptions and model limitations 

A complex scientific or business application may have both I/O reads and I/O writes at 

the same time. However, a typical I/O pattern often seen is a large read operation followed 

by computing which is then followed by a large I/O write. Many times, the phase of 

execution where the application is reading is separated from the phase where the 

application is writing. With that in mind, the simulation model is divided into an I/O read 
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model and an I/O write model. These are simulated separately to simplify the multiple 

conditions when simulating the file system. 

The ext3 journaling mechanism has three modes of operation: write back, ordered and 

journal modes. Write back mode and ordered mode are quite similar except that ordered 

mode guarantees that data is flushed to disk before the metadata is written to disk. Journal 

mode, however, is very different as it writes both data and metadata into the journal. The 

default mode for ext3 under Linux is ordered mode as it has good protection and 

performance. The model is designed to work with all three modes. However, since write 

back mode and ordered mode are similar, only the default —ordered mode— and full data 

journal mode are examined in detail. 

Although no data flushing is needed at the end of the benchmark before the data file is 

closed, for stability and validity of the performance result, an fsync() command is enforced 

to flush all dirty data to disk at the end of the benchmark and simulation. The performance 

study of the ext3 file system, which is discussed in detail in Chapter 3, shows that the 

Linux file system does a very good job at hiding the performance characteristics of the 

lower level hardware sub-system. As a result of this, simple queuing models are used for 

I/O scheduler and disk sub-system model. 

4.3 File read model implementation 

From the application standpoint, reading a file basically divides the file into smaller 

manageable blocks and uses the fread function to read blocks into memory.  

 

while (!feof(file_handle)) { 
    bytes_read = fread(buffer, block_size, number_of_block, file_handle); 

} 
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The model for this operation is simple. A loop breaks the needed file into multiple 

blocks of read requests and passes the list to the fread simulation module. The result of this 

operation is an array of data passed back from fread after reading it from the disk. The Petri 

Net for this operation is presented in Figure 19. 

 

Figure 19: High level application read model 
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of data gather from the read system call, and this array is returned back to the application. 

The Petri Net implementation of the fread function is presented in Figure 20. 
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In kernel space, the read system call is mapped to the function generic_file_read. The 

Petri Net implementation of the generic_file_read function is presented in Figure 21. 

The Petri Net shown in Figure 21 is designed to have separate components that can be 

easily changed or improved in future work, including the cache component and the disk 

component. The functionality of this net follows the flow of the generic_file_read function 

closely. It accepts I/O read requests as input, and then compares against the page cache to 

see if the page was previously retrieved. If the page exists in cache, it is returned to the 

application immediately. The time to do this page copy, including the L2 cache effect 

shown in the top right section of Figure 21, is implemented, using a mathematical formula 

presented in Section 4.5. 

If a page does not exist in cache, it is read into page cache, using a pre-fetch mechanism. 

The kernel attempts to pre-fetch a pre-defined value number of pages into cache. This pre-

defined value is a kernel parameter and can be changed using the /proc file system. If the 

read pattern is random, the pre-fetch mechanism will reduce the number of read-ahead 

pages to a minimum number. This number is also a kernel parameter and can be changed 

using the /proc file system.  
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The Petri Net model of the Linux buffer cache component is presented in Figure 22. It 

contains two queues of memory pages: an active queue and an inactive queue. Each entry 

of these queues also has two status flags. When a page is introduced into the buffer cache, 

it is added into the inactive queue with both flags set to 0. When the page is accessed the 

first time, one flag is set to 1, but the page still does not change queue. If the page is 

accessed a second time, the second flag is set to 1, and the page is moved to the active 

queue. If enough time has passed from the last time the page was accessed, it is moved 

back to the inactive queue. When the system runs out of memory, the memory reclaiming 

process reclaims pages in the inactive queue first. The model has two outputs ―cache hit‖ 

and ―cache miss‖. The I/O scheduler and the disk component are implemented using a 

simple queuing model and are shown in Figure 23. 

 

Figure 23: Disk component model 
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For a file read operation, the application passes a list of requests to the lower levels and 

expects an array of data in return. For a write operation, the application passes an array of 

data to the lower levels and waits for a set of return codes to ensure that the operation 

completes successfully. After receiving return codes, the application can continue its 

operations.  The Petri Net implementation of the write operation is presented in Figure 24. 

The implementation of the fwrite function is similar to the fread function with the 

exception of having a buffer of data passed to the write function call. The Petri net 

implementation for the fwrite function is presented in Figure 25. 

The data, however, may or may not be written to disk right away. If the application 

specifies that the write operation is synchronous, the data is written to disk before fwrite 

returns to the application. If the application uses the asynchronous write operation, the 

actual data is kept in memory and will be written to disk at a later time. This delayed write 

operation is implemented and used in most modern UNIX systems. The operating system 

(OS) relies on a sync mechanism to flush the data in memory to disk at certain conditions 

such as low available memory, periodic timer trigger, dirty pages ratio kernel 

configuration, and force flushing using the fsync() function. 
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The Petri Net implementation of the write system call is presented in Figure 26. The 

―Write begin‖ process prepares the system, through tasks such as allocation of memory and 

journal tracking, for the data from the user space. Then the array of data is copied to kernel 

space from user space memory and combined into full pages. The kernel call for this copy 

has an interesting performance behavior that is similar to the call to copy data from kernel 

space to user space and is implemented using the formula presented in Section 4.5. The 

―Commit write‖ process, implemented in Petri Net by several smaller processes, such as 

―update journal‖ and ―dirty buffer,‖ posts changes to the journal, marks the data dirty in the 

buffer cache, and submits journal changes. ―Commit write,‖ however, does not write the 

data to disk.  

 

Figure 27: Journal component model 
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The Petri Net implementation of the journal is presented in Figure 27. Data is flushed to 

the disk, using a different mechanism which is triggered by several different conditions. A 

periodic timer triggers the data flush at a pre-determined moment. The data flush is also 

triggered when the amount of dirty data in the buffer cache reaches a certain threshold. 

Low memory availability also triggers the data flush. Finally, the data flush can be 

manually triggered by the fsync() function. The Petri Net implementation of the data 

flushing is presented in Figure 28.  

 

Figure 28: Data flushing component model 
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The write system call implementation also uses a disk component very similar to the 

disk component in the read system call. The Petri Net implementation of the component is 

shown in Figure 29. 

 

Figure 29: Disk component model 
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There are two cases. If the I/O block size is less than Sthreshold, the average response time 

is 

2LTt   

If the I/O block size is greater than Sthreshold, the average response time is 
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Figure 30 shows a comparison of this model for the L2 cache effect as compared to the 

measured data from Figure 13. Figure 30 shows that the response time for the copy_to_user 

function is very close to the model calculation in most cases, and that the trend of the effect 

of L2 cache on copy_to_user performance is captured well by the model. 

 

Figure 30: L2 cache model validation 
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file system, ext4. A new detailed I/O scheduler model will be implemented. The ext3 

model will be utilized as a basic foundation to model distributed file systems and parallel 

file systems.  
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C h a p t e r  5  

LOCAL FILE SYSTEM SIMULATION MODEL PERFORMANCE VALIDATION 

5.1 Introduction 

This chapter discusses the performance validation of the simulation model for a local 

file system. Several performance experiments are performed, using different types of 

workload. The simulation performance results are compared to the real-world performance 

measurements to study the accuracy of the simulation model.  

5.2 Validation setup 

In order to validate the entire Petri Net file system model against real-world data, the 

model hardware parameters, such as memory delay, execution speed, function overhead, 

and disk speed, are measured directly from the machines where the real experiments take 

place, using kernel traces. This machine is configured with a single SCSI drive Seagate 

ST3146707LC. The tracing mechanism used is Ftrace. Ftrace is a powerful kernel-tracing 

method and has been a part of the mainline kernel since version 2.6.27. Ftrace supports the 

ability to perform function-graph tracing, which tracks both function entry and function 

exit as well as providing function duration. 

To reduce the simulation time for the L2 cache effect model, the values of the response 

function are calculated, using the developed model for a very wide range of block sizes, 

and recorded into a table. The values of the function‘s constants (Sthreshold, Spage, TL2, 

Tmemory) are measured from the test system. The Petri Net model (Figure 21, top right 
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corner, and Figure 26, center) uses this table in the transition called Buffer Copy to produce 

the response time for the data copy from kernel space to user space. 

5.3 Synthetic sequential workload 

Simulations of sequential workload are run several times, and the average results are 

used to compare with iozone benchmark results running on the test system. The simulation 

experiments are run, using a set of synthetic I/O requests and simulating sequential I/O. 

The I/O requests are grouped into similar block size configurations of the izone benchmark. 

Data- write operations in this section are asynchronous. The file system journal mode used 

in this section is ordered mode. The result of the I/O read performance model is presented 

in Figure 31. The errors bars are set at 10%. 

 

Figure 31: Sequential I/O read performance 
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Most data points fall within a 10% error range or very close to that range, which is a 

highly accurate result of an end-to-end model of a system as complex as the Linux ext3 file 

system. Figure 31 shows that the Petri Net model result captures the trend of file system 

performance well, showing behavior very similar to the real file system.  

I/O write performance experiments are performed in the exact same manner. Measured 

data from the actual kernel I/O path are inserted into the Petri Net model. The write 

simulations are run multiple times, and the average results are compared with the real file 

system data. The result of the I/O write Petri Net model is presented in Figure 32. The error 

bars are also set at 10%. 

 

Figure 32: Sequential I/O write performance 
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The write result is even better than the I/O read performance result. Figure 32 shows that 

all data points fall within or very close to a 10% error range. In the case of the write 

performance, the Petri Net models the simulation consistently and underestimates the 

performance of the actual file system throughput, again by less than 10%. Thus, the model 

is a very effective tool for predicting the expected performance of the real file system with 

sequential workload. It is useful to designers of new data-intensive computing systems and 

for capacity planning of existing systems [96]. 

5.4 Synthetic random workload 

Simulations with random workload are also run several times, and the average results 

are used to compare with the real-world results. The simulation experiments are run, using 

synthetic I/O requests and simulating random I/O with very small block size to minimize 

the sequential characteristic of the workload. The same set of synthetic I/O requests is also 

used to feed the iozone benchmark to produce performance results on the test system. Data-

write operations in this section are asynchronous, and the file system journal mode used in 

this section is ordered mode. The I/O access pattern of the workload is presented in Figure 

33. The Y axis represents the location of the I/O request. The X axis represents the order in 

which the I/O requests occur. Figure 33 presents the randomness of the workload very 

clearly. 
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Figure 33: Synthetic random workload pattern 

The random I/O read performance results are presented in Table 5. 

Table 5: Random I/O read performance 
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Random I/O Read performance result 

Block size (Kbytes) 8 

Simulation throughput (KB/s) 757,791.04 

Measure throughput (KB/s) 631,162.80 
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The same set of synthetic random I/O requests is also used in the I/O write experiment. 

The performance results of random I/O write are presented in Table 6. The result of 

random I/O write simulation is not as good as random I/O read simulation and will be 
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Table 6: Random I/O write performance 

validation 

Random I/O Write performance result 

Block size (Kbytes) 8 

Simulation throughput (KB/s) 199,004.98 

Measure throughput (KB/s) 147,995.60 

Error 34% 

 

5.5 Captured I/O traces from production systems 

Synthetic workloads are very useful for system performance study. However, they do 

not always reflect the real workload in a system under real-world conditions. A captured 

I/O request trace can provide a closer presentation of real-world workloads. I/O traces are 

captured from live production systems to use in this experiment. Figure 34 presents the I/O 

read requests pattern of the first captured trace. 
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Figure 34: I/O read pattern of the first trace 
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Figure 35: I/O write pattern of the first trace 

In this trace, the I/O write requests are random at the beginning of the trace, but 

eventually become sequential in the latter part of the trace. The block sizes of the I/O write, 

however, change quite randomly.  

Figure 36 presents the I/O read requests from the second captured trace. The I/O read 

pattern in this trace has less randomness than the previous trace. This I/O pattern also 

shows several mixtures of random accesses and sequential accesses. 
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Figure 36: I/O read pattern of the second trace 

Figure 37 shows the I/O write request from the second captured trace. The I/O write 

pattern in this trace is also a combination of sequential write and random write. The block 

sizes of the I/O write are also greatly varied through the duration of the trace. 
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Figure 37: I/O write pattern of the second trace 

The two captured I/O read traces from Figure 34 and Figure 36 are fed into the model 

and the iozone benchmark to produce the I/O read performance comparison. Data-write 

operations in this section are asynchronous. The file system journal mode used in this 

section is ordered mode. Similar to the previous performance studies, simulations are run 

several times and produce the average result. The I/O performances are higher than 

previous experiments due to caching effect. Table 7 presents the I/O read performance 

results. 
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Table 7: Captured traces I/O read validation 

I/O Read performance result Trace 1 Trace 2 

Simulation Throughput (KB/s) 873,238.11 876,237.20 

Measure throughput (KB/s) 991,969.14 1,008,167.15 

Error 12% 13% 

 

The two I/O write traces from Figure 35 and Figure 37 are also fed into the model and 

the iozone benchmark to produce the I/O write performance. Table 8 shows the I/O write 

performance result. 

Table 8: Captured traces I/O write validation 

I/O Write performance result Trace 1 Trace 2 

Simulation throughput (KB/s) 146,644.10 146,813.74 

Measure throughput (KB/s) 207,203 180,783.2 

Errors percent 29% 19% 

 

5.6 The impact of the dirty-ratio kernel parameter 

The kernel parameter—dirty ratio—which is discussed in Chapter 3 influences the I/O 

write performance behavior that the model should exhibit correctly. In order to validate this 

behavior, an experiment is performed, using a test file with a larger size than the default 

value of the dirty-ratio threshold setting on the system (~512MB).  Figure 38 shows the 

comparison between the measure from the actual system and the simulation result of the 

model. The error bars are set to 10%, similar to previous experiments. 
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Figure 38: The impact of dirty ratio parameter 

The simulation results are close to the measurements from the actual system. The errors 

fall between 10% and 20% for all data points. Similar to the sequential write experiment, 

the model consistently underestimates the performance of the actual system for both file 

sizes. 

5.7 Full data journal mode write performance 

In previous validation experiments, from section 5.3 to section 5.6, the file system is 

operating under ordered journaling mode. As stated in Chapter 3, the performance 

differences of write-back journaling mode and ordered journaling mode are small. Full data 

journal mode, however, is a completely different case. Unlike ordered journal mode or 
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write-back journal mode, full-data journal mode writes data as well as metadata to the 

journal, which is located on the disk. As a result of this, the same data are actually written 

to the disk twice. As data and metadata are being written into the journal, the amount of 

free space allocated for the journal become smaller. When the journal free space reaches a 

threshold, a journal checkpoint happens. The exact amount of journal free space that 

triggers a checkpoint is not derived in a straightforward manner, as Prabhakaran notes [50]. 

Journal checkpointing occurs when the amount of journal free space is between ½ and ¼ of 

the journal size. For the validation experiments in this section, we use a threshold equals to 

approximately ½ of the journal size as it seems to produce best results. 

Using the same process described in section 5.3, the first validation experiment uses a 

synthetic sequential workload. Simulations are run several times, and the average results 

are used to compare with iozone benchmark results, running on the test system. The I/O 

requests are grouped into similar block size configurations of the izone benchmark. The 

result of the I/O read performance model is presented in Figure 39. The errors bars are set 

at 10%. 
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Figure 39: Sequential I/O write validation – full 

data journal mode 

The errors between simulation data and real-world measurement data are close to 10%. 

The performance impact of the full-data journal mode is quite clear. The shapes of the 

performance curves are different from the shapes of performance curves in section 5.3. The 

effect of L2 cache still exists. However, because the response time of the file system is 

slow, the effect is not noticeable any longer. 

Following the same order previously presented, an experiment similar to the experiment 

in section 5.4 is performed. The simulation experiments are run, using synthetic I/O 

requests and simulating random I/O with very small block size to minimize the sequential 

characteristic of the workload. The result of the experiment is presented in Table 9. 
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Table 9: Random I/O write validation - full data 

journal mode 

Random I/O Write performance result 

Block size (Kbytes) 8 

Simulation throughput (KB/s) 30016.45127 

Measure throughput (KB/s) 26470.4 

Error 13% 

 

The last experiment is similar to the experiment in section 5.5. The two I/O traces are 

fed into the model and the iozone benchmark to produce the I/O performance comparison. 

Like previous performance studies, simulations are run several times and produce the 

average result. The result of the experiment is presented in Table 10. 

 

Table 10: Captured traces I/O write validation - 

full data journal mode 

I/O Write performance result Trace 1 Trace 2 

Simulation throughput (KB/s) 51417.04 63660.53 

Measure throughput (KB/s) 46470.4 56593 

Errors percent 11% 12% 

 

5.8 Synchronous write performance 

In previous validation experiments, up to this section, I/O write operations all use 

asynchronous write mode. It provides the best performance for the system, and under 

normal circumstances, is the default operating mode for Linux I/O write operations. 

However, synchronous write mode is still being used occasionally in situations where data 
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needs to be written to disk after each write request. In this operating mode, the real system, 

as well as the model, issues a data synchronization at the end of the write request. Because 

data synchronization is done at the end of every write request, the file system journal mode 

does not have any effect.  

The same process described in section 5.3 is used. Simulations are run, using a synthetic 

sequential workload several times, and the average results are used to compare with iozone 

benchmark results, running on the test system. The I/O requests are grouped into similar 

block-size configurations of the izone benchmark. The file system journal mode is ordered 

mode. The result of the I/O write performance model is presented in Figure 40. The errors 

bars are set at 10%. 
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Figure 40: Sequential I/O write validation - 

synchronous write 

The simulation results are very good, even though the errors are bigger than 10% at 

multiple data points. The performance impact of the synchronous write mode is also very 

clear. The shapes of the performance curves are different from the shapes of performance 

curves in section 5.3. Because of the slow response time of the file system, the L2 cache 

effect is also insignificant in this experiment. 

The next experiment is similar to the experiment in section 5.4. The simulation 

experiments are run, using synthetic I/O requests and simulating random I/O with very 

small block size to minimize the sequential characteristic of the workload. The result of the 

experiment is presented in Table 11. 
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Table 11: Random I/O write validation - 

synchronous write 

Random I/O Write performance result 

Block size (Kbytes) 8 

Simulation throughput (KB/s) 6689.75 

Measure throughput (KB/s) 5388.8 

Error 24% 

 

The last experiment is similar to the experiment in section 5.5. The two I/O traces are 

fed into the model and iozone benchmark to produce the I/O performance comparison. Like 

previous performance studies, simulations are run several times and produce the average 

result. The result of the experiment is presented in Table 12. 

 

Table 12: Captured traces I/O write validation - 

synchronous write 

I/O Write performance result Trace 1 Trace 2 

Simulation throughput (KB/s) 18,196.46 25,633.22 

Measure throughput (KB/s) 14,856.8 20,628.2 

Errors percent 22% 24% 

 

5.9 Summary 

This chapter presents a set of detailed performance validation experiments of the Linux 

ext3 file system model. To validate the performance behavior of the file system model, 

several types of workload are utilized. A synthetic sequential workload is generated to 

study the simulation model behavior and to compare the model with real file system 
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performance. A random synthetic workload is also generated to study the behavior of the 

simulation model when random accessing is involved. In addition to synthetic workload, 

I/O traces captured from production systems are also utilized to study the performance 

behavior of the simulation model in a real-world environment. 

The validation experiments are run under both ordered journal mode and full data 

journal mode. The results for ordered journal mode are very good. For sequential file read 

and file write, the simulation performances are within 10% of the real file system in most 

cases. For random file read, the simulation performances are within 20% of the real file 

system. For random file write, the simulation performances differ less than 35% of the real 

file system. For I/O traces captured from live systems, the simulation performances differ 

less than 20% in most cases. An additional performance factor— dirty ratio threshold—is 

also modeled and validated. The results for full-data journal mode are very good. In all 

experiments for this mode, the errors are less than 15%. In good cases, the errors are 

between 10% and 12%.  

Synchronous I/O write operation is also validated. The results are very good, as the 

errors are less than 10% in many cases. However, for random synthetic workload and 

captured I/O traces workload, the errors are approximately 24%. 
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C h a p t e r  6  

DESIGN OF A SIMULATION MODEL FOR PARALLEL FILE SYSTEM 

6.1 Introduction 

The first and foremost goal for a parallel file system is to achieve massive I/O 

throughput. This is done by providing access to multiple I/O resources in parallel. PVFS as 

well as many other parallel file systems implements this by utilizing multiple connected 

local file systems as foundation. The simulation model for the parallel file system is 

developed using similar concept. It utilizes multiple connected local file system simulation 

models as its foundation. It interfaces with higher level applications and provides them the 

response time associated with each I/O request. This chapter discusses the design of a 

simulation model for PVFS – a parallel file system. The implementation of the simulation 

model is presented in a top down fashion, from application level down to the local file 

system level, and each level is described using Colored Petri Nets. 

6.2 Assumptions and model limitations 

Similar to the local file system simulation model, the parallel simulation is also divided 

into an I/O read model and an I/O write model. Read operations and write operations are 

simulated separately to simplify the multiple conditions when simulating the file system. 

A key difference between a parallel file system and a local file system is the network 

component. Parallel file systems use network to simultaneously access multiple local file 

system at the same time. A parallel file system simulation model must contain a network 

model. Although the network simulation model is an important component in the parallel 



 

94 

 

file system simulation model, it only serves as a transport from the client model to the 

server model. The network model does not need to model every network operations in 

detail. Instead, a resource model is used to simulate network end-to-end performance. 

A PVFS cluster has a certain number of I/O servers. This number is determined at the 

time the cluster is built. After the cluster goes into production, the number of I/O servers is 

relatively fixed. Although, under a certain circumstance, I/O servers can be added or 

removed from the cluster, but this procedure usually cause the original data on the cluster 

to be destroyed. For the simulation model, the PVFS cluster has 4 I/O servers. In real-world 

situation, A 4 I/O servers cluster could house approximately 4 Tbytes of data.  

6.3 File read model implementation 

From the application standpoint, reading a file from a parallel file system is no different 

than reading a file from a local file system. The way an application reads a file is similar to 

the following illustration.  

 

From this level, the operation is divided into three main components: the client 

component, the network component and the server component.  

6.3.1 File read model client component 

At the top level, the model is simple. A loop breaks the needed file into multiple blocks 

of read requests and passes the list to the client simulation component. The client 

component processes the data then passes them on to the network component. The result of 

while (!feof(file_handle)) { 
    bytes_read = fread(buffer, block_size, number_of_block, file_handle); 

} 
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the read operation is an array of data passed back from the network model. The Petri net for 

this operation is presented in Figure 41. 

The implementation of the client component could be described as dividing the block of 

read requests into a list of payloads and passing this list to the network component to send 

over the network to the server component. The number of payloads depends on the number 

of I/O servers in the file system. The Petri net implementation of the client component is 

presented in Figure 42. 

Payloads are created by striping request data into multiple chunks according to the file 

system‘s stripe depth parameter. Stripe depth in PVFS usually is 64 Kbytes. The 

distribution of data chunks in a payload is done using round-robin mechanism. The Petri 

Net implementation of the payload creation process is presented in Figure 43. 
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Figure 42: PVFS client component model for file 

read 

bf

bf

bf

bf

bf

(id, bf, dst)

(4, bf4, 0)(3, bf3, 0)

(2, bf2, 0)(1, bf1, 0)

tbfbf^ t̂bf

sort INT.lt bf

[]

bf

(id, bf, dst)

bf4bf3bf2bf1

bf4

bf3

bf2

bf1

[]

bf4

[]

[]

[]

bf3bf2bf1

sort INT.lt bf4

bf4

sort INT.lt bf3

bf3

sort INT.lt bf2sort INT.lt bf1

bf2bf1

bf

1`1

next

fl bf::fl

@+processingdelay

@+wiredelay

@+wiredelay

[length bf4 > 0][length bf3 > 0][length bf2 > 0][length bf1 > 0]

[length bf1 > 0 orelse length bf2 > 0 orelse length bf3 > 0 orelse length bf4 > 0]

[(iosize <= 3* stripesize andalso length bf4 = 0) 
orelse (iosize <= clientnum*stripesize andalso length bf4 = stripesize) 
orelse (length bf4 > 0 andalso length bf4 mod stripesize = 0 andalso length bf4 = iosize div clientnum)]

[(iosize <= 2* stripesize andalso length bf3 = 0) 
orelse (iosize <= clientnum*stripesize andalso length bf3 = stripesize) 
orelse (length bf3 > 0 andalso length bf3 mod stripesize = 0 andalso length bf3 = iosize div clientnum)]

[(iosize <= stripesize andalso length bf2 = 0) 
orelse (iosize <= clientnum*stripesize andalso length bf2 = stripesize) 
orelse (length bf2 > 0 andalso length bf2 mod stripesize = 0 andalso length bf2 = iosize div clientnum)]

[(iosize <= stripesize andalso length bf1 = iosize) 
orelse (iosize <= clientnum*stripesize andalso length bf1 = stripesize) 
orelse (length bf1 > 0 andalso length bf1 mod stripesize = 0 andalso length bf1 = iosize div clientnum)]

Create payload

Create payload

[length bf = iosize]

BUFFER

BUFFER

PACKET

Out
BUFFER

[]

BUFFER

In
BUFFER

Out
PACKET

BUFFERBUFFERBUFFERBUFFER

BUFFERBUFFERBUFFERBUFFER

[]

BUFFER

IOD3

[]

BUFFER

IOD2

[]

BUFFER

IOD1

[]

BUFFER

BUFFER

1

INT

In
FILE

In

Out

In

Out

Create payload

1 1`[]@01 1`[]@01 1`[]@01 1`[]@01 1`[]@0

1 1`1

1



 

98 

 

 

 

Figure 43: Payload creation component model for 

PVFS file read 
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component. Taking the payloads and building network packet around this data, the client 

component adds the network identifications of the I/O servers to the data. The network 

component will later use this information to deliver the packet to the correct I/O server. For 

an I/O read operation, the client component only sends read requests to the servers. Read 

requests are very small and will not need to be broken down into smaller fragments. After 

the network packets are created, they are sent to the network device buffer.  

In addition to sending read requests to the I/O servers, the client component also 

receives data being sent back from the I/O servers. From the network device receiving 

buffer, the client component gathers the network packets. It assembles the data from these 

network packets received from different I/O servers into the needed result and sends it back 

to the application. 

6.3.2 File read model network component 

The network component provides the transportation for the data packets from the client 

to the I/O servers. Since only end-to-end performance characteristics of the network 

component are needed, the network component will not model switches and routers in 

detail. Instead, the network component is designed using multiplexer model. The client 

packets are examined and routed to the correct I/O servers. 

When the result data are sending back to the clients, a similar mechanism is used. The 

server component, depends on the result data, will send data packets back to the original 

requested client. The network component examines the packet and route them to the correct 

clients. The Petri Net models of the sending and the receiving network components for 

PVFS file read operation are presented in Figure 44 and Figure 45. 
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Figure 44: Sending network component for PVFS file read 
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6.3.3 File read model server component 

I/O servers are where the actual I/O operations are performed. Each PVFS file system 

has multiple I/O servers that work independently in parallel to provide large I/O bandwidth 

that local file system could never achieve.  

Each I/O server, similarly to the client side, has a network layer to process network 

packets from the network component. A network packet, after arriving at the I/O server, is 

examined and categorized into different receive buffers, using a first-come-first-served 

(FCFS) mechanism. This process is designed following the same implementation in the 

real system. Each client has its own receive buffer. 

The server component, following a FCFS order, takes read requests from the receive 

buffers and sends them to the local file system. The requests are sending in chunk of 64 

Kbytes, which is the PVFS default stripe depth. If the PVFS file system is built with a 

different stripe depth, this chunk size is changed. The local file system on the I/O server 

performs a sequential read operation. Since the I/O server component takes read request 

from the receive buffers using FCFS order, the read request chunks are mixed together. The 

next chunk of read requests may not be from the same client as the chunk before it. Two 

different clients rarely try to read the same file at the same location. This causes the read 

requests stream sending to the local file system to have a very special pattern. This pattern 

is multiple session of sequential read requests. Each session may start at a random location. 

The Petri Net model for the server component for PVFS file read operation is presented in 

Figure 46. 
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Figure 46: Server component for PVFS file read 
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After read requests passing through the local file system component, it returns the result 

data read from disk. At this step, the I/O server component sends these data through a 

network packet creation process similar to the client component. However, when the client 

component send the read requests over the network, the size of these read requests are 

relatively small and can fit within a standard frame. The result data, however, do not. They 

need to be divided into multiple segments before they are attached the headers and network 

addresses. The Petri Net model for dividing data into segments is presented in Figure 47. 

 

Figure 47: Data segmentation component for 

PVFS file read 

The segment size of a packet is limited by the MTU of the network. Usually, in a 

Gigabit Ethernet network, the MTU is set to 1500. This means that a network packet 

maximum size is 1500 bytes. 

6.4 File write model implementation 

From the application standpoint, writing a file to a parallel file system is no different 

than writing a file to a local file system. The way an application writes a file is similar to 

the following illustration. 
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The top level model is very similar to the I/O read model. The operation is divided into 

three main components: the client component, the network component and the server 

component. The Petri Net implementation of the top level model is presented in Figure 48. 

6.4.1 File write model client component 

The top level of the file write model client component is simple. The file data needed to 

be written to disk are broken into multiple blocks of write requests. These write requests 

are passed to the client simulation component. The client component will process the data 

then send the packaged data to the network component. The result of the write operation is 

a series of return codes received from the network model.  

The implementation of the client component for file write operation is quite similar to 

the client component of the file read operation. However, write requests not only contain 

requests to write data to disk but also contain the actual data needed to be written. The 

client component needs to divide these blocks of data into multiple payloads. The number 

of actual payloads is determined by the number of I/O servers in the system. The Petri Net 

model for the PVFS client component is presented in Figure 49. 

Payloads are created by striping request data into multiple chunks according to the file 

system‘s stripe depth parameter. Stripe depth in PVFS usually is 64 Kbytes. The 

distribution of data chunks in a payload is done using round-robin mechanism. The Petri 

Net implementation of the payload creation process is presented in Figure 50. 

bytes_write = fwrite(buffer, block_size, number_of_block, file_handle); 
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Figure 50: Payload creation component for PVFS 
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multiple segments. The Petri Net model for dividing data into segments is presented in 

Figure 51.  

 

 

Figure 51: Data segmentation component for 

PVFS file write 

 Typically, the MTU is set to 1500 in a Gigabit Ethernet network, so the packet size for 

data sending from clients to I/O servers is at the maximum size of 1500 bytes. 

6.4.2 File write model network component 

The network component model in the file write operation is very similar to the network 

component model in the file read operation. There are only some slight differences in the 

model due to the data flow of the operation being different. The network packets from the 

client component are examined, the destination addresses are checked and the packets are 

routed to the correct receiver. The network component provides the transportation for the 

packets and also simulates the wire-delay on the network medium. The Petri Net model for 

the sending and the receiving network component for PVFS file write are presented in 

Figure 52 and Figure 53. 
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orelse (length bf >  0 andalso length bf mod stripesize =  0 andalso length bf =  iosize div clientnum)]

[(iosize < =  stripesize andalso length bf =  iosize) 
orelse (iosize < =  clientnum*stripesize andalso length bf =  stripesize) 
orelse (length bf >  0 andalso length bf mod stripesize =  0 andalso length bf =  iosize div clientnum)]

[(iosize < =  stripesize andalso length bf =  iosize) 
orelse (iosize < =  clientnum*stripesize andalso length bf =  stripesize) 
orelse (length bf >  0 andalso length bf mod stripesize =  0 andalso length bf =  iosize div clientnum)]

[(iosize < =  stripesize andalso length bf =  iosize) 
orelse (iosize < =  clientnum*stripesize andalso length bf =  stripesize) 
orelse (length bf >  0 andalso length bf mod stripesize =  0 andalso length bf =  iosize div clientnum)]

[(iosize < =  stripesize andalso length bf =  iosize) 
orelse (iosize < =  clientnum*stripesize andalso length bf =  stripesize) 
orelse (length bf >  0 andalso length bf mod stripesize =  0 andalso length bf =  iosize div clientnum)]

[dst= 8][dst= 7][dst= 6][dst= 5][dst= 4][dst= 3][dst= 2][dst= 1][dst= 8][dst= 7][dst= 6][dst= 5][dst= 4][dst= 3][dst= 2][dst= 1]

[(iosize < =  stripesize andalso length bf =  iosize) 
orelse (iosize < =  clientnum*stripesize andalso length bf =  stripesize) 
orelse (length bf >  0 andalso length bf mod stripesize =  0 andalso length bf =  iosize div clientnum)]

[(iosize < =  stripesize andalso length bf =  iosize) 
orelse (iosize < =  clientnum*stripesize andalso length bf =  stripesize) 
orelse (length bf >  0 andalso length bf mod stripesize =  0 andalso length bf =  iosize div clientnum)]

[(iosize < =  stripesize andalso length bf =  iosize) 
orelse (iosize < =  clientnum*stripesize andalso length bf =  stripesize) 
orelse (length bf >  0 andalso length bf mod stripesize =  0 andalso length bf =  iosize div clientnum)]

[(iosize < =  stripesize andalso length bf =  iosize) 
orelse (iosize < =  clientnum*stripesize andalso length bf =  stripesize) 
orelse (length bf >  0 andalso length bf mod stripesize =  0 andalso length bf =  iosize div clientnum)]

[(iosize < =  stripesize andalso length bf =  iosize) 
orelse (iosize < =  clientnum*stripesize andalso length bf =  stripesize) 
orelse (length bf >  0 andalso length bf mod stripesize =  0 andalso length bf =  iosize div clientnum)]

[(iosize < =  stripesize andalso length bf =  iosize) 
orelse (iosize < =  clientnum*stripesize andalso length bf =  stripesize) 
orelse (length bf >  0 andalso length bf mod stripesize =  0 andalso length bf =  iosize div clientnum)]

[(iosize < =  stripesize andalso length bf =  iosize) 
orelse (iosize < =  clientnum*stripesize andalso length bf =  stripesize) 
orelse (length bf >  0 andalso length bf mod stripesize =  0 andalso length bf =  iosize div clientnum)]

[(iosize < =  stripesize andalso length bf =  iosize) 
orelse (iosize < =  clientnum*stripesize andalso length bf =  stripesize) 
orelse (length bf >  0 andalso length bf mod stripesize =  0 andalso length bf =  iosize div clientnum)]

[dst= 8][dst= 7][dst= 6][dst= 5][dst= 4][dst= 3][dst= 2][dst= 1]

[(iosize < =  stripesize andalso length bf =  iosize) 
orelse (iosize < =  clientnum*stripesize andalso length bf =  stripesize) 
orelse (length bf >  0 andalso length bf mod stripesize =  0 andalso length bf =  iosize div clientnum)]

[dst= 8]

[(iosize < =  stripesize andalso length bf =  iosize) 
orelse (iosize < =  clientnum*stripesize andalso length bf =  stripesize) 
orelse (length bf >  0 andalso length bf mod stripesize =  0 andalso length bf =  iosize div clientnum)]

[dst= 7]

[(iosize < =  stripesize andalso length bf =  iosize) 
orelse (iosize < =  clientnum*stripesize andalso length bf =  stripesize) 
orelse (length bf >  0 andalso length bf mod stripesize =  0 andalso length bf =  iosize div clientnum)]

[dst= 6]

[(iosize < =  stripesize andalso length bf =  iosize) 
orelse (iosize < =  clientnum*stripesize andalso length bf =  stripesize) 
orelse (length bf >  0 andalso length bf mod stripesize =  0 andalso length bf =  iosize div clientnum)]

[dst= 5]

[(iosize < =  stripesize andalso length bf =  iosize) 
orelse (iosize < =  clientnum*stripesize andalso length bf =  stripesize) 
orelse (length bf >  0 andalso length bf mod stripesize =  0 andalso length bf =  iosize div clientnum)]

[dst= 4]

[(iosize < =  stripesize andalso length bf =  iosize) 
orelse (iosize < =  clientnum*stripesize andalso length bf =  stripesize) 
orelse (length bf >  0 andalso length bf mod stripesize =  0 andalso length bf =  iosize div clientnum)]

[dst= 3]

[(iosize < =  stripesize andalso length bf =  iosize) 
orelse (iosize < =  clientnum*stripesize andalso length bf =  stripesize) 
orelse (length bf >  0 andalso length bf mod stripesize =  0 andalso length bf =  iosize div clientnum)]

[dst= 2][dst= 1]

[(iosize < =  stripesize andalso length bf =  iosize) 
orelse (iosize < =  clientnum*stripesize andalso length bf =  stripesize) 
orelse (length bf >  0 andalso length bf mod stripesize =  0 andalso length bf =  iosize div clientnum)]
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Figure 53: The receiving network component for PVFS file write 
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6.4.3 File write model server component 

The file write server component is built upon the local write model. The local write 

model is the foundation of the file write server model. A network packet, after arriving at 

the I/O server, is processed and sent to the local file write model. The server creates a 

receive buffer for each client sending in requests. The server model examines the network 

packets and moves the request data into the correct buffers using FCFS mechanism. This 

process is designed to follow the same implementation in the real system.  

Since each packet is limited by the maximum segmentation size of the network, the 

server component combines multiple packet data into the original request sent by the client. 

Unlike the file read server model, the file write server model does not attempt to combine 

the original request into 64Kbytes chunk. Instead the server model combines the 

fragmented data into the original request and sends it to the local file write model. Because 

of this, the block sizes of the write requests sent to the local file write model are not fixed. 

PVFS is relied on the delay write mechanism of the local file system to combine multiple 

different small write requests into big and sequential write requests. The local file system 

on the I/O server performs the write operation. Since the server model sends the write 

requests to the local file system model as it receives in a FCFS order, the block size of the 

write requests are quite random. Even though, the write requests could be in sequential 

order, the block sizes of the requests are not. This creates a special I/O access pattern. The 

Petri Net model for PVFS file write server model is presented in Figure 54. 
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Figure 54: Server component for PVFS file write 



 

114 

 

After read requests pass through the local file system component, it returns the result 

data read from disk. 

6.5 Summary 

This chapter presents a set of detailed and hierarchical performance models of the PVFS 

file system using Colored Petri Nets. PVFS read operation and PVFS write operation are 

studied and their models are built. Each operation is divided into sub-components: client, 

network and server. The models of these components are presented. The client components 

are where the read requests and write requests from applications are received. The client 

components take these read requests and write requests and create several network packets. 

The network packets are sent to the servers using the network component. The server 

component built upon the local file system model processes the request data and performs 

actual I/O operations. The results of the I/O operations are sent to the clients using the 

network component. 

The current PVFS model is setup to have eight clients and four servers. This is equal to 

a small size production file system. The model can be extended to have more clients and 

servers. The model currently uses TCP/IP protocol over a Gigabit Ethernet network. It can 

also be modified to simulate a different network protocol and different network hardware. 
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C h a p t e r  7  

PARALLEL FILE SYSTEM SIMULATION MODEL PERFORMANCE 

VALIDATION 

7.1 Introduction 

This chapter presents the performance validation of the simulation model for a PVFS 

file system. Because PVFS is a parallel file system, the number of clients accessing the file 

system at the same time is important. The file system is designed to provide a massive I/O 

bandwidth and throughput by allowing multiple I/O servers to work with multiple clients at 

the same time. The performance measurements are performed similarly to the way the local 

file system performance experiments are done.  

7.2 Validation setup 

In order to validate the entire Petri Net file system model against real-world data, the 

model hardware parameters, such as memory delay, execution speed, function overhead, 

and disk speed, are measured directly from the machines where the real experiments take 

place, using kernel traces. The same Ftrace mechanism as described in Chapter 5 is 

utilized. Since PVFS is a parallel file system, a network is involved. The performance 

parameters of the network stack on the client and server machines are also measured, using 

the Ftrace facility. Network performance parameters on the wire are recorded, using 

network monitoring tools, including ping, traceroute and packet sniffer. The performance 

validations are executed, starting with one client accessing the file system. The number of 

clients is increased until the number of clients equals eight. The PVFS file system model is 
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implemented with four I/O servers. With eight clients (double the amount of servers) 

accessing the file system simultaneously, the file system level of stress is high enough to 

produce good performance results.  

7.3 Performance validation experiments 

Simulations are run several times, and the average results are used to compare with 

iozone benchmark results running on the test system. The simulation experiments are run 

using a set of synthetic I/O requests and simulating sequential I/O. The I/O requests are 

grouped into similar block-size configurations of the iozone benchmark. 

7.3.1 Single client performance experiment 

In this performance measurement, one client reads and writes to the PVFS file system. 

The result of the I/O read performance in the experiment is presented in Figure 55. The 

error bars are set at 20%. 

 

Figure 55: Single client I/O read validation 
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All points, except the last one, are within or very close to 20% of the real-world 

measurement. Even though the last data point is farther away than other data points, it is 

still a very good result, and the error is likely to come from measurement inaccuracy. The 

simulation data points are consistently lower than real-world data. 

The result of the I/O write performance in the experiment is presented in Figure 56. The 

error bars are set at 20%. 

 

Figure 56: Single client I/O write validation 
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At small block size, the simulation results are higher than real-world data, but at bigger 

block size, the simulation results become lower.  

The reason for this performance behavior comes from the buffer design of the I/O server 

model. The I/O server has a receive buffer for every client sending requests to the server. 

Data are taken out of the buffers, using a first-come-first-served (FCFS) order. The receive 

buffers in the real server are implemented, using a linked-list data structure. The larger the 

buffer, the slower an item in the buffer can be accessed. Currently, the buffers of the 

simulation model are implemented to have a fixed operating cost. This means that the time 

it takes to access an item in the buffer stays the same, regardless of the size of the buffer.  

The number of write requests needed to write a file when using a small block size is 

much larger than the number of write requests when using a large block size. In the 

simulation model, this does not change the time it takes to de-queue requests. This causes 

the simulation model to run faster than the real system at the small block sizes and slower 

than the real system at the large block sizes. 

7.3.2 Two clients performance experiment 

In this experiment, two clients read and write to the PVFS model. The result of the I/O 

read performance in the experiment is presented in Figure 57. The error bars are set at 20%. 
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Figure 57: Two clients I/O read validation 
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Figure 58: Two clients I/O write validation 

I/O write also exhibits similar behavior as the single client experiment. All data points, 
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simulation are lower than the real-world data. 

7.3.3 Three clients performance experiment 

In this experiment, three clients read and write to the PVFS model. The result of the I/O 

read performance in the experiment is presented in Figure 59. The error bars are set at 20%. 

0

10000

20000

30000

40000

50000

60000

70000

80000

8 16 32 64 128 256 512 1024 2048

T
h

ro
u

g
h

p
u

t 
(K

B
/s

)

Block size (KB)

Simulation1

Experiment1

Simulation2

Experiment2



 

121 

 

 

 

Figure 59: Three clients I/O read validation 
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Figure 60: Three clients I/O write validation 

The I/O write performance in the experiment confirms what was observed in the I/O 

read portion of the experiment. The file system stress level with three clients is still not 

high enough to make a difference in performance behavior. However, there are some slight 

differences from the previous I/O write performance chart at the bigger block sizes. These 

differences become more visible when the stress level becomes high enough. For the most 

part, data points are within 20% of the real-world data or very close. 
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Figure 61: Four clients I/O read validation 
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experiments. The last two data points are not within 20% of the real-world data, but are still 

very close to them. 

The result of the I/O write performance in the experiment is presented in Figure 62. The 

error bars are set at 20%. 

 

Figure 62: Four clients I/O write validation 
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The simulation data points are still within 20% of the real-world data points or close to 

them. The two data points at smallest block sizes are somewhat farther away from the real-

world data points.  

7.3.5 Five clients performance experiment 

In this experiment, five clients read and write to the PVFS model. The result of the I/O 

read performance in the experiment is presented in Figure 63. The error bars are set at 20%. 

 

Figure 63: Five clients I/O read validation 
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The result of the I/O write performance in the experiment is presented in Figure 64. The 

error bars are set at 20%.  

 

Figure 64: Five clients I/O write validation 
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operations generating more stress on the file system than I/O read operations. In general, 

I/O write operations are slower and more resource intensive than I/O read operations. 

The performance curves are still following the same trend. Simulation data points are 

higher than real-world data points at small block sizes and lower than real-world data at big 

block sizes. However, the stress on the file system has caused the error to become bigger, 
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especially the data points at small block sizes. The gap between the simulation data points 

and the real-world data points has become significant. There are also more variations at the 

large block sizes than previously observed. 

7.3.6 Six clients performance experiment 

In this experiment, six clients read and write to the PVFS model. The result of the I/O 

read performance in the experiment is presented in Figure 65. The error bars are set at 20%. 

 

Figure 65: Six clients I/O read validation 

Compared to the previous experiment, it is clear that the amount of variations increases 

consistently every time the number of clients increases. This supports the assumption, 

which seems to be obvious, that the level of stress on the file system increases when the 

number of clients, accessing the file system at the same time, increases.  
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However, the performance curves are still grouped together quite nicely. All data points, 

except the last two points, are still within 20% of the real-world data. In the next few 

experiments, we start to see significant changes in the performance behavior. 

The result of the I/O write performance in the experiment is presented in Figure 66. The 

error bars are set at 20%. 

 

Figure 66: Six clients I/O write validation 

The variations and the effects of the file-system stress level are very visible in this 

experiment. This shows that the file system stress level has become significant. At large 

block sizes, simulation data points are still within 20% of real-world data points. However, 

at small block sizes, the errors have become quite large. The performance curves are also 

not as smooth as before, even though they are still staying very close to each other. 
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7.3.7 Seven clients performance experiment 

In this experiment, seven clients read and write to the PVFS model. The result of the I/O 

read performance in the experiment is presented in Figure 67. The error bars are set at 20%. 

 

 

Figure 67: Seven clients I/O read validation 

When seven clients are reading the PVFS file system at the same time, the workload has 

become high enough to visibly affect the file system performance behavior. Comparing to 

the previous experiment with six clients, this experiment shows much more variations and 

distortions. Simulation data points started to show outside of the 20% range, not only at the 

big block sizes, but also at the small block sizes. 
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The result of the I/O write performance in the experiment is presented in Figure 68. The 

error bars are set at 20%. 

 

Figure 68: Seven clients I/O write validation 

The variations and distortions are becoming even more visible in this experiment. 

However, similarly to previous experiments, the block sizes in the middle are the most 

stable. Data points of the middle block sizes are all stay within 20% of the real-world data 

points. Errors and distortions are happening at the small block sizes and large block sizes. 

At small block sizes, data points stay very close to each other. This allows the errors to be 

observed easily. At large block sizes, data points are more dispersed with large variations. 

It is harder to observe the error at the large block sizes. 
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7.3.8 Eight clients performance experiment 

In this experiment, eight clients read and write to the PVFS model. The result of the I/O 

read performance in the experiment is presented in Figure 69. The error bars are set at 20%. 

 

Figure 69: Eight clients I/O read validation 

When the number of clients simultaneously reading the PVFS file system reaches 8 

clients, we expect the stress level of the file system to be very high, and the experiment 

supports that expectation. At this level of stress, even the middle block sizes data points, 

which have stayed very stable until now, start to show variations and distortions. Many 

data points have now fallen well outside of the 20% error range. The biggest changes are at 
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the big block sizes. As the number of client increases, the errors at the big block sizes also 

increase, especially at the largest block size. 

As stated in the previous experiment, simulation data points are showing much less 

variations and distortions. This makes perfect sense, as the simulation model has much 

fewer outside factors. Simulation experiments are also performed under well-controlled and 

precise conditions. The result of the I/O write performance in the experiment is presented 

in Figure 70. The error bars are set at 20%. 

 

Figure 70: Eight clients I/O write validation 

Even at eight clients writing to the PVFS file system at the same time, with the only 

exception at the 64Kbytes block size, the simulation performance behavior is still quite 
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consistent with what was observed previously. In this experiment, many data points fall 

outside of the 20% error range; however, simulation data points still group together very 

well, especially at the small block sizes. Even though there are variations among simulation 

data points, the magnitude of errors at the small block size have stayed relatively the same 

since the beginning. The magnitude of errors at the large block sizes, however, increases 

when the number of clients simultaneously writing to the PVFS file system increases. 

7.4 Summary 

This chapter presents a set of detailed performance validation experiments of the 

simulation model of the PVFS file system. The workload for the parallel file system, as 

observed in Chapter 3, primarily consists of very-large-block-size sequential I/O. 

Therefore, the performance validation utilizes synthetic sequential I/O workload to study 

the simulation model and to compare with real-world data. Performance validations are set 

up with eight separate experiments. Each experiment uses a different number of clients 

accessing the PVFS file system. The number of clients is increased from one to eight. The 

last experiment uses eight clients, which is double the number of I/O servers, 

simultaneously accessing the PVFS file system. By increasing the number of clients from 

small to large, we observe the behavior of the simulation model when the stress level of the 

file system increases.  

For the single client experiment, the simulation performances are within 20% of the real 

file system in most cases. When the number of clients increases, we observe the 

performance curves start to change, as the stress level of the file system increases. Up to 

three clients accessing the PVFS file system at the same time, the performance curves stay 
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very close together. When the numbers of clients become equal to or larger than four 

clients, the variations and distortions become visible. The simulation data points group 

together much better than the real-world data points because the affecting factors are much 

less in the simulation environment. The magnitude of errors stays relatively the same at 

small block sizes. The errors become larger at the large block sizes when the number of 

client increases. 

In general, the performance behavior is consistent throughout the performance 

validation process. The performance validation results are also very good, considering that 

this is a very complex environment, involving a parallel file system and multiple clients 

accessing simultaneously. 
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C h a p t e r  8  

CONCLUSION 

We conclude this dissertation by summarizing the importance of file system simulation 

models, presenting some of the implications of this research, discussing what will be 

required for file system simulation models to achieve user acceptance in computer systems 

analysis, and identifying several promising avenues for continuing work. 

8.1 The importance of the file system simulation models 

Existing file system evaluation techniques have limitations and disadvantages in 

evaluating the role and performance of hypothetical file systems within complex computer 

environments. This dissertation describes the simulation models of the local and parallel 

file system and its role in providing alternative evaluation techniques in addition to existing 

ones. The file system simulation model enables end-to-end performance experiments of 

complex file systems, using different workloads which include real-system production 

workloads. This technique will provide an opportunity to analyze the interaction of 

different system components as well as different performance behavior introduced by the 

operating system. 

8.2 Implications of this research 

The file system simulation models offer the opportunity to investigate the performance 

behavior of different file systems in different type of storages in computer systems. It 

permits forays into the space of hypothetical file system functionalities without the 

difficulties of developing and supporting a prototype system or a proof of concept study. It 
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also helps in eliminating the cost of purchasing and deploying actual hardware to build the 

actual system. This is especially relevant when considering the number of technologies 

available today and the recent trend toward the development of application-specific storage 

systems. Examples of these systems include, but are not limited to, audio and video 

recording and playback systems, scientific data processing, business data factory 

processing, and database housing, where support for application-specific features in 

individual system often play a key role in the success of the products in the market. 

8.3 Keys to the acceptance of the file system simulation models 

The benefits of the file system simulation models as an evaluation technique will not 

come without investments toward the development and maintenance of the simulation 

components. These investments include those of developing accurate and computationally 

inexpensive simulation models for storage devices and other components of the file 

systems. It also includes extending and creating a broader set of evaluation workloads that 

are more representative of the systems to be deployed or the existing systems which need to 

be analyzed. 

For the file system simulation models to remain effective, new storage device models, 

new network models, and new operating system models need to continue to be created. 

Simulation experiments require validated or high-confidence component models in order to 

provide useful experimental results. This is not likely to be a problem, since the current 

simulation models are built with expansion and improvement in mind. Simulation 

components are designed to be as modular as possible, providing the flexibility and 

freedom to improve or replace. Depending on the type of component, in addition to the 
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component architecture, the operating characteristics and performance parameters of the 

component also need to be captured. They include, but are not limited to, memory access 

time, instructions execution time, device seek time, and device access time. A physical 

device‘s attributes and characteristics can be obtained from the technical data of the device 

released by the manufacturer. Operating system component parameters can be gathered by 

profiling and monitoring tools as well as kernel traces. Looking to the future, Section 8.4 

discusses possible advancements in the file system simulation models through 

improvements in existing components and explores new component implementation 

options. 

Additionally, application-level workloads will need to be carefully developed in order to 

gain the full usefulness of the file system simulation models. Availability of such 

workloads could potentially lead to better characterization of real-system workloads and 

better benchmarks for storage systems. Even though well-accepted workloads exist, they 

are proprietary and belong to a few organizations. The lack of diverse and representative 

workloads for storage evaluation has been and continues to be a problem in the storage 

systems community [97, 98].  

8.4 Opportunities for future work 

In this section we discuss groups of improvements and developments for the simulation 

models centered on the themes of existing component improvement and new component 

implementation. 
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8.4.1 Improving existing simulation components 

As demonstrated by the evaluations in this dissertation, the simulation models could 

produce very similar performance results to the real-world measurements. However, many 

components within the simulation models could still be improved to create even better 

result. An important component whose improvement benefits the simulation models greatly 

is the read-ahead mechanism. Usually, regular files are stored on disk in large groups of 

adjacent sectors, so that they can be retrieved quickly with few moves of the disk heads. 

Therefore, many disk accesses are sequential. Accordingly, read-ahead consists of reading 

several adjacent pages of data of a regular file or block device file before they are actually 

requested. In most cases, read-ahead significantly improves I/O read operation 

performance. Consequently, it improves system performance. An application, when 

sequentially reading a file, does not have to wait for the requested data because they are 

already available in memory. However, when the application accesses files randomly, read-

ahead does not help improving performance. In the case of random I/O, it is actually 

detrimental because it not only wastes space in the page cache with useless information, but 

also spends more time to read them into memory. Therefore, the read-ahead component 

needs to reduce or stop read-ahead when it detects that the most recently I/O access is not 

sequential to the previous one. The current model component could be switched from 

sequential I/O access to random I/O access. However, it does not have all needed features 

currently implemented. The improved read-ahead component needs to implement the 

following features:  
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- Read-ahead may be gradually increased as long as the process keeps accessing the 

file sequentially. 

- Read-ahead must be scaled down or even disabled when the current access is not 

sequential with respect to the previous one (random access). 

- Read-ahead should be stopped when a process keeps accessing the same pages over 

and over again (only a small portion of the file is being used), or when almost all 

pages of the file are already in the page cache. 

Another important simulation component to improve is the memory reclaiming 

mechanism. This mechanism is currently implemented partially in the page cache 

component. A more complete implementation of the memory reclaiming mechanism could 

help the model more accurately present the state of the I/O memory buffer.  

Unfortunately, due to the empirical nature of the memory reclaiming design in Linux, its 

code changes very quickly. However, the general ideas and most major heuristic rules 

should continue to be valid. The design ideals of the memory reclaiming mechanism are: 

- Pages in disk and memory caches not referenced by any process have priority. 

These pages are considered ―harmless.‖ They should be reclaimed before pages 

belonging to processes in the user spaces. Also, non-dirty pages have higher 

priority than dirty pages because they do not have to be written to disk. 

- Except locked pages, all pages of user space processes are reclaimable. The 

memory reclaiming process must be able to steal any page of a user space process, 

including anonymous pages. If a process has been sleeping for a long period of 

time, it will progressively lose all its page frames. 
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- If a page is shared by several processes, the memory reclaiming process clears all 

page table entries that refer to the page frame before reclaiming the page. 

- The memory reclaiming process uses a Least Recently Used (LRU) replacement 

algorithm and two lists (active and inactive) to identify which pages to reclaim. If a 

page has not been accessed for a long time, the probability that it will be accessed 

in the near future is low, and it can be considered inactive page.  On the other hand, 

if a page has been accessed recently, the probability that it will continue to be 

accessed is high, and it must be considered as active page. The reclaiming process 

will only reclaim inactive pages. 

On the server component of the simulation models, the receiving buffer component also 

needs some improvements. Currently, the receiving buffer component is implemented, 

using a cost model with computational complexity of O(1) for inserting and searching 

incoming packets. In Linux, the implementations of the network receiving buffer models 

are usually a linked list with the computational complexity of O(n) for inserting and 

searching packets. This is the reason why the simulation models have slower performance 

than the real-world measurement when using small block size and faster performance than 

the real-world measurement when using big block size. Due to the flow nature of Petri Net, 

there are some difficulties in modifying the model from a constant cost model to a linear 

cost model. However, the change can reduce the errors of the simulation models when 

comparing to the real-world measurement.  
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8.4.2 Implementing new components 

In addition to improving existing model components, implementing new model 

components is another direction to extend the capability of the simulation models. One 

interesting component that has not been implemented is the Linux I/O scheduler. The I/O 

scheduler controls the way I/O reads and writes are committed to disk. The goal of the I/O 

scheduler is to provide better optimization for different classes of workload by allowing the 

operating system to utilize many different scheduling mechanisms.  

Each scheduling mechanism is designed to improve a certain aspect of the I/O 

operations. The techniques used by the scheduler to improve performance include, but are 

not limited to, merging request, elevator, and prioritization. Merging request is a technique 

where adjacent requests are merged together to reduce disk seeking. Elevator is a technique 

where requests are ordered, based on their physical location, and the requests are usually 

traversed in one direction from the closest location to the farthest or vice versa. 

Prioritization is a technique where the priorities of requests are manipulated to improve 

performance. There are currently four I/O schedulers available. They are the no-op 

scheduler, the anticipatory I/O scheduler (AS), the deadline scheduler and the complete fair 

queuing scheduler (CFQ).  

The no-op scheduler is the simplest scheduling scheme. It only has the merging request 

technique implemented. All I/O requests are put into a simple first-in-first-out (FIFO) 

queue. Perhaps, the no-op scheduler works best with solid state devices that do not depend 

on mechanical movement to access data.  
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The anticipatory I/O scheduler is the former default scheduling scheme in the Linux 

kernel. It implements the merging request technique, the elevator technique and an 

anticipating read operation technique. Basically, it pauses for a short time (usually a few 

milliseconds) after a read operation in anticipation of another read request.  

The deadline scheduler implements request merging and elevator queues. More 

importantly, it imposes a deadline on all operations to prevent resource starvation by 

maintaining two deadline queues, in addition to the elevator queues (both read and write). 

Deadline queues are basically sorted by their deadline, while the elevator queues are sorted 

by the sector number. The deadline scheduler decides which queue to use before processing 

any request. Read queues are given a higher priority, because processes usually block on 

read operations. After that, the deadline scheduler checks if the first request in the deadline 

queue has expired. If none of the requests in the deadline queue is close to expiration, the 

scheduler will process requests from the elevator queue.  

The complete fair queuing (CFQ) scheduler also implements request merging and 

elevator queues. It additionally attempts to give all users of a particular device the same 

number of I/O requests over a particular time interval. CFQ categorizes incoming requests 

into synchronous type and asynchronous type. According to I/O priority of the requesting 

process, asynchronous requests are distributed into multiple priority queues, one queue per 

I/O priority. Each queue is assigned a time slice which depends on the I/O priority of the 

submitting process. The scheduler accesses these queues in a round-robin order. 

Synchronous requests are distributed into a number of per-process queues. The number of 

requests in a queue is also restricted, based on the I/O priority.  
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Obviously, depending on which scheduling scheme is in use, the I/O performance 

behavior of the system can have different characteristics. By implementing the I/O 

scheduler, the file system simulation models can accurately mimic the performance 

behavior of the actual file system and storage subsystems. The I/O scheduler is complex, 

but the current file system simulation models have many existing components that could be 

reused to make the implementation easier. 

Another interesting component to implement is a simulation model for different network 

hardware. InfiniBand is a very good one with which to start, since there are PVFS 

modifications to operate successfully, using InfiniBand as the network hardware [99-101]. 

InfiniBand is a powerful network architecture, designed to support I/O connectivity for the 

Internet infrastructure. Uniquely providing both backplane solutions and also traditional 

networking interconnects, InfiniBand offers communication and management infrastructure 

for inter-processor communication and I/O. By unifying the network‘s interconnect with a 

feature-rich managed architecture, it manages to provide native cluster connectivity, thus 

simplifying application cluster connections, supporting scalability, and sustaining 

reliability. With QoS mechanisms built in, InfiniBand can provide virtual lanes on each 

link and define service levels for individual packets.  

The current network hardware implemented in the simulation models is Ethernet, which 

uses a hierarchical switched topology. Unlike Ethernet, InfiniBand uses a switched fabric 

topology. Other commonly-used network topologies are Fat-Tree (Clos), mesh, and 3D-

Torus. Any of the previously mentioned topologies, after implementation, would create a 

very different interconnection simulation component, in comparison to the current 
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component. InfiniBand also transmits data in large packets (maximum size of 4 Kbytes). 

Packets are used to form messages, which could be as large as 2 Gbytes. There are multiple 

types of messages, such as direct memory access (RDMA), channel send or receive, 

transaction-based operation, multicast transmission, and atomic operation. Due to 

implementation complexity reasons, PVFS over InfiniBand implementations are using 

Internet Protocol (IP) over InfiniBand technology [102]. This is also a very good basis for 

the PVFS simulation model. Many network components and client components as well as 

server components can be reused.  

Based on the same principle as PVFS, a much improved PVFS2 is also a very nice 

addition to the file system simulation models. A PVFS2 improvement that has a significant 

impact on the simulation models is how the file system interacts with networks and 

storages. PVFS1 relies on the socket networking interface and local file systems for data 

and metadata storage. PVFS2 uses the Buffered Messaging Interface (BMI) and the Trove 

storage interface to provide Application Programming Interfaces (APIs) to network and 

storage technologies respectively. PVFS2 can support several different network types, such 

as TCP/IP, Myricom's GM message passing system, and InfiniBand (both Mellanox VAPI 

and OpenIB APIs) via BMI. Supporting multiple networking technologies efficiently is a 

very important feature of PVFS2. As a result, implementing the BMI model is a key to 

successful implementation of the PVFS2 simulation model.  

Similar to network technologies, many different storage technologies are also available. 

PVFS2 uses the Trove storage interface to efficiently support multiple storage back-end 

technologies. In addition to storing file data, metadata has also received much attention in 
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PVFS2. Instead of using a flat file on the local file system to store metadata as PVFS does, 

PVFS2 is using Berkeley DB database technologies for the metadata storage. In PVFS, 

there is only one metadata server. This creates a single point of failure, as well as a 

performance bottleneck.  PVFS2 can distribute metadata to multiple I/O servers (which 

might or might not also serve data). This allows metadata for different files to be placed on 

different servers and reduces the congestion to the metadata servers.  
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