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Abstract

Winfree introduced a model of self-assembling systems called the abstract Tile Assem-

bly Model [64] (aTAM) where square tiles with glues on their edges attach spontaneously

via matching glues to form complex structures. A generalization of the aTAM called the

2HAM (two-handed aTAM) not only allows for single tiles to bind, but also for “super-

tile” assemblies consisting of any number of tiles to attach. We consider a variety of mod-

els based on either the aTAM or the 2HAM.

The underlying commonality of the work presented here is simulation. We introduce

the polyTAM, where a tile system consists of a collection of polyomino tiles, and show that

for any polyomino P of size ≥3 and any Turing machine M , there exists a temperature-1

polyTAM system containing only shape-P tiles that simulates M . We introduce the RTAM

(Reflexive Tile Assembly Model) that works like the aTAM except that tiles can nonde-

terministically flip prior to binding. We show that the temperature-1 RTAM cannot simu-

late a Turing machine by showing the much stronger result that the RTAM can only self-

assemble “periodic” patterns.

We consider a variety of models and define notions of simulation which serve as rela-

tions between two tile assembly systems (possibly belonging to different models). Using

simulation as a basis of comparison, we first show that cellular automata and the class

of all tile assembly systems in the aTAM are equivalent. Next, we introduce the Dupled

aTAM (DaTAM) and show that the temperature-2 aTAM and the temperature-1 DaTAM

are “mutually exclusive” by showing that there is an aTAM system that cannot be simu-

lated by any DaTAM system, and vice versa. Third, we consider the restricted glues Tile

Assembly Model [52] (rgTAM) and show that there is an aTAM system that cannot be

simulated by any rgTAM system. We introduce the Dupled restricted glues Tile Assem-

bly Model (DrgTAM), and show that the DrgTAM is intrinsically universal for the aTAM.

Finally, we consider a variation of the Signal-passing Tile Assembly Model (STAM) [50]

called the STAM+ and show that the STAM+ is intrinsically universal and that the 3-D

2HAM is intrinsically universal for the STAM+.
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Chapter 1

Introduction

1.1 Theoretical models of self-assembly

Self-assembly is the process by which disorganized components autonomously combine

to form organized structures. In DNA-based self-assembly, the combining ability of the

components is implemented using complementary strands of DNA as the “glue”. In [64],

Winfree introduced a useful mathematical model of self-assembling systems called the ab-

stract Tile Assembly Model (aTAM) where the autonomous components are described as

square tiles with specifiable glues on their edges and the attachment of these components

occurs spontaneously when glues match. The aTAM provides a convenient way of describ-

ing self-assembling systems and their resulting assemblies, and serves as the underpinning

of many studies of the properties of self-assembling systems. The results of such studies

include showing the power of these systems to perform computations [64, 41, 54, 62], the

ability to build shapes efficiently (in terms of the number of unique types of components,

i.e. tile types, needed) [1, 59, 62, 9], and limitations to what can be built and computed

[41, 42, 53, 9, 46].

From the broad collection of results in the aTAM, one property of systems that has

been shown to yield enormous power is cooperation. The notion of cooperation captures

the phenomenon where the attachment of a new tile to a growing assembly requires it to

bind to more than one tile (usually 2) already in the assembly. The requirement for co-

operation is determined by a system parameter known as the temperature, and when the

temperature is equal to 1 (a.k.a. temperature-1 systems), there is no requirement for co-

operation. A long-standing conjecture is that temperature-1 aTAM systems are in fact not

capable of universal computation or efficient shape building, although it is well-known that

temperature ≥ 2 systems are. However, in actual laboratory implementations of DNA-

based tiles [58, 6, 60, 43, 66], the self-assembly performed by temperature-2 systems does

not match the error-free behavior dictated by the aTAM, but instead, a frequent source of
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errors is the binding of tiles using only a single bond. Thus, temperature-1 behavior erro-

neously occurs and cannot be completely prevented. This has led to the development of a

number of error-correction and error-prevention techniques [61, 10, 65, 60, 55] for use in

temperature-2 systems.

We also consider a generalization of the aTAM called the two-handed abstract Tile As-

sembly Model (2HAM) which not only allows for single tiles to bind, but also allows for

“supertile” assemblies consisting of possibly any number of tiles to bind. Two supertiles

may bind when glues of two supertile assemblies match in such a way that the combined

strengths of these glues are greater than or equal to a temperature parameter and when

the edges of tiles containing these glues abut, no two tile share the same location. This

latter requirement models the physical notion of “steric hinderance”. In this thesis, we con-

sider a variety of models each of which sets out to model some physical phenomenon. Each

of these models is based on the aTAM or the 2HAM. For a comprehensive survey of tile-

based self-assembly including many results about the aTAM and the 2HAM, see [51, 20].

1.2 Simulation in self-assembly

In computational theory, a powerful and widely used tool for determining the relative pow-

ers of systems is simulation. For instance, in order to prove the equivalence, in terms of

computational power, of Turing machines and various abstract models such as tag systems,

counter machines, cellular automata, and tile-based self-assembly, systems have been de-

veloped in each which demonstrate their abilities to simulate arbitrary Turing machines,

and vice versa. This has been used to prove that whatever can be computed by a system

within one model can also be computed by a system in another. Additionally, the notion of

a universal Turing machine is based upon the fact that there exist Turing machines which

can simulate others.

The methods of simulation which are typically employed involve mappings of behav-

iors and states in one model or system to those in another, often following some “natural”
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mapping function, and also often in such a way that the simulation is guaranteed to gener-

ate the same final result as the simulated system, and maybe even some or all of its inter-

mediate states. Nonetheless, there is usually no requirement that the simulator “do it the

same way,” i.e. the dynamical behavior of the simulator need not mirror that of the sim-

ulated. For instance, as one Turing machine A simulates another, B, its head movements

may be in a significantly different pattern than B’s since, for instance, it may frequently

move to a special portion of the tape which encodes B’s transition table, then back to the

“data” section.

While such types of simulation can be informative when asking questions about the

equivalence of computational powers of systems, oftentimes it is the behavior of a sys-

tem which is of interest, not just its “output.” Self-assembling systems, which are those

composed of large numbers of relatively simple components which autonomously combine

to form structures using only local interactions, often fall into this category since the ac-

tual ways in which they evolve and build structures are of key importance. Because the

dynamical behaviors of these systems are of such importance, work in these models (e.g.

[22, 19, 46, 35, 34, 68]) has turned to a notion of simulation developed within the domain

of cellular automata, whose dynamical behaviors are also often of central importance. This

notion of simulation, called intrinsic universality (see [45, 27, 13, 15, 33, 47, 48, 4, 3] for

some examples related to various models such as cellular automata), is defined in such a

way that the simulations performed are essentially “in place” simulations which mirror the

dynamics of the simulated systems, modulo a scale factor allowed the simulator. Intrinsic

universality has been used to show the existence of “universal” systems, somewhat anal-

ogous to universal Turing machines, which can simulate all other systems within a given

model or class of systems, but in a dynamics-preserving way. Previous work [22] has shown

that there exists a single aTAM tile set which is capable of simulating any arbitrary aTAM

system, and thus that tile set is intrinsically universal (IU) for the aTAM (and we also say

that the aTAM is IU). Further work in [19] showed that the 2HAM is much more com-

3



plicated in terms of IU, with the existence of hierarchies (separated by temperature) of

2HAM systems with strictly-increasing power of simulation. These simulations are per-

formed by scaled blocks of tiles known as macrotiles in the simulator used to simulate in-

dividual tiles in the simulated systems. It was proven in [19] that for every temperature

τ ≥ 2, there exists a system at temperature τ such that no system at temperature τ ′ < τ

can simulate it. However, they also showed that for each τ ≥ 2, the class of 2HAM systems

at τ is IU.

Not only are there notions of simulation that pertain to systems with a single model,

but there are also notions of simulation that relate two systems of two distinct models.

This is analogous to the idea that a CA can simulate a Turing machine. When simulation

is used in this way, it provides a rigorous means of comparing two models. For example,

in [9] it is shown that for any system in the aTAM, there is a system in the 2HAM which

simulates it. This implies that the 2HAM is “more powerful” that the aTAM. Then, as the

2HAM is IU, there exists a single 2HAM system that when appropriately seeded can sim-

ulate any given aTAM system. In this way, the notion of intrinsic universality extends to

apply not just to single models but to two models. For example, we say that the 2HAM is

intrinsically universal for the class of aTAM systems.

1.3 Structure of this thesis

1.3.1 Computational universality in non-cooperative self-assembly

Despite the conjectured weakness of temperature-1 (non-cooperative) systems, an alter-

native approach has been to try to find ways of modifying them in the hope of develop-

ing systems which can operate at temperature-1 while exhibiting powers of temperature-2

systems but without the associated errors. Research along this path has resulted in an im-

pressive variety of alternatives in which temperature-1 systems are capable of Turing uni-

versal computation: using 3-D tiles [12], allowing probabilistic computations with potential

for error [12], including glues with repulsive forces [52], and using a model of staged as-
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sembly [7]. While these are theoretically very interesting results, the promise for use in the

laboratory of each is limited by current technologies.

Using the geometry of tiles to simulate Turing machines

We introduce the Polyomino Tile Assembly Model (polyTAM), in which each tile is com-

posed of a collection of unit squares joined along their edges. This allows for tiles with

arbitrary geometric complexity. We prove that geometry in the polyTAM, as in natural

self-assembling systems, affords great power. Namely, any polyomino shape which is com-

posed of only 3 or more unit squares has enough geometric complexity to allow a polyTAM

system at temperature 1, composed only of tiles of that shape, to perform Turing univer-

sal computation. We also provide negative results that further help to refine understand-

ing of exactly what geometric properties are needed for Turing universal computation in

temperature-1 self-assembly. We prove that a fundamental gadget (which we call the bit-

reading gadget) used within all known systems that can compute at temperature 1 in any

tile-assembly model, is impossible to construct with either the square tiles of the aTAM

or with dominoes (a.k.a. duples). This provides further evidence that systems composed

solely of those shapes are incapable of universal computation. Moreover, we show that

for any two distinct polyominoes, there is a polyTAM system that can simulate a Turing-

machine such that the shape of a tile in this system is on of the two given polyominoes.

This work was done with co-authors Sándor P. Fekete, Matthew Patitz, Trent Rogers, and

Robbie Schweller [29].

A model that is not computationally universal at temperature-1

We introduce the Reflexive Tile Assembly Model (RTAM), which can be thought of as

the aTAM with the relaxed constraint that tiles in the RTAM are allowed to flip hori-

zontally and/or vertically. We show that at temperature 1, the class of directed RTAM

systems – systems which yield a single pattern up to reflection and ignoring tile orienta-

tion – are only capable of assembling patterns that are essentially periodic. Then, follow-
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ing the thesis set forth in [26], we conclude that the temperature-1 RTAM is not compu-

tationally universal. We also show that like the aTAM at temperature 2, the class of di-

rected temperature-2 RTAM systems is computationally universal. This shows a funda-

mental dividing line between the powers of RTAM temperature-1 and temperature-2 di-

rected systems. In addition, we prove a variety of results about the self-assembly of finite

shapes in the RTAM that start from a single tile seed. These results show that unlike the

self-assembly of shapes in the aTAM, where any finite shape can be “hardcoded” to self-

assemble from a single seed tile, self-assembly of shapes in the RTAM is much more com-

plicated. This work was done with co-authors Matthew Patitz and Trent Rogers [36].

1.3.2 Using simulation to compare models of self-assembly

As new models of self-assembly are introduced, we can compare these models using in

a variety of ways which fall into two categories. First, we can measure the capacity of a

new model using benchmarks that have become standard in the self-assembly community.

These benchmarks include proving bounds on how efficient a system of a model can build

squares and proving that a model is Turing-complete - among others. While these bench-

marks have proven useful in gauging the strengths and weakness of a model, often we de-

sire means of measuring the relative strengths of two models. Given two models, a com-

mon way of comparing them is to consider shapes which can be self-assembled by some

system of the first model but cannot be self-assembled by any system in the second model.

While gives a basis of comparison between two models in terms of what the models can

and cannot produce, a priori, this does not give a comparison of how the models go about

assembly. An interesting way of measuring the relative strengths of two models which takes

dynamics into account stems from the notion simulation. However, even between systems

within the same model, defining a satisfactory notion of simulation, namely one which cap-

tures the essence of one system “behaving” like the other while also generating analogous

results, or output, can be difficult. In this thesis, we define such notions of simulation that

serves as a relation between systems of a variety of different models, and even define a no-
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tion of simulation between a cellular automaton and a system of the aTAM.

Comparing models to the aTAM

As early as the aTAM’s initial introduction, its power to simulate cellular automata (CA)

was explored. Winfree et al. showed that the 2-D aTAM can be used to simulate 1-D CA

[67], and Winfree [64] showed that the 3-D aTAM can simulate 2-D CA. Furthermore, the

aTAM is commonly colloquially referred to as an asynchronous, nondeterministic CA in

which quiescent states that change to “tile” states never change again (analogous to write-

once memory). These comparisons led naturally to our exploration of simulations between

the two models using the same dimensions for each, namely 2-D. We give a notion of sim-

ulation of a CA by an aTAM system as well as a notion of simulation of an aTAM system

by a CA, and show that with regards to these notions of simulation, CA and aTAM are

equivalent. This work was done with Matthew Patitz [35].

We next introduce the Dupled abstract Tile Assembly Model (DaTAM), which is es-

sentially the aTAM extended to allow both square tiles and rectangular tiles called duples

which are simply pre-formed pairs of 2 tiles joined along one edge before assembly begins.

Note that the DaTAM can be thought of as a special class of polyTAM systems consisting

of 1× 1 tiles and 1× 2 tiles (called duples). We then provide a series of results which show

that neither the aTAM at temperature-2 nor the DaTAM at temperature-1 is strictly more

powerful than the other, namely that in each there are shapes which can be self-assembled

which are impossible to self-assemble in the other, and that there are also systems in each

which cannot be simulated by the other. Essentially, it shown that the DaTAM is not ca-

pable of simulating glue cooperation while the aTAM is not capable of exhibiting the si-

multaneous placement of two tile that may occur in a DaTAM system. This work was done

with co-authors Matthew Patitz, Trent Rogers and Scott Summers [39].

Next, we show that the restricted glues TAM (rgTAM) which allow glues with repul-

sive (rather than just attractive) forces [52] is also not capable of simulating glue coop-

eration. Second, we introduce the Dupled restricted glue TAM (DrgTAM) which allows
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for both square tiles and duples, and it allows for glues with negative strength (i.e. those

which exert repulsive force). However, it is restricted similar to the rgTAM in that the

magnitude of glue strengths cannot exceed 1 (i.e. only strengths 1 and −1 are allowed).

Third, we show that the DrgTAM in some measures is greater than the sum of its parts.

That is, the resulting DrgTAM is capable of both universal computation and the simula-

tion of glue cooperation. This is the first such result for passive (i.e. non-active) tile as-

sembly systems. In fact, we show the stronger result that there is a single tile set in the

DrgTAM which can be configured to, in a temperature-1 system, simulate any arbitrary

aTAM system, making it intrinsically universal for the aTAM. Coupled with the result in

[39] which proves that there are temperature-1 systems in the DTAM, which are thus also

in the DrgTAM, that cannot be simulated by the aTAM at temperature-2, this actually

implies that the DrgTAM is more powerful than the temperature-2 aTAM. This work was

done with Matthew Patitz and Trent Rogers [37].

Comparing models to the 2HAM

A newly developed model, the Signal-passing Tile Assembly Model (STAM) [50], is based

upon the 2HAM but with a powerful and important difference. Tiles in the aTAM and

2HAM are static, unchanging building blocks which can be thought of as analogous to

write-once memory, where a location can change from empty to a particular value once and

then never change again. Instead, the tiles of the STAM each have the ability to undergo

some bounded number of transformations as they bind to an assembly and while they are

connected. Each transformation is initiated by the binding event of a tile’s glue, and con-

sists of some other glue on that tile being turned either “on” or “off”. Experimental work

shows that capabilities in this area are improving, and now include the linear transmission

of signals, where one glue binding event can activate one other glue on a DNA tile [49].

Note that while in the general STAM it is possible for signals to turn glues both “on” and

“off”, our results pertain only to systems which turn glues “on” (which we call STAM+

systems).
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We show that there is a 3-D 2HAM tile set U which is intrinsically universal (IU) for

the class C of all STAM+ systems at temperature 1 and 2. For every T ∈ C, a single input

supertile can be created, and using just copies of that input supertile and the tiles from U ,

at temperature 2 the resulting system will faithfully simulate T . Furthermore, the simulat-

ing system will use only 2 planes of the third dimension. (The signal tile set simplification

results are integral in the construction for this result, especially in allowing it to use only

2 planes.) This result is noteworthy especially because it shows that the dynamic behav-

ior of signal tiles (excluding glue deactivation) can be fully duplicated by static tile systems

which are allowed to “barely” use three dimensions. Furthermore, for every temperature

τ > 1 there exists a 3D 2HAM tile set which can simulate the class of all STAM+ sys-

tems at temperature τ . Additionally, we show that for every τ ≥ 1 there exists a tile set

Uτ which is IU for the STAM+ at temperature τ . To simplify the proof of these results we

provide methods of reducing the number of signals on a tile which may be of experimental

importance as physical implementations of signal tiles become simpler (and perhaps more

feasible) as the number of signals decreases. This work was done with co-authors Jennifer

Padilla, Matthew Patitz and Trent Rogers [34].
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Chapter 2

Preliminaries

Mathematical models of physical components capable of self-assembly provide a means of

rigorously studying self-assembly. These models ground theoretical studies, allowing for

the construction of precise statements and proofs. Insofar as a model correctly captures a

physical system, theoretical study of a model can help guide experimental research, and in

turn, experimental research helps to verify choices that may have been made in the defini-

tion of a model. In later chapters, we will define many different models based on two pre-

viously defined models. These two models are the abstract Tile Assembly Model (or aTAM

for short) and the Two-handed Tile Assembly Model (abbreviated as 2HAM). In this chap-

ter, we first give definitions of the abstract Tile Assembly Model (aTAM), which is a tile-

based theoretical model which does not model the kinetics of physical self-assembling sys-

tems, but instead assumes that self-assembly occurs in an error-free way as single unit

components which model individual physical components which self-assemble called tiles

“attach” one at a time, progressing the process of self-assembly. The reader is encouraged

to see [59, 64, 42] for a formal development of the model. Second, we define the 2HAM,

which is also a tile-based model of self-assembly that is similar to the aTAM with the ex-

ception that self-assembling components (composed of possibly many connected tile) can

“attach” to other self-assembling components. For a formal definition of the 2HAM, the

reader is encouraged to see [9].

2.1 Informal description of the abstract Tile Assembly Model

A tile type is a unit square with four sides, each consisting of a glue label, often represented

as a finite string, and a nonnegative integer strength. A glue g that appears on multiple

tiles (or sides) always has the same strength sg. There are a finite set T of tile types, but

an infinite number of copies of each tile type, with each copy being referred to as a tile. An

assembly is a positioning of tiles on the integer lattice Z2, described formally as a partial
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function α : Z2 99K T . Let AT denote the set of all assemblies of tiles from T , and let

AT<∞ denote the set of finite assemblies of tiles from T . We write α v β to denote that α

is a subassembly of β, which means that dom α ⊆ dom β and α(p) = β(p) for all points

p ∈ dom α. Two adjacent tiles in an assembly interact, or are attached, if the glue labels on

their abutting sides are equal and have positive strength. Each assembly induces a binding

graph, a grid graph whose vertices are tiles, with an edge between two tiles if they interact.

The assembly is τ -stable if every cut of its binding graph has strength at least τ , where the

strength of a cut is the sum of all of the individual glue strengths in the cut. When τ is

clear from context, we simply say that a τ -stable assembly is stable.

A tile assembly system (TAS) is a triple T = (T, σ, τ), where T is a finite set of tile

types, σ : Z2 99K T is a finite, τ -stable seed assembly, and τ is the temperature. An assem-

bly α is producible if either α = σ or if β is a producible assembly and α can be obtained

from β by the stable binding of a single tile. In this case we write β →T1 α (to mean α is

producible from β by the attachment of one tile), and we write β →T α if β →T ∗1 α (to

mean α is producible from β by the attachment of zero or more tiles). When T is clear

from context, we may write →1 and → instead. We let A[T ] denote the set of producible

assemblies of T . An assembly is terminal if no tile can be τ -stably attached to it. We let

A�[T ] ⊆ A[T ] denote the set of producible, terminal assemblies of T . A TAS T is directed

if |A�[T ]| = 1. Hence, although a directed system may be nondeterministic in terms of the

order of tile placements, it is deterministic in the sense that exactly one terminal assembly

is producible (this is analogous to the notion of confluence in rewriting systems).

Since the behavior of a TAS T = (T, σ, τ) is unchanged if every glue with strength

greater than τ is changed to have strength exactly τ , we assume that all glue strengths are

in the set {0, 1, . . . , τ}.
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2.2 Formal description of the abstract Tile Assembly Model

In this section we provide a set of definitions and conventions that are used throughout

this thesis.

We work in the 2-dimensional discrete space Z2. Define the set

U2 = {(0, 1), (1, 0), (0,−1), (−1, 0)}

to be the set of all unit vectors in Z2. We also sometimes refer to these vectors by their

cardinal directions N , E, S, W , respectively. All graphs in this thesis are undirected. A

grid graph is a graph G = (V,E) in which V ⊆ Z2 and every edge {~a,~b} ∈ E has the

property that ~a−~b ∈ U2.

Intuitively, a tile type t is a unit square that can be translated, but not rotated, hav-

ing a well-defined “side ~u” for each ~u ∈ U2. Each side ~u of t has a “glue” with “label”

labelt(~u)–a string over some fixed alphabet–and “strength” strt(~u)–a nonnegative integer–

specified by its type t. Two tiles t and t′ that are placed at the points ~a and ~a + ~u respec-

tively, bind with strength strt (~u) if and only if (labelt (~u) , strt (~u)) = (labelt′ (−~u) , strt′ (−~u)).

In the subsequent definitions, given two partial functions f, g, we write f(x) = g(x) if f

and g are both defined and equal on x, or if f and g are both undefined on x.

Fix a finite set T of tile types. A T -assembly, sometimes denoted simply as an assembly

when T is clear from the context, is a partial function α : Z2 99K T defined on at least

one input, with points ~x ∈ Z2 at which α(~x) is undefined interpreted to be empty space,

so that dom α is the set of points with tiles. We write |α| to denote |dom α|, and we say

α is finite if |α| is finite. For assemblies α and α′, we say that α is a subassembly of α′, and

write α v α′, if dom α ⊆ dom α′ and α(~x) = α′(~x) for all x ∈ dom α.

We now give a brief formal definition of the aTAM. See [64, 59, 57, 42] for other devel-

opments of the model. Our notation is that of [42], which also contains a more complete

definition.
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Given a set T of tile types, an assembly is a partial function α : Z2 99K T . An assembly

is τ -stable if it cannot be broken up into smaller assemblies without breaking bonds of total

strength at least τ , for some τ ∈ N.

Self-assembly begins with a seed assembly σ and proceeds asynchronously and nonde-

terministically, with tiles adsorbing one at a time to the existing assembly in any manner

that preserves τ -stability at all times. A tile assembly system (TAS) is an ordered triple

T = (T, σ, τ), where T is a finite set of tile types, σ is a seed assembly with finite domain,

and τ ∈ N. A generalized tile assembly system (GTAS) is defined similarly, but without

the finiteness requirements. We write A[T ] for the set of all assemblies that can arise (in

finitely many steps or in the limit) from T . An assembly α ∈ A[T ] is terminal, and we

write α ∈ A�[T ], if no tile can be τ -stably added to it. It is clear that A�[T ] ⊆ A[T ].

An assembly sequence in a TAS T is a (finite or infinite) sequence ~α = (α0, α1, . . .)

of assemblies in which each αi+1 is obtained from αi by the addition of a single tile. The

result res(~α) of such an assembly sequence is its unique limiting assembly. (This is the last

assembly in the sequence if the sequence is finite.) The set A[T ] is partially ordered by the

relation −→ defined by

α −→ α′ iff there is an assembly sequence ~α = (α0, α1, . . .)

such that α0 = α and α′ = res(~α).

If ~α = (α0, α1, . . .) is an assembly sequence in T and ~m ∈ Z2, then the ~α-index of ~m is

i~α(~m) =min{i ∈ N|~m ∈ dom αi}. That is, the ~α-index of ~m is the time at which any tile is

first placed at location ~m by ~α. For each location ~m ∈
⋃

0≤i≤l dom αi, define the set of its

input sides IN~α(~m) = {~u ∈ U2|strαiα (~m)(~u) > 0}.

We say that T is directed (a.k.a. deterministic, confluent, produces a unique assembly)

if the relation −→ is directed, i.e., if for all α, α′ ∈ A[T ], there exists α′′ ∈ A[T ] such that

α −→ α′′ and α′ −→ α′′. It is easy to show that T is directed if and only if there is a

unique terminal assembly α ∈ A[T ] such that σ −→ α.
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A set X ⊆ Z2 weakly self-assembles if there exists a TAS T = (T, σ, τ) and a set B ⊆ T

such that α−1(B) = X holds for every terminal assembly α ∈ A�[T ]. Essentially, weak

self-assembly can be thought of as the creation (or “painting”) of a pattern of tiles from B

(usually taken to be a unique “color”) on a possibly larger “canvas” of un-colored tiles.

A set X strictly self-assembles if there is a TAS T for which every assembly α ∈ A�[T ]

satisfies dom α = X. Essentially, strict self-assembly means that tiles are only placed in

positions defined by the shape. Note that if X strictly self-assembles, then X weakly self-

assembles. (Let all tiles be in B.)

2.3 Informal definition of the 2HAM

The 2HAM [11, 18] is a generalization of the abstract Tile Assembly Model (aTAM) [64] in

that it allows for two assemblies, both possibly consisting of more than one tile, to attach

to each other. Since we must allow that the assemblies might require translation before

they can bind, we define a supertile to be the set of all translations of a τ -stable assembly,

and speak of the attachment of supertiles to each other, modeling that the assemblies at-

tach, if possible, after appropriate translation. We now give a brief, informal, sketch of the

d-dimensional 2HAM, for d ∈ {2, 3}, which is normally defined as a 2D model but which

we extend to 3D as well, in the natural and intuitive way.

A tile type is a unit square if d = 2, and cube if d = 3, with each side having a glue

consisting of a label (a finite string) and strength (a non-negative integer). We assume a

finite set T of tile types, but an infinite number of copies of each tile type, each copy re-

ferred to as a tile. A supertile is (the set of all translations of) a positioning of tiles on the

integer lattice Zd. Two adjacent tiles in a supertile interact if the glues on their abutting

sides are equal and have positive strength. Each supertile induces a binding graph, a grid

graph whose vertices are tiles, with an edge between two tiles if they interact. The super-

tile is τ -stable if every cut of its binding graph has strength at least τ , where the weight of

an edge is the strength of the glue it represents. That is, the supertile is stable if at least
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energy τ is required to separate the supertile into two parts. A 2HAM tile assembly system

(TAS) is a pair T = (T, τ), where T is a finite tile set and τ is the temperature, usually

1 or 2. (Note that this is considered the “default” type of 2HAM system, while a system

can also be defined as a triple (T, S, τ), where S is the initial configuration which in the

default case is just infinite copies of all tiles from T , but in other cases can additionally or

instead consist of copies of pre-formed supertiles.) Given a TAS T = (T, τ), a supertile

is producible, written as α ∈ A[T ], if either it is a single tile from T , or it is the τ -stable

result of translating two producible assemblies without overlap. Note that if d = 3, or if

d = 2 but it is explicitly mentioned that planarity is to be preserved, it must be possible

for one of the assemblies to start infinitely far from the other and by merely translating in

d dimensions arrive into a position such that the combination of the two is τ -stable, with-

out ever requiring overlap. This prevents, for example, binding on the interior of a region

completely enclosed by a supertile. A supertile α is terminal, written as α ∈ A�[T ], if for

every producible supertile β, α and β cannot be τ -stably attached. A TAS is directed if it

has only one terminal, producible supertile.

2.4 Formal Definition of the d-Dimensional 2HAM

We now formally define the 2HAM in d ∈ {2, 3} dimensions.

We work in the d-dimensional discrete space Zd. Define the set Ud to be the set of all

unit vectors in Zd (i.e. vectors of length 1 in Zd). We also sometimes refer to these vectors

by the directions north, east, south, west, up, and down (N , E, S, W , U , D). All graphs

in this thesis are undirected. A grid graph is a graph G = (V,E) in which V ⊆ Zd and

every edge {~a,~b} ∈ E has the property that ~a−~b ∈ Ud.

Intuitively, a tile type t is a unit square if d = 2 and a unit cube if d = 3 that can be

translated, but not rotated, having a well-defined “side ~u” for each ~u ∈ Ud. Each side ~u

of t has a “glue” with “label” labelt(~u)–a string over some fixed alphabet–and “strength”

strt(~u)–a nonnegative integer–specified by its type t. Two tiles t and t′ that are placed at
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the points ~a and ~a+ ~u respectively, bind with strength strt (~u) if and only if

(labelt (~u) , strt (~u)) = (labelt′ (−~u) , strt′ (−~u)) .

In the subsequent definitions, given two partial functions f, g, we write f(x) = g(x) if f

and g are both defined and equal on x, or if f and g are both undefined on x.

Fix a finite set T of tile types. A T -assembly, sometimes denoted simply as an assembly

when T is clear from the context, is a partial function α : Zd 99K T defined on at least

one input, with points ~x ∈ Zd at which α(~x) is undefined interpreted to be empty space,

so that dom α is the set of points with tiles. We write |α| to denote |dom α|, and we say

α is finite if |α| is finite. For assemblies α and α′, we say that α is a subassembly of α′, and

write α v α′, if dom α ⊆ dom α′ and α(~x) = α′(~x) for all x ∈ dom α.

Two assemblies α and β are disjoint if dom α ∩ dom β = ∅. For two assemblies α and

β, define the union α ∪ β to be the assembly defined for all ~x ∈ Zd by (α ∪ β)(~x) = α(~x) if

α(~x) is defined, and (α ∪ β)(~x) = β(~x) otherwise. Say that this union is disjoint if α and β

are disjoint.

The binding graph of an assembly α is the grid graph Gα = (V,E), where V = dom α,

and {~m,~n} ∈ E if and only if (1) ~m − ~n ∈ Ud, (2) labelα(~m) (~n− ~m) = labelα(~n) (~m− ~n),

and (3) strα(~m) (~n− ~m) > 0. Given τ ∈ N, an assembly is τ -stable (or simply stable if τ is

understood from context), if it cannot be broken up into smaller assemblies without break-

ing bonds of total strength at least τ ; i.e., if every cut of Gα has weight at least τ , where

the weight of an edge is the strength of the glue it represents. In contrast to the model of

Wang tiling, the nonnegativity of the strength function implies that glue mismatches be-

tween adjacent assemblies do not prevent them from binding, so long as sufficient binding

strength is received from the (other) adjacent sides of the tiles at which the glues match.

For assemblies α, β : Zd 99K T and ~u ∈ Zd, we write α + ~u to denote the assembly

defined for all ~x ∈ Zd by (α + ~u)(~x) = α(~x − ~u), and write α ' β if there exists ~u such

that α + ~u = β; i.e., if α is a translation of β. Given two assemblies α, β : Zd 99K T , we
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say α is a subassembly of β, and we write α v β, if Sα ⊆ Sβ and, for all points p ∈ Sα,

α(p) = β(p). Define the supertile of α to be the set α̃ = { β | α ' β }. A supertile α̃ is

τ -stable (or simply stable) if all of the assemblies it contains are τ -stable; equivalently, α̃ is

stable if it contains a stable assembly, since translation preserves the property of stability.

Note also that the notation |α̃| ≡ |α| is the size of the supertile (i.e., number of tiles in

the supertile) is well-defined, since translation preserves cardinality (and note in particular

that even though we define α̃ as a set, |α̃| does not denote the cardinality of this set, which

is always ℵ0).

For two supertiles α̃ and β̃, and temperature τ ∈ N, define the combination set Cτ
α̃,β̃

to

be the set of all supertiles γ̃ such that there exist α ∈ α̃ and β ∈ β̃ such that (1) α and

β are disjoint (steric protection), (2) if d = 3, or if d = 2 and planarity is explicitly being

required, it must be possible to form γ ≡ α ∪ β by the translation in d-dimensions of α

beginning infinitely far from β such that, at all times, α and β are disjoint (3) γ ≡ α ∪ β

is τ -stable, and (4) γ ∈ γ̃. That is, Cτ
α̃,β̃

is the set of all τ -stable supertiles that can be

obtained by “attaching” α̃ to β̃ stably, with |Cτ
α̃,β̃
| > 1 if there is more than one position at

which β could attach stably to α.

It is common with seeded assembly to stipulate an infinite number of copies of each

tile, but our definition allows for a finite number of tiles as well. Our definition also allows

for the growth of infinite assemblies and finite assemblies to be captured by a single defini-

tion, similar to the definitions of [42] for seeded assembly.

Given a set of tiles T , define a state S of T to be a multiset of supertiles, or equiva-

lently, S is a function mapping supertiles of T to N ∪ {∞}, indicating the multiplicity of

each supertile in the state. We therefore write α̃ ∈ S if and only if S(α̃) > 0.

A (two-handed) tile assembly system (TAS ) is an ordered triple T = (T, S, τ), where

T is a finite set of tile types, S is the initial state, and τ ∈ N is the temperature. If not

stated otherwise, assume that the initial state S is defined S(α̃) = ∞ for all supertiles α̃

such that |α̃| = 1, and S(β̃) = 0 for all other supertiles β̃. That is, S is the state consisting
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of a countably infinite number of copies of each individual tile type from T , and no other

supertiles. In such a case we write T = (T, τ) to indicate that T uses the default initial

state. For notational convenience we sometimes describe S as a set of supertiles, in which

case we actually mean that S is a multiset of supertiles with infinite count of each super-

tile. We also assume that, in general, unless stated otherwise, the count for any supertile in

the initial state is infinite.

Given a TAS T = (T, S, τ), define an assembly sequence of T to be a sequence of states

~S = (Si | 0 ≤ i < k) (where k = ∞ if ~S is an infinite assembly sequence), and Si+1 is

constrained based on Si in the following way: There exist supertiles α̃, β̃, γ̃ such that (1)

γ̃ ∈ Cτ
α̃,β̃

, (2) Si+1(γ̃) = Si(γ̃) + 1,1 (3) if α̃ 6= β̃, then Si+1(α̃) = Si(α̃) − 1, Si+1(β̃) =

Si(β̃) − 1, otherwise if α̃ = β̃, then Si+1(α̃) = Si(α̃) − 2, and (4) Si+1(ω̃) = Si(ω̃) for all

ω̃ 6∈ {α̃, β̃, γ̃}. That is, Si+1 is obtained from Si by picking two supertiles from Si that can

attach to each other, and attaching them, thereby decreasing the count of the two reactant

supertiles and increasing the count of the product supertile. If S0 = S, we say that ~S is

nascent.

Given an assembly sequence ~S = (Si | 0 ≤ i < k) of T = (T, S, τ) and a supertile

γ̃ ∈ Si for some i, define the predecessors of γ̃ in ~S to be the multiset pred~S(γ̃) = {α̃, β̃} if

α̃, β̃ ∈ Si−1 and α̃ and β̃ attached to create γ̃ at step i of the assembly sequence, and define

pred~S(γ̃) = {γ̃} otherwise. Define the successor of γ̃ in ~S to be �~S (γ̃) = α̃ if γ̃ is one

of the predecessors of α̃ in ~S, and define �~S (γ̃) = γ̃ otherwise. A sequence of supertiles

~̃α = (α̃i | 0 ≤ i < k) is a supertile assembly sequence of T if there is an assembly sequence

~S = (Si | 0 ≤ i < k) of T such that, for all 1 ≤ i < k, �~S (α̃i−1) = α̃i, and ~̃α is nascent if ~S

is nascent.

The result of a supertile assembly sequence ~̃α is the unique supertile res(~̃α) such that

there exist an assembly α ∈ res(~̃α) and, for each 0 ≤ i < k, assemblies αi ∈ α̃i such that

dom α =
⋃

0≤i<k dom αi and, for each 0 ≤ i < k, αi v α. For all supertiles α̃, β̃, we write

α̃→T β̃ (or α̃→ β̃ when T is clear from context) to denote that there is a supertile assem-

1with the convention that ∞ =∞+ 1 =∞− 1

18



bly sequence ~̃α = (α̃i | 0 ≤ i < k) such that α̃0 = α̃ and res(~̃α) = β̃. It can be shown using

the techniques of [57] for seeded systems that for all two-handed tile assembly systems T

supplying an infinite number of each tile type, →T is a transitive, reflexive relation on su-

pertiles of T . We write α̃ →1
T β̃ (α̃ →1 β̃) to denote an assembly sequence of length 1 from

α̃ to β̃ and α̃ →≤1T β̃ (α̃ →≤1 β̃) to denote an assembly sequence of length 1 from α̃ to β̃ if

α̃ 6= β̃ and an assembly sequence of length 0 otherwise.

A supertile α̃ is producible, and we write α̃ ∈ A[T ], if it is the result of a nascent super-

tile assembly sequence. A supertile α̃ is terminal if, for all producible supertiles β̃, Cτ
α̃,β̃

=

∅.2 Define A�[T ] ⊆ A[T ] to be the set of terminal and producible supertiles of T . T is

directed (a.k.a., deterministic, confluent) if |A�[T ]| = 1.

2Note that a supertile α̃ could be non-terminal in the sense that there is a producible supertile β̃ such
that Cτ

α̃,β̃
6= ∅, yet it may not be possible to produce α̃ and β̃ simultaneously if some tile types are given

finite initial counts, implying that α̃ cannot be “grown” despite being non-terminal. If the count of each
tile type in the initial state is ∞, then all producible supertiles are producible from any state, and the con-
cept of terminal becomes synonymous with “not able to grow”, since it would always be possible to use the
abundant supply of tiles to assemble β̃ alongside α̃ and then attach them.
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Chapter 3

Computational Universality in Non-cooperative Tile Assembly Systems

3.1 Using Geometry to Simulate a Turing Machine

3.1.1 Introduction

Theoretical studies of algorithmic self-assembly have produced a wide variety of results

that establish the computational power of tile-based self-assembling systems. From the

introduction of the first and perhaps simplest model, the abstract Tile Assembly Model

(aTAM) [64], it was shown that self-assembling systems, which are based on relatively sim-

ple components autonomously coalescing to form more complex structures, are capable of

Turing-universal computation. This computational power exists within the aTAM, and has

been harnessed to algorithmically guide extremely complex theoretical constructions (e.g.

[62, 59, 41, 54, 22, 53]) and has even been exploited within laboratories to build nanoscale

self-assembling systems from DNA-based tiles which self-assemble following algorithmic be-

havior (e.g. [58, 60, 43, 5, 40, 28]).

While physical implementations of these systems are constantly increasing in scale,

complexity, and robustness, they are orders of magnitude shy of achieving results similar

to those of many naturally occurring self-assembling systems, especially those found in bi-

ology (e.g. the formation of many cellular structures or viruses). This disparity motivates

theoretical studies that can focus efforts on first discovering the “tricks” used so success-

fully by nature, and then on incorporating them into our own models and systems. One

of the fundamental properties so successfully leveraged by many natural systems, but ab-

sent from models such as the aTAM, is geometric complexity of components. For instance,

self-assembly in biological systems relies heavily upon the complex 3-dimensional structures

of proteins, while tile-assembly systems are typically restricted to basic square (or cubic)

tiles. We greatly extend previous work that has begun to incorporate geometric aspects of

self-assembling components [31, 25, 39, 17] with the development of a model allowing for

more geometrically complex tiles, called polyominoes, and an examination of the surprising
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computational powers of systems composed of polyominoes.

The process of tile assembly begins from a seed structure, typically a single tile, and

proceeds with tiles attaching one at a time to the growing assembly. Tiles have glues, taken

from a set of glue types, around their perimeters which allow them to attach to each other

if their glues match. Algorithmic self-assembling systems developed by researchers, both

theoretical and experimental, tend to fundamentally employ an important aspect of tile

assembly known as cooperation. In theoretical models, cooperation is available when a par-

ticular parameter, known as the temperature, is set to a value > 1 which can then enforce

that the binding of a tile to a growing assembly can only occur if that tile matches more

than one glue on the perimeter of the assembly. Using cooperation, it is simple to show

that systems in the aTAM are capable of universal computation (by simulating particular

cellular automata [64], or arbitrary Turing machines [54, 41, 62], for instance). However,

it has long been conjectured that in the aTAM without cooperation, i.e. in systems where

the temperature is equal to 1, universal computation is impossible [26, 46, 44]. Interest-

ingly, though, a collection of “workarounds” have been devised in the form of new models

with a variety of properties and parameters which make computation possible at tempera-

ture 1 (e.g. [52, 12, 31, 50, 39]).

We introduce the Polyomino Tile Assembly Model (polyTAM), in which each tile is

composed of a collection of unit squares joined along their edges. Our results prove that

geometry, in the polyTAM as in natural self-assembling systems, affords great power. Namely,

any polyomino shape which is composed of only 3 or more unit squares has enough geo-

metric complexity to allow a polyTAM system at temperature 1, composed only of tiles of

that shape, to perform Turing universal computation. This impressive potency is perhaps

even more surprising when it is realized that while a single unit-square polyomino (a.k.a.

a monomino, or a standard aTAM tile) is conjectured not to provide this power, the same

shape expanded in scale to a 2 × 2 square polyomino does. The key to this power is the

ability of arbitrary polyominoes of size 3 or greater to both combine with each other to
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form regular grids, as well as to combine in a variety of relative offsets that allow some

tiles to be shifted relatively to those grids and then perform geometric blocking of the

growth of specific configurations of paths of tiles, while allowing other paths to complete

their growth. With just this seemingly simple property, it is possible to design temperature-

1 systems of polyominoes that can simulate arbitrary Turing machines.

In addition to this main positive result about the computational abilities of all polyomi-

noes of size ≥ 3, we also provide negative results that further help to refine understand-

ing of exactly what geometric properties are needed for Turing universal computation in

temperature-1 self-assembly. We prove that a fundamental gadget (which we call the bit-

reading gadget) used within all known systems that can compute at temperature 1 in any

tile-assembly model, is impossible to construct with either the square tiles of the aTAM

or with dominoes (a.k.a. duples). This provides further evidence that systems composed

solely of those shapes are incapable of universal computation.

3.1.2 Polyomino Tile Assembly Model

In this section we define the Polyomino Tile Assembly Model (polyTAM) and relevant ter-

minology.

Polyomino Tiles A polyomino is a plane geometric figure formed by joining one or more

equal unit squares edge to edge; it can also be considered a finite subset of the regular

square tiling with a connected interior. For convenience, we will assume that each unit

square is centered on a point in Z2. We define the set of edges of a polyomino to be the

set of faces from the constituent unit squares of the polyomino that lie on the boundary of

the polyomino shape. A polyomino tile is a polyomino with a subset of its edges labeled

from some glue alphabet Σ, with each glue having an integer strength value. Two tiles are

said to bind when they are placed so that they have non-overlapping interiors and adjacent

edges with matching glues; each matching glue binds with force equal to its strength value.

An assembly is any connected set of polyominoes whose interiors do not overlap. Given a
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positive integer τ ∈ N, an assembly is said to be τ -stable or (just stable if τ is clear from

context), if any partition of the assembly into two non-empty groups (without cutting indi-

vidual polyominoes) must separate bound glues whose strengths sum to ≥ τ .

The bounding rectangle B around a polyomino P is the rectangle with minimal area

(and corners lying in Z2) that contains P . For each polyomino shape, we designate one

pixel (i.e. one of the squares making up P ) p as a distinguished pixel that we use as a ref-

erence point. More formally, a pixel p in a polyomino P (or polyomino tile) is defined in

the following manner. Place P in the plane so that the southwest corner of the bounding

rectangle of P lies at the origin. Then a pixel p = (p1, p2) ∈ P is a point in Z2 which is

occupied by a unit square composing the polyomino P . We say that a pixel p′ ∈ P lies on

the perimeter of the bounding rectangle B if an edge of the pixel p′ lies on an edge of B.

Tile System A tile assembly system (TAS) is an ordered triple T = (T, σ, τ) (where T

is a set of polyomino tiles, and σ is a τ -stable assembly called the seed consisting of integer

translations of elements of T ). τ is the temperature of the system, specifying the minimum

binding strength necessary for a tile to attach to an assembly. Throughout this thesis, the

temperature of all systems is assumed to be 1, and we therefore frequently omit the tem-

perature from the definition of a system (i.e. T = (T, σ)).

If the tiles in T all have the same polyomino shape, T is said to be a single-shape sys-

tem; more generally T is said to be a c-shape system if there are c distinct shapes in T . If

not stated otherwise, systems described in this thesis should by default be assumed to be

single-shape systems. If T consists of unit-square tiles, T is said to be a monomino system.

Assembly Process Given a tile-assembly system T = (T, σ, τ), we now define the set of

producible assemblies A[T ] that can be derived from T , as well as the terminal assemblies,

A�[T ], which are the producible assemblies to which no additional tiles can attach. The

assembly process begins from σ and proceeds by single steps in which any single copy of

some tile t ∈ T may be attached to the current assembly A, provided that it can be trans-
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lated so that its placement does not overlap any previously placed tiles and it binds with

strength ≥ τ . For a system T and assembly A, if such a t ∈ T exists, we say A →T1 A′

(i.e. A grows to A′ via a single tile attachment). We use the notation A →T A′′, when

A grows into A′′ via 0 or more steps. Assembly proceeds asynchronously and nondeter-

ministically, attaching one tile at a time, until no further tiles can attach. An assembly se-

quence in a TAS T is a (finite or infinite) sequence ~α = (α0 = σ, α1, α2, . . .) of assemblies in

which each αi+1 is obtained from αi by the addition of a single tile. The set of producible

assemblies A[T ] is defined to be the set of all assemblies A such that there exists an assem-

bly sequence for T ending with A (possibly in the limit). The set of terminal assemblies

A�[T ] ⊆ A[T ] is the set of producible assemblies such that for all A ∈ A�[T ] there exists

no assembly B ∈ A[T ] in which A→T1 B. A system T is said to be directed if |A�[T ]| = 1,

i.e., if it has exactly one terminal assembly.

Note that the aTAM is simply a specific case of the polyTAM in which all tiles are

monominoes, i.e., single unit squares. Moreover, the class of systems T = (T, σ, τ) where

each tile in T has the polyomino shape of either a single unit square or a domino is called

the Dupled Tile Assembly Model, and is abbreviated as DaTAM.

3.2 Universal Computation with Geometric Bit-Reading

In this section we provide an overview of how universal computation can be performed in

a temperature-1 system with appropriate use of geometric aspects of tiles and assemblies.

Refer to Figure 3.1 for an illustration.

3.2.1 Bit-Reading Gadgets

First, we discuss a primitive tile-assembly component that enables computation by self-

assembling systems. This component is called the bit-reading gadget, and essentially con-

sists of pre-existing assemblies that appropriately encode bit values (i.e., 0 or 1) and paths

that grow past them and are able to “read” the values of the encoded bits; this results in
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those bits being encoded in the tile types of the paths beyond the encoding assemblies. In

tile-assembly systems in which the temperature is ≥ 2, a bit-reader gadget is trivial: the

assembly encoding the bit value can be a single tile with an exposed glue that encodes the

bit value, and the path that grows past to read the value simply ensures that a tile must

be placed cooperatively with, and adjacent to, that encoding the bit (i.e., the path forces

a tile to be placed that can only bind if one of its glues matches that exposed by the last

tile of the path, and the other matches the glue encoding the bit value). However, in a

temperature-1 system, cooperative binding of tiles cannot be enforced, and therefore the

encoding of bits must be done using geometry. Figure 3.1 provides an intuitive overview

of a temperature-1 system with a bit-reading gadget. Essentially, depending on which bit

is encoded by the assembly to be read, exactly one of two types of paths can complete

growth past it, implicitly specifying the bit that was read. It is important that the bit

reading must be unambiguous, i.e., depending on the bit written by the pre-existing as-

sembly, exactly one type of path (i.e., the one that denotes the bit that was written) can

possibly complete growth, with all paths not representing that bit being prevented. Fur-

thermore, the correct type of path must always be able to grow. Therefore, it cannot be

the case that either all paths can be blocked from growth, or that any path not of the cor-

rect type can complete, regardless of whether a path of the correct type also completes,

and these conditions must hold for any valid assembly sequence to guarantee correct com-

putation.

Definition. We say that a bit-reading gadget exists for a tile assembly system T = (T, σ, τ),

if the following hold. Let T0 ⊂ T and T1 ⊂ T , with T0 ∩ T1 = ∅, be subsets of tile types

which represent the bits 0 and 1, respectively. For some producible assembly α ∈ A[T ],

there exist two connected subassemblies, α0, α1 v α (with w equal to the maximal width of

α0 and α1, i.e., the largest extent in x-direction spanned by either subassembly), such that

if:

1. α is translated so that α0 has its minimal y-coordinate ≤ 0 and its minimal x-coordinate
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Figure 3.1: Abstract schematic of a bit-reading gadget. (Left) The blue path grown from t
“reads” the bit 1 from α0 (by being allowed to grow to x = 0 and placing a tile t0 ∈ T0),
while the yellow path (which could read a 0 bit) is blocked by α0. (Right) The yellow path
grown from t reads the bit 0 from α1, while the blue path that could potentially read a 1 is
blocked by α1. Clearly, the specific geometry of the used polyomino tiles and assemblies is
important in allowing the yellow path in the left figure to be blocked without also blocking
the blue path.

= 1,

2. a tile of some type t ∈ T is placed at (w + n, h), where n, h ≥ 1, and

3. the tiles of α0 are the only tiles of α in the first quadrant to the left of t,

then at least one path must grow from t (staying strictly above the x-axis) and place a tile

of some type t0 ∈ T0 as the first tile with x-coordinate = 0, while no such path can place

a tile of type t′ ∈ (T \ T0) as the first tile to with x-coordinate = 0. (This constitutes the

reading of a 0 bit.)

Additionally, if α1 is used in place of α0 with the same constraints on all tile place-

ments, t is placed in the same location as before, and no other tiles of α are in the first

quadrant to the left of t, then at least one path must grow from t and stay strictly above

the x-axis and strictly to the left of t, eventually placing a tile of some type t1 ∈ T1 as the

first tile with x-coordinate = 0, while no such path can place a tile of type t′ ∈ (T \ T1) as

the first tile with x-coordinate = 0. (Thus constituting the reading of a 1 bit.)

We refer to α0 and α1 as the bit writers, and the paths which grow from t as the bit

readers. Also, note that while this definition is specific to a bit-reader gadget in which the
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bit readers grow from right to left, any rotation of a bit reader is valid by suitably rotating

the positions and directions of Definition 3.2.1. As mentioned in Figure 3.1, depending on

the actual geometries of the polyominoes used and their careful placement, it may be pos-

sible to enforce the necessary blocking of all paths of the wrong type, while still allowing at

least one path of the correct type to complete growth in any valid assembly sequence.

3.2.2 Turing-Machine Simulation

In order to show that a polyomino shape (i.e., a system composed of tiles of only that

shape) is computationally universal at τ = 1, we show how it is possible to simulate an

arbitrary Turing machine using such a polyomino system. In order to simulate an arbitrary

Turing machine, we show how to self-assemble a zig-zag Turing machine [12, 52]. A zig-zag

Turing machine at τ = 1 works by starting with its input row as the seed assembly, then

growing rows one by one, alternating growth from left to right with growth from right to

left. As a row grows across the top of the row immediately beneath it, it does so by form-

ing a path of single tile width, with tiles connected by glues, which pass information hor-

izontally through their glues, while the geometry of the row below causes only one of two

choices of paths to grow at regular intervals, effectively passing information vertically via

the geometry, using bit-reading gadgets.

Each cell of the Turing machine’s tape is encoded by a series of bit-reader gadgets that

encode in binary the symbol in that cell and, if the read/write head is located there, what

state the machine is in. Additionally, as each cell is read by the row above, the necessary

information must be geometrically written above it so that the next row can read it. See

Figure 3.2 for an example depicting a high-level schematic without showing details of the

individual polyominoes. Figure 3.3 shows the same system after two rows have completed

growth.

For a more specific example that shows the placement of individual, actual polyomino

tiles as well as the order of their growth, see Figure 3.4. Note that the simulation of a zig-

zag Turing machine can be performed by horizontal or vertical growth, and in any orienta-
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bit writer bit writer bit writer bit writer

bit writer bit writer

bit reader bit reader bit reader
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bit writer
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bit writer bit writer bit writer bit writer

Figure 3.2: High-level schematic view of a zig-zag Turing machine and the bit-
reading/writing gadgets that make up each row of the simulation. The bottom shows
the seed row, consisting of bit-writer gadgets separated by spacers. Then, depicted as con-
secutive upward figures, the second row begins its growth. Yellow/blue portions depict
locations of bit-reader gadgets (for 0 and 1, respectively), which grow pink paths upward
after completing in order to grow bit writer gadgets (grey), and then gold spacers back
down to the point where the next bit reader can grow.

tion.
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Figure 3.3: High-level schematic view of a zig-zag Turing machine and the bit-
reading/writing gadgets that make up the first two rows of simulation.
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Figure 3.4: The system of Figure 3.2 after two rows of the zig-zag simulation have been
completed (omitting the output bit writer gadgets of the second row), implemented with
“plus-sign” polyominoes. The bottom left shows 0 and 1 bit-writer and reader combina-
tions, with the writer having grown from right to left and the reader from left to right.
The bottom right shows the same, but with growth directions reversed. Grey tiles repre-
sent bit-writer gadgets. Green tiles represent the beginning of bit-reader gadgets that are
common to either bit; yellow represents the path that can grow to signify a 0 bit being
read, and blue a 1 bit. Other colors correspond to those for the gadgets used in Figure 3.2,
with numbers corresponding to the growth order of the tiles in each gadget.

3.3 Technical Lemmas: Grids of Polyominoes

As mentioned above, in order to show that all polyominoes of size greater than 2 are uni-

versal, we show that a bit-reading gadget can be constructed with these polyominoes. In
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this section we show two lemmas about single-shaped polyTAM systems that will aid in

the construction of bit-writers used to show that any polyomino of size greater than 2 can

be used to define a single-shape polyTAM system capable of universal computation. Through-

out this section, any mention of a polyTAM system refers to a single-shape system.

The following lemma says that if a polyomino P can be translated by a vector ~v so that

no pixel positions of the translated polyomino overlap the pixel positions of P , then for

any integer c 6= 0, no pixel positions of P translated by c · ~v overlap the pixel positions

of P . The proof of Lemma 1 can be found in [17]; the statement of the lemma has been

included for the sake of completeness.

Lemma 1. Consider a two-dimensional, bounded, connected, regular closed set S, i.e., S

is equal to the topological closure of its interior points. Suppose S is translated by a vec-

tor v to obtain shape Sv, such that S and Sv have disjoint interiors. Then the shape Sc∗v

obtained by translating S by c ∗ v for any integer c 6= 0 and S have disjoint interiors.

Informally, the following lemma says that any polyomino gives rise to a polyTAM sys-

tem that can produce an infinite “grid” of polyominoes, as shown in Figure 3.5.

Lemma 2. Given a polyomino P . There exists a directed, singly seeded, single-shape tile

system T = (T, σ) (where the seed is placed so that pixel p ∈ P is at location (0, 0) and

the shape of tiles in T is P ) and vectors ~v, ~w ∈ Z2, such that T produces the terminal

assembly α, which we refer to as a grid, with the following properties. (1) Every position

in α of the form c1~v + c2 ~w, where c1, c2 ∈ Z, is occupied by the pixel p, and (2) for every

c1, c2 ∈ Z, the position in Z2 of the form c1~v + c2 ~w is occupied by the pixel p for some tile

in α.

Details of the proof are omitted for space reasons and can be found in [29].

Let p, p′ ∈ P be distinct pixels in the polyomino P at positions (x, y) and (x′, y′) re-

spectively, let ~r = (x − x′, y − y′), and let ~v, ~w be as defined in Lemma 2. Then, if there

exists c1, c2 ∈ Z such that (x, y) + c1~v + c2 ~w = (x′, y′), we say that the polyomino which
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Figure 3.5: A lattice formed from an example polyomino, using the vectors ~v and ~w.

occupies (x′, y′) is ~r-shifted with respect to (or relative to) the polyomino at (x, y). If a

polyomino at position (x′, y′) is 0-shifted with respect to a polyomino at (x, y), we say that

the polyomino at position (x′, y′) is on grid with the polyomino at (x, y). If a polyomino is

not on grid with a polyomino at (x, y), we say that the polyomino is off grid. Henceforth,

if we do not mention the tile which another tile is shifted in respect to, assume that the

tile is shifted with respect to the seed.

For the remainder of this section, for a polyomino P , we let V ⊂ Z2 denote the set of

vectors such that ~r ∈ V provided that there exists some directed, singly seeded system,

single shape T ′ = (T ′, σ′) with shape given by P whose terminal assembly α′ contains

an ~r-shifted polyomino tile, and we let B denote the subset of vectors B ⊂ V such that

~b ∈ B provided that there exists a directed, singly seeded system, single shape T = (T, σ)

with shape given by P such that the terminal assembly α of T consists of exactly two tiles:

the seed tile σ and a ~b-shifted tile. B can be thought of as the set of vectors such that the

polyomino P and a copy of P shifted by a vector in B are non-overlapping and contain

pixels that share a common edge. We can think of B as a set of basis vectors for V in the

following sense. If ~r ∈ V , then ~r can be written as a linear combination of shifts in B. The

following lemma is a more formal statement of this fact.
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Lemma 3. For any vector ~r ∈ V , ~r = Σci~bi for some ci ∈ Z and ~bi ∈ B.

Proof. This follows from the fact that if ~r ∈ V , then there exists some directed, singly

seeded system T = (T, σ) which contains an ~r-shifted polyomino tile A. Then, there must

be a path of neighboring polyomino tiles from the seed tile S to A. Starting from S, each

consecutive tile along this path to A must be a ~b-shifted tile for some ~b in B, and the sum

of these vectors is ~r.

For a rectangle R and a tile T , we say that T lies in the southeast (respectively north-

west) corner of R iff the south and east edges of the bounding rectangle of the tile T lie on

the south and east edges of R. Let V contain every linear combination Σci~bi for ci ∈ Z and

~bi ∈ B. The next two lemmas formalize the following notion. For c ∈ Z and ~b ∈ B, the fol-

lowing lemma shows how if ~r = c ·~b, we can give a system T~r that contains an ~r-shifted tile.

Furthermore, the properties given in the lemma statement ensure that if we have two such

system, T~r1 and T~r2 , corresponding to two shift vectors ~r1 and ~r2, T~r1 and T~r2 can be “con-

catenated” to give a system that contains an (~r1+~r2)-shifted polyomino tile. See Figure 3.6

for schematic depictions of the properties given in the following lemma.

Lemma 4. Let ~r = c · ~b for any c ∈ Z and ~b ∈ B. Then there exists some directed,

singly seeded system T = (T, σ) with all tiles shaped P such that the terminal assembly α

of T contains an ~r-shifted tile. Moreover, the system T and assembly α have the following

properties.

1. There is a unique assembly sequence that yields α,

2. For some m,n ∈ N, α is contained in an m× n rectangle R and the seed tile S lies in

the southeast corner of R, and

3. the last tile, A, to attach to α lies in the northwest corner of R.

Please see the full paper [29] for the proof of Lemma 4.
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Figure 3.6: A depiction of the properties given in Lemma 4 for four different cases. Each of
the small rectangles (red, green, blue or gray in color) serves as the bounding rectangle of
some polyomino. Hence, α is contained in the union of all of the regions bounded by these
rectangles. The seed tile S of α is contained in the green rectangle. As assembly proceeds
from the seed the first r-shifted polyomino tile is Ac. From this point on in the assembly
process, the rectangles are on grid with Ac.

As previously mentioned, the properties given in Lemma 4 ensure that if we have two

such systems, T~r1 and T~r2 corresponding to two shift vectors ~r1 and ~r2, T~r1 and T~r2 can be

“concatenated” to give a system that contains an (~r1 + ~r2)-shifted polyomino tile. The

following lemma formalizes this notion of “concatenation”.

Lemma 5. Let ~r = Σn
i=0ci

~bi for any ci ∈ Z and ~bi ∈ B. Then there exists some directed,

singly seeded system T = (T, σ) with all tiles shaped P such that the terminal assembly

α of T contains an ~r-shifted polyomino. Moreover, the system T and assembly α have the

following properties.

1. There is a unique assembly sequence that yields α,

2. For some m,n ∈ N, α is contained in an m× n rectangle R and the seed tile S lies in

the southeast corner of R, and

3. the last polyomino tile, A, to attach in the system lies in the northwest corner of R.

Proof. This follows by applying Lemma 4 to each of the summands of ~r = Σci~bi.
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In Lemma 5, we start with a seed tile in the southeast corner of a rectangular region R

and proceed to place an r-shifted tile in the northwest corner of the rectangle. Note that

by using the techniques used to prove Lemma 4 and Lemma 5, we can show analogous lem-

mas where the seed tile lies in any corner of R and an r-shifted tile lies in the opposite cor-

ner.

Now we state the main lemma for this section. This lemma will allow us to construct

bit-writing gadgets used in the construction given in Section 3.4. Intuitively, the lemma

states that given a polyomino P and vector ~r ∈ V , we can define a polyTAM system that

starts growth from a seed tile, S, in the southeast corner of a rectangle R, and without

growing outside of R, places ~r-shifted tiles on the west edge of R in such a way that it is

possible to then continue growth to the west of R. The possibility of continuing growth to

the west of R is formally stated as Property 4 in Lemma 6. This lemma will allow us to

assemble a series of bit-writers while also resting assured that once these bit-writers have

assembled, bit-reader assemblies can continue growth. It is helpful to see Figure 3.7 for an

overview of the properties given in the following lemma.

Lemma 6. Let P be a polyomino. Let ~r be a vector in V . Then there exists a directed,

singly seeded system T = (T, σ) with all tiles of shape P which produces α such that T

and α have the following properties.

1. There is a unique assembly sequence that yields α,

2. for some m,n ∈ N, α is contained in an m × n rectangle R and the seed tile S lies in

the southeast corner of R,

3. for any tile A of α such that the west edge of the bounding rectangle of A lies on the

west edges of R, A is ~r-shifted, and

4. for any m′′, n′′ ∈ N, we can choose T such that the last tile L to attach to α lies on

grid in the northeast corner of a rectangle R′ with dimensions m′ × n′ where m′ > m′′

and n′ > n′′. Moreover, the south and west edges of R′ lie on the south and west
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Figure 3.7: The rectangular region R1 contains tiles of α defined using Lemma 5 with vec-
tor ~r. The red rectangular regions each serve as the bounding rectangle of an ~r-shifted tile
of α. This path of tiles, {Ti}li=1, places a final tile in the northwest corner of the region R2.
R2 contains tiles of α defined using Lemma 5 with vector −~r-shifted. The blue rectangular
regions each contain a single tile that is on grid with S. This path of tiles places a final tile
in the northeast corner of the region R′. Note that by modifying the path of tiles {Ti}li=1,
we can make the dimension m′ and n′ of R′ arbitrarily large.
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edges of R, and no portion of any tile of α lies inside of R′ and outside of the bound-

ing rectangle of L.

Please see the full paper [29] for the proof of Lemma 6.

As in Lemma 5, we start with a seed tile in the southeast corner of a rectangular region

R and proceed to place r-shifted tiles on the west edge of the rectangle. Note that we can

show analogous lemmas where the seed tile starts in any corner of a rectangle R, and r-

shifted tiles are placed on a chosen opposite edge.

3.4 All Polyominoes of Size at Least 3 Can Perform Universal Computation at

τ = 1

We can now proceed to state our main result: any polyomino P of size at least three can

be used for polyomino tile-assembly systems that are computationally universal at temper-

ature 1. Formally stated:

Theorem 1. Let P be a polyomino such that |P | ≥ 3. Then for every standard Turing

Machine M and input w, there exists a TAS with τ = 1 consisting only of tiles of shape P

that simulates M on w.

It follows from the procedure outlined in Section 3.2.2 and the Lemmas of Section 3.3

that in order to simulate an arbitrary Turing Machine by a TAS consisting only of tiles of

some polyomino shape P , it is sufficient to construct a system consisting only of tiles of

shape P for which there exists a bit-reading gadget, because the additional paths required

for a zig-zag Turing machine simulation are guaranteed to be producible by the lemmas of

Section 3.3.

To simplify our proof, we consider different categories of shapes of P as separate cases,

which first requires an additional definition.

Definition (Basic polyomino). A polyomino P is said to be a basic polyomino if and only

if for every vector ~x modulo the polyomino grid for P , there exists a system T contain-
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ing only tiles with shape P such that T produces α and α contains a ~x-shifted polyomino.

Otherwise we call P non-basic.

Essentially, basic polyominoes are those which have the potential to grow paths that

place tiles at any and all shift vectors relative to the grid.

Our proof consists of showing how to build bit-reader gadgets for each of the following

cases based on the shape P :

(1) P has thickness 1 in one direction, i.e., it is an m× 1 polyomino.

(2) P has thickness 2 in two directions, i.e., dx = dy = 2.

(3) P is basic and has thickness at least 3 in one and at least 2 in the other direction.

(4) P is non-basic.

The Lemmas of Section 3.3 provide us with the basic facilities to build paths of tiles

which occupy particular points while avoiding others. By carefully designing the grids and

offsets for the tiles of each polyomino P , we are able to construct the constituent paths of

the bit-reading gadgets.

Let P be an arbitrary polyomino, with |P | ≥ 3. Without loss of generality (as the

following arguments all hold up to rotation), let the bounding box of P be of dimensions

m × n, with m ≥ n, and dy be the largest distance between two pixels of P in the same

column, and dx be the largest distance between two pixels of P in the same row. For ease

of notation, we refer to the southernmost of all westernmost pixels of P as p0 = (0, 0), and

to all other pixels by their integer coordinates.

For any polyomino P , we know that tiles of shape P can produce a grid by Lemma 2;

throughout this section, we simply refer to this as the grid (for P ). We also note that the

grid for a given P may be slanted as in Figure 3.5, and that the construction of the zig-

zag Turing machine is simply slanted accordingly. If we say that a tile is ~v-shifted for some

vector ~v, we mean that it is off grid by the vector ~v.
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For all figures in this section, we use the same color conventions as in Figure 3.1. Thus,

the green tiles in this section represent the t tile; as discussed in the caption of the figure,

the yellow and blue tiles represent the two potential paths grown from t, while the dark

grey tiles represent tiles that prevent the growth of paths from t. We refer to these grey

tiles as blockers. We use the convention that if a path of yellow polyominoes grows, then

a 0 is being read. Similarly, if a path of blue polyominoes grows, then a 1 is being read.

Consequently, we call polyominoes that prevent the growth of the blue path 1-blockers and

polyominoes that prevent the growth of the yellow path 0-blockers. In addition, tiles of the

same color are numbered in order to indicate the order of their placement where the higher

numbered tiles are placed later in the assembly sequence.

3.4.1 Case (1): P Is an m× 1 Polyomino

If P is a straight line, and therefore n = 1, we can simply use a scheme as illustrated in

Figure 3.8. In Figure 3.8a, a 0 bit is read as indicated by the placement of the yellow poly-

omino. Notice that the tile labeled 3 in Figure 3.8a prevents the attachment of the blue-

colored tile. After the yellow tile attaches, a fuchsia tile attaches as shown in the figure

which allows for growth to continue. Figure 3.8b shows a similar scenario in the case that a

1 is read. The key property of this bit reader is that the yellow and blue tiles have different

offsets relative to the green tile, which is always possible if P is a line of length ≥ 3. Note

that the bit reader shown in Figure 3.8 is a left-to-right bit-reading gadget. A right-to-left

bit-reading gadget can be constructed in a similar fashion.

The case for any P which is an n × 1 straight line can be handled in the same way.

Thus, we now only need to consider the cases m ≥ n ≥ 2. Because P is connected, this

implies both dx ≥ 2 and dy ≥ 2. Furthermore, we assume the that the grid constructed

from Lemma 2 using P is created by attaching the southernmost pixel on the eastern edge

of P to the northernmost pixel on the western side of the P , as suggested by Figure 3.5.
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(a) A left-to-right bit-reading gadget reading a 0 bit.
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(b) A left-to-right bit-reading gadget reading a 1 bit.

Figure 3.8: The two different bit-reading schemes for an m×1 polyomino. Note that the bit
reader in this figure proceeds from left to right.

3.4.2 Case (2): P Is Such That dx = dy = 2

Before describing bit-reading constructions, we analyze the possible cases for the shape of

P ; refer to Figure 3.9. Also, we note that dx = dy = 2 implies that P is basic.

First consider the situation in which |P | is even. If both (1, 0) and (0, 1) belong to P ,

the assumption dx = dy = 2 implies that (1, 1) must also belong to P , but no further

pixels. Thus, P is a 2 × 2-square, which will be treated as Case (2a). Now, without loss

of generality consider the case that (0, 1) belongs to P , but (1, 0) does not. It follows from

dx = dy = 2 that (1, 1) belongs to P , as well as (1, 2). This conclusion can be repeated

until all pixels of P are allocated. It follows that P is an even zig-zagging shape. This is

shown as Case (2b) in Figure 3.9.

Now consider the case in which |P | is odd. If both (1, 0) and (0, 1) belong to P , (1, 1)

cannot be part of P , and P is an L-shape consisting of three pixels. If without loss of gen-

erality (0, 1) belongs to P , but (1, 0) does not, we can conclude analogous to (2a) that P is

an odd zig-zagging shape, shown as Case (2c) in Figure 3.9; this also comprises the case

of an L-shape with three pixels.

Now we sketch the bit-reading schemes. As these cases are relatively straightforward,

we simply refer to the corresponding figures. Note that the logic of the arrangement is

color coded: the first polyomino we add to our tile set is the green polyomino along with
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(2a) (2b) (2c)

Figure 3.9: The possible shapes in Case (2), when dx = dy = 2.

the blue and yellow polyominoes that allow for an blue tile to attach to the east of it in an

on grid position and a yellow tile to attach to the east of it shifted (−1,−1) relative to the

polyomino grid.

Case (2a)

If P is a 2× 2 square we use the scheme shown in Figure 3.10.

1 1
12

345
67 1

21 1

(a) A left-to-right bit reader reading a “0” bit.

1 1
1234

1
1
2
1

(b) A left-to-right bit reader reading a “1” bit.

Figure 3.10: A general bit-reading scheme for a left-to-right bit reader in case (2a), in
which P is a 2× 2 square.

Case (2b)

If P is an even zig-zagging polyomino, as shown in part (2b) of Figure 3.9, we use the bit-

reading schemes shown in Figure 3.11.

Case (2c)

If P is an odd zig-zagging polyomino, as shown in part (2c) of Figure 3.9, we use the bit-

reading schemes shown in Figure 3.12.

This concludes Case (2).
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Figure 3.11: The bit-reading schemes for Case (2b) of Figure 3.9.

3.4.3 Case (3): P Is Basic And Not In Case (1) or (2)

We now describe how to construct a system that contains a bit-reading gadget in the case

that max{dx, dy} ≥ 3, min{dx, dy} ≥ 2, and P is a basic polyomino. This means that

it is possible to construct a path using tiles of shape P which place a tile at any possible

offset in relation to the grid. We will use this ability to place blockers and bit-reader paths

exactly where we need them, with those locations specified throughout the description of

this case. Without loss of generality, assume that max{dx, dy} = dy.

Case (3) Overview

A schematic diagram showing the growth of the bit-reading gadget system we construct

is shown in Figure 3.13. Note that the figure depicts what the bit-reader would look like if

the grid formed by P was a square grid. In cases of a slanted grid (such as that shown in

Figure 3.5), the bit-gadgets would be correspondingly slanted. Growth of the system be-

gins with the seed as shown in Figure 3.13. From the seed, the system grows a path of tiles
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Figure 3.12: The bit-reading schemes for Case (2c) of Figure 3.9.

west (shown as a light grey path in the figure) to which one of the two bit writers attach

(shown as dark grey in the figure). Once one of the bit writers assembles, growth proceeds

as shown in the schematic view until the other bit writers assemble. Then growth contin-

ues upward to the next level (i.e. the seed row can be considered a “zig” row and the next

row a “zag” row of the zig-zag Turing machine simulation) as shown in the figure until a

green tile is placed. Depending on the bit writer gadget to the east of the green tile either

a yellow path of tiles grows, indicating that a 0 has been read (as shown in the schematic

view with the westernmost bit writer), or a blue path of tiles grows, indicating that a 1 has

been read (as shown in the schematic view with the easternmost bit writer). Henceforth,

we refer to the system described by the schematic view in Figure 3.13 as the bit-reading

gadget.

The light grey tiles that compose the bit-reading gadget are easily constructed by plac-

ing glues on the polyomino P so that they grow the paths shown in Figure 3.13 (again,

modulo the slant of the particular grid formed by P ), which are on grid with the seed,

where the grid is formed following the technique used in the proof of Lemma 2. The con-

struction of the other tiles is now described. The green tile is constructed by placing a glue
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s

Figure 3.13: A schematic diagram showing the growth of the bit-reading gadget system for
Case (3). Note that in the actual construction, a larger gap would exist between the two
bit-readers to allow the path between them to first extend upward and create the necessary
bit-writer, then come back down and continue growth of the next bit-reader.

on its western side so that it attaches to the grey tiles on grid as shown in the schematic

view. Furthermore, glues are placed on the green tile and the first blue tile so that the blue

tile attaches to the green tile in an on-grid manner. Glues are placed on the green tile and

the first yellow tile so that the southern edge of the southernmost pixel on the east perime-

ter of the green tile attaches to the northern edge of the northernmost pixel on the western

perimeter of the yellow tile (thus putting the yellow tile off grid).

Case (3) Bit-Writer Construction

First we describe the construction of the bit-writer subassemblies of the bit-reading gad-

get by describing the placement of the blockers in relation to the position of the green tile.

We will discuss how to create tile sets which can create the necessary sets of paths for the

gadgets, and then the final tile set will simply consist of a union of those tile sets. Suppose

that the 0-blocker is a ~x1-shifted polyomino and the 1-blocker is a ~x2-shifted polyomino.

(Recall that P is a basic polyomino, and thus it is possible to build a path such that a

blocker can be at any shift relative to the grid.) We construct two separate systems, say

T0B and T1B as described in Lemma 6 so that the 0-blocker and 1-blocker, respectively, are

the northernmost tiles on the western edges of the assemblies (shown in part (a) and (b)

of Figure 3.14). We denote the assemblies produced by these systems as α0 and α1, respec-

tively. Next, extend the tile sets of the systems if needed so that the last tiles placed lie on

grid in the same grid row as the seed as shown in part (c) and (d) of Figure 3.14. In ad-
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Figure 3.14: A schematic representation of the construction of the bit writers. The blockers
are represented by dark grey squares in the northwest of the assemblies. The assembly
which places the 0-blocker begins growth from the blue tile and the assembly which places
the 1-blocker begins growth from the yellow tile. The last tile placed in the assembly that
contains the 0-blocker is shown in blue and the last tile placed by the assembly containing
the 1-blocker is shown in red. Paths of new tiles that are added at each step are dark grey.

dition, extend the tile sets of the two systems (if needed) so that the last tile placed has

pixels that lie in the same column as the westernmost pixel in the blocker or to the west
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of that column. This is shown schematically in part (e) and (f) of the figure. Now, place

the green polyomino so that its bounding rectangle’s southwest corner lies at the origin,

and place the assemblies α0 and α1 constructed above so that the 1-blocker and 0-blocker

lie relative to the green tile as described above (shown in part (g) of Figure 3.14). With-

out loss of generality suppose that the seed of α1 lies to the southeast of the seed of α0 (as

is the case in the figure). Then we can extend the tile set of T0B so that whenever α1 is

placed as described above, the seeds of α0 and α1 lie at the same position, since both paths

are on grid in those locations. In addition, without loss of generality suppose that the tile

placed last in α1 is further west than the last tile placed in α0. Then we extend the tile set

of T0B so that the last tile placed in α0 is at the same position as the last tile placed in α1.

These two steps are shown in part (h) of the figure. The construction of the bit writer gad-

gets is now complete and the schematic diagram of the completed bit writers is shown in

parts (i) and (j) of Figure 3.14.

Case (3) Bit-Reader Construction

(a) The green tile is on grid and
the yellow tile is (−1,−1)-shifted.

(b) The 0-blocker is placed so
that the easternmost pixel on the
north perimeter of the 0-blocker
overlaps the westernmost pixel on
the south perimeter of the yellow
tile.

Figure 3.15: Placement of the 0-blocker, which blocks the yellow (i.e. 0-reader) path.

Figures 3.15 and 3.16 show the placement of the 0-blocker and 1-blocker, respectively.

Figure 3.17 shows how the glues are placed on the first and second tiles in the yellow path
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(a) The green tile and blue tile
are both on grid.

(b) The 1-blocker is placed so
that the northernmost pixel on
the western perimeter of the
1-blocker overlaps the southern-
most pixel on the east perimeter
of the blue tile.

Figure 3.16: Placement of the 1-blocker, which blocks the blue (i.e. 1-reader) path.

(in the figure the second yellow tile is shown as an orange tile for clarity) so that the sec-

ond yellow tile binds to the first yellow tile in the system. In part (a) of Figure 3.17, an

orange tile (representing the second tile to attach in the yellow path) is placed so that it

now lays directly on top of the yellow tile. The dy pixels which lie in the column with the

most pixels are shown as a red column in part (b) of the figure. Notice that when the or-

ange tile is translated by the vector (1, 0) the m red pixels on the yellow tile now lay ad-

jacent to the m red pixels on the orange tile (see part (c)). Now, we shift the orange tile

by the vector (0, 2) and make two observations: (1) the bounding rectangle of the orange

tile now no longer overlaps the bounding rectangle of the grey tile, (2) the orange tile has a

pixel which lies adjacent to a pixel in the yellow tile and/or a pixel which overlaps a pixel

in the yellow tile as shown in part (d) of the figure. In the case that the orange tile con-

tains pixels which overlap pixels in the yellow tile, we translate the orange tile to the north

until no pixels overlap, but pixels lie adjacent to each in the two tile (shown in part (e) of

the figure).

We now have a configuration as shown in part (f) of Figure 3.17 in which there are not

any overlapping pixels and the yellow and orange tiles have pixels which lie adjacent to

each other. We can now place glues on the green, yellow and orange tiles so that they as-
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semble as shown with the yellow tile attaching to the green tile and the orange tile attach-

ing to the yellow tile.

2 2 2

(a) (b) (c)

2 2

2

(d) (e) (f)

Figure 3.17: The steps involved in placing the grey blocker and yellow tiles so that an blue
tile is prevented from binding to the green tile, but allows for a yellow tile to bind to the
green and then continue growth of the yellow path on the grid. The orange tile represents
the second tile of the yellow path (to make it easier to distinguish), and figures (a) through
(e) show how it can be initially placed immediately on top of the first yellow tile, and then
moved into a position which allows for correct binding.

We now describe how glues are placed on the first and second tiles to assemble in the

path of blue-colored tiles. Figure 3.18a shows how the 0-blocker lies in relation to the blue

and green tiles. Notice that a tile can attach to the north of the blue tile without overlap-

ping any pixels on other tiles. Thus, the second tile to attach in the blue path is placed to

the north of the first blue tile in the path such that it is on the grid. This is shown in Fig-

ure 3.18b where we use a purple tile to represent the second tile in the blue path for clar-

ity. Consequently, we place glues on the first and second tiles to attach in the blue path in

a manner such that the second tile in the path binds on grid with respect to the first tile.

Case (3) Right-to-Left Bit-Reading Gadget Construction

As the above sections describe how to build the left-to-right bit-reading gadget, we now

construct the right-to-left bit-reading gadget by using mirrored versions of the arguments

given above with a few small changes. In the left-to-right bit-reading gadget we can al-

ways place the yellow tile so that it is a (−1,−1)-shifted polyomino. Notice that this is not
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(a) The green tile is on grid and
the yellow tile is (−1,−1)-shifted.

(b) The 0-blocker is placed so
that the westernmost pixel on
the north perimeter of the 0-
blocker overlaps the easternmost
pixel on the south perimeter of
the yellow tile.

Figure 3.18: Placement of the second tile in the blue path (shown as purple to make it
easier to distinguish).

the case when the bit reader is growing to the west. Thus we make the following changes

to the argument above when constructing the right-to-left bit-reading gadget. For con-

venience, we call the first tile to attach in the blue path t1 and the first tile to attach in

the yellow path t0. To begin, we attach t1 to the green tile so that the northernmost pixel

on the east perimeter of t1 attaches to the southernmost pixel on the western perimeter

of the green tile via their east/west glues. Say that this places the blue tile so that it is

an (x1, x2)-shifted polyomino. Note that this means t1 is not necessarily on grid since as

noted above the grid we are using is formed by attaching the southernmost pixel on the

east perimeter of P to the northernmost pixel on the western perimeter of P . Now, observe

that this implies that we can also attach a (x1 + 1, x2 − 1)-shifted tile to the green tile (by

the points that we used for their attachment at (x1, x2)). We thus construct glues so that

t0 attaches to the green tile such that it is a (x1 + 1, x2 − 1)-shifted polyomino. Now, we

can construct the bit-writers as in Section 3.4.3 with the blockers shifted in the following

ways: (1) the 1-blocker is shifted so that when it is placed its northernmost pixel on the

east perimeter overlaps the southernmost pixel on the western perimeter of t1, and (2) the

0-blocker is placed so that its easternmost pixel on its north perimeter overlaps the west-
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ernmost pixel on the south perimeter of t0. We can then use the mirrored version of the

construction in section 3.4.3 to grow the rest of the path of tiles composing the yellow and

blue paths.

Case (3) Correctness of the Bit-Reading Gadget

Let us now examine what our constructed system will assemble. Growth will start with

the seed and then grow two bit-writer subassemblies consecutively. For concreteness, sup-

pose that α1 is grown first and then α0. After α0 is assembled, a path of tiles will grow up-

ward and over to place a green tile such that the green tile will be placed with its position

relative to the grey tile as shown in part (a) of Figure 3.17. It then follows by the way we

placed the green and yellow tiles and the location of α0 that the yellow path will be able

to assemble. This will eventually lead to the placement of the second green tile, which is

placed to the west of the second bit writer. The relative placements of that green tile and

the blocker of α1 ensure that a blue path, and only a blue path, will assemble. This con-

cludes the necessary demonstration of the correct growth of a bit-reader gadget. (The full

Turing machine simulation also includes bit-writers, designed as previously described, to

output between bit-readers and the necessary zig-zag paths.)

3.4.4 Case (4): P is non-basic

For this case, suppose that P is a non-basic polyomino. Note that we are not making the

claim that non-basic polyominoes exist; in fact we conjecture that they do not. However, a

proof seems at least as complicated as handling this case with an explicit construction. De-

tails are omitted because of limited space; for details, see the full version of this paper [29].

3.5 Multiple Polyomino Systems that are Computationally Universal

In previous sections we have focussed on the computational power of systems consisting

of singly shaped polyominoes and showed that single polyomino systems are universal for
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polyominoes of size ≥ 3, while monomino and domino systems are likely not capable of

such computation. We now show that any multiple shape polyomino system (i.e. one that

utilizes at least 2 distinct polyomino shapes, regardless of their size) is capable of universal

computation. The following lemma was originally proven in [39] and follows from Theo-

rem 1 present there.

Lemma 7. For every standard Turing Machine M and input w, there exists a TAS with

τ = 1 consisting only of tiles shaped as either a monomino or a domino that simulates M

on w.

Proof. To see this we provide a sketch of a right-to-left bit reading gadget in Figure 3.20.

A left-to-right gadget can be derived similarly, and together these gadgets can be used to

construct a zig-zag Turing machine simulation in the same manner as single shaped poly-

TAM systems.

1 0

Q1Q

0Q 0Q

Q1Q

0Q

1Q

Figure 3.19: A single bit example of how the assembly is able to read geometry to gain in-
formation about a north glue and still retain information about the west glue. We use the
following conventions. The small black rectangles represent glues which allow singletons
to bind. The longer black rectangles represent glues that can potentially bind to a duple
(note that these glues are the same types of glues as the others, just drawn differently for
extra clarity). The red rectangles represent glues that have mismatched.

Lemma 8. For every standard Turing Machine M and input w, there exists a TAS with

τ = 1 consisting only of tiles shaped as dominoes, 2 × 1 and 1 × 2 polyominoes, that simu-

lates M on w.

Proof. To see this we provide a sketch of a right-to-left bit reading gadget in Figure 3.20.

A left-to-right gadget can be derived similarly, and together these gadgets can be used to

construct a zig-zag Turing machine simulation in the same manner as single shaped poly-

TAM systems.
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Figure 3.20: A 2-shape system consisting of the two distinct domino polyominoes can be
designed to read bits for the simulation of a zig-zag Turing machine.

Theorem 2. For every standard Turing Machine M and input w, and any 2 distinct poly-

ominoes P and Q, there exists a TAS with τ = 1 consisting only of tiles shaped as P or Q

that simulates M on w.

Proof. If either P or Q are size 3 or larger, we get the result from theorem 1. If one poly-

omino is a monomino and the other a domino, we get the result from Lemma 7, and if P

and Q are the two distinct domino shapes, then we get the result by Lemma 8.
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Chapter 4

A Model of Self-assembly that is not Computationally Universal

4.1 Introduction

In the previous chapter we explored non-cooperative self-assembling systems in the poly-

TAM and showed how to use geometric bit-reading to simulate a Turing machine. We

also showed that there are certain systems (for example aTAM systems) for which there

does not exist a bit-reading gadget. While this shows that these systems cannot simu-

late a Turing machine in a “traditional” sense, it does not show that these systems cannot

compute. Next we introduce a model where we can show more definitively that computa-

tion is simply not possible in this model. We introduce the Reflexive Tile Assembly Model

(RTAM), which can be thought of as the aTAM with the exception that tiles in the RTAM

are allowed to flip horizontally and/or vertically. Unlike the aTAM, where complementary

strands of DNA are given the same glue label, the use of complementary glues plays an

important role in the RTAM in that they prevent a tile from being able to flip and bind

to itself. We then show a series of results within the RTAM. First we show that at tem-

perature 1, the class of directed RTAM systems – systems that yield a single pattern upto

rotation and ignoring tile orientation – is not computationally universal. We also show that

like the aTAM at temperature 2, the class of directed RTAM systems at temperature 2 is

computationally universal. This shows that there is a fundamental dividing line between

temperature 1 and temperature 2 directed systems in the RTAM; whereas such a dividing

line in the aTAM is still a long-standing open problem. In order to further compare the

RTAM with the aTAM, we then turn our attention to the self-assembly of finite shapes

in the RTAM. First, we consider the assembly of squares as this is a common benchmark

in self-assembly for measuring the strength of a model. We show that for n even, it is im-

possible to self-assemble any n × n square, and for n odd, any n × n square can be self-

assembled using only n tile types, but cannot be self-assembled using less than n tile types.

This is in contrast to the aTAM at temperature 1, where the conjectured lower bound for
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assembling an n × n square is 2n − 1. Finally, we give a series of results that about which

shapes finite shapes self-assemble from a single seed in the RTAM including a complete

classification of which finite shapes self-assemble from a single seed tile at temperature 1.

4.2 Preliminaries

Definition of the Reflexive Tile Assembly Model

As in the aTAM, we work in the 2-dimensional discrete space Z2. Define the set U2 =

{(0, 1), (1, 0), (0,−1), (−1, 0)} to be the set of all unit vectors in Z2. Intuitively, a tile type

t is a unit square that can be translated and flipped across its vertical and/or horizontal

axes, but not rotated. This provides each tile type with a pair of North-South (NS) sides

and a pair of East-West (EW ) sides, such that either side s ∈ NS may be facing north

while the other is facing south (and vice versa for the EW glues). For ease of discussion,

however, we will talk about tile types as being defined in fixed orientations, but then al-

low them to attach to assemblies in possibly flipped orientations. Therefore, we define each

t as having a well-defined “side ~u” for each ~u ∈ U2. Each side ~u of t has a “glue” with

“label” labelt(~u)–a string over some fixed alphabet–and “strength” strt(~u)–a nonnegative

integer–specified by its type t. Let R = {D, V,H,B} be the set of permissible reflections

for a tile which is assumed to begin in the default orientation, where D corresponds to no

change from the default, V a single vertical flip (i.e. a reflection across the x-axis), H a

single horizontal flip (i.e. a reflection across the y-axis), and B a single horizontal flip and

a single vertical flip. (Note that the ordering of flips for B does not matter as either order-

ing results in the same orientation, and also that all combinations of possibly many flips

across each axis result only in tiles of the orientations provided by R.) See Figure 4.1 for

an example of each. Let S : R × U2 → U2 be a function which takes a type of reflection

r ∈ R and a side s ∈ U2, and which returns the side of a tile in its default orientation

which would appear on side s of the tile when it has been reflected according to r. (E.g.

for the tile type shown in Figure 4.1, S(H,W ) = E, and S(H,N) = N .) It is important
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to note that a glue does not have any particular orientation along the edge on which it re-

sides, and so remains unchanged throughout reflections.

d b
a

c
d b
c

a
b d
a

c
b d
c

a

D V H B

Figure 4.1: Left to right: (1) Default orientation of an example tile type t, (2) t flipped
vertically, (3) t flipped horizontally, (4) t flipped across both axes

Two tiles t and t′ that are placed at the points ~a and ~a + ~u and reflected by r ∈ R and

r′ ∈ R, respectively, bind with strength strt (S(r, ~u)) if and only if

(labelt (S(r, ~u)) , strt (S(r, ~u))) =
(

labelt′ (S(r′,−~u)), strt′ (S(r′,−~u))
)
.

That is, the glues on adjacent edges of two tiles bind iff they have complementary labels

and the same strength.

In the subsequent definitions, given two partial functions f, g, we write f(x) = g(x) if f

and g are both defined and equal on x, or if f and g are both undefined on x.

Fix a finite set T of tile types. A T -assembly, sometimes denoted simply as an assembly

when T is clear from the context, is a partial function α : Z2 99K T × R defined on at least

one input, with points ~x ∈ Z2 at which α(~x) is undefined interpreted to be empty space,

so that dom α is the set of points with oriented tiles. We write |α| to denote |dom α|, and

we say α is finite if |α| is finite. For a given location ~v ∈ Z2, we denote the tile in α at

location ~v by α(~v) (if no tile exists there, α(~v) is undefined). Let F be a function which

takes as input an assembly α, a reflection r ∈ R, and a translation vector ~v ∈ Z2, and

which returns the assembly αr, corresponding to α reflected according to r then translated

by ~v. We say that two assemblies, α and β, are equivalent iff there exists some reflection

r ∈ R and translation vector ~v ∈ Z2 such that for β′ = F (β, r, ~v), |α| = |β′| and for all

~v ∈ |α|, α(~v) = β′(~v). That is, α and β are equivalent iff one of them can be flipped and

translated so that they perfectly match at all locations. For assemblies α and α′, we say
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that α is a subassembly of α′, and write α v α′, if dom α ⊆ dom α′ and α(~x) = α′(~x) for

all x ∈ dom α. An assembly is τ -stable if it cannot be broken up into smaller assemblies

without breaking bonds of total strength at least τ , for some τ ∈ N. For a tile set T , we let

pT : T ×R→ T be the projection map onto T (i.e. pT ((t, r)) = t). A configuration given by

an assembly α is defined to be the map from Z2 to T given by pT ◦ α.

Self-assembly begins with a seed assembly σ, in which each tile has a specified and fixed

orientation, and proceeds asynchronously and nondeterministically, with tiles in any valid

reflection in R adsorbing one at a time to the existing assembly in any manner that pre-

serves τ -stability at all times. A tile assembly system (TAS) is an ordered triple T = (T, σ, τ),

where T is a finite set of tile types, σ is a seed assembly with finite domain in which each

tile is given a fixed orientation, and τ ∈ N. A generalized tile assembly system (GTAS)

is defined similarly, but without the finiteness requirements. We write A[T ] for the set of

all assemblies that can arise (in finitely many steps or in the limit) from T . An assembly

α ∈ A[T ] is terminal, and we write α ∈ A�[T ], if no tile can be τ -stably added to it. It is

clear that A�[T ] ⊆ A[T ].

An assembly sequence in a TAS T is a (finite or infinite) sequence ~α = (α0, α1, . . .)

of assemblies in which each αi+1 is obtained from αi by the addition of a single tile. The

result res(~α) of such an assembly sequence is its unique limiting assembly. (This is the last

assembly in the sequence if the sequence is finite.) The set A[T ] is partially ordered by the

relation −→ defined by

α −→ α′ iff there is an assembly sequence ~α = (α0, α1, . . .)

such that α0 = α and α′ = res(~α).

We say that T is strongly directed if and only if either |A�[T ]| = 1 or if for every pair of

terminal assemblies α, β ∈ A�[T ], there exists a reflection r ∈ R and a translation vector

~v ∈ Z2 such that α = F (β, r, ~v). Furthermore, we say that T is directed if and only if for

all α, β ∈ T , there exists a reflection r ∈ R and a translation vector ~v ∈ Z2 such that
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pT ◦ α = pT ◦ F (β, r, ~v). In other words, all of the assemblies of a directed systems give the

same configuration.

A set X ⊆ Z2 weakly self-assembles if there exists a TAS T = (T, σ, τ) and a set B ⊆ T

such that for each α ∈ A�[T ] there exists a reflection r ∈ R and a translation ~v ∈ Z2 such

that αr = F (α, r,~v) and α−1r (B) = X holds. Essentially, weak self-assembly can be thought

of as the creation (or “painting”) of a pattern of tiles from B (usually taken to be a unique

“color” such as black) on a possibly larger “canvas” of un-colored tiles.

A set X strictly self-assembles if there is a TAS T such that for each assembly α ∈

A�[T ] there exists a reflection r ∈ R and a translation ~v ∈ Z2 such that αr = F (α, r,~v)

and dom αr = X. Essentially, strict self-assembly means that tiles are only placed in po-

sitions defined by the shape. Note that if X strictly self-assembles, then X weakly self-

assembles. (Let all tiles be in B.)

4.2.1 Paths in the Binding Graph and as Assemblies

Given an assembly α and locations ~x and ~y such that ~x,~y ∈ dom α, we define a path in α

from ~x to ~y (or simply a path from ~x to ~y) as a simple directed path in the binding graph

of α with the first location being ~x and the last ~y. We refer to such a path as πyx, and for

k = |πyx| (i.e. k is the length of, or number of tiles on, πyx) and 0 ≤ i < k, let πyx(i) be the

ith location of πyx. Thus, πyx(0) = ~x, and πyx(k − 1) = ~y. We can thus refer to the ith tile

on πyx and its reflection as α(πyx(i)), and as shorthand will often refer to locations and/or

tiles along a path. Regardless of the order in which the tiles of πyx were placed in α, we de-

fine input and output sides for each tile in πyx (except for the first and last, respectively) in

relation to their position on πyx. The input side of the ith tile of πyx, α(πyx(i)), is that which

binds to α(πyx(i − 1)), and the output side is that which binds to α(πyx(i + 1)). We denote

these sides as IN(πyx(i)) and OUT (πyx(i)), respectively. (Thus, α(πyx(0)) has no input side,

and α(πyx(k − 1)) has no output side.) Note that in a τ = 1 system, an assembly α′ exactly

representing πyx would be able to grow solely from α(πyx(0)), in the order of πyx, with each

tile having input and output sides as defined for πyx.
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4.3 Computation in the RTAM

4.3.1 The RTAM is Not Computationally Universal at τ = 1

In this section, we show that directed RTAM systems are not computationally universal by

showing that any shape weakly assembled by a directed RTAM system is “simple”. We will

first define our notion of simple. Many of the definitions used can also be found in [26].

Definition. A set X ⊆ Z2 is semi-doubly periodic if there exist three vectors ~b, ~u, and ~v in

Z2 such that

X =
{
~b+ n · ~u+m · ~v

∣∣∣ n,m ∈ N
}
.

Less formally, a semi-doubly periodic set is a set that repeats infinitely along two vec-

tors (linearly independent vectors in the non-degenerate case), starting at some base point

~b. Now, let T = (T, σ, 1) refer to a directed, temperature-1 RTAM system. We show that

any such T weakly self-assembles a set X ⊆ Z2 that is a finite union of semi-doubly peri-

odic sets.

Theorem 3. Let T = (T, σ, 1) be a directed RTAM system. If a set X ⊆ Z2 weakly self-

assembles in T , then X is a finite union of semi-doubly periodic sets.

Proof. (sketch) Here we give a high-level sketch of the proof of Theorem 3. The basic idea

of the proof is as follows. For an RTAM system T = (T, σ, 1) we consider all of the paths

of n tiles (for n to be defined) that can assemble from each exposed glue of σ such that

each consecutive tile that binds forming the path attach via a north or west glue (and we

say that such a path “extends to the north-west”).

Any finite path is trivially the union of semi-doubly periodic sets. Then, for n suffi-

ciently large, a path of n tiles that extends to the north-west must contain two distinct

tiles t1 and t2 of the same tile type in the same orientation. If for every such path, every

two distinct tiles t1 and t2 of the same tile type in the same orientation lie on a horizontal

or vertical line, then it can be argued that the terminal configuration of T must consist of
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Figure 4.2: A depiction of tiles for a path that can assemble in T . The original path is
on the left. The path on the right is a modification to the path on the left that must also
be able to assemble in T . The blue tiles labeled ~v0 and ~v1 are of the same tile type and
orientation. The tiles labeled 1 through 6 can be repeated indefinitely as depicted in Ta-
ble 4.1(a).

finitely many infinitely long horizontal or vertical paths connected to σ, and is therefore

the finite union of semi-doubly periodic sets. On the other hand, if there is a path such

that the two distinct tiles t1 and t2 of the same tile type in the same orientation do not lie

on a horizontal or vertical path, then we argue that the terminal assembly of T is the fi-

nite union of semi-doubly periodic sets as follows. First, we note that for such a path, π

say, the tiles between t1 and t2 can be repeated indefinitely. This is shown in Table 4.1(a).

Then we show how to modify π by reflecting tiles to obtain an infinite family of paths. Ex-

(a) (b) (c) (d)

(e) (f) (g) (h)

Table 4.1: Each figure in this table depicts a possible path that can assemble in T . The
yellow tiles make up the seed and the green tiles are a path leading to the repeated tile
that allows the path to repeat.

amples of such modified paths are shown in Table 4.1(b)-(h). Now, if a tile t belongs to
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one of these paths and has location l say, then, since T is directed the terminal assembly

of T must contain a tile of the same type as t at each such location l. Finally, we note that

(a) (b)

Figure 4.3: (a) A configuration that can be thought of as the “union” of the type-
consistent assemblies depicted in Table 4.1. (b) A configuration of tiles that must weakly
self-assemble in T .

all of these paths taken together form a semi-doubly periodic set. This is depicted in Fig-

ure 4.3a. Continuing this line of reasoning, we show that the terminal assembly of T is the

finite union of semi-doubly periodic sets. A portion of such an assembly is shown in Fig-

ure 4.3b.

An intuitive reason that Theorem 3 supports the conclusion that the RTAM is not

computationally universal is as follows. Let

H = {(i, x) | program i halts when run on input x}

be the halting set and let M be a Turing machine that outputs a 1 if (i, x) ∈ H. The typ-

ical way of expressing the computation of M in tile assembly is as follows. For a fixed tile-

set T , a seed assembly σ encodes an “input” to the computation, while the “output” of 1

by M corresponds to the translation of some configuration being contained in the terminal

assembly ασ of (T, σ, 1). For this sense of computation, the following corollary says that

the set of seed assemblies that “output” a 1 is a recursive set (not just a recursively enu-

merable set). This would contradict the fact that the halting set is not recursive. This is

stated in the following corollary. For more details see [36].
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Corollary 1. For any RTAM tileset T and fixed finite configuration C, let S be the set of

seed assemblies σ such that (1) the RTAM system (T, σ, 1) is directed and (2) the terminal

assembly of T contains C. Then, S is a recursive set.

4.3.2 Universal computation at τ = 2

In this section give a theorem that states that universal computation is possible in the

RTAM at temperature 2. We give an example of simulating a binary counter in the RTAM

and give the general proof in [36].

Theorem 4. The RTAM is computationally universal at τ = 2. Moreover, the class of

directed RTAM systems is computationally universal at τ = 2.

First we note that given a Turing machine M , we use Lemma 7 of [12] to obtain a tile

set which simulates M using a zig-zag system. In fact, as noted in [52], we can find a singly

seeded compact zig-zag system T = (T, σ, 2) with A�[T ] = {α} which simulates M . Then

the proof of Theorem 4 relies on showing that any compact zig-zag system in the aTAM

at temperature 2 can be converted into a directed RTAM system S that is “almost” com-

pact zig-zag. The RTAM system constructed differs from a compact zig-zag system in that

when the length of a row of the growing assembly increases by a tile, a strength-2 glue is

exposed allowing a tile to bind below the row, resulting in the possibility of a single “mis-

placed” tile per row, however, this suffices to simulate a Turing machine.

4.4 Self-assembly of shapes in the RTAM at τ = 1

In this section, we discuss the self-assembly of shapes in the RTAM, especially the com-

monly used benchmark of squares. At temperature 2, using a zig-zag binary counter simi-

lar to that used in Section 4.3.2, n×n squares can be built using the optimal log n/(log log n)

tile types following the construction of [59] with only trivial modifications. Similarly, the

majority of shapes which can be weakly self-assembled in the temperature-2 aTAM can be

60



built in the temperature-2 RTAM, although shapes with single-tile-wide branches which

are not symmetric are impossible to strictly self-assemble in the RTAM.

At temperature-1, however, the differences between the powers of the aTAM and RTAM

appear to increase. Here we will demonstrate that squares whose sides are of even length

cannot weakly (or therefore strictly) self-assemble in the RTAM at τ = 1, although any

square can strictly self-assemble in the τ = 1 aTAM. We then prove a tight bound of n tile

types required to self-assemble an n × n square for odd n in the RTAM at τ = 1. (Which

is, interestingly, better than the conjectured lower bound of 2n− 1 for the τ = 1 aTAM.)

4.4.1 For even n, no n× n square self-assembles in the τ = 1 RTAM

Theorem 5. For all n ∈ Z+ where n is even, there exists no RTAM system T = (T, σ, 1)

where |σ| = 1 and T weakly (or strictly) self-assembles an n× n square.

Proof. We prove Theorem 5 by contradiction. Therefore, assume that for some n ∈ Z+

such that (n mod 2) = 0, there exists an RTAM system T = (T, σ, 1) such that |σ| = 1

and T weakly self-assembles an n× n square S. It must therefore be the case that for some

subset of tile types B ⊆ T , for all α ∈ A�[T ] there exist r ∈ R and ~v ∈ Z2 such that for

αr = F (α, r,~v), α−1r (B) = S (that is, every terminal assembly contains an n × n square of

“black” tiles, and no “black” tiles anywhere else).

a

A

B C

D

d

b c

Figure 4.4: The shortest path between two opposite corners of an n × n square has length
2n− 1.
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We choose an arbitrary α ∈ A�[T ] and refer to the four corners of S in α as ~a, ~b, ~c,

and ~d, with ~a being the southwest and moving clockwise to name the remaining corners.

(See Figure 4.4 for an example using an 8 × 8 square.) Since α must be a stable assembly,

there must exist a set of (possibly overlapping) paths P in the binding graph of α which

contain the tiles at all 4 corners. Let πca be a shortest path which contains both corners ~a

and ~c (there may be more than one), and note that |πca| ≥ 2n − 1 because the tiles are

located on a grid. (Two possible such paths can be seen in Figure 4.4 as the red and yellow

paths.) Let the uppercase letters A, B, C, and D represent the quadrants which contain

the corners with the corresponding lowercase labels. It must be the case that πca contains

at least one tile in either quadrant B or D, else it could not reach quadrant C. This is due

to the facts that n is even and that πca is a path through a grid graph where diagonal travel

is not allowed. Without loss of generality, assume that πca enters quadrant B.

We now know that some path πca through the binding graph of α connects ~a and ~c and

also contains at least one point in quadrant B. Additionally, we know that within the over-

all binding graph of α, πca must somehow also be connected to the tile at ~d. Let πacd be

a path in the binding graph which contains both ~d and some tile in πca. Note that this

may just be the tile at ~d since πca may contain that location. We now define path π′ as the

longest of the following two paths formed by possibly combining subpaths of πca and πacd : 1)

a path which connects ~d and ~c and contains a tile in B, or 2) a path which connects ~a and

~d and contains a tile in quadrant B. For ease of discussion, we will talk about πca as be-

ing a directed path from ~a to ~c, while noting that we don’t know the actual ordering of its

growth. Such a π′ must exist because the point at which πacd intersects πca must be either

1) before it has entered B, which yields case 1 for π′, 2) after it has left B, which yields

case 2 for π′, or 3) within B in which case either holds. Note that πca could perhaps enter

and leave B multiple times, which would only strengthen our argument, but for simplicity

we will simply make use of the first time it enters quadrant B and the last time it leaves

quadrant B for the above argument.
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a

c

d

Figure 4.5: Example paths in an 8×8 square (i.e. of even dimension). White tiles represent
tile types not in B (and thus tiles not in S), black tiles represent path π′σ, dark grey tiles
represent path πacd , and πca is represented by a combination of tiles of all colors. Path π′

connects ~d and ~c by passing through ~x (which is in quadrant B) and is outlined in red.

Without loss of generality, we will assume case 1 for path π′, and note that we now

have found the following path in the binding graph of α. Path π′ includes the tile at lo-

cation ~d, contains at least one tile in quadrant B, and also includes the tile at location

~c. (See Figure 4.5 for an example.) For a square of dimension n, it must be the case that

path π′ contains a minimum of n pairs of tiles bound to each other on their east/west edges.

Now we check to see if the seed σ is contained within π′. If not, we define π′σ as the

minimum path in α’s binding graph which contains σ and some tile in π′, else π′σ is sim-

ply σ. Now we define a new valid assembly sequence, ~α′ for T as follows.

HV

H
H

B

V

V

B

Figure 4.6: Every possible pairing of an input and output side of a tile on a path. Those
in grey have as input sides either south or west, and as output sides either north or east.
Those in yellow do not, but are labeled with the minimal reflection necessary to orient
them so that they do.

Let ~x denote the location of the intersection of π′σ and π′, and πcx be the portion π′

from ~x to ~c and let πdx be the portion of π′ from ~x to ~d. Without loss of generality, we will

assume that the tile on π′σ which binds to σ attaches to the north of σ. (If this is not the

case, then all following directions can simply be rotated by the same angle as the difference

of the direction of the first binding from north.) Starting from σ, ~α′ attaches one tile at
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a time from π′σ so that output glues are exposed on the north or east edge of each tile. In

other words, as tiles attach, flip them so that the next tile to attach does so at a tile loca-

tion that is north or east of the previously attached tile. (Figure 4.6 shows how this must

be possible for each tile.) This causes all inputs along π′σ to be on the south or west sides

of tiles, and outputs on the north and east. Furthermore, place the tile from location ~x so

that the exposed glue used for the binding of πcx is on its the north or west, and the ex-

posed glue used for the binding of πdx is on its south or east. Figure 4.7 shows how this can

be done. (Note that depending on where and from which direction π′σ intersects π′, it could

be the case that the output sides which bind to πcx and πdx are instead south or east, and

north or west, respectively. However, again this doesn’t change the argument as the follow-

ing directions can be rotated appropriately, so we assume the output for πcx is on the north

or west for ease of discussion.)

H V

Figure 4.7: Every possible pairing of a south or west input side and 2 output sides of the
final tile of π′σ. Those in grey have one output side on the north or west, and the other
on the south or east. Those in yellow do not, but are labeled with the minimal reflection
necessary to orient them so that they do.

Now we assemble the path πcx as follows. Starting from the tile of location ~x, attach one

tile at a time so that the output glues are exposed on the north or west edge of each tile.

This results in a version of πcx which grows strictly up and to the left. Such growth is pos-

sible because of the set of reflections possible and the fact that no tile previously placed

from πcx or π′σ can block the placement. The fact that blocking can’t occur is due to the

fact that the stretched version of πcx grows strictly up and/or to the left so all previous

tiles placed for πcx cannot block, and after the first tile placed after the final tile of π′σ, the

newly forming path is either completely above π′σ or to the left of the topmost tile of that

path. Next we assemble the path πdx in an analogous manner, but down and to the right.

Starting from the tile of location ~x, attach one tile at a time so that the output glues are

64



exposed on the south or east edge of each tile. For the same but reflected reasons as for

the growth of the modified version of πcx, π
d
x can be grown in this way. See Figure 4.8 for

an example of these “stretched” paths.

s

x

c

d

Figure 4.8: Example paths πxσ, πcx, and πdx stretched out when assembled by ~α.

The tile types which are at the ends of πcx and πdx were at locations ~c and ~d in α, so

they must be of types which are in B ⊆ T (i.e. “black” tile types). However, since there

are ≥ n pairs of tiles connected via east/west glues in π′ and it is now maximally stretched,

it must be ≥ n + 1 tiles wide (i.e. from leftmost to rightmost tiles). Thus, this is a pro-

ducible assembly which has “black” tiles at a distance which is further apart than any two

points in the square S. Therefore ~α′ does not weakly (or, therefore, strictly) self-assemble

the n × n square S and so neither does T . This is a contradiction, and thus T does not

exist.

4.4.2 Tight bounds on the tile complexity of squares of odd dimension

In this section, we prove tight bounds on the number of tiles necessary to self-assemble a

square of odd dimension.
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Theorem 6. For all n ∈ Z+ where n is odd, an n × n square strictly self-assembles in an

RTAM system T = (T, σ, 1) where |T | = n and |σ| = 1.

Proof. The general scheme for the construction can be seen in Figure 4.9. Essentially, the

seed, which is in the center of the square, presents some glue on both the north and south,

and presents some second glue on both the east and west. Above the seed, a series of (n −

1)/2 hard-coded tile types form a vertical column, with the east and west edges of all tiles

exposing the same glue. Using the same tile types, a reflected version of the upper column

grows downward to the bottom of the square. To both the east and west of that column, a

hard-coded series of another (n − 1)/2 tile types form reflected rows out to the sides of the

square. This requires 1 + 2((n − 1)/2) = n tile types and strictly self-assembles an n × n

square.

Seed

1v

1h 1h

1v

1v'

2v

2v'

V1

V2

1h' 2h'2hH1 H2

1v'

2v

2v'

V1

V2

1h 1h 1h' 2h'2hH1 H2

1h 1h 1h' 2h'2hH1 H2

1h 1h 1h' 2h'2hH1 H2

1h 1h 1h' 2h'2hH1 H2

1h'2h' 2h H1H2

1h'2h' 2h H1H2

1h'2h' 2h H1H2

1h'2h' 2h H1H2

1h'2h' 2h H1H2

Figure 4.9: A 5× 5 square built by an RTAM TAS at τ = 1 using only 5 tile types.

To prove Theorem 6, we provide the following construction which demonstrates how to

build an RTAM TAS which strictly self-assembles an n×n square for any odd n. The basic

idea is that we place the seed tile in the middle of the square, and from both its top and

bottom it grows copies of a reflected column of tiles which grow to the top and bottom of

the square, respectively. This requires one tile type for the seed and (n− 1)/2 tile types for

the column (which grows in both directions). Each of the seed and the tiles of the vertical

column have the same glue on both east and west sides. From each of those a row of (n −

1)/2 unique tile types grows to the left or right boundary of the square. This construction
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is robust to any valid rotation of the tiles and strictly self-assembles an n × n square using

exactly 1 + 2(n− 1)/2 = n tile types.

zv'

Vz1h 1h

xv'

yv

Vx1h 1h

Seed

1v

1h 1h

1v

xh' yhHx zh' Hz

Figure 4.10: The tile type templates for building a square whose sides are odd length in
the RTAM at τ = 1 using n unique tile types.

In Figure 4.10 we show the templates used to generate the necessary tile types to self-

assemble an n × n square for odd n, and in Figure 4.9 we show an example of the terminal

assembly for n = 3. For all odd n, the seed is exactly as in Figure 4.10. Then for each

m where 0 < m < (n − 1)/2, we create a unique tile type from the tile type template

labeled “Vx”. We do this by replacing each “x” (i.e. those of the tile label and the south

glue) with the value “m”, and the “y” of the north glue with the value “m + 1”. (Note

the “prime” markings of some glues which denote they are complementary to the “un-

primed” versions, and for all tile types created from these templates we keep those mark-

ings unchanged, which is important in restricting the potential interactions.) In this way,

we create the tile types for the central column between the seed and the top or bottom

most locations. To make the top/bottom tile type, we start with the “Vz” template and

replace the “z” of the label and south glue with the value (n− 1)/2. To make the tile types

for the horizontal rows which grow outward from the central column, for each m where

0 < m < (n − 1)/2 we create a unique tile type from the tile type template labeled “Hx”.

We do this by replacing each “x” (i.e. those of the tile label and the west glue) with the

value “m”, and the “y” of the east glue with the value “m + 1”. In this way we create the

tile types for the horizontal row between the central column and left or right most loca-
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tions. To make the left/right tile type, we start with the “Hz” template and replace the

“z” of the label and west glue with the value (n − 1)/2. This completes the creation of ex-

actly n tile types: 1 for the seed, 2(((n−1)/2)−1) for the interiors of the column and rows,

and 1 each for the top/bottom tile type and left/right tile type. The RTAM TAS T con-

sisting of this tile set, a seed consisting of a copy of the seed tile in any valid orientation at

the origin, and τ = 1 strictly self-assembles an n×n square and is directed. This is because

the only tiles which can attach to the north and south of the seed are properly reflected

versions of the “V1” tile type, and then to the north/south of those two tiles properly re-

flected copies of “V2”, etc. until copies of the “V(n − 1/2)” tile type cap off the north and

south growth of the column. Regardless of the reflections of the “Vx” and “Vz” tiles across

the vertical axis, the only subassemblies that can grow to the left and right are the arms

consisting of the “Hx” and “Hz” tile types. All producible terminal assemblies of T are

equivalent and in the shape of an n× n square.

We prove Theorem 6 by giving a scheme for obtaining the tileset for any given n that

exploits the fact that for n odd, an n × n square in Z2 is symmetric across a row and col-

umn points. Although Theorem 6 pertains to squares, a simple modification of the proof

shows the following corollary.

Corollary 2. For all n,m ∈ Z+ where n is odd, an n ×m square strictly self-assembles in

an RTAM system T = (T, σ, 1) where |T | = n+m
2

and |σ| = 1.

We also prove that the upper bound of Theorem 6 is tight, i.e. an n × n square, where

n is odd, cannot be self-assembled using less than n tile types.

Theorem 7. For all n ∈ Z+ where n is odd, there exists no RTAM system T = (T, σ, 1)

where |T | < n and |σ| = 1 such that T weakly (or strictly) self-assembles an n× n square.

Proof. We prove Theorem 7 by contradiction. Therefore, assume that for some n ∈ Z+

such that (n mod 2) = 1, there exists an RTAM system T = (T, σ, 1) such that |σ| = 1

and |T | < n, and T weakly self-assembles an n × n square S. It must therefore be the case
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that for some subset of tile types B ⊆ T , for all α ∈ A�[T ] there exist r ∈ R and ~v ∈ Z2

such that for αr = F (α, r,~v), α−1r (B) = S.

We choose an arbitrary α ∈ A�[T ] and, using the notation of Figure 4.4, note that in

the binding graph of α, there is a path πca which connects the tiles in locations ~a and ~c (i.e.

opposite corners of the square). Furthermore, the tile types of the tiles at locations ~a and ~c

must be in B ⊆ T , and tiles of types in B can be no further apart from each other (in the

plane) than a Manhattan distance of 2n− 1. Since the seed σ may not be on πca, define the

location ~x to be either 1) the location of σ if it is on πca, or 2) the location of the intersec-

tion of πca and the shortest path in the binding graph which contains σ and some tile in πca.

Note that such a location ~x must exist since α must be connected. Define the path πxσ as

the path from σ to ~x and note that if σ is on πca then πxσ consists of a single tile. Also, we

can now define πax and πcx as the paths from ~x to ~a and ~c, respectively. (See Figure 4.11 for

a possible example of such paths in α.)

s

x

a

c

Figure 4.11: Example paths πxσ (darkest grey) and πca (a combination of light grey, dark
grey, and white tiles) in α which weakly self-assembles a 9 × 9 square (i.e. of odd di-
mension). White tiles represent tile types not in B ⊆ T , while grey and dark grey tiles
represent “black” tile types in B.

We will now define a valid assembly sequence ~α′ in T which builds an assembly α′ which

consists of modified versions of the paths πxσ and πca, and which places tiles of types in

B ⊆ T (i.e. “black” tiles) at points further apart than 2n − 1, proving that T does not

weakly self-assemble S. Let k = |πxσ| and let ~α′ start from σ and first build a modified

version of πxσ in the following way. If k = 1, stop. Else, without loss of generality assume

that α(πxσ(1)) attaches to the north of σ in α. (If it binds on the east, south, or west, for
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the following argument used to construct α′, rotate all directions used clockwise by 90, 180,

or 270 degrees respectively.) For each i where 0 < i < k, place a tile of the same type

as at α(πxσ(i)) but reflected so that its input side is either south or west, and its output

side is either north or east. Note that for any pair of input and output sides, it is possible

to reflect a tile to meet this criteria (see Figure 4.6). Place the tile of that type and ori-

entation so that it binds with the (i − 1)th tile of the newly created path. Note that this

also must be possible because, following from σ, every tile is oriented so that the side used

as its output side in πxσ is north or east and has a glue which matches that of the newly

placed tile on its (now) south or west side, respectively, and since the newly forming path

grows only up and/or to the right, no previously placed tile can block it from binding. The

result of this sequence of placing the tiles from πxσ is a “stretched” version of the path πxσ

which grows only up and/or right from the seed σ, grown by the valid assembly sequence

~α′.

We now extend ~α′ to grow a stretched version of πca by growing stretched versions of πax

and πcx. We will build one of πax or πcx by stretching it up and to the left, and the other by

stretching it down and to the right. (See Figure 4.12 for an example.) Since the final tile of

πxσ is included in πca, it must be the case that it has two output sides (to bind to each of πax

and πcx). Also, recall that its input side must have been either south or west. We modify

~α′ so that the final tile of πxσ is oriented with one output side on either the north or west,

and the other on either the south or east. See Figure 4.7 for all possible orientations of this

tile. Without loss of generality, assume that in this orientation, the side which serves as

input to πax is on either the north or west, and that serving as input to πcx is on either the

south or east. (If it is the opposite, the directions used to grow the stretched πax and πcx can

simply be swapped and the argument will still hold.) We will now build a stretched version

of πax up and to the left, and πcx down and to the right. To do this, we extend ~α′ to attach

the tiles of πax, moving along that path as it appears in α and placing the same tiles in the

same order, but always orienting them so that each has as its input side either its south
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or east, and as its output side either its north or west, allowing each successive tile to cor-

rectly bind to its predecessor on the path. As before, this is possible because of the set of

reflections possible and the fact that no tile previously placed from πax or πxσ can block the

placement. The fact that blocking can’t occur is due to the fact that the stretched version

of πax grows strictly up and/or to the left so all previous tiles placed for πax cannot block,

and after the first tile placed after the final tile of πxσ, the newly forming path is either

completely above πxσ or to the left of the topmost tile of that path. The stretched version

of πcx is grown analogously, with all input sides being on the north or west and output sides

to the south or east.

Note that in the special case where ~x = ~a or ~x = ~c in α, meaning that either the seed is

in one of those corners, or the path from the seed to the path πca terminates at one of those

corners, we can simplify our construction and simply grow a single direction from ~x.

s

x

a

c

Figure 4.12: Example paths πxσ and πcx stretched out in π̂cσ.

At this point, ~α′ grows assembly α′ which is a path that looks like that in Figure 4.12

and which starts from the seed and grows a stretched version of πxσ, then grows a stretched

version of πca (as connected stretched versions of πax and πcx) from the end of that path.

Since in α, πca connects the bottom-left corner of the square S with the top-right corner,

it must be the case that |πca| ≥ (2n − 1). Since |T | ≤ (n − 1), and 2(n − 1) = 2n − 2, by
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the pigeonhole principle we know that along πca (and therefore also its stretched version), it

must be the case that at least 3 tiles of some same type appear.

b d
c

a
d b
a

c

d b
c

a

Figure 4.13: One possible configuration of a portion of the stretched paths πxσ (black) and
πax and πcx (grey). Three reflected copies of the same tile type appear on πax and πcx (lightest
grey). A path using different input sides can be formed between the top and bottom copies
of the repeated tile type, entering from the a and b sides, respectively.

With 3 copies of the same tile type appearing along πca, it must be the case that a path

can be formed which connects two of the copies in such a way that it enters each of the

two tiles along different sides of that tile type when it’s in its default configuration. (See

Figure 4.13 for an example where a path can be formed between the top copy and the bot-

tom copy, with the top being entered via the a side and the bottom via the b side, while

the path between the top and middle copies enters each from the a side, and the path be-

tween the middle and bottom copies enters each from the b side.) Let ~f , ~g, and ~h be the

locations of the repeated tile type in α′, and let ~f and ~g be the locations which can be con-

nected by a path entering the tiles at those locations from different sides, and let ~f be the

furthest of ~f and ~g from the final tile of πxσ (or the southernmost if they tie). Without loss

of generality, assume that ~f is south of ~g (otherwise, rotate the following directions).

We now modify ~α′ so that it builds the stretched copies of πxσ, πax, and πcx until it is

about to place the tile at ~f . At this point, it rotates the tile for that position so that the

side which serves as input for the tile at ~g is facing either south or east, and places that
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tile. Then, since the tile at ~g was above and/or to the left of that at ~f , the side it used

as output is now oriented so that it can be used as output from the copy at ~g. We add

to ~α′ the tile placements which now make a copy of the path πfg , again orienting the final

tile to allow yet another copy. We make ~α′ add 2n copies of πfg . Then, we let the final tile

on the final copy of πfg be oriented so that the final portion of the original stretched copy

of πcx can grow. At this point, ~α′, which is still a valid assembly sequence in T , forms the

stretched copy of πxσ, as well as the stretched copy of πca, with the addition that some inte-

rior portion of πca has been “pumped” so that the overall distance between the tiles at the

end of the path are at a Manhattan distance at least 2n from each other. This is because

the stretched path πca is at least that long, containing 2n copies of πfg , and it grows so that

each tile placed makes the endpoints strictly further from each other. Further, the tiles

placed at the endpoints of the stretched version of πca are of the same types as those placed

at ~a and ~c in α. Since those were at the corners of the square S, they were tile types from

B ⊆ T and must therefore be inside the square S. However, in S, no two points are at a

Manhattan distance greater than 2n − 1 from each other. Thus, ~α′ does not weakly (or

therefore strictly) self-assemble S and neither does T . This is a contradiction, and thus

Theorem 7 is proven.

4.4.3 Assembling finite shapes in the RTAM

In this section we first give a corollary of Theorem 6 showing that sufficiently symmetric

shapes weakly self-assemble in the RTAM. Then we prove 3 theorems about assembling

finite shapes in Z2 in the RTAM. These theorems show that the assembly of finite shapes

in singly seeded RTAM systems is quite a bit different than the assembly of finite shapes in

the aTAM by singly seeded systems.

Given a shape S in Z2, let χS denote the characteristic function of the set S. That is,

χS (x, y) = 1 if x ∈ S and χS (x, y) = 0 otherwise. Then, we say that a shape S is odd-

symmetric with respect to a horizontal line y = l (respectively, vertical line x = l) for

l ∈ Z2 iff for all (a, b) ∈ Z2, χS(a, l−b) = χS(a, l+b) (respectively, χS(l−a, b) = χS(l+a, b)).
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If there exists a line such that a shape, S, is odd-symmetric with respect to this line, we

say that the shape is odd-symmetric. Given a shape S, we call the smallest rectangle of

points in Z2 containing S the bounding-box for S.

Let R denote the bounding box of an odd-symmetric shape S, and let n and m in N be

the dimensions of R. A simple modification to the proof of Theorem 6 where a tile is la-

beled with a label B if and only if it corresponds to points in S, shows that odd-symmetric

shapes can weakly assemble in the RTAM.

Corollary 3. Given a shape S in Z2, if S is odd-symmetric, then there exists an RTAS

T = (T, σ, τ) such that |σ| = 1, τ ≥ 1, and T weakly assemblies S.

Additionally, if one is willing to build 2 mirrored copies of the shape in each assembly,

then any finite shape can be weakly self-assembled in the RTAM at τ = 1, along with its

mirrored copy (at a cost of tile complexity approximately equal to the number of points

in the shape) by simply building a central column (or row) from which identical copies of

hardcoded rows (or columns) grow, so that each side grows a reflected copy of the shape in

hardcoded slices.

We say that a TAS (in either the aTAM or the RTAM) T is called mismatch-free if for

every producible assembly α ∈ A[T ] with two neighboring tiles with abutting edges e1

and e2, either e1 and e2 do not have glues or e1 and e2 have glues with matching labels

and strengths. Then, for singly seeded aTAM systems, any finite connected shape can be

strictly assembled by a mismatch-free system. Theorems 8, 9, and 10 show that assembling

shapes in the RTAM is more complex.

Theorem 8. There exists a finite connected shape S in Z2 that weakly self-assembles in

a singly seeded RTAM system such that there exists no singly seeded RTAM system that

strictly self-assembles S.

Proof. Consider the shape S depicted in Figure 4.14a. By Corollary 3, there is a singly

seeded RTAM system that weakly self-assembles S. Therefore, to complete the proof, we
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show that this shape cannot be strictly self-assembled by a singly seeded system in the

RTAM by contradiction. Suppose that T = (T, σ, τ) is a singly seeded system that strictly

assembles S, and let α in A�[T ] be a terminal assembly such that dom (α) = S. Without

loss of generality, assume that the seed for T is at a location shown in red in Figure 4.14a.

Then, by applying a single tile reflection, we can modify the assembly sequence of α to ob-

tain a producible assembly β depicted in Figure 4.14b, which contradicts the fact that S

strictly assembles in T .

(a) (b)

Figure 4.14: (a) A shape S that cannot strictly self-assemble in the RTAM. (b) A pro-
ducible assembly that can assemble in any system which can also produce an assembly
whose domain is S (upto translation and reflection).

Theorem 9. There exists a finite shape S in Z2 that can be strictly self-assembled by

some singly seeded RTAM system such that every singly seeded RTAM system at tempera-

ture 1 which strictly self-assembles S is not directed.

(a) (b)

Figure 4.15: (a) A shape S that cannot be self-assembled in the RTAM by a directed sys-
tem.

Proof. Consider the shape S depicted in Figure 4.15a. First, to see that S can be strictly

self-assembled in the RTAM by a singly seeded system, consider the tile set shown in Fig-

ure 4.16.
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Figure 4.16: A tile set T such that a system T = (T, σ, τ), with σ a single tile assembly
consisting of the tile labeled S, strictly self-assembles the shape S shown in Figure 4.15a.
Note that all of the glues depicted in this figure have strength τ , and that assembly of the
shape S requires the reflection of these tiles.

Then, to complete the proof, we show by contradiction that S cannot be strictly self-

assembled by a directed singly seeded system in the RTAM. Suppose that T = (T, σ, τ) is

a directed singly seeded system that strictly assembles S, and let α in A�[T ] be a terminal

assembly such that dom (α) = S. Without loss of generality, assume that the location of

the seed in α is at a location shown in red in Figure 4.15a.

Let ti denote the tile of α located at positions Li. Note that the south glue of either t1

or t5 is bound to α with strength τ . Without loss of generality, assume that the south glue

of t1 is bound to α with strength τ . If t1 is bound to t2 with strength τ , t2 is bound to t3

with strength τ , and t3 is bound to t4 with strength τ , then by modifying the assembly se-

quence for α and applying the appropriate reflections, we can can give an assembly that is

producible in T , and is a total of 11 tiles wide. An example of such an assembly is shown

in Figure 4.15b. This contradicts the assumption that T strictly self assembles S. On the

other hand, if the strength of the bond between ti and ti+1 is less than τ for 1 ≤ i ≤ 4,

then the south glues of t1 and t5 must each be bound with strength τ . Therefore, the as-

sembly α′ depicted as gray tiles in Figure 4.17 must be producible in T . In the following

Figure 4.17: A shape S that cannot be self-assembled in the RTAM by a directed system.
Strength-τ glues are shown with two bars, the rest of the glues can be either strength-1 or
strength-2 as long as the assembly is τ -stable.

argument, without loss of generality, we assume that for every glue, g, on a tile in T , there

is a matching glue g′ on some (possibly the same) tile in T . Then, since two tiles must be
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able to attach so that they occupy the two tile locations to the west of t1, after applying

a reflection of t1, these same tiles, call them a and b, must be able to attach with strength

τ to the east to t1 with the easternmost tile, b, located at L3. Similarly, (prior to a and

b binding) three tiles, call them a′, b′, and c′, must be able to attach with strength τ to

the west of t5, with a′ located at L4, b
′ located at L3, and c′ located at L2. Notice that b′

must have two strength-τ glues. Hence, nondeterministically, either b or b′ will be at loca-

tion L3. Finally, note that b and b′ cannot have the same tile type. This follows by con-

tradiction; suppose that b and b′ are of the same type. Then, after binding, b must expose

a strength-τ glue. However, when the westernmost tile that attaches to the west of t1 is

b, this strength-τ glue would allow for a tile to bind, giving a producible assembly with a

domain that is not contained in S. This contradicts the assumption that T strictly self-

assembles S. Finally, since in any terminal assembly of T , either b or b′ will be at location

L3, and b and b′ do not have the same tile type, we conclude that T is not directed.

Theorem 10. There exists a finite shape S in Z2 such that every singly seeded RTAM

system that strictly self-assembles S is not mismatch-free.

Proof. Let S denote the shape shown in Figure 4.15a. Then, the proof follows from the

proof of Theorem 4.15. Note that in proof of Theorem 4.15, if b is placed at L3, then the

west edge of a′ and the east edge of b must have different glues. Similarly, if b′ is placed at

L3, then the east edge of a and the west edge of b′ must have different glues. Therefore,

any singly seeded RTAM system that strictly self-assembles S is not mismatch-free.

4.4.4 Mismatch-free assembly of finite shapes in the RTAM

Given a shape S, i.e. a finite connected subset of Z2, we say that a graph of S is a graph

GS = (V,E) with a vertex at the center of each point in S and an edge between every

pair of vertices at adjacent points of S. A tree of S, TS, is a graph of S which is a tree.

(See Figure 4.18 for examples of S, GS, and GT .) Given a graph G = (V,E), we say that
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an axis of G is a horizontal or vertical line of vertices such that there is an edge between

each pair of adjacent points on that line. Notice that two distinct axes can be collinear.

Given an axis a, an axial branch of TS is a branch of TS containing exactly 1 vertex v on

a and all vertices and edges of TS which are connected to a vertex that does not lie on a

and is adjacent to v. We say that the branch begins from v. Intuitively, an axial branch is

a connected component extending from an axis. (See the pink highlighted portion of Fig-

ure 4.18c for an example axial branch off the green axis.)

(a) Example shape S (b) Graph of S, GS (c) Tree of S, TS

Figure 4.18: An example ε-symmetric shape.

A tree TS is symmetric across an axis a if, for every vertex v contained on a, the branches

of a which begin from v are symmetric across a. A tree TS is off-by-one symmetric across

an axis a if, for every vertex v except for at most 1, the branches of a which begin from

v are symmetric across a. See Figure 4.18c for an example of such a tree, with the axis a

shown in green.

Definition. A tree T is ε-symmetric if and only if for any axis a of T , T is off-by-one sym-

metric across a.

Definition. Given a shape S with graph GS, we say that S is ε-symmetric if and only if

there exists a spanning tree, TS, of GS such that TS is ε-symmetric.

For an example of an ε-symmetric shape S, see Figure 4.18a. The tree TS is off-by-one

symmetric across the vertical green axis, the branches off of that axis are symmetric across

the horizontal yellow axes, and the branches off of those axes are symmetric across the ver-

tical blue axes. The following theorem gives a complete classification of finite connected

shapes which can be assembled by temperature-1 singly seeded mismatch-free RTAM sys-

tems.
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Theorem 11. Let S ⊂ Z2 be a finite connected shape. There exists a mismatch-free

RTAM system T = (T, σ, 1) with |σ| = 1 that strictly assembles S if and only if S is ε-

symmetric.

Proof. First, we show that if S is ε-symmetric, then there is a singly seeded mismatch-

free RTAM system that strictly assembles S. Let TS be a tree for S which satisfies Defi-

nition 4.4.4. We use TS to define a tile set T and give a seed tile σ such that the system

T = (T, σ, 1) strictly self-assembles S, and then we argue that for any terminal assembly

α in T , the domain of α is equal to S (up to translation and reflection). T and σ are ob-

tained as follows.

First, notice that we can give a temperature-1 aTAM system T ′ = (T ′, σ′, 1) that as-

sembles the shape S with the properties (1) T ′ is a singly seeded directed system, (2) for

α′ ∈ A[T ′], the binding graph of α′ is exactly the tree TS, and (3) when the seed tile σ′ is

the single tile located at some point v, then for each point p of S, there is a unique tile t′

in T ′ such that α(p) = t′. More intuitively, when the seed tile of T ′ is placed at v, then as-

sembly proceeds by the binding of unique tiles equipped with glues specific to each point of

S.

Now, we define the tiles of T to be copies of the tiles in T ′ and define σ′ to be σ. No-

tice that in the RTAM, if we assume that no tiles are reflected before binding as assembly

proceeds, then the terminal assembly, α, that results has a domain equal to S. Further-

more, since the binding graph of α is TS, a reflected tile, t, of α lies on some axis, at say,

and corresponds to some vertex vt of that axis. Then, since TS is ε-symmetric and appro-

priately reflected tiles of T can still bind to t even when t is reflected prior to binding, the

domain of a terminal assembly of T will either (1) be equal to S (This is the case that the

axial branches beginning from vt are equivalent upto reflection about the axis at. See Fig-

ure 4.19b.), or (2) be equal to a reflection of S about the line corresponding to the axis a0

(This is the special case that the axial branches beginning from vt are not equivalent after

a reflection about at. See Figure 4.19c.). In either case, it follows that S strictly assembles
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in T .
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Figure 4.19: An example of the assembly of a portion of an ε-symmetric shape which as-
sembles in T . Relative to Figure (a), Figures (b) and (c) give two different producible
assemblies of T .

Now we show that if there is a singly seeded mismatch-free RTAM system that strictly

assembles S, then S is ε-symmetric. Let T = (T, σ, 1) be a singly seeded mismatch-free

RTAM system that strictly self-assembles S, and let α ∈ A�[T ] be some terminal assembly

of T .

First, we note that the binding graph of α must be a tree, which we denote by Tα. This

follows from the fact that if the binding graph contains a cycle, then there are infinitely

many producible assemblies in T . See Figure 4.20 for an example. Moreover, Tα must be

ε-symmetric. This can be shown by contradiction as follows.

(a)

...

(b)

Figure 4.20: (a) An example of a binding graph that contains a cycle. (b) An example of
a binding graph of an assembly where tiles with type of those tiles belonging to the cycle
shown in (a) are repeated an arbitrary number of times using appropriately reflected tiles.

Suppose that Tα is not ε-symmetric. Then, there exists an axis a of Tα such that Tα is
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not off-by-one symmetric across a. In other words, there are at least two vertices, which we

denote by v1 and v2, of Tα which lie on a such that the branches of a which begin from v1

are not symmetric across a and the branches of a which begin from v2 are not symmetric

across a. Now, we can modify the assembly sequence of α by reflecting the tile, t, located

at v1 prior to binding, allowing reflected tiles to assemble reflections of the subassemblies

which are bound to t, and keeping the original assembly sequence otherwise. Now, as tiles

of the reflected subassemblies originating from t bind, either a mismatch occurs or the re-

flected subassemblies completely assemble. If a mismatch occurs, we arrive at a contradic-

tion since T is mismatch-free. If the reflected subassemblies completely assemble, then we

note that no translation and reflection of dom (β) is equal to S. (This is because we es-

sentially chose a sequence where the two asymmetric branches across a adopted reflections

across a such that the sides of each which would be on the same side of a in S are now on

different sides of a.) This contradicts the assumption that T strictly assemblies S. There-

fore, Tα is ε-symmetric. Hence S is ε-symmetric.

(a) (b)

Figure 4.21: An example of possible binding graphs of a shape that is not ε-symmetric. (a)
and (b) depict binding graphs of two distinct assemblies.

The following theorem shows that with cooperation, RTAM systems can assemble arbi-

trary scale factor 2 shapes.

Theorem 12. Let S ⊂ Z2 be a finite connected shape, and S2 be S at scale factor 2.

There exists a mismatch-free RTAM system T = (T, σ, 2) with |σ| = 1 that strictly self-

assembles S2.
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Proof. Let S be a finite connected shape in Z2 and S2 be S at scale factor 2. Note that we

can give a temperature-1 aTAM system T ′ = (T ′, σ′, 1) that assembles the shape S with

the properties (1) T ′ is a singly seeded directed system, (2) for α′ in A�[T ]′, the binding

graph of α′ is a tree Tα′ , (3) the location of the seed tile σ′ corresponds to a leaf of Tα′ , and

(4) for each point p of S, there is a unique tile t′ in T ′ such that α(p) = t′. For an example

of such an assembly α′ see Figure 4.22.

s
g0

g0'
g3 g3' g6 g6' g9 g9' g12' g12'

g15'

g15'

Figure 4.22: An example terminal assembly giving a shape assembled by an aTAM system
T ′.

We now give an RTAM system T based on T ′ such that a terminal assembly α of T

can be obtained from α′ by replacing single tiles of α′ by 2 × 2 blocks of tiles, and thus as-

sembles S2. aTAM tiles and corresponding RTAM tiles that give rise to this block replace-

ment scheme are described in Figure 4.23.

As 2 × 2 blocks assemble, cooperation is used to ensure that the orientations of the

tiles of a 2 × 2 block are fixed relative to the orientation of the seed. Figure 4.24 depicts a

terminal assembly of the RTAM system T based on the aTAM system T ′ whose terminal

assembly is shown in Figure 4.22.
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Figure 4.23: (a) An example seed tile of the aTAM system T ′. (b) Tiles that represent the
seed tile of (a) used to define the RTAM system T . The seed of T consists of only the tile
labeled S. (c) An example tile of the aTAM system T ′ that attaches via the glue g0′. Note
that it may be the case that not all glues g1, g2, and g3 shown here are exposed. (d) Tiles
that represent the tile of (c) used to define the RTAM system T . Notice that tiles bind in
the order A, B, C and D. The tile shown in (c) has “output” glues g1, g2, and g3 exposed.
In the case where one or more of these glues is not exposed by a tile, we obtain tiles anal-
ogous to those in (d) that represent this single tile as follows. The glues g1, g2, and g3 of
the tiles of (d) are exposed if and only if the respective glues of the tile in (c) are exposed.
For example, if the tile in (c) exposes a g1 glue, then so will the tile D of (d). Otherwise,
D will not expose a g1 glue. Note that the cooperative binding of B fixes the orientation of
B. Similarly, the cooperative binding of D fixes the orientation of the tile D.
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Figure 4.24: An example terminal assembly giving a shape assembled by an RTAM system
T based on the aTAM system T ′ whose terminal assembly is shown in Figure 4.22.
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Chapter 5

Equivalence of CA and aTAM

5.1 Introduction

Mathematical models of systems composed of large, distributed collections of simple com-

ponents which are guided by only local interactions between neighboring elements have

demonstrated the rise of emergent complexity, and provided enormous insight into the be-

haviors of many naturally occurring systems, while also guiding the modeling and develop-

ment of complex artificial systems. Two such notable models are cellular automata (CA)

and the astract Tile Assembly Model (aTAM). In this chapter, we seek to explore the rela-

tionship between these two models.

Introduced by Stanislaw Ulam and John von Neumann in the 1940’s, CA consist of an

infinite grid of cells which can each sense their immediate neighborhoods and then all in-

dependently but synchronously update their states based on a finite set of rules and the

state of their neighborhoods. Since their introduction, CA have provided a rich theoreti-

cal framework for studying the power of systems governed by local interactions. Much of

that study has included classifications of the relative powers of various CA systems with

differing neighborhoods and rules governing their state changes, and a large amount of this

classification has been the result of various demonstrations of the ability of one system to

simulate another, including very importantly the definitions of what it means for one sys-

tem to simulate another. A key notion developed during this study was that of intrinsic

universality [2, 14, 16, 47, 33], which was designed to capture a strong notion of simula-

tion, in which one particular automaton is capable of simulating the behavior of any au-

tomaton within a class of automata. Furthermore, to simulate the behavior of another au-

tomaton, the simulating automaton must evolve in such a way that a translated rescaling

(rescaled not only with respect to rectangular blocks of cells, but also with respect to time)

of the simulator can be mapped to a configuration of the simulated automaton. The spe-

cific rescaling depends on the simulated automaton and gives rise to a global rule such that
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each step of the simulated automaton’s evolution is mirrored by the simulating automaton,

and vice versa via the inverse of the rule. In this way, it is said that the simulator captures

the dynamics of the simulated system, acting exactly like it, modulo rescaling. This is in

contrast to a computational simulation, for example when a general purpose digital com-

puter runs a program to simulate a cellular automata while the processor’s components

don’t actually arrange themselves as, and behave like, a grid of cellular automata. Such

computational simulations of computable systems can be performed by systems in any Tur-

ing universal model. However, as we will discuss shortly, Turning universality does not im-

ply the simulation capabilities necessary for intrinsic universality.

Introduced by Erik Winfree in 1998 [64], the abstract Tile Assembly Model (aTAM) is

a mathematical model in which the individual components are square “tiles”, with “glues”

on their edges, which are able to autonomously bind together to form structures based only

on the amount and strengths of matching glues on edges of adjacent tiles. The aTAM was

inspired by Wang tiling [63], but provides a model for the dynamic growth of tilings. Like

various CA, the aTAM has been proven to be computationally universal and capable of

quite powerful behavior. Recently, taking example from the work on CA, much work has

been done to classify the power of the aTAM and derivative tile assembly models based on

their powers of simulation [23, 9, 31, 17, 19]. In fact, [22] showed that the aTAM is intrin-

sically universal, which means that there is a single tile set U such that, for any aTAM tile

assembly system T (of any temperature), the tiles of U can be arranged into a seed struc-

ture dependent upon T so that the resulting system (at temperature 2), using only the

tiles from U , will faithfully simulate the behaviors of T . In contrast, in [19] it was shown

that no such tile set exists for the 2HAM since, for every temperature, there is a 2HAM

system which cannot be simulated by any system operating at a lower temperature. Thus

no tile set is sufficient to simulate 2HAM systems of arbitrary temperature, despite the fact

that the 2HAM is computationally universal, and can also simulate any arbitrary aTAM

system as shown in [9]. Furthermore, it was shown in [46] that although the aTAM in 3
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dimensions is computationally universal at temperature 1 (see [12]), it is unable to simu-

late the behavior of the majority of temperature 2 aTAM systems. These results from [46]

and [12] prove that Turing universality does not imply the simulation power necessary for

intrinsic universality.

As early as the aTAM’s initial introduction, its power to simulate CA was explored.

Winfree et al. showed that the 2-D aTAM can be used to simulate 1-D CA [67], and Win-

free [64] showed that the 3-D aTAM can simulate 2-D CA. Furthermore, the aTAM is com-

monly colloquially referred to as an asynchronous, nondeterministic CA in which quiescent

states that change to “tile” states never change again (analogous to write-once memory).

These comparisons led naturally to our exploration of simulations between the two models

using the same dimensions for each, namely 2-D. However, even between systems within

the same model, defining a satisfactory notion of simulation, namely one which captures

the essence of one system “behaving” like the other while also generating analogous results,

or output, can be difficult. While the definition of a CA system simulating an aTAM sys-

tem may be in some sense rather natural, the definition of an aTAM system simulating a

CA system must take into account the write-once nature of tile assembly systems. To ac-

count for this, we modify the standard notions of simulation used in intrinsic universality

to allow for an increasing scale factor during simulation. Essentially, such simulation def-

initions typically make use of a standard block replacement scheme in which, throughout

the simulation, each constant sized block of the simulator can be directly mapped to an

element of the simulated system. To allow a static model such as the aTAM to simulate

a dynamic model such as CA, we allow the scale factor of the simulation to increase after

each time step of the simulated system is completed.

For our main results, we present the following. First, a single nondeterministic, syn-

chronous CA which, for any arbitrary aTAM system T , can be given an initial configu-

ration dependent upon T so that it will exactly simulate T , producing the same output

patterns (modulo rescaling) and preserving the dynamics of T . Second, we exhibit a sin-
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gle aTAM tile set which, for any nondeterministic, synchronous CA C which begins with a

finite initial configuration (i.e. all but a finite number of cells begin in a quiescent state),

can be given an initial seed configuration dependent upon C so that it will exactly simulate

C, producing the same output patterns (modulo rescaling) and preserving the dynamics of

C.

5.2 Preliminaries

5.2.1 Cellular Automata

In our discussion about cellular automata, we will use the following definitions. Most of the

conventions used in these definitions come from [14].

Definition. A 2-dimensional nondeterministic cellular automata A is a 4-tuple (Z2, S,N, δ)

where

1. S is a finite set of states.

2. N ⊂ Z2 is a finite set defining the neighborhood of A.

3. δ : S|N | → 2S is the local rule of A. δ maps a neighborhood defined by N and a point

in Z2, usually referred to as a cell, to a set of states.

Note that a deterministic cellular automata is simply a special case of a nondeterminis-

tic CA in which δ : S|N | → S, i.e. it maps each neighborhood to a single state.

A configuration c is a mapping from Z2 to S. Let C be the set of configurations in A.

The global rule G is obtained as follows. For p ∈ Z2, G : C → 2C such that c′ ∈ G(c) ⇐⇒

c′(p) ∈ δ(cp+v1 , . . . , cp+vk) where {v1, . . . , vk} = N .

We assume that S contains a unique quiescent state where a quiescent state q is a state

such that δ maps a neighborhood of cells in this state to a singleton set containing only the

quiescent state. In this chapter, we only consider finite initial configurations (which we will

typically denote by c0) where all but finitely many cells are quiescent. In this chapter we
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are concerned with the CA-initial configuration pair (A, c0) and refer to such pairs as CA

systems.

There are many interesting examples of cellular automata. One of particular interest

here is John Conway’s Game of Life. (See [32].) This is a 2D cellular automata where each

cell is in one of two states alive or dead. Local rules are given for a 3 × 3 squares for cells

according to the following.

1. An alive cell with less than two neighbors becomes dead.

2. An alive cell with two or three neighbors stays alive.

3. An alive cell with more than three neighbors becomes dead.

4. A dead cell with three alive neighbors becomes alive.

These simple rules give rise to an amazing amount of complexity and structure. In fact,

in [56] a universal Turing machine built in Conway’s Game of Life is presented that starts

from a finite configuration that encodes another Turing machine and its tape and simulates

the execution of the encoded Turing machine with the encoded tape as input.

5.2.2 CA simulation of a TAS

For S as in Definition 5.2.1 and k a vector of Z2, let ψk : SZ2 → SZ2
be the bijection

mapping a configuration c to the configuration c′ such that for each cell i, c′i+k = ci. ψ
k

is called the shift operator. Now let m = (m1,m2) be a pair of strictly positive integers.

om : SZ2 → (S[0,m1]×[0,m2])Z
2

is the bijection such that for all c ∈ SZ2
, z ∈ Z2 and

p ∈ [0,m1] × [0,m2], o
m(c)(z)(p) = c(mz + p). om is called the packing map. Let A =

(Z2, S,N, δ) be a cellular automaton. An 〈m,n, k〉-rescaling of A is a cellular automaton

A〈m,n,k〉 with states set S[0,m1]×[0,m2] and global transition function om ◦ψk ◦Gn
A ◦o−m, where

Gn
A is the composition of the global function for A n times.

We now define what it means to say that a synchronous nondeterministic 2D cellu-

lar automata with an initial configuration simulates an aTAM system. First we let R be
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the partial function that maps individual cells in some state to single tiles with some tile

type. R is the representation function. In the following definitions, A = (Z2, S,N, δ) is

a synchronous nondeterministic CA with C denoting the set of configurations and T =

(T, σ, τ) is an aTAM system. We denote by c0 a finite initial configuration in C and let

C̃ = ∪∞n=0G
n(c0). In other words, C̃ is all of the configurations obtained by applying the

global rule some number of times to c0. Let R∗ : C̃ → A[T ] be the canonical extension of

R. Finally, we let (A, c0) be the pair consisting of the CA A and the initial configuration

c0.

Definition. We say that T follows (A, c0) iff for all c ∈ C̃, α, β ∈ A[T ] and n ≥ 0, if

R∗(c) = α and β ∈ R∗[Gn(c)] then α −→ β.

Note that R∗[Gn(c)] denotes the image of the set Gn(c) under R∗. Informally, Defini-

tion 5.2.2 means that if a configuration represents an assembly α, then anything this con-

figuration maps to under applications of the global rule represents some assembly that α

can grow into. The following definition captures the idea that for an assembly α repre-

sented by a configuration c, any assembly that α grows into is represented by a configu-

ration obtained from c by applications of the global rule.

Definition. We say that (A, c0) models T if ∀α ∈ A[T ],∃c ∈ C̃ such that R∗(c) = α and

∀β ∈ A[T ], if α −→ β then ∃n ≥ 0 such that β ∈ R∗[Gn(c)].

Note that a configuration representing some terminal assembly α must transition to

configurations that still represent α. Finally, we give the definition of simulation.

Definition. (A, c0) simulates T iff there is an 〈m,n, k〉-rescaling A′ of A such that T fol-

lows A′ and A′ models T .

5.2.3 TAS simulation of a CA

As in the previous section, A = (Z2, S,N, δ) denotes a synchronous nondeterministic CA

with a finite initial configuration c0, C denotes the set of configuration and T = (T, σ, τ)
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denotes an aTAM system. Again, let C̃ = ∪∞n=0G
n(c0) where c0 is the finite initial configu-

ration of A and let (A, c0) be the pair consisting of the CA A and the initial configuration

c0.

Because any aTAM system produces static assemblies and the state of a cell of a CA

may change multiple times, it would be impossible to represent a cell of a configuration

in C̃ with fixed block assemblies over T . Therefore, we introduce the notion of a scalable

representation function.

For n ∈ Z+, an n-block supertile over T is a partial function α : Z2
n 99K T , where

Zn = {0, 1, . . . , n− 1}. Let BT
n be the set of all n-block supertiles over T . The n-block with

no domain is said to be empty. For a general assembly α : Z2 99K T , define αnx,y to be the

n-block supertile defined by αnx,y(i, j) = α(nx+ i, ny + j) for 0 ≤ i, j < n.

Let Rn for n ∈ N be a partial function that maps assemblies over T to configurations

in C with the following property. If α ∈ A[T ] and Rn(α) = c, then for some n, α can

be broken into n-block supertiles such that Rn maps these supertiles to cells of c. In other

words, for a given assembly α, the partial function Rn either is not defined on α or maps α

to c ∈ C by mapping n-block supertiles of α to cells of c. Then the scalable representation

function is defined as R : N × A[T ] 99K C̃ where R(n, β) = Rn(β). Finally, we define

simulation of a CA with initial configuration c0 by an aTAM system.

Definition. T simulates (A, c0) (under scalable representation function R) iff there exists

a computable function f : N→ N such that the following hold.

1. ∀n ∈ N, Rf(n)[A[T ]] = Gn(c0).

2. ∀α ∈ A[T ] such that Rf(n)(α) = cn ∈ Gn(c0), for any β ∈ A[T ] in the domain of

Rf(n+1) such that α −→ β it must be the case that Rf(n+1)(β) ∈ Gn+1(c0).

3. ∀cn ∈ Gn(c0) such that Rf(n)(α) = cn for some α ∈ A[T ], if α −→ β where β is in the

domain of Rf(n+1) then Rf(n+1)(β) ∈ Gn+1(c0).
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In Definition 5.2.3, f can be thought of as taking a time step n and determines a block

size for the representation. Then R takes f(n) and an assembly and either returns a config-

uration in Gn(c0) or nothing if the assembly has not fully simulated the nth time step. This

is necessary to simulate the dynamics of a synchronous CA, in which all cells simultane-

ously update their states. Basically statement 1 of Definition 5.2.3 says that starting with

an initial configuration, every configuration obtained by applying the global rule is repre-

sented by some assembly over T and that any step-assembly pair (n, α) in the domain of

R represents some configuration. Moreover, statements 2 and 3 of Definition 5.2.3 implies

that these representations follow the action of the global rule.

5.3 A Nondeterministic CA Which Can Simulate Any aTAM System

In Theorem 13, we show that for any aTAM system, there is a synchronous nondeterminis-

tic CA such that for an appropriate choice of finite initial configuration, this CA simulates

the aTAM system. This gives some sense of a synchronous nondeterministic CA being in-

trinsically universal for the aTAM.

Theorem 13. There exists a synchronous nondeterministic CA A = (Z2, S,N, δ) such that

for any aTAM system T = (T, σ, τ) there exists a finite initial configuration c0 of A so that

(A, c0) simulates T .

To show this Theorem, we appeal to the following Lemma. The construction in Sec-

tion 5.3.1, proves this Lemma.

Lemma 9. For any aTAM system T = (T, σ, τ), there exists a synchronous nondeterminis-

tic CA A = (Z2, S,N, δ) and an initial configuration c0 such that (A, c0) simulates T .

Then Theorem 13 is proven as follows. First, there is a tile set U which is intrinsically

universal for the aTAM and can be used at temperature τ = 2 to simulate any aTAM sys-

tem. Therefore we let U be an aTAM system that uses U at τ = 2. By Lemma 9, we can

then give a CA that suffices for Theorem 13 by constructing a CA that simulates an arbi-

trary U (i.e. one with an arbitrary seed), which we give in the following section.
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5.3.1 CA Construction

The goal of this construction is to give a synchronous nondeterministic CA B = (Z2, S,N, δ)

and initial configuration that simulates an arbitrary aTAM system T = (T, σ, τ). The

neighborhood of B is the Moore neighborhood and the states and local rules for B are

obtained as follows. First, we add a state to S for each tile type of T we call these states

tile states. We also add states token state up, token state left, token state down

and token state right and we use token states to refer to any of these 4 states. We re-

fer to any cell in a token state as the token. This token moves one cell counterclockwise

at each time step and only one cell is in a token state at any given time. At each time

step, the cell in a token state moves one cell either up, left, down or right in an effort to

traverse the surfaces of an existing configuration, where a surface of a configuration is the

connected set of quiescent cells that neighbor (using the Moore neighborhood) at least one

non-quiescent state. (See Figure 5.1.) Note that a configuration may have many disjoint

surfaces.

T

Figure 5.1: A token traversing the surface of a configuration. The surface of the configura-
tion is denoted by light grey tiles. The cell labeled T is in token state left as indicated
by the arrow depicted on the cell.

At each time step, a cell in a token state can nondeterministically transition to a

tile state if and only if the tile corresponding to this state could bind in the simulated

aTAM system. This ensures that at any given time step, at most one cell transitions from

a quiescent state to a tile state. Figure 5.2 shows an example of a local rule obtained

from a tile set.

The idea is that the token can put cells in a tile state on the surface of a configura-
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Figure 5.2: (a) A tile set consisting of 5 tile types. Glues b and c have strength 2 and a
glues have strength 1. (b) A local rule corresponding to the tile set in (a). Cells in the
Moore neighborhood that are in tile states are labeled with the label of the correspond-
ing tile type in (a). The cell labeled T is in a token state. Blank cells are quiescent.

tion. However a configuration may have many disjoint surfaces. Non-quiescent states of a

configuration can break the Z2 lattice into disjoint regions of cells in quiescent states. For

example, this can occur when the CA is simulating a tile set that assembles a frame, i.e.

tiles around some square of empty tiles. This leads to disjoint surfaces that the token must

traverse. Therefore, care must be taken in order to allow the token to traverse surfaces sep-

arated by non-quiescent states. This is accomplished by adding a bridge tile state to

S for each tile type of the simulated aTAM system. The token is allowed to “pass over”

these bridge tile states. Passing over a cell in bridge tile state is done by adding a

bridge tile token state to S for each tile type in T and each direction up, left, down

and right. Figure 5.3 shows the token and its path as it traverses two surfaces of the con-

figuration by crossing bridge tile states . When transitioning to a tile state or

bridge tile state, we can determine which state to transition to by using Moore neigh-

borhoods. For more details on how token states or bridge tile states work, see the

full paper [35].

B

B

T

Figure 5.3: Traversing two disjoint surfaces using a single token and bridge tile states

If and when a path of cells in a bridge tile state no longer leads to quiescent states
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and the final quiescent state transitions to a tile state, the token traverses the cells in

bridge tile states as it continues its counterclockwise traversal of a configuration. Since

the path of cells in bridge tile states no longer leads to any quiescent states, as the to-

ken traverses cells in bridge tile states, these cells transition to tile states that cor-

respond to their bridge tile state counterparts. As a result, the token no longer unnec-

essarily traverses a path of cells in bridge tile states that would only lead to other cells

in bridge tile states.

B

B

B

B

(a) (b) (c)

T

T

T

Figure 5.4: (a)The token prior to transitioning to a tile state. (b) Two time steps later
we see a cell in bridge tile state has transitioned to just a tile state. (c) The entire
path of cells in bridge tile states have transitioned to corresponding tile states.

An example of a CA simulating an aTAM system can be found at http://self-assembly.

net/CASimTAS. There are also instructions for creating a CA based on an aTAM system.

5.4 An aTAM Tile Set Which Can Simulate Any Nondeterministic CA

Theorem 14. There exists an aTAM tile set U which is able to simulate the entire class of

nondeterministic CA systems with finite initial configurations.

Theorem 14 states that there is a single tile set U in the aTAM which can be used to

form a TAS U = (U, σC, 2) which is dependent upon a given CA C, for any arbitrary nonde-

terministic CA C and a finite initial configuration for C, where the seed to the aTAM sys-

tem encodes information about C and its initial configuration, so that U simulates C. In or-

der to prove Theorem 14, we will progress in two steps, first proving the following Lemma.
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Lemma 10. Let CA A be Conway’s Game of Life. There exists an aTAM tile set U and a

scalable representation function R such that, given c0 as an arbitrary but finite initial con-

figuration of A, there exists an aTAM TAS T = (U, σc0 , 2) such that T simulates (A, c0).

Lemma 10 states that there exists a single tile set U in the aTAM which can be used

to simulate the Game of Life CA given any finite initial configuration. We now present a

construction to prove this.

5.4.1 Overview of construction to prove Lemma 10

The system T = (U, σc0 , 2) will be designed so that the seed is a single line of tiles which

encodes the initial configuration, c0, of A. Assume that all non-quiescent cells within c0

can fit into an n × n square. (Throughout this discussion, we will refer to a cell as exactly

one of the cells of A and the grid as the full set of cells being simulated at a given time.

A step refers to a single time step of A and a stage refers to the assembly representing the

entire grid at a particular step.) The encoding of the initial configuration consists of a list-

ing of the states of each of the n2 cells within that box. Since it is possible that, at each

time step 0 < t < ∞, a cell which was previously quiescent and which was just outside

the boundary of the currently simulated grid switches its state to a non-quiescent value, to

accurately simulate the full behavior of A we must simulate an increasingly larger grid at

each time step. In order to assure that no (non-quiescent) behavior of A could occur be-

yond the bounds of our simulation, at each stage we increase the dimensions of the grid

by 2, adding a row of cells to each of the top and bottom, and a column to each of the left

and right. We say that we perform a recursive, “in-place” simulation of A, namely one in

which every subassembly which maps to a single cell at some time step t contains within it,

at smaller scale factors, the entire configuration of C at every time step t′ < t (recursive),

and also that the subassembly mapping to any single cell at any time step t is contained

within an infinite hierarchy of subassemblies which each map to a unique cell at some time

step t′ where t < t′ < ∞, i.e. each simulated cell and grid is fully encapsulated within the
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simulation of a single cell at the next greater time step (in-place).

See Figures 5.5 and 5.6 for high-level depictions of the simulation of time steps 0 (the

initial configuration of A) and 1 (the first transition of A). Details of the construction can

be found in [35].
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Figure 5.5: Completed formation of the representation of time step 0.

5.4.2 Overview of construction to prove Theorem 14

Now that we have defined the above construction for a tile set which can simulate the

Game of Life CA given an arbitrary finite initial configuration, we sketch the necessary

extensions to provide a tile set which can simulate any synchronous nondeterministic CA.

Let C = (Z2, S,N, δ) be an arbitrary synchronous nondeterministic CA, d be the max-

imum unit distance of any element of N from the center position (i.e. the distance of a

cell’s furthest neighbor in its neighborhood), b be the number of bits required to represent

S, and c0 be the initial configuration of C. Now, define M as a nondeterministic Turing

machine which takes as input the encoding of a synchronous nondeterministic CA (in some

standard encoding) and the representation of a grid of cells in the same format they are
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Figure 5.6: Completed growth of the second stage. Blue squares depict the representations
of the cells of that stage.
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represented in the previous construction (i.e. as they appear in the seed assembly or along

the western edges of the stage fibers of a given stage), with the only difference being that

the states are not now restricted to only single bits, but instead may be series of bits (with

delimiters between the bits representing the states of different cells), and outputs the new

cell state for the one cell marked with “∗” and “+”. Note that M must be nondetermin-

istic to simulate C, and in order to randomly select from a set of s possible states it sim-

ply chooses the bits of a binary number i between 0 and s − 1 (the random choice of bits

will be performed by the nondeterministic attachment of one of two tiles in each bit posi-

tion) and then selects the ith of the possible states. For details on how to approach uni-

form distribution across the selection of possible choices, various gadgets of increasing but

bounded space complexity can be used (see [24]). Define r to be the longest running time

of M when given any single neighborhood S|N | for C, and let m be the maximum amount

of tape space used. Note that both r and m can be easily (if exhaustively) determined by

simply running M for each of the S|N | possible neighborhoods.

Now we adjust the previous construction as follows. To create c′0 from c0, we do as be-

fore, but we add an additional d rings of quiescent cells around c′0 to account for the fact

that C may have an arbitrarily large neighborhood and we want to simulate enough qui-

escent cells around the border of our grid at all times to ensure that we are simulating all

non-quiescent cells. In the seed assembly, in place of the “spacer”, encode the definition of

C (in the encoding used by M) plus r+m spacer tiles to provide enough space for M ’s tape

and running time (the space provided here will ensure that rotations of these values pro-

vide the necessary space throughout the assembly). In place of the transition computation

gadget, M will be run. In order to do this, whenever the boundary fiber reaches a point

at which it would have formerly grown a square which initiates the transition computation

gadget, instead of growing the square, M is simulated in a standard zig-zag manner. Addi-

tionally, M only computes the transition for a single cell (beginning with the bottom one

marked with “∗”) and then passes the newly computed cell value along with the rest of the
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(unchanged) cell values for that column upward. As before, all needed information is also

passed through the simulation of M to the right. Now, rather than just receiving the new

cell values and passing them along, the squares at the intersections of vertical and horizon-

tal stage fibers also execute M , whose definition is passed in from the west via the western

boundary fiber. This allows all of the same information flow, but splits up the computa-

tions of new cell values in such a way that each simulated cell computes at most a single

new cell value, which can be done within the time and space bounds, r and m. In order

to provide consistency of scale, a counter is embedded within the running of M so that,

in the case of computations which require variable amounts of time relative to each other,

the counter ensures that r + m space is always used. Again, as in the previous construc-

tion, once the value for a cell at a particular time step is computed, it is continually passed

along into all other representations of the same cell within other larger cells, but never re-

computed.

Finally, the representation function R now must be adjusted to take into account the

fact that cell states are now binary strings, and also take into account the new scaling fac-

tor due to the padding provided to run M . Nonetheless, this construction retains the same

properties such as the previous, in terms of completing each stage before beginning the

next.
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Chapter 6

Dupled aTAM

6.1 Introduction

We first introduce the Dupled abstract Tile Assembly Model (DaTAM), which is essentially

the aTAM extended to allow both square and rectangular, duple, tile types. We then show

a series of results within the DaTAM which prove that at temperature 1 it is quite power-

ful: it is computationally universal and able to build N × N squares using O(logN) tile

types. We next demonstrate that, while the addition of duples does provide significant

power to temperature-1 systems, it doesn’t allow for asymptotic gains over the aTAM in

terms of the tile complexity required to self-assemble thin rectangles, with the lower bound

for an N × k rectangle being Ω
(
N1/k

k

)
. We then provide a series of results which show that

the neither the aTAM at temperature-2 nor the DaTAM at temperature-1 is strictly more

powerful than the other, namely that in each there are shapes which can be self-assembled

which are impossible to self-assemble in the other, and that there are also systems in each

which cannot be simulated by the other. These mutually exclusive powers provide a very

interesting framework for further study of the unique abilities provided by the incorpora-

tion of duples into self-assembling systems. Furthermore, as previously mentioned, the use

of duples has already been proven possible in laboratory experiments, providing even fur-

ther motivation for the model.

6.2 Preliminaries

6.2.1 Informal description of the Dupled abstract Tile Assembly Model

In this section, we give a very brief, informal description of the abstract Tile Assembly

Model (aTAM) and the Dupled abstract Tile Assembly Model (DaTAM). For a more de-

tailed, technical definition please refer to [39].

The abstract Tile Assembly Model (aTAM) was introduced by Winfree [64]. In the
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aTAM, the basic components are translatable but non-rotatable tiles which are unit squares

with glues on their edges. Each glue consists of a string label value and an integer strength

value. A tile type is a unique mapping of glues (including possibly the null glue) to 4 sides,

and a tile is an instance of a tile type. Assembly begins from a specially designated seed

which is usually a single tile but maybe be a pre-formed collection of tiles, and continues

by the addition of a single tile at a time until no more tiles can attach. A tile is able to

bind to an adjacent tile if the glues on their adjacent edges match in label and strength,

and can attach to an assembly if the sum of the strengths of binding glues meets or ex-

ceeds a system parameter called the temperature (which is typically set to either 1 or 2). A

tile assembly system (TAS) is an ordered 3-tuple (T, σ, τ) where T is the set of tile types

(i.e. tile set), σ is the seed configuration, and τ is the temperature.

The Dupled abstract Tile Assembly Model (DaTAM) is an extension of the aTAM

which allows for systems with square tiles as well as rectangular tiles. The rectangular tiles

are 2 × 1 or 1 × 2 rectangles which can logically be thought of as two square tiles which

begin pre-attached to each other along an edge, hence the name duples. A dupled tile as-

sembly system (DTAS) is an ordered 5-tuple (T, S,D, σ, τ) where T , σ, and τ are as for a

TAS, and S is the set of singleton (i.e. square) tiles which are available for assembly, and

D is the set of duple tiles. The tile types which make up S and D all belong to T , with

those in D each being a combination of two tile types from T .

6.2.2 Zig-zag tile assembly systems

Originally defined in [12], we define zig-zag tile assembly systems and compact zig-zag tile

assembly systems in the same manner as [52]. In [52] they called a system T = (T, σ, τ) a

zig-zag tile assembly system provided that (1) T is directed, (2) there is a single sequence

~α ∈ T with A�[T ] = {~α}, and (3) for every ~x ∈ dom α, (0, 1) 6∈ IN~α(~x). More intuitively,

a zig-zag tile assembly system is a system which grows to the left or right, grows up some

amount, and then continues growth again to the left or right. Again, as defined in [52], we

call a tile assembly system T = (T, σ, τ) a compact zig-zag tile assembly system if and only

101



if A�[T ] = {~α} and for every ~x ∈ dom α and every ~u ∈ U2, strα(~x)(~u) + strα(~x)(−~u) < 2τ .

Informally, this can be thought of as a zig-zag tile assembly system which is only able to

travel upwards one tile at a time before being required to zig-zag again.

6.2.3 Simulation

In this section, we present a high-level sketch of what we mean when saying that one sys-

tem simulates another. Please see [39] for complete, technical definitions, which are based

on those of [46].

For one system S to simulate another system T , we allow S to use square (or rectan-

gular when simulating duples) blocks of tiles called macrotiles to represent the simulated

tiles from T . The simulator must provide a scaling factor c which specifies how large each

macrotile is, and it must provide a representation function, which is a function mapping

each macrotile assembled in S to a tile in T . Since a macrotile may have to grow to some

critical size (e.g. when gathering information from adjacent macrotiles about the simu-

lated glues adjacent to its location) before being able to compute its identity (i.e. which

tile from T it represents), it’s possible for non-empty macrotile locations in S to map to

empty locations in T , and we call such growth fuzz. In standard simulation definitions

(e.g. those in [46, 19, 34, 22]), fuzz is restricted to being laterally or vertically adjacent to

macrotile positions in S which map to non-empty tiles in T . We follow this convention for

the definition of simulation of aTAM systems by DaTAM systems. However, since duples

occupy more than a unit square of space, for our definition of aTAM systems simulating

DaTAM systems, we allow fuzz to extend to a Manhattan distance of 2 from a macrotile

which maps to a non-empty tile in T . As a further concession to the size of duples, for

that simulation definition we also allow empty macrotile locations in S to map to tiles in

T , provided they are half of a duple for which the other half has sufficiently grown. Thus,

while our result for aTAM systems simulating DaTAM systems (Theorem 17) shows its im-

possibility in general, our intent with the simulation definitions is to relax them sufficiently

that, if simulation equivalent to the standard notions of simulation were possible, these def-
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initions would allow it.

Given the notion of block representations, we say that S simulates T if and only if (1)

for every producible assembly in T , there is an equivalent producible assembly in S when

the representation function is applied, and vice versa (thus we say the systems have equiva-

lent productions), and (2) for every assembly sequence in T , the exactly equivalent assem-

bly sequence can be followed in S (modulo the application of the representation function),

and vice versa (thus we say the systems have equivalent dynamics). Thus, equivalent pro-

duction and equivalent dynamics yield a valid simulation.

6.3 Mutually Exclusive Powers

In this section, we demonstrate a variety of shapes and systems in the DaTAM at τ = 1

and the aTAM at τ = 2 which can be self-assembled and simulated, respectively, by only

one of the models.

6.3.1 A shape in the DaTAM but not the aTAM

In this section, we show that there exists an infinite shape which can self-assemble in the

DaTAM at τ = 1 but not in the aTAM at τ = 2. Figure 6.1 shows a high-level sketch of a

portion of this shape.

Theorem 15. There exists a shape W ⊂ Z2 such that there exists DTAS

D = (TD, S,D, σ, 1)

in the DaTAM which self-assembles W , but no TAS T = (T, σ′, 2) in the aTAM which

self-assembles W .

Here we give an intuitive overview of why the aTAM cannot simulate the shape de-

picted in Figure 6.1. See [39] for the full proof. First, we call the shape in Figure 6.1 W .
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Figure 6.1: A high-level sketch of a portion of the infinite shape which can self-assemble in
the DaTAM at τ = 1 but not in the aTAM at τ = 2. (Modules not to scale.)

Since, by the proof of Theorem 2, DaTAM systems are capable of simulating compact

zig-zag systems, W assembles in the DaTAM as follows. A horizontal counter called the

planter begins growth from a single tile seed and continues to grow indefinitely. The top-

most tiles of the planter expose glues that allow vertical counters to grow. Each of these

vertical counters is a finite subassembly whose height is an even number of tile locations

and, from left to right, each successive counters grows to a height that is greater than the

previous counter. When a vertical counter finishes upward grow, a single tile wide path of

6 tiles binds to the left of the counter. The leftmost tile of this single tile wide path ex-

poses a south glue that allows for duples to attach. Equipped with matching north and

south glues, these duples form a single tile wide path of duples, called a finger, that grows

downward toward the planter. Since the height of each vertical counter is even and the

first duple of a finger is placed 1 tile location below this height, there are an odd number

of tile locations for the duples of a finger to occupy. As a result, each finger is forced to

cease growth exactly 1 tile location away from the planter.
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Figure 6.2: Left: A finger containing two occurrences of a tile of type T0. Right: A valid
producible assembly that results in a shape that differs from W .

Since in an aTAM system, any tile of an assembly takes up a single location of the in-

finite grid-graph, it is impossible to grow the finger component of the shape W . This

essentially follows from the fact that for a single tile wide line of length l assembled in a

TAS, if the number of tiles in l is greater than the number of tile types in the TAS, then

at least two tiles of l must have the same type. Therefore, by repeating the tiles between

these two tiles of the same type, we can attempt to grow a line indefinitely. Hence, when

a TAS attempts to grow a finger that is longer than the number of tile types in the TAS,

we can always find an assembly sequence such that the line forming this finger places a

tile one tile location above the tiles forming the planter. Figure 6.2 depicts this invalid

assembly. Therefore, no TAS can assemble W .

6.3.2 A shape in the aTAM but not the DaTAM

In this section, we give a high-level sketch of the proof that there exists a shape which can

self-assemble in the aTAM at τ = 2 but not in the DaTAM at τ = 1. Please see [39] for the

full details.

Theorem 16. There exists a shape S ⊂ Z2 such that there exists a TAS T = (T, σ, 2)
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Figure 6.3: Schematic depiction of a portion of the infinite shape which can self-assemble
in the aTAM at τ = 2 but not in the DaTAM at τ = 1.

in the aTAM which self-assembles S, but no DTAS D = (TD, SD, DD, σ
′, 1) in the DaTAM

which self-assembles S.

See Figure 6.3 for a high-level sketch of a portion of the infinite shape, which is based

on the shape used in the proof of Theorem 4.1 of [8] (which in turn is based on that of

Theorem 4.1 of [41]). Essentially, T assembles S in the following way. Beginning from

the seed, it grows a module called the planter eastward. The planter is a modified log-

height counter which counts from 1 to ∞, and for each number - at a well-defined location

- places a binary representation of that number on its north side. From each such location,

modules called rays and Turing machine simulations begin. Each ray grows at a unique

and carefully defined slope so that it can direct the growth of its adjacent Turing machine

simulation in such a way the no Turing machine simulation will collide with another ray,

but it also potentially has infinite tape space for its computation. The infinite series of

Turing machine computations each run the same machine, M , on input n where n is the

value presented by the planter at that location. If and only if each computation halts and

accepts, a path of tiles grows down along the right side of the computation until it reaches

a position from which it grows a vertical path of tiles directly downward to crash into the
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planter (blue in Figure 6.3). It’s important that the height of the vertical portions (blue)

of the paths increase for each. If and when a path places a tile adjacent to the planter,

glue cooperation between the final tile of the path and a planter tile allow for the place-

ment of a final tile (yellow in Figure 6.3). S is the infinite shape resulting from the growth

of all portions.

The reason that S cannot assemble in the DaTAM at τ = 1 is that glue cooperation

cannot be used to place the yellow tiles, so each must be able to attach to just a tile in the

blue portion of a path or the planter tile in a green location. It is impossible for all yellow

tiles to be placed correctly because if they attach to 1) the blue portions of paths, since

those get arbitrarily long, they must have repeating tile types which could be used to grow

blue paths of the wrong height which allow yellow tiles to attach too far above the planter,

or 2) the planter tiles, then the planter would have to be able to allow yellow tiles to

attach exactly in all positions corresponding to halting and accepting computations, but

the Turing machine being simulated accepts a language which is computably enumerable

but not decidable, thus that is impossible. Thus, no DaTAM system can assemble S.

6.3.3 A DaTAM system which cannot be simulated by the aTAM

In this section, we give a single directed DaTAM system D at τ = 1 which cannot be

simulated by any aTAM system at τ = 2. The fact that the aTAM at temperature 2 is

incapable of simulating a single directed temperature 1 DTAS shows that the addition

of duples fundamentally changes the aTAM model. The DTAS constructed in this sec-

tion is similar to the system given in Section 6.3.1. See Figure 6.4 for a depiction of a pro-

ducible assembly of D. In order to show that the aTAM cannot simulate this DTAS, we

use a technique used in [46]. This technique relies on the notion of a window movie. Please

see [39] for details of window movies as they pertain to the DaTAM.

Theorem 17. There exists a single directed DaTAM system D = (TD, S,D, σ, τ) such that

D cannot be simulated by any temperature 2 aTAM system.
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Figure 6.4: A portion of a producible assembly of the temperature 1 DaTAM system which
cannot be simulated in the aTAM at τ = 2.

To prove Theorem 17, we prove that there is no TAS that can simulate the DTAS, D,

described as follows. First, the system is identical to the DTAS described in Section 6.3.1

with one exception. Just as with the DTAS in Section 6.3.1, D grows a planter, verti-

cal counters and fingers. In addition to these subassemblies, D grows an 8 tile long, sin-

gle tile wide line, l, of tiles from the base of each vertical counter. As seen in Figure 6.4,

l, consisting of tiles S1, S2, . . . , S8, grows to the left of each vertical counter and extends

past the single tile wide gap between a finger and the planter. The intuitive idea behind

the proof of Theorem 17 is that for any aTAM system, T , that attempts to simulate D, it

must be able to simulate the growth of fingers. Therefore, for any n > 0, T must be able

to grow a subassembly that simulates a finger consisting of n duples. This subassembly

must have a constant width based on the block replacement scheme used in the simula-

tion with block size m say, and a length of roughly 2nm. We show that any such system

T capable of such growth must also grow a simulated finger that crashes into the simu-

lation of the planter. To show this, we use a window movie lemma (similar to Lemma 3.1

in [46]). The lemma shown here holds for closed rectangular windows. (For details and a
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formal statement of the window movie lemma used here, see [39].) Then, since the simu-

lated planter, finger, and vertical counter separate the infinite grid-graph into two dis-

joint sets, there is no way to ensure that a subassembly representing the tile labeled S8 of

T grows only after the subassemblies representing the tiles labeled S1, S2, . . . , S5 grow. In

other words, there is no way to ensure that T and D have equivalent dynamics, and there-

fore T does not simulate D. For the full proof Theorem 17, please see [39].

6.3.4 An aTAM system which cannot be simulated by the DaTAM

In Section 6.3.3 we showed the aTAM can’t simulate every DaTAM system. Here we show

the converse; the DaTAM can’t simulate all aTAM systems. The particular aTAM system

that we show can’t be simulated by the DaTAM is the same given in [46] that is used to

show that temperature 1 aTAM systems cannot simulate every temperature 2 aTAM sys-

tem. Intuitively, this shows that cooperation, which is possible for temperature 2 aTAM

systems, cannot be simulated using duples when temperature is restricted to 1. (See Fig-

ure 6.5 for the tile set.)

Theorem 18. There exists a temperature 2 aTAM system T = (T, σ, 2) such that T can-

not be simulated by any temperature 1 DaTAM system.

Here we give a brief overview of the TAS, T , that we show cannot be simulated by any

DTAS and provide a sketch of the proof. Please see [39] for the full details.

See Figure 6.5 for an overview of the TAS T . The proof that there is no DTAS that

simulates T is briefly described as follows. For any DTAS, D, that attempts to simulate

T , it is shown that D is capable of an invalid assembly sequence. Intuitively, the idea is

that when an arm (the bottom arm say) is sufficiently long, an assembly sequence in D of

a subassembly α that represents this arm must contain repetition. Using a window movie

lemma similar to Lemma 3.3 in [46], this repetition is removed to produce an assembly in

D that is essentially equivalent to removing a section of tiles from α and splicing together

the exposed ends along matching glues. This results in a shorter arm α′ that still attempts
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Figure 6.5: (Figure taken from [46]) (a) An overview of the tile assembly system
T = (T, σ, 2). T runs at temperature 2 and its tile set T consists of 18 tiles. (b) The
glues used in the tileset T . Glues g11 and g14 are strength 1, all other glues are strength 2.
Thus the keystone tile binds with two “cooperative” strength 1 glues. Growth begins from
the pink seed tile σ: the top and bottom arms are one tile wide and grow to arbitrary,
nondeterministically chosen, lengths. Two blue figures grow as shown. (c) If the fingers
happen to meet then the keystone, flagpole and flag tiles are placed, (d) if the fingers do
not meet then growth terminates at the finger “tips”.

to grow a keystone and flagpole, and hence leads to an invalid simulation of T .
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Chapter 7

DrgTAM

7.1 Introduction

The contributions of this chapter are threefold. First, we show that the rgTAM is also

not capable of simulating glue cooperation. Second, we introduce the Dupled restricted

glue TAM (DrgTAM) which allows for both square tiles and “duple” tiles, which are sim-

ply pre-formed pairs of 2 tiles joined along one edge before assembly begins, and it allows

for glues with negative strength (i.e. those which exert repulsive force). However, it is re-

stricted similar to the rgTAM in that the magnitude of glue strengths cannot exceed 1 (i.e.

only strengths 1 and −1 are allowed). Third, we show that by creating the DrgTAM by

combining two models (the rgTAM and the Dupled aTAM) which are computationally uni-

versal at temperature 1 but which cannot independently simulate glue cooperation, the

result is a model which in some measures is greater than the sum of its parts. That is, the

resulting DrgTAM is capable of both universal computation and the simulation of glue co-

operation. This is the first such result for passive (i.e. non-active) tile assembly systems.

In fact, we show the stronger result that there is a single tile set in the DrgTAM which can

be configured to, in a temperature-1 system, simulate any arbitrary aTAM system, mak-

ing it intrinsically universal for the aTAM. Coupled with the result in [39] which proves

that there are temperature-1 systems in the DTAM, which are thus also in the DrgTAM,

that cannot be simulated by the aTAM at temperature-2, this actually implies that the

DrgTAM is more powerful than the temperature-2 aTAM.

The chapter is organized as follows. In Section 8.2 we give high-level sketches of the

definitions of the models and of the concepts of simulation used throughout the chapter.

In Section 7.3 we prove that rgTAM systems cannot simulate the glue cooperation of tem-

perature 2 aTAM systems, and in Section 7.4 we present the proof that the DrgTAM can

simulate the temperature-2 aTAM and in fact contains a tile set which is intrinsically uni-

versal for it.
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7.2 Preliminaries

Throughout this chapter, we use three tile assembly models: 1. the aTAM, 2. the restricted

glue TAM (rgTAM), and 3. the dupled rgTAM (DrgTAM). We now informally describe

these models.

Informal description of the restricted glue Tile Assembly Model

The rgTAM was introduced in [52] where it was shown that the rgTAM is computationally

universal even in the case where only a single glue has strength −1. The definition used

in [52] and the definition given here are similar to the irreversible negative glue tile assem-

bly model given in [21].

The restricted glue Tile Assembly Model (rgTAM) can be thought of as the aTAM

where the temperature is restricted to 1 and glues may have strengths −1, 0, or 1. A sys-

tem in the rgTAM is an ordered pair (T, σ) where T is the tile set, and σ is a stable seed

assembly. We call an rgTAM system an rgTAS. Producible assemblies in an rgTAS can be

defined recursively as follows. Let T = (T, σ) be an rgTAS. Then, an assembly α is pro-

ducible in T if 1. α = σ, 2. α is the result of a stable attachment of a single tile to a pro-

ducible assembly, or 3. α is one side of a cut of strength ≤ 0 of a producible assembly.

In [21], Doty et al. give a list of the choices that can be made when defining a model

with negative glues. These choices are (1) seeded/unseeded, (2) single-tile addition/two-

handed assembly, (3) irreversible/reversible, (4) detachment precedes attachment/detach-

ment and attachment in arbitrary order, (5) finite tile counts/infinite tile counts, and (6)

tagged result/tagged junk. Here we have chosen the rgTAM to be a seeded, single-tile ad-

dition, irreversible model that uses infinite tiles. We also assume that attachment and de-

tachment in the model occur in arbitrary order, however the results presented here also

hold in the case where detachment precedes attachment. Finally, the definition of simula-

tion (see Section 7.2.3) implicitly enforces a notion of tagged result and tagged junk. In

particular, if detachment occurs in a simulating system, of the two resulting assemblies one
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contains the seed and represents some assembly in the simulated system, while the other

resulting assembly must map to the empty tile.

Informal description of the Dupled restricted glue Tile Assembly Model

The DrgTAM is an extension of the rgTAM which allows for systems with square tiles as

well as rectangular tiles. The rectangular tiles are 2 × 1 or 1 × 2 rectangles which can log-

ically be thought of as two square tiles which begin pre-attached to each other along an

edge, hence the name duples. A DrgTAM system (DrgTAS) is an ordered 4-tuple (T, S,D, σ)

where, as in a TAS, T is a tile set and σ is a seed assembly. S is the set of singleton (i.e.

square) tiles which are available for assembly, and D is the set of duple tiles. The tile types

making up S and D all belong to T , with those in D each being a combination of two tile

types from T .

It should be noted that the glue binding two tiles that form a duple must have strength

1, and the glues exposed by a duple may have strength −1, 0, or 1. Also notice that for an

assembly α in a DrgTAS, a cut of strength ≤ 0 may separate two nodes of the grid graph

that correspond to two tiles of a duple. Then, the two producible assemblies on each side

of this cut each contain one tile from the duple.

We now give the formal definitions of the tile assembly models.

7.2.1 Formal description of the restricted glue Tile Assembly Model

In this section we formally define the restricted glue Tile Assembly Model (rgTAM). Since

the rgTAM is based on the aTAM, most of the formal definition of Section 2.2 apply here.

The rgTAM can be thought of as the aTAM where every system (rgTAS) in the rgTAM

has the properties that τ = 1 and glues may have strengths −1, 0, or 1. A system in the

rgTAM is defined as an ordered pair (T, σ) where T is a set of tile types, and σ is a stable

seed assembly.

An assembly sequence in an rgTAS T is a (finite or infinite) sequence ~α = (α0, α1, . . .)

of assemblies in which each αi+1 is obtained from αi in one of two ways. First, αi+1 can ob-

113



tained from αi by the addition of a single tile such that the sum of the strengths of bound

glues of this single tile in αi+1 is ≥ 1. Second, αi+1 can obtained from αi if αi+1 lies on one

side of a cut of αi such that the strength of this cut is ≤ 0. Unlike an assembly sequence

in the aTAM, assembly sequences in the rgTAM may not have a unique limiting assembly,

and therefore, may not have a result. However, given an assembly α in an rgTAS, and an

assembly sequence ~α if the limit of ~α is α, then we say that the result (denoted res(~α)) of

~α is α. The notations used in Section 2.2 apply to the rgTAM. In addition to these nota-

tions, we distinguish between tile attachment and assemblies produced by a cut of strength

≤ 0 as follows.

α→+ α
′ iff α′ is obtained from α by a single stable tile addition

α→− (α′1, α
′
2) iff α′1 and α′2 lie on each side of a cut of α such that the

strength of this cut is ≤ 0

7.2.2 Formal description of the Dupled restricted glues Tile Assembly Model

This section gives a formal definition of the Dupled restricted glues Tile Assembly Model

(DrgTAM). First, we define the dupled aTAM (DaTAM), which is a mild extension of

Winfree’s abstract tile assembly model [64]. Then, as in 7.2.1, we define the DrgTAM by

restricting temperature to 1 and glues strengths to −1, 0, or 1.

Given V ⊆ Z2, the full grid graph of V is the undirected graph Gf
V = (V,E), and for all

~x, ~y ∈ V , {~x, ~y} ∈ E ⇐⇒ ‖~x − ~y‖ = 1; i.e., if and only if ~x and ~y are adjacent on the 2-

dimensional integer Cartesian space. Fix an alphabet Σ. Σ∗ is the set of finite strings over

Σ. Let Z, Z+, and N denote the set of integers, positive integers, and nonnegative integers,

respectively.

A square tile type is a tuple t ∈ (Σ∗ × N)4; i.e. a unit square, with four sides, listed in

some standardized order, and each side having a glue g ∈ Σ∗×N consisting of a finite string
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label and nonnegative integer strength. Let T ⊆ (Σ∗ × N)4 be a set of tile types. We define

a set of singleton types to be any subset S ⊆ T . Let

t = ((gN , sN), (gS, sS), (gE, sE), (gW , sW )) ∈ T,

d ∈ {N,S,E,W} = D, and write Glued(t) = gd and Strengthd(t) = sd. A duple

type is defined as an element of the set {(x, y, d) | x, y ∈ T, d ∈ D, Glued(x) =

Glue−d(y), and Strengthd(x) = Strength−d(y) ≥ τ}.

A configuration is a (possibly empty) arrangement of tiles on the integer lattice Z2, i.e.,

a partial function α : Z2 99K T . Two adjacent tiles in a configuration interact, or are at-

tached, if the glues on their abutting sides are equal (in both label and strength) and have

positive strength. Each configuration α induces a binding graph Gb
α, a grid graph whose

vertices are positions occupied by tiles, according to α, with an edge between two vertices

if the tiles at those vertices interact. An assembly is a connected, non-empty configuration,

i.e., a partial function α : Z2 99K T such that Gf
dom α is connected and dom α 6= ∅. The

shape Sα ⊆ Zd of α is dom α. Let α be an assembly and B ⊆ Z2. α restricted to B, writ-

ten as α � B, is the unique assembly satisfying (α � B) v α, and dom (α � B) = B

Given τ ∈ Z+, α is τ -stable if every cut of Gb
α has weight at least τ , where the weight

of an edge is the strength of the glue it represents. When τ is clear from context, we say α

is stable. Given two assemblies α, β, we say α is a subassembly of β, and we write α v β, if

Sα ⊆ Sβ and, for all points p ∈ Sα, α(p) = β(p). Let AT denote the set of all assemblies of

tiles from T , and let AT<∞ denote the set of finite assemblies of tiles from T .

A dupled tile assembly system (DTAS) is a tuple T = (T, S,D, σ, τ), where T is a finite

tile set, S ⊆ T is a finite set of singleton types, D is a finite set of duple tile types, σ :

Z2 99K T is the finite, τ -stable, seed assembly, and τ ∈ Z+ is the temperature.

Given two τ -stable assemblies α, β, we write α→T1 β if α v β, 0 < |Sβ \ Sα| ≤ 2. In this

case we say α T -produces β in one step. The T -frontier of α is the set ∂T α =
⋃
α→T1 β

Sβ \

Sα, the set of empty locations at which a tile could stably attach to α.
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A sequence of k ∈ Z+ ∪ {∞} assemblies α0, α1, . . . over AT is a T -assembly sequence if,

for all 1 ≤ i < k, αi−1 →T1 αi. The result of an assembly sequence is the unique limiting as-

sembly (for a finite sequence, this is the final assembly in the sequence). If ~α = (α0, α1, . . .)

is an assembly sequence in T and ~m ∈ Z2, then the ~α-index of ~m is i~α(~m) =min{i ∈

N|~m ∈ dom αi}. That is, the ~α-index of ~m is the time at which any tile is first placed

at location ~m by ~α. For each location ~m ∈
⋃

0≤i≤l dom αi, define the set of its input sides

IN~α(~m) = {~u ∈ U2|strαiα (~m)(~u) > 0}.

We write α →T β, and we say α T -produces β (in 0 or more steps) if there is a T -

assembly sequence α0, α1, . . . of length k such that (1) α = α0, (2) Sβ =
⋃

0≤i<k Sαi , and (3)

for all 0 ≤ i < k, αi v β. If k is finite then it is routine to verify that β = αk−1.

We say α is T -producible if σ →T α, and we write A[T ] to denote the set of T -producible

assemblies. An assembly α is T -terminal if α is τ -stable and ∂T α = ∅. We write A�[T ] ⊆

A[T ] to denote the set of T -producible, T -terminal assemblies. If |A�[T ]| = 1 then T is

said to be directed.

We say that a DTAS T strictly (a.k.a. uniquely) self-assembles a shape X ⊆ Z2 if, for

all α ∈ A�[T ], Sα = X; i.e., if every terminal assembly produced by T places tiles on – and

only on – points in the set X.

Now, the DrgTAM is defined a in Section 7.2.1 and a DrgTAS is defined to be a system

in the DrgTAM. Note that the glue binding two tiles that form a duple must have strength

1, and the glues exposed by a duple may have strength −1, 0, or 1. Also notice that for an

assembly α in a DrgTAS, a cut of strength ≤ 0 may separate two nodes of the grid graph

that correspond to two tiles of a duple. Then, the two producible assemblies on each side

of this cut each contain one tile from the duple.

7.2.3 Informal Definitions of Simulation

In this section, we present a high-level sketch of what we mean when saying that one sys-

tem simulates another. Please see [38] for complete, technical definitions, which are based

on those of [46].
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For one system S to simulate another system T , we allow S to use square (or rectan-

gular when simulating duples) blocks of tiles called macrotiles to represent the simulated

tiles from T . The simulator must provide a scaling factor c which specifies how large each

macrotile is, and it must provide a representation function, which is a function mapping

each macrotile assembled in S to a tile in T . Since a macrotile may have to grow to some

critical size (e.g. when gathering information from adjacent macrotiles about the simu-

lated glues adjacent to its location) before being able to compute its identity (i.e. which

tile from T it represents), it’s possible for non-empty macrotile locations in S to map to

empty locations in T , and we call such growth fuzz. We follow the standard simulation def-

initions (see [46, 19, 34, 22]), and restrict fuzz to being laterally or vertically adjacent to

macrotile positions in S which map to non-empty tiles in T .

Given the notion of block representations, we say that S simulates T if and only if (1)

for every producible assembly in T , there is an equivalent producible assembly in S when

the representation function is applied, and vice versa (thus we say the systems have equiva-

lent productions), and (2) for every assembly sequence in T , the exactly equivalent assem-

bly sequence can be followed in S (modulo the application of the representation function),

and vice versa (thus we say the systems have equivalent dynamics). Thus, equivalent pro-

duction and equivalent dynamics yield a valid simulation.

We say that a tile set U is intrinsically universal for a class C of tile assembly systems

if, for every system T ∈ C a system UT can be created for which: 1. U is the tile set, 2.

there is some initial seed assembly consisting of tiles in U which is constructed to encode

information about the system T being simulated, 3. there exists a representation function

R which maps macrotiles in the simulator UT to tiles in the simulated system, and 4. un-

der R, UT has equivalent productions and equivalent dynamics to T . Essentially, there is

one tile set which can be used to simulate any system in the class, using only custom con-

figured input seed assemblies. For formal definitions of intrinsic universality in tile assem-

bly, see [22, 46, 34].
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7.3 A temperature-2 aTAM system that cannot be simulated by any rgTAS

In this section we show that there exists a temperature-2 aTAM system that cannot be

simulated by any rgTAM system. Here we give an overview of the TAS, T , that we show

cannot be simulated by any rgTAS, and an overview of the proof. For sake of brevity, more

rigorous details of the following proof can be found in [38].

Theorem 19. There exists a temperature-2 aTAM system T = (T, σ, 2) such that T can-

not be simulated by any rgTAS.

Let T = (T, σ, 2) denote the system with T and σ given in Figure 6.5. The glues in

the various tiles are all unique with the exception of the common east-west glue type used

within each arm to induce non-deterministic and independent arm lengths. Glues are shown

in part (b) of Figure 6.5. Note that cooperative binding happens at most once during growth,

when attaching the keystone tile to two arms of identical length. All other binding events

are noncooperative and all glues are strength 2 except for g11, g14 which are strength 1.

The TAS T was used in [46] to show that there is a temperature-2 aTAM system that

cannot be simulated by a temperature-1 aTAM system. To prove that there is no rgTAS

that simulates T , we use a similar proof to the proof for aTAM systems, however, we must

take special care to show that allowing for a single negative glue does not give enough

strength to the model to allow for simulation of cooperative glue binding.

The proof is by contradiction. Suppose that S = (S, σS) is an rgTAS that simulates T .

We call an assembly sequence ~α = (α0, α1, . . . ) in an rgTAS detachment free if for all i ≥ 0,

αi+1 is obtained from αi by the stable attachment of a single tile. The following lemma

gives sufficient conditions for the existence of a detachment free assembly sequence.

Lemma 11. Let S = (S, σS) be an rgTAS and let α ∈ A[S] be a finite stable assembly.

Furthermore, let β be a stable subassembly of α. Then there exists a detachment free as-

sembly sequence ~α = (α1, α2, . . . , αn) such that α1 = β, and αn = α.
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Figure 7.1: An example assembly formed by S simulating T – (a) and (b), and the result-
ing producible assembly (c) constructed via a “splicing” technique that uses the window
movie lemma. The assembly in (c) shows that S is incapable of valid simulation of T .

A corollary of this lemma is that if an rgTAS gives a valid simulation of T , it can do so

using detachment free assembly sequences. Using detachment free assembly sequences, it is

possible to use a technique for “splicing” subassemblies of producible assemblies of S. This

technique uses a lemma referred to as the “window movie lemma”. For aTAM systems,

this lemma is shown in [46] (Lemma 3.1). We give a version of the window movie lemma

that holds for detachment free assembly sequences. See [38] for the formal definitions of

windows and window movies, and for a formal statement of the window movie lemma that

we use. Figure 7.1 gives a depiction of this splicing technique. Here we use this lemma for

detachment free assembly in the rgTAM. Then, using this splicing technique, we show that

if S can simulate T , it can also produce assemblies that violate the definition of simula-

tion. In other words, we arrive at our contradiction and conclude that there is no rgTAS

that can simulate T .

7.4 Simulation of the aTAM with the DrgTAM

In this section, given an aTAM system T = (T, σ, 2), we describe how to simulate T with

a DrgTAS at temperature 1 with O(1) scale factor and tile complexity O(|T |). It will then
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follow from [22] that there exists a tile set in the DrgTAM at τ = 1 which is intrinsically

universal for the aTAM at any temperature, i.e. it can be used to simulate any aTAM sys-

tem of any temperature.

Theorem 20. For every aTAM system T = (T, σ, 2), there exists a DrgTAS

D = (TD, S,D, σ
′, 1)

such that D simulates T with O(1) scale factor and |S ∪D| = O(|T |).

We now provide a high-level overview of the construction. For the remainder of this

section, T = (T, σ, 2) will denote an arbitrary TAS being simulated, D = (TD, S,D, σ
′, 1)

the simulating DrgTAS, and R the representation function which maps blocks of tiles in D

to tiles in T . The system T is simulated by a DrgTAS through the use of macrotiles which

consist of the components shown in Figure 7.2. Note that macrotiles are not necessarily

composed of all of the components shown in Figure 7.2, but will consist of at least one of

the subassemblies labeled probe. Informally, the subassemblies labeled probe, which we

Probe N

Probe S

Probe EProbe W 1 2 3

4

5

7

6 8

9

10

11

Arm 1 Arm 2

Figure 7.2: Macrotile probes, points of cooperation, and points of competition

will now refer to as probes, “simulate” the glues of the tiles in T . If a probe is simulating

a glue which is of strength 2, then it does not require the assistance of any other probes

in order to complete the macrotile containing it. On the other hand, if the glue which the
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probe is simulating is of strength 1, then the probe cannot assemble a new macrotile until

another probe arrives which simulates a glue with which the other glue can cooperate and

place a new tile in T . Before probes can begin the growth of a new macrotile, they must

claim (i.e. place a tile in) one of the points of competition (shown as red in Figure 7.2) de-

pending on the configuration of the macrotile. Once a special tile is placed in one of the

points of competition, the representation function R maps the macrotile to the correspond-

ing tile in T , and the growth of the macrotile can begin.

We use the following conventions for our figures. All duples are shown in darker col-

ors (even after they are broken apart) and singletons are shown in lighter colors. Negative

glues are represented by red squares protruding from tiles, and positive glues are repre-

sented by all other colored squares protruding from tiles. We represent glue mismatches

(a glue mismatch occurs when two different glues are adjacent or a glue is adjacent to a

tile side that does not have a glue) by showing the mismatching glues receded into the tiles

from which they would normally protrude. A red box enclosing a subassembly indicates

that subassembly has total binding strength 0.

(a) (b) (c) (d) (e)

Figure 7.3: An assembly sequence of an adjacent cooperator gadget.

The cooperator gadget is the underlying mechanism that allows for the DrgTAM to

simulate the cooperative placement of a tile in a τ ≥ 2 TAS. We consider two cases of co-

operative tile placement: 1) the tiles that cooperatively contribute to the placement of a

tile have adjacent corners (e.g. one is north of the location to be cooperatively tiled while

the other is to the east or west), and 2) the tiles that cooperatively contribute to the place-

ment of a tile are non-adjacent, that is there is a tile wide gap between the two tiles. We

create a cooperator gadget for each of these two cases. Not surprisingly, we call the cooper-
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ator gadget that mimics the former case the adjacent cooperator gadget and the cooperator

gadget that mimics the latter case the gap cooperator gadget. Each of these two gadgets is

asymmetric in nature and consists of two parts: 1) a finger and 2) a resistor. The function

of the resistor is to cause a duple that is attached to the finger gadget to break apart and

expose the internal glue of the duple which can then be used for binding of another tile.

An adjacent cooperator gadget is shown in Figure 7.3. Part (a) of this figure depicts

the finger part of the gadget, and the subassembly labeled (b) is the resistor. Note that

the only tiles which have the ability to bind to the exposed glues are duples with a nega-

tive glue that is aligned with the negative glue that is adjacent to the exposed glues. This

means that neither subassembly can grow any further until its counterpart arrives. In Fig-

ure 7.3 parts (c) - (e) we see the assembly sequence showing the interaction between the

two parts of the cooperator gadget. In this particular assembly sequence we have assumed

that the resistor piece of the gadget has arrived first. In part (c), we see the arrival of a tile

(presumably from a probe) which allows for the duple that is a part of the finger gadget

to bind with total strength 1. The 0 strength cut that is induced by this binding event is

shown by the red box in part (d) of the figure. Since the tile encapsulated in the red box

is bound with total strength 0, it eventually detaches which leads us to part (e) of the fig-

ure. Notice that the dissociation event has caused a new glue to be exposed. This glue now

allows for the binding of a duple as shown in part (e) of Figure 7.3.

(a) (b) (c) (d) (e)

Figure 7.4: An assembly sequence of a gap cooperator gadget.

Figure 7.4 shows a gap cooperator gadget which is a simple extension of the adjacent

cooperator gadget. This extension of the adjacent cooperator gadget allows for a crosser
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gadget (described below) to grow a path of tiles in between the two parts of the gadget.

This gadget allows a new glue to be exposed upon the arrival of a negative glue (Figure 7.4

part (c)) which causes half of the duple to detach (shown in part (d) of the figure). This

allows a duple to attach as shown in Figure 7.4(e) which depends on both of the glues ex-

posed by the two parts of the gadget. Notice that the binding of this tile cannot occur un-

less both parts of the gadget are present.

The previous gadgets showed that in order for two probes to cooperate, they must be

connected by a path of tiles. In order for other probes to cross in between these connected

probes we utilize what we call a “crosser gadget”. The assembly sequence for a crosser is

shown in Figure 7.5. Growth of the gadget begins with the placement of a singleton which

is prevented from growing further. This singleton exposes glues which allow for duples to

bind (Figure 7.5(b) and (c)) that cause the path of tiles blocking the singleton’s growth to

detach (Figure 7.5(d)). Note that the attachment of these duples cannot occur before the

singleton arrives since they would only have total binding strength zero. [38] offers a more

in-depth description of the gadgets described above.

We can now use these gadgets to give a more complete description of the probes which

are shown in Figure 7.2. All of the numbered regions represent gadgets. Gadgets labeled

1-3 in the figure represent gap cooperator gadgets which allow for cooperation between the

probes to which they are attached. The gadgets labeled 5-9 denote adjacent cooperator

gadgets which allow for the potential of cooperation between the probes to which they are

attached. Finally, the gadgets labeled 10 and 11 are cooperator gadgets which allow for

Probe W to trigger the growth of the second arms of Probe N and Probe S. See [38] for

more details about the structure of probes and their accompanying gadgets.

The output of the representation function for a particular macrotile depends on the

three regions labeled 1-3 in Figure 7.2. If a special tile is placed in region 1, then the macrotile

region is mapped to the tile in T that corresponds to the special tile regardless of the tiles

in the other regions. Similarly, region 3 takes precedence over region 2. Finally, if a spe-
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(a) (b) (c) (d)

Figure 7.5: An assembly sequence of a crosser gadget.

cial tile has not been placed in either region 1 or 3, then the output of the representation

function depends on the tile placed in region 2.

The seed of our simulator is formed from a set of tiles in S ∪ D which have been hard-

coded. For a more detailed explanation of the representation function and regions 1-3 see,

a case analysis of how our construction handles all possible binding scenarios, and a more

detailed explanation about the construction of the seed in the simulator, see [38].

Corollary 4. There exists a DrgTAM tile set U which, at temperature-1, is intrinsically

universal for the aTAM. Furthermore, the sets of singletons and duples, S and D, created

from U are constant across all simulations.

As mentioned above this result follows from [22]. See [38] for more details.
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Chapter 8

Simulating Active Tiles with 3-D Static Tiles

8.1 Introduction

A newly developed model, the Signal-passing Tile Assembly Model (STAM) [50], is based

upon the 2HAM but with a powerful and important difference. Tiles in the aTAM and

2HAM are static, unchanging building blocks which can be thought of as analogous to

write-once memory, where a location can change from empty to a particular value once

and then never change again. Instead, the tiles of the STAM each have the ability to un-

dergo some bounded number of transformations as they bind to an assembly and while

they are connected. Each transformation is initiated by the binding event of a tile’s glue,

and consists of some other glue on that tile being turned either “on” or “off”. By chaining

together sequences of such events which propagate across the tiles of an assembly, it is pos-

sible to send “signals” which allow the assembly to adapt during growth. Since the number

of transitions that any glue can make is bounded, this doesn’t provide for “fully reusable”

memory, but even with the limited reuse it has been shown that the STAM is more pow-

erful than static models such as the aTAM and 2HAM (in 2D), for instance being able to

strictly self-assemble the Sierpinski triangle [50]. A very important feature of the STAM

is its asynchronous nature, meaning that there is no timeframe during which signals are

guaranteed to fully propagate, and no guaranteed ordering to the arrival of multiple sig-

nals. Besides providing a useful theoretical framework of asynchronous behavior, the design

of the STAM was carefully aligned to the physical reality of implementation by DNA tiles

using cascades of strand-displacement. Capabilities in this area are improving, and now

include the linear transmission of signals, where one glue binding event can activate one

other glue on a DNA tile [49].

Although the STAM is intended to provide both a powerful theoretical framework and

a solid basis for representing possible physical implementations, often those two goals are

at odds. In fact, in the STAM it is possible to define tiles which have arbitrary signal com-
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plexity in terms of the numbers of glues that a tile may have on any given side and the

number of signals that each tile can initiate. Clearly, as the signal complexity of tiles in-

crease, the ease of making these tiles in the laboratory diminishes. Therefore, in this chap-

ter, our first set of results provide a variety of methods for simplifying the tiles in STAM

systems. Besides reducing just the general signal complexity of tiles, we also seek to re-

duce and/or remove certain patterns of signals which may be more difficult to build into

DNA-based tiles, namely fan-out (which occurs when a single signal must split into multi-

ple paths and have multiple destinations), fan-in (which occurs when multiple signals must

converge and join into one path to arrive at a single glue), and mutual activation (which

occurs when both of the glues participating in a particular binding event initiate their own

signals). By trading signal complexity for tile complexity and scale factor, we show how to

use some simple primitive substitutions to reduce STAM tile sets to those with much sim-

pler tiles. Note that while in the general STAM it is possible for signals to turn glues both

“on” and “off”, our results pertain only to systems which turn glues “on” (which we call

STAM+ systems).

In particular, we show that the tile set for any temperature 1 STAM+ system, with tiles

of arbitrary complexity, can be converted into a temperature 1 STAM+ system with a tile

set where no tile has greater than 2 signals and either fan-out or mutual activation, but

not both, are completely eliminated. We show that any temperature 2 STAM+ system can

be converted into a temperature 2 STAM+ system where no tile has greater than 1 signal

and both fan-out and mutual activation are eliminated. Importantly, while both conver-

sions have a worst case scale factor of |T 2|, where T is the tile set of the original system,

and worst case tile complexity of |T 2|, those bounds are required for the extremely unre-

alistic case where every glue is on every edge of some tile and also sends signals to every

glue on every side of that tile. Converting from a more realistic tile set yields factors which

are on the order of the square of the maximum signal complexity for each side of a tile,

which is typically much smaller. Further, the techniques used to reduce signal complexity
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and remove fan-out and mutual activation are likely to be useful in the original design of

tile sets rather than just as brute force conversions of completed tile sets.

We next consider the topic of intrinsic universality, which was initially developed to aid

in the study of cellular automata [14, 16]. The notion of intrinsic universality was designed

to capture a strong notion of simulation, in which one particular automaton is capable of

simulating the behavior of any automaton within a class of automata. Furthermore, to sim-

ulate the behavior of another automaton, the simulating automaton must evolve in such

a way that a translated rescaling (rescaled not only with respect to rectangular blocks of

cells, but also with respect to time) of the simulator can be mapped to a configuration of

the simulated automaton. The specific rescaling depends on the simulated automaton and

gives rise to a global rule such that each step of the simulated automaton’s evolution is

mirrored by the simulating automaton, and vice versa via the inverse of the rule.

In this way, it is said that the simulator captures the dynamics of the simulated system,

acting exactly like it, modulo scaling. This is in contrast to a computational simulation, for

example when a general purpose digital computer runs a program to simulate a cellular au-

tomata while the processor’s components don’t actually arrange themselves as, and behave

like, a grid of cellular automata. In [22], it was shown that the aTAM is intrinsically uni-

versal, which means that there is a single tile set U such that, for any aTAM tile assembly

system T (of any temperature), the tiles of U can be arranged into a seed structure depen-

dent upon T so that the resulting system (at temperature 2), using only the tiles from U ,

will faithfully simulate the behaviors of T . In contrast, in [19] it was shown that no such

tile set exists for the 2HAM since, for every temperature, there is a 2HAM system which

cannot be simulated by any system operating at a lower temperature. Thus no tile set is

sufficient to simulate 2HAM systems of arbitrary temperature.

For our main result, we show that there is a 3-D 2HAM tile set U which is intrinsically

universal (IU) for the class C of all STAM+ systems at temperature 1 and 2. For every

T ∈ C, a single input supertile can be created, and using just copies of that input super-
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tile and the tiles from U , at temperature 2 the resulting system will faithfully simulate T .

Furthermore, the simulating system will use only 2 planes of the third dimension. (The sig-

nal tile set simplification results are integral in the construction for this result, especially in

allowing it to use only 2 planes.) This result is noteworthy especially because it shows that

the dynamic behavior of signal tiles (excluding glue deactivation) can be fully duplicated

by static tile systems which are allowed to “barely” use three dimensions. Furthermore, for

every temperature τ > 1 there exists a 3-D 2HAM tile set which can simulate the class of

all STAM+ systems at temperature τ . Note that this version of the chapter is an extension

of [34], and here we present the additional results that, for every τ ≥ 1 there exists a tile

set Uτ which is IU for the STAM+ at temperature τ . However, due to space constraints the

majority of construction and proof details, as well as formal definitions are omitted from

this version and can instead be found in [30].

8.2 Preliminaries

Here we provide descriptions of the models and terms used in this chapter.

8.2.1 Informal description of the STAM

In the STAM, tiles are allowed to have sets of glues on each edge (as opposed to only one

glue per side as in the TAM and 2HAM). Tiles have an initial state in which each glue is

either “on” or “latent” (i.e. can be switched on later). Glues can later be switched “off”

in response to glue binding events. Tiles each implement a transition function which is

executed upon the binding of any glue on any edge of that tile. The transition function

specifies, for each glue g on a tile, a set of glues (along with the sides on which those glues

are located) and an action, or signal which is fired by g’s binding, for each glue in the set.

The actions specified may be to: 1. turn the glue on (only valid if it is currently latent),

or 2. turn the glue off (valid if it is currently on or latent). This means that glues can

only be on once (although may remain so for an arbitrary amount of time or permanently),
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either by starting in that state or being switched on from latent (which we call activa-

tion), and if they are ever switched to off (called deactivation) then no further transitions

are allowed for that glue. This essentially provides a single “use” of a glue and the signal

sent by its binding. Note that turning a glue off breaks any bond that that glue may have

formed with a neighboring tile. Also, since tile edges can have multiple active glues, when

tile edges with multiple glues are adjacent, it is assumed that all matching glues in the on

state bind (for a total binding strength equal to the sum of the strengths of the individu-

ally bound glues). The transition function defined for each tile type is allowed a unique set

of output actions for the binding event of each glue along its edges, meaning that the bind-

ing of any particular glue on a tile’s edge can initiate a set of actions to turn an arbitrary

set of the glues on the sides of the same tile either on or off.

As the STAM is an extension of the 2HAM, binding and breaking can occur between

tiles contained in pairs of arbitrarily sized supertiles. In order to allow for physical mecha-

nisms which implement the transition functions of tiles but are arbitrarily slower or faster

than the average rates of (super)tile attachments and detachments, rather than immedi-

ately enacting the outputs of transition functions, each output action is put into a set of

“pending actions” which includes all actions which have not yet been enacted for that glue

(since it is technically possible for more than one action to have been initiated, but not

yet enacted, for a particular glue). Any event can be randomly selected from the set, re-

gardless of the order of arrival in the set, and the ordering of either selecting some action

from the set or the combination of two supertiles is also completely arbitrary. This pro-

vides fully asynchronous timing between the initiation, or firing, of signals (i.e. the execu-

tion of the transition function which puts them in the pending set) and their execution (i.e.

the changing of the state of the target glue), as an arbitrary number of supertile binding

events may occur before any signal is executed from the pending set, and vice versa.

An STAM system consists of a set of tiles and a temperature value. To define what is

producible from such a system, we use a recursive definition of producible assemblies which
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starts with the initial tiles and then contains any supertiles which can be formed by doing

the following to any producible assembly: 1. executing any entry from the pending actions

of any one glue within a tile within that supertile (and then that action is removed from

the pending set), 2. binding with another supertile if they are able to form a τ -stable su-

pertile, or 3. breaking into 2 separate supertiles along a cut whose total strength is < τ .

The STAM, as formulated, is intended to provide a model based on experimentally

plausible mechanisms for glue activation and deactivation. However, while the model al-

lows for the placement of an arbitrary number of glues on each tile side and for each of

them to signal an arbitrary number of glues on the same tile, this is currently limited in

practice. Therefore, each system can be defined to take into account a desired threshold for

each of those parameters, not exceeding it for any given tile type, and so we have defined

the notion of full-tile signal complexity as the maximum number of signals on any tile in a

set (see [30]) to capture the maximum complexity of any tile in a given set.

Definition. We define the STAM+ to be the STAM restricted to using only glue activa-

tion, and no glue deactivation. Similarly, we say an STAM+ tile set is one which contains

no defined glue deactivation transitions, and an STAM+ system T = (T, τ) is one in which

T is an STAM+ tile set.

As the main goal of this chapter is to show that self-assembly by systems using active,

signalling tiles can be simulated using the static, unchanging tiles of the 3D 2HAM, since

they have no ability to break apart after forming τ -stable structures, all of our results are

confined to the STAM+.

8.2.2 Informal definitions for simulation

Here we informally describe what it means for one 2HAM or STAM TAS to “simulate”

another. Formal definitions, adapted from those of [19], can be found in [30].

Let U = (U, SU , τU) be the system which is simulating the system T = (T, ST , τT ).

There must be some scale factor c ∈ N at which U simulates T , and we define a repre-
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sentation function R which maps each c × c square (sub)assembly in U to a tile in T (or

empty space if it is incomplete). Each such c × c block is referred to as a macrotile, since

that square configuration of tiles from set U represent a single tile from set T . We say that

U simulates T under representation function R at scale c.

To properly simulate T , U must have 1. equivalent productions, meaning that every su-

pertile producible in T can be mapped via R to a supertile producible in U , and vice versa,

and 2. equivalent dynamics, meaning that when any two supertiles α and β, which are pro-

ducible in T , can combine to form supertile γ, then there are supertiles producible in U

which are equivalent to α and β which can combine to form a supertile equivalent to γ,

and vice versa. Note that especially the formal definitions for equivalent dynamics include

several technicalities related to the fact that multiple supertiles in U may map to a single

supertile in T , among other issues. Please see [30] for details.

We say that a tile set U is intrinsically universal for a class of tile assembly systems

if, for every system in that class, a system can be created for which 1. U is the tile set,

2. there is some initial configuration which consists of supertiles created from tiles in U ,

where those “input” supertiles are constructed to encode information about the system be-

ing simulated, and perhaps also singleton tiles from U , 3. a representation function which

maps macrotiles in the simulator to tiles in the simulated system, and 4. under that rep-

resentation function, the simulator has equivalent productions and equivalent dynamics to

the simulated system. Essentially, there is one tile set which can simulate any system in

the class, using only custom configured input supertiles.

8.3 Formal definitions for simulation

In this section, we formally define what it means for one 2HAM or STAM TAS to “simu-

late” another 2HAM or STAM TAS. Therefore, all tilesets may be either 2HAM or STAM

tile sets, and supertiles refer to active supertiles when built from STAM tile sets.

For a tileset T , let AT and ÃT denote the set of all assemblies over T and all supertiles
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over T respectively. Let AT<∞ and ÃT<∞ denote the set of all finite assemblies over T and all

finite supertiles over T respectively.

In what follows, let U be a d-dimensional tile set and let m ∈ Z+. An m-block assembly,

or macrotile, over tile set U is a partial function γ : Zdm 99K U , where Zm = {0, 1, . . .m−1}.

Note that the dimension of the m-block is implicitly defined by U . Let BU
m be the set of all

m-block assemblies over U . The m-block with no domain is said to be empty. For an arbi-

trary assembly α ∈ AU and (x0, . . . xd−1) ∈ Zd, define αmx0,...xd−1
to be the m-block supertile

defined by αmx0,...,xd−1
(i0, . . . , id−1) = α(mx0 + i0, . . . ,mxd−1 + id−1) for 0 ≤ i0, . . . , id−1 < m.

For some tile set T of dimension d′ ≤ d, where d ∈ {2, 3} and d′ ∈ {d − 1, d}, and a

partial function R : BU
m 99K T , define the assembly representation function R∗ : AU 99K AT

such that R∗(α) = β if and only if β(x0, ..., xd′−1) = R(αmx0,...,xd−1
) for all (x0, ..., xd−1) ∈

Zd−1. Let f : Zd → Zd′ , where f(x0, . . . , xd−1) = (x0, . . . , xd−1) if d = d′ and f(x0, . . . , xd−1) =

(x0, . . . , xd′−1, 0) if d′ = d − 1, and undefined otherwise. If either U or T is an STAM tile

set, note that the assembly representation function does not consider the pending sets Π

of any constituent tiles, and thus treats active supertiles with different pending sets but

otherwise identical as identical supertiles. α is said to map cleanly to β under R∗ if for

all non empty blocks α′mx0,...,xd−1
, (f(x0, . . . , xd−1) + f(u0, . . . , ud−1)) ∈ dom α for some

u0, . . . , ud−1 ∈ {−1, 0, 1} such that u20 + · · · + u2d−1 ≤ 1, or if α′ has at most one non-empty

m-block αm0,...,0. In other words, α′ may have tiles on supertile blocks representing empty

space in α, but only if that position is adjacent to a tile in α. We call such growth “around

the edges” of α′ fuzz and thus restrict it to be adjacent to only valid macrotiles, but not

diagonally adjacent (i.e. we do not permit diagonal fuzz ).

For a given assembly representation function R∗, define the supertile representation

function R̃ : ÃU 99K P(AT ) such that R̃(α̃) = {R∗(α)|α ∈ α̃}. α̃ is said to map cleanly

to R̃(α̃) if R̃(α̃) ∈ ÃT and α maps cleanly to R∗(α) for all α ∈ α̃.

In the following definitions, let T = (T, S, τ) be a 2HAM or STAM TAS and, for some

initial configuration ST , that depends on T , let U = (U, ST , τ
′) be a 2HAM or STAM TAS,
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and let R be an m-block representation function R : BU
m 99K T .

Definition. We say that U and T have equivalent productions (at scale factor m), and we

write U ⇔R T if the following conditions hold:

1.
{
R̃(α̃)|α̃ ∈ A[U ]

}
= A[T ].

2.
{
R̃(α̃)|α̃ ∈ A�[U ]

}
= A�[T ].

3. For all α̃ ∈ A[U ], α̃ maps cleanly to R̃(α̃)

Definition. We say that T follows U (at scale factor m), and we write T aR U if, for any

α̃, β̃ ∈ A[U ] such that α̃→1
U β̃, R̃(α̃)→≤1T R̃

(
β̃
)

.

Definition. We say that U strongly models T (at scale factor m), and we write U |=+
R T if

for any α̃, β̃ ∈ A[T ] such that γ̃ ∈ Cτ
α̃,β̃

, then for all α̃′, β̃′ ∈ A[U ] such that R̃(α̃′) = α̃ and

R̃
(
β̃′
)

= β̃, it must be that there exist α̃′′, β̃′′, γ̃′ ∈ A[U ], such that α̃′ →U α̃′′, β̃′ →U β̃′′,

R̃(α̃′′) = α̃, R̃
(
β̃′′
)

= β̃, R̃(γ̃′) = γ̃, and γ̃′ ∈ Cτ ′

α̃′′,β̃′′
.

Note that strongly models is in contrast to weakly models as defined in [19].

Definition. Let U ⇔R T and T aR U . U simulates T (at scale factor m) if U |=+
R T .

Throughout this chapter, we use the above definition of “simulation”, which in [19] is

referred to by the term “strong simulation”, while they use the term “simulation” to refer

to a weaker definition which make use of “weakly models”. Thus, here, for simulation we

use the intuitively “stronger” notion of simulation where the simulator must in some sense

more strictly model the simulated system.

8.3.1 Intrinsic universality

Let REPR denote the set of all m-block (or macrotile) representation functions (i.e., m-

block supertile representation functions for some m ∈ Z+). For some d ∈ {2, 3}, let C

be a class of d-dimensional tile assembly systems, and let U be a d′-dimensional tile set
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for d′ ≥ d. Note that every element of C, REPR, and AU<∞ is a finite object, hence can

be represented in a suitable format for computation in some formal system such as Tur-

ing machines. We say U is intrinsically universal for C at temperature τ ′ ∈ Z+ if there are

computable functions R : C → REPR and S : C →
(
AU<∞ → N ∪ {∞}

)
such that, for each

T = (T, S, τ) ∈ C, there is a constant m ∈ N such that, letting R = R(T ), ST = S(T ),

and UT = (U, ST , τ
′), UT simulates T at scale m and using supertile representation func-

tion R. That is, R(T ) outputs a representation function that interprets macrotiles (or m-

blocks) of UT as assemblies of T , and S(T ) gives the initial state used to create the nec-

essary macrotiles from U to represent T subject to the constraint that no macrotile in ST

can be larger than a single m ×m square. We say that U is intrinsically universal for C if

it is intrinsically universal for C at some temperature τ ′ ∈ Z+.

8.4 Transforming STAM+ Systems From Arbitrary to Bounded Signal Complex-

ity

In this section, we demonstrate methods for reducing the signal complexity of STAM+ sys-

tems with τ = 1 or τ > 1 and results related to reducing signal complexity. First, we de-

fine terms related to the complexity of STAM systems, and then state our results for signal

complexity reduction.

We now provide informal definitions for fan-in, fan-out and mutual activation. For more

rigorous definitions, see [30].

Definition. For an STAM system T = (T, σ, τ), we say that T contains fan-in iff there

exist glues g1 . . . gi on a tile t ∈ T such that only when all of these glues bind, the activa-

tion or deactivation of more than 1 glue on t is triggered.

Definition. For an STAM system T = (T, σ, τ), we say that T contains fan-out iff there

exists a glue g on a tile t ∈ T such that whenever g binds, it triggers the activation or

deactivation of more than 1 glue on t.
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Definition. For an STAM system T = (T, σ, τ), we say that T contains mutual activa-

tion iff ∃t1, t2 ∈ T with glue g on adjacent edges of t1 and t2 such that whenever t1 and

t2 bind by means of glue g, the binding of g causes the activation or deactivation of other

glues on both t1 and t2.

8.4.1 Impossibility of eliminating both fan-out and mutual activation at τ = 1

fA f

f

f

Bf

Figure 8.1: An example of a tile set
where fan-out and mutual activation
cannot be completely removed. The
glue f on the west edge of tile type
B signals two other glues.

We now discuss the impossibility of completely elim-

inating both fan-out and mutual activation at tem-

perature 1. Consider the signal tiles in Figure 8.1

and let T = (T, 1) be the STAM+ system where

T consists of exactly those tiles. Theorem 21 shows

that at temperature 1, it is impossible to completely

eliminate both fan-out and mutual activation. In

other words, any STAM+ simulation of T must con-

tain some instance of either fan-out or mutual activation. The intuitive idea is that the

only mechanism for turning on glues is binding, and at temperature 1 we cannot control

when glues in the on state bind. Hence any binding pair of glues that triggers some other

glue must do so by means of a sequence of glue bindings leading from the source of the sig-

nal to the signal to be turned on. The tile set depicted in Figure 8.1 grows infinitely to the

right and each B tile must have two glues activated, where in this tile set or any simulation

thereof, each glue activation in the entire assembly must trace back to the A tile. However,

the tile set must have a bounded signal complexity, thus, without fan-out or mutual activa-

tion the assembly will grow to a size where both glues on the next B tile to bind cannot be

activated. Hence there must be paths to both of the triggered glues from the single origi-

nating glue where at some point a single binding event fires two signals. We will see that

this is not the case at temperature 2 since we can control glue binding through cooperation

there.
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Theorem 21. At temperature 1, there exists an STAM+ system T such that any STAM+

system S that simulates T contains fan-out or mutual activation.

8.4.2 Eliminating either fan-out or mutual activation, reducing fan-in.

In this section we will discuss the possibility of eliminating fan-out from an STAM+ sys-

tem. We do this by simulating a given STAM+ system with a simplified STAM+ system

where fan-in is reduced to at most 2, and the system contains no fan-out, but does contain

mutual activation. A slight modification to the construction that we provide then shows

that mutual activation can be swapped for fan-out of at most 2.

Definition. An n-simplified STAM tile set is an STAM tile set which has the following

properties: (1) the full-tile signal complexity is limited to a fixed constant n ∈ N, (2) there

is no fan-out, and (3) fan-in is limited to 2. We say that an STAM system T = (T, σ, τ) is

n-simplified if T is n-simplified.

Theorem 22. For every STAM+ system T = (T, σ, τ), there exists a 2-simplified STAM+

system S = (S, σ′, τ) which simulates T with scale factor O(|T |2) and tile complexity

O(|T |2).

To prove Theorem 22, we construct a macrotile such that every pair of signal paths

that run in parallel are never contained on the same tile. This means that at most two sig-

nals are ever on one tile since it is possible for a tile to contain at most two non-parallel

(i.e. crossing) signals. In place of fan-out, we use mutual activation gadgets (see Figure 8.3)

within the fan-out zone. Similarly, we use a fan-in zone consisting of tiles that merge in-

coming signals two at a time, in order to reduce fan-in. For examples of these zones, see

Figure 8.2. Next, we print a circuit (a system of signals) around the perimeter of the macrotile

which ensures that the external glues (the glues on the edges of the macrotiles that cause

macrotiles to bind to one another) are not turned on until a macrotile is fully assembled.

More details of the construction can be found in [30].
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Fan-in zoneFan-out zone

Macrotilebc

a b

ca

Fan-out Zone Fan-in Zone

L1

L2

a b

a

c

a

c

b

Figure 8.2: A tile with 5 signals (left) and the STAM+ macrotile that simulates it (right).
Each frame, labeled L1 and L2, corresponds to a glue. For example on the tile to be sim-
ulated (left) there is a signal that runs from glue a to glue c. In order to simulate this
signaling, a signal runs from the fan-out zone of glue a to the frame associated with glue a,
labeled L1, on the north edge. The signal then wraps around the frame until it reaches the
east side on which glue c lies. Then the signal enters the fan-in zone of glue c.

To further minimize the number of signals per tile at τ > 1, cooperation allows us to re-

duce the number of signals per tile required to just 1. To achieve this result, we modify the

construction used to show Theorem 22, and prove Theorem 23. The details of the modifi-

cation can be found in [30].

Theorem 23. For every STAM+ system T = (T, σ, τ) with τ > 1, there exists a 1-

simplified STAM+ system S = (S, σ′, τ) which simulates T with scale factor O(|T |2) and

tile complexity O(|T |2).

8.4.3 Summary of Results

At temperature 1, the minimum signal complexity obtainable in general is 2 and while it is

possible to eliminate either fan-out or mutual activation, it is impossible to eliminate both.

For temperatures greater than 1, cooperation allows for signal complexity to be reduced to

just 1 and for both fan-out and mutual activation to be completely eliminated. Table 8.1

gives a summary of these two cases of reducing signal complexity and shows the cost of
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g gg

f
b b

A B

g g

f
b

T

Figure 8.3: An example of a mutual activation gadget consisting of tiles A and B without
fan-out simulating, at τ = 1, the functionality of tile T which has fan-out. The glue b
represents the generic glues which holds the macrotile together. The idea is to “split” the
signals from the west glue g on tile A into two signals without using fan-out. Once the
west glue g on tile A binds, it turns on the east glue g on tile A. Then, when the east glue
g on tile A binds to tile B, it triggers glue f . Thus, the east glue g triggers both the west
glue g and glue f without fan-out.

Temperature Signal Scale Factor Tile Complexity Contains Fan-In /
per Tile Mutual Activation

1 2 O(|T |2) O(|T |2) one or the other
> 1 1 O(|T |2) O(|T |2) neither

Table 8.1: The cost of reducing signal complexity at τ = 1 and at τ > 1.

such reductions in terms of scale factor and tile complexity.

8.5 A 3D 2HAM Tile Set which is IU for the STAM+

In this section we present our main result, namely a 3D 2HAM tile set which can be con-

figured to simulate any temperature 1 or 2 STAM+ system, at temperature 2. It is notable

that although three dimensions are fundamentally required by the simulations, only two

planes of the third dimension are used.

Theorem 24. There is a 3D tile set U in the 2HAM such that U is intrinsically universal

at temperature 2 for the class of all 2D STAM+ systems where τ ∈ {1, 2}. Further, U uses

no more than 2 planes of the third dimension.

To prove Theorem 24, we let T ′ = (T ′, S ′, τ) be an arbitrary STAM+ system where

τ ∈ {1, 2}. For the first step of our simulation, we define T = (T, S, τ) as a 2-simplified

STAM+ system which simulates T ′ at scale factor m′ = O(|T ′|2), tile complexity O(|T ′|2),

as given by Theorem 22, and let the representation function for that simulation be R′ :

BT
m′ 99K T

′. We now show how to use tiles from a single, universal tile set U to form an
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initial configuration ST so that the 3D 2HAM system UT = (U, ST , 2) simulates T at scale

factor m = O(|T | log |T |) under representation function R : BU
m 99K T . This results in

UT simulating T ′ at a scale factor of O(|T ′|4 log(|T ′|2)) via the composition of R and R′.

The exponent of 4 results because U simulates T using scale factor |T | log |T | where |T | =

O(|T ′|2), hence the scale factor for this part of the simulation is O(|T ′|2 log |T ′|2), but T is

also simulating T ′ with scale factor |T ′|2. Thus the total scale factor will be O(|T ′|4 log(|T ′|2)).

Note that throughout this section, τ refers to the temperature of the simulated systems T

and T ′, while the temperature of UT is always 2.

8.5.1 Construction overview

In this section, due to restricted space we present the 3D 2HAM construction at a very

high level. Please see [30] for more details.

Assuming that T is a 2-simplified STAM+ tile set derived from T ′, we note that for

each tile in T : 1. glue deactivation is not used, 2. it has ≤ 2 signals, 3. it has no fan-out,

and 4. fan-in is limited to 2. To simulate T , we create an input supertile σT from tiles in

U so that σT fully encodes T in a rectangular assembly where each row fully encodes the

definition of a single tile type from T . Beginning with an initial configuration containing

an infinite count of that supertile and the individual tile types from U , assembly begins

with the growth of a row on top of (i.e. in the z = 1 plane) each copy of σT . The tiles

forming this row nondeterministically select a tile type t ∈ T for the growing supertile

to simulate, allowing each supertile the possibility of simulating exactly one t ∈ T , and

each such t to be simulated. Once enough tiles have attached, that supertile maps to the

selected t via the representation function R, and at this point we call it a macrotile.

Each such macrotile grows as an extension of σT in z = 0 in a zig-zag fashion (see

Figure 8.8 for an indication of the direction of this growth) to form a square ring with a

hole in the center. This zigzag growth occurs using cooperativity as described in [12]. The

growth occurs clockwise from σT , creating the west, north, east, then south sides, in that

order. As each side grows, the information from the definition of t which is relevant to
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Figure 8.4: A high level sketch of the components and formation of a macrotile, includ-
ing dimensions, not represented to scale. The grey portions labeled “Track 1” and “Track
2” represent initially empty space that is later populated with tiles as needed to simulate
signals in the macrotile.
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that side is rotated so that it is presented on the exterior edge of the forming macrotile.

The second to last stage of growth for each side is the growth of geometric “bumps and

dents” near the corners, which ensure that any two macrotiles which attempt to combine

along adjacent edges must have their edges in perfect alignment for any binding to occur.

The final stage of growth for each side is to place the glues which face the exterior of the

macrotile and are positioned correctly to represent the glues which begin in the on state

for that side. The macrotile is poised to simulate the signals of the STAM+ tile it repre-

sents through a process of tile assembly into rows that carry the signal information to the

correct simulated glue position(s). In the following description, this process of signal simu-

lation will be referred to as the “signal” in the context of the macrotile.

Once the first side of a macrotile completes (which is most likely to be the west side,

but due to the nondeterministic ordering of tile additions it could potentially be any side),

that macrotile can potentially bind to another macrotile, as long as the tiles that they rep-

resent would have been able to do so in T . Whenever macrotiles do bind to each other, the

points at which any binding glues exist allow for the attachment of duples (supertiles con-

sisting of exactly 2 tiles) on top of the two binding tiles (in z = 1). These duples initiate

the growth of rows in z = 1 which move inward on each macrotile to determine if there is

information encoded which specifies a signal for that simulated glue to fire. If not, that row

terminates. If so, it continues growth by reading the information about that signal (i.e. the

destination side and glue), and then growth continues which carries that information in-

ward to the hole in the center of the macrotile. Once there, it grows clockwise in z = 0 un-

til arriving at the correct side and glue, where it proceeds to initiate the growth of a row in

z = 1 out to the edge of the macrotile in the position representing the correct glue. Once it

arrives, it initiates the addition of tiles which effectively change the state of the glue from

latent to on by exposing the necessary glue(s) to the exterior of the macrotile.

The width of the center hole is carefully specified to allow for the maximum necessary

2 “tracks” along which fired signals can travel, and growth of the signal paths is carefully
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designed to occur in a zig-zag pattern such that there are well-defined “points of competi-

tion” which allow two signals which are possibly using the same track to avoid collisions,

with the second signal to arrive growing over the first, rotating toward the next inward

track, and then continuing along that track. Further, the positioning of the areas repre-

senting the glues on each edge is such that there is always guaranteed to be enough room

for the signals to perform the necessary rotations, inward, and outward growth. If it is the

case that both signals are attempting to activate the same glue on the same side, when

the second signal arrives, the row growing from the innermost track toward the edge of

the macrotile will simply run into the “activating” row from the first signal and halt, since

there is no need for both to arrive and in the STAM such a situation simply entails that

signal being discarded. (Note that this construction can be modified to allow for any ar-

bitrary full-tile signal complexity n for a given tile set by simply increasing the number of

tracks to n, and all growth will remain correct and restricted to z ∈ {0, 1}.)

This construction allows for the faithful simulation of T by exploiting the fact that

the activation of glues by fired signals is completely asynchronous in the STAM, as is the

attachment of any pair of supertiles, and both processes are being represented through

a series of supertile binding events which are similarly asynchronous in the 2HAM. Fur-

ther, since the signals of the STAM+ only ever activate glues (i.e. change their states from

latent to on), the constantly “forward” direction of growth (until terminality) in both

models ensures that the simulation by UT can eventually produce representations of all su-

pertiles in T , while never generating supertiles that don’t correctly map to supertiles in T

(equivalent production), and also that equivalent dynamics are preserved.

Theorem 25. For every τ > 1, there is a 3D tile set Uτ such that, in the 2HAM, Uτ is

intrinsically universal at temperature τ for the class of all 2D STAM+ systems of tempera-

ture τ . Further, U uses no more than 2 planes of the third dimension.

To prove Theorem 25, we create a new tile set Uτ for each τ from the tile set of Theo-

rem 24 by simply creating O(τ) new tile types which can encode the value of the strength
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of the glues of T in σT , and which can also be used to propagate that information to the

edges of the macrotiles. Signal complexity can be reduced to 1 using substitution gadgets

which require that glue representations be split[30]. For the exterior glues of the macrotiles,

we split τ -strength glues into one of strength dτ/2e and the other bτ/2c. In this way, the

new tile set Uτ will form macrotiles exactly as before, while correctly encoding glues of

strengths 1 through τ on their exteriors, and the systems using it will correctly simulate

STAM+ systems at temperature τ .

8.6 For Each τ , an STAM+ Tile Set Which is IU for the STAM+ at τ

In this section, we show that for every temperature τ there is an STAM+ tile set which can

simulate any STAM+ system at temperature τ . The constructions for τ > 1 and τ = 1

differ slightly, and are presented in that order, and both are based heavily upon the con-

struction in Section 8.5.

Let T ′ = (T ′, ST ′ , τ) be an arbitrary STAM+ system and let T = (T, ST , τ) be the

STAM+ system constructed in Section 8.4 that is 1-simplified in the case where τ > 1 and

2-simplified in the case where τ = 1. The constructions here yield STAM+ systems UT =

(Uτ , SUT , τ) that simulate each T , and therefore prove Theorem 26.

Theorem 26. For each temperature τ , there is an STAM+ tile set Uτ such that Uτ is in-

trinsically universal for the class of all STAM+ systems at temperature τ .

8.6.1 STAM+ Tile Sets which are IU for the STAM+ at each τ > 1

This construction makes use of macrotiles very similar to those of the construction in Sec-

tion 8.5 to simulate the tiles of T . To see how they work, note that in the 2D STAM+,

growth of macrotiles can proceed in exactly the same way as most of the macrotile growth

in the 3D 2HAM construction of Section 8.5 with a few exceptions. First, since we cannot

take advantage of multiple planes, the simulated signals must propagate using actual sig-

nals of active tiles. This can be done as follows. First, we queue a signal to be fired along

143



the necessary path through the macrotile. In the 3D 2HAM construction, as a macrotile

grows, glues that can potentially propagate a simulated signal upon binding expose glues

that allow for a duple to be placed above them in the +z-direction. In the STAM+ con-

struction, we can simply replace these tiles with signal tiles such that the binding of a

glue would fire cascading signals toward a signal track of the macrotile. See Figure 8.8 for

an example of a signal track and placement of glues that aid the simulated signal prop-

agation. The entire sequence of firing a simulated signal, resulting in a glue going from

latent to on, is as follows. Following the construction of Section 8.5, glues that allow for

two macrotiles to bind are assumed to have strength less than τ , and a strength τ glue g

is represented by two glues g1 and g2. This means that when we turn a glue on, we really

expose glues on the exterior of a macrotile that allow for tiles to bind to the macrotile that

present either a single glue or two glues such as g1 and g2. Let α be a macrotile producible

in UT , let a be a glue of the simulated tile that fires a signal, and let b (respectively b1 and

b2 in the case that we are turning on a strength τ glue) be a glue that turns on as a result

of the binding of a. When α binds to another macrotile β (producible in UT ) using a, the

binding event for a initiates the propagation of signals that eventually expose a strength τ

glue, gs, on the inside of the signal track (which is initially empty). Edges of the macrotile

that border the signal track expose glues that allow for cooperative binding in a clockwise

manner around the track. All but one of these glues – all but the glue on the tile abut-

ting the signal track at the location directly across from the tile location for the simulated

glue to be turned on – are the same. That final glue, call it ge, initiates a sequence of sig-

nals that turns on a glue gh on the exterior of α. Now, when a tile binds to gs, a single tile

wide path of tiles grows along the signal track using cooperation until binding with ge. The

binding event involving ge fires a signal that initiates the propagation of signals that ex-

pose gh on the exterior of α (Figure 8.8). Then, gh allows for tiles to attach that present

b (respectively b1 and b2), completing the simulation of the signal from a turning on b. To

finish the construction, we show how to obtain SUT from ST .
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Creating the initial configuration

Here we give a conversion of the initial configuration outlined in Section 8.5 that works

for STAM+ systems with τ > 1. As in Section 8.5, suppose that the initial configuration

ST consists of the singleton tiles in T . We create the initial configuration SUT by letting

SUT = Uτ ∪ {σT } where σT is a rectangle consisting of tiles from Uτ which has a single row

encoding the definition of each tile t ∈ T . The specific encoding that is used is identical

to the encoding used in the 3D 2HAM construction and can be found in [30]. Figure 8.5

depicts one of these rectangular supertiles, along with selection tiles. To select a row from

one of these rectangular supertiles, tiles cooperatively bind to the east edge of tiles of the

rectangle and nondeterministically choose a row. In Figure 8.5, the tiles labeled N are

skipping rows, the tile labeled Y selects the row and the tiles labeled D mark the fact that

a row has been selected. Care must be taken to ensure that some row is always selected.

Once a row is selected, the binding of glues gs in Figure 8.5 fires a signal that turns on ei-

ther a glue g0 or a glue g1 depending on the row and the encoding of the tile t ∈ T and

also turns on another gs glue should the signal need to be propagated. The binding of g0 or

g1 glues fires signals that propagate to the north edge of the tiles located on the top of the

rectangular supertile, thus completing the nondeterministic selection of some tile t ∈ T for

the macrotile to simulate.
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Figure 8.5: A schematic figure for a seed. Each tile west of N ,Y or D represents either a 1
or 0 depending on the encoding of the tile set to be simulated, and has only one of the two
signals depicted with dashed lines.
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8.6.2 An STAM+ Tile Set which is IU for the STAM+ at τ = 1

The construction for τ = 1 is very similar to the previous, essentially including a few rel-

atively minor changes to adapt the construction of Section 8.5. We begin by noting that

by Theorem 21, since τ = 1 the macrotiles that are simulating tiles in T must be capable

of simulating two signals, since at τ = 1, the tiles of T cannot be less than 2-simplified.

We also note that at τ = 1, STAM+ systems are capable of simulating temperature-2

zig-zag growth, which can be used throughout the construction of Section 8.5 to build the

macrotiles. Figure 8.6 shows how, starting from a single row of tiles, one additional row

of tiles can be added in a zig-zag fashion. Additional rows can then be grown similarly. In

Figure 8.6, note that the zig-zag growth is deterministic. For example, T ′6 and T ′2 deter-

mine a single type of tile to be placed to the north of T ′2. In our case, deterministic zig-zag

growth is all that is needed. Thus, additional glue and signal complexity allow each tile

to attach with a single strength-1 glue, which causes a signal cascade that exposes a glue

combining information about both glues adjacent to the next location for a tile to attach.

By combining information about both adjacent glues, this strength-1 glue effectively simu-

lates them and thus their cooperative behavior.
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a1

b1
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a7

b1

a3

b3

a6
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b3

T1 T2 T3 T4 T5

T6 T7 T8 T9 T10

(a)

t 6 t (6,2) t (7,3) t (8,4) t (9,5)

t 6 t (6,2) t (7,3) t (8,4) t (9,5)

T6 T7 T8 T9 T10
t 10

T1 T2 T3 T4 T5

`

` `

` `

`
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(b)

Figure 8.6: (a) depicts zig-zag growth for τ = 2. With tiles T1 through T5 in place, tiles T6
through T10 must be placed in that order. Moreover, tile T6 depends only on T1, while tiles
Ti for i ∈ {7, 8, 9, 10} depend on Ti−1 and Ti−5. (b) depicts zig-zag growth for τ = 1 using
active tiles. Again, with tiles T ′1 through T ′5 in place, tiles T ′6 through T ′10 must be placed in
that order. Moreover, tile T ′6 depends only on T ′1, while tiles T ′i for i ∈ {7, 8, 9, 10} depend
on T ′i−1 and T ′i−5. Also, tiles in each consecutive row contain signals that allow for another
row to grow in a zig-zag pattern. Note that only the signals which activate glues which
are eventually bound to are shown, while the tiles would actually need to accommodate
glues and signals which could represent all possible pairs of input glues for the next growth
location.
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Macrotile formation

Now, recall that the growth of the macrotiles described in Section 8.4.2 that occurs in the

z = 0 plane follows a zig-zag pattern. Therefore, we can use active tiles such that simi-

lar growth can occur in 2D STAM+ systems with τ = 1. Figure 8.8 shows a scheme for

how this zig-zag growth works. Starting from a seed, a tile type t ∈ T is selected. This

seed and selection process is described in Section 8.6.2 that follows. Then, following a zig-

zag growth pattern, each side of the macrotile forms. As the sides of the macrotiles form,

special care is taken in presenting the glues exposed by each edge of the macrotile. The

glues that will be exposed on the exterior of a macrotile are latent initially. This ensures

proper growth of the macrotile by postponing macrotile binding until the macrotile has

formed. As zig-zag growth forming the west edge of a macrotile completes, a glue is ex-

posed on the west edge of the northwest most tile, allowing for the attachment of a corner

gadget at the northwest corner. See figure 8.7 for an example of a corner gadget. When the

northwest corner gadget binds, it initiates the successive firing of signals that eventually

expose a glue that allows for the growth of the north side of the macrotile and then a sec-

ond corner gadget to attach at the northeast corner. Similarly, when the northeast corner

gadget binds, it initiates the successive firing of signals that eventually expose a glue that

allows for a third corner gadget to attach at the southeast corner and in turn fires a sig-

nal that eventually allows for the final corner gadget to be placed at the southwest corner.

Just as in the construction of Section 8.5, the corner gadgets give the macrotile bumps and

dents which ensure proper alignment when two macrotiles bind. Finally, the binding of the

final corner gadget initiates a sequence of active glues that trigger the simulated glues ex-

posed by the macrotile to turn on. Attaching corner gadget in this manner guarantees us

that the bumps of the macrotile are in place prior to the exposure of any on glues on the

exterior of the macrotile.
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1

Figure 8.7: A corner gadget for macrotiles in τ = 1 systems. Note that the formation of
the entire corner gadget must take place prior to the exposure of the glue that allows the
corner gadget to bind to a macrotile.
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Figure 8.8: A schematic figure for a macrotile for systems with τ = 1. Corner gadgets are
labeled in the order that they must attach. An example of the placement of glues gs, ge,
and gh that aid the propagation of the simulated signal from a to b are shown. The glue gh
recruits tiles that will expose one or two glues representing b.
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Handling signals

To permit the firing of signals by glues on the exterior of a macrotile, we proceed as in the

τ > 1 case. Except here, the formation of the signal track and placement of any tile that

may expose a glue on the exterior of a macrotile takes place during the zig-zag formation

of a macrotile α. Again, note that for any macrotile, we need only fire at most 2 signals.

We define a wire to be a path of active glues through tiles of a macrotile such that the sig-

nals along this path propagate through adjacent tiles starting at a preset initial tile until

the signal reaches a preset ending tile. For the τ = 1 construction we will turn glues on

macrotile edges on using wires. A binding event involving a glue g1 can initiate the propa-

gation of signals that turn on a glue g2. In this case, we say that there is a wire from g1 to

g2. Now, in the case where τ = 1, glues that allow for two macrotiles to bind are latent

initially. Let α be a macrotile producible in UT , let a be a glue of the macrotile that fires

a signal and let b be a glue that turns on as a result of the binding of a. As α grows, wires

can be placed on tiles using the information encoded in the seed by simply counting to the

correct glue locations. These wires start from the tile with the a glue exposed and end at

the tile with the glue b glue exposed. The placement of tiles with the signals making up

the wire from a to b is as follows. First, if a is exposed on a tile, ta, belonging to the east

or west edge (resp. the north or south edge) of α, tiles containing signals making up the

wire from a to b are placed horizontally (resp. vertically) as a row (resp. column) of the

zig-zag pattern from ta to a tile ts lying on the signal track. The signal track is depicted

in Figure 8.8. Similarly, if b is a glue on a tile, tb, belonging to the east or west edge (resp.

the north or south edge) of α, tiles containing signals making up the wire from a to b are

place horizontally (resp. vertically) as a row (resp. column) of the zig-zag pattern from

tb to a tile te lying on the signal track. The final tiles containing signals making up the

wire from a to b are the tiles along the signal track that run clockwise from ts to a tile te.

Notice that we can have two such wires from any two glues exposed on the exterior of α.

Now, when α binds to another macrotile β producible in UT using a, the binding event for
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a initiates the propagation of signals that eventually expose a b via a wire from a to b.

The initial configuration for τ = 1

In this section, we show how to modify the seed given in Section 8.6.1 so that it can be

used in systems where τ = 1. The main idea here is to use signals to mimic the behavior

of cooperation that can occur in systems with temperature greater than 1. Figure 8.9 gives

an example of such a seed supertile. The rows of the supertile that encode tiles of T and

the selection process remain unchanged, however the nondeterministic selection of a row

changes slightly. The binding of successive selector tiles (tiles labeled N , Y and D) use sig-

nals to ensure that they are placed from bottom to top. Also, a stopper tile, labeled S in

the figure, prevents the placement of an extra selector tile. Finally, as in the case for τ > 1,

we must ensure that some row is selected. To do this we place a glue d on the south edge

of tile S and a d glue on the north edge of each tile labeled N so that if no Y attaches and

a tile labeled N is placed below S, binding of d will fire a signal to turn on gs on the west

edge of the topmost N tile, selecting the tile type encoded in the top row.
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Figure 8.9: A schematic figure for a seed for τ = 1. For each tile, depending on the en-
coding of the tile set to be simulated, only one of the signals depicted with dashed lines
is present per tile. Tiles labeled T0, T1, T

′
1, N , Y and D are not part of the seed assembly

and are only shown to illustrate the selection of a row.

Once a row is selected, glues that have been turned on during the selection process al-

low for tiles, labeled T0, T1 and T ′1 in the figure, to be placed. A tile T ′0 analogous to the
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tile T ′1 is placed instead of T ′1 if the left most bit of the selected row is 0. T ′0 is not shown

in the figure. When T ′1 (or T ′0) binds, signals propagated by glue pair bindings, correspond-

ing to glues labeled s in the figure, are used to ensure that each T0, T1, T
′
0 or T ′1 is in place.

Once each of these tiles is in place, a glue is presented on the north edge of the rectangular

supertile grown from the seed that allows for zig-zag growth of the macrotile to start.

Finally, we make a general observation about the seed supertile formation for systems

with τ = 1. Consider the glues that hold the initial configuration together. Such glues can-

not be exposed initially, for if they were, tiles that make up the initial configuration could

spontaneously bind and possibly create arbitrary seeds containing encodings of tile types

that should not be simulated. “Junk” supertiles that do not take part in any simulation

could also be created. Therefore, for systems with τ = 1 we form the seed from tiles which

initially have all glues in the latent state, and first manually turn on the necessary set of

glues on each tile used for the seed, and then use these glues to attach those tiles together.

8.6.3 Complexity analysis

First, the tile complexity is O(1) as there is a single universal tile set Uτ which simulates

any T ′. Let kτ denote the tile complexity for a fixed τ . Now, since macrotiles form in the

same way as the z = 0 plane growth of the 3D macrotiles given in Section 8.5, the scale

factor of the macrotiles in the STAM+ construction is the same. In particular, the scale

factor is O(|T | log |T |), while using a constant sized tile set and the scale factor for UT sim-

ulating T ′ is O(|T ′|4 log(|T ′|2)). The techniques to reduce signal complexity given in Sec-

tion 8.4 can be used to reduce the signal complexity of tiles in our macrotiles. We claim

that this only contributes a constant size increase in scale-factor. First, note that the most

signal complexity for any one tile of the construction at τ > 1 is 4, and the most glue com-

plexity of any one tile is bounded by a constant that depends only on kτ . In particular, the

glue complexity is independent of |T ′|. Hence, the tile set Uτ can be 1-simplified with only

a constant sized increase in scale-factor. Therefore, the scale factor for UT simulating T ′

is O(|T ′|4 log(|T ′|2)) even for a 1 simplified tile set. For τ = 1, the most signal complexity
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for any one tile of the construction at τ = 1 is also a constant that is independent of the

tile set T . In fact, to mimic zig-zag growth for τ = 1 each tile contains a number of signals

that depends on kτ plus some signals that are used for the firing of signals once macrotiles

have formed. Overall, this will be a constant amount of signal complexity that is indepen-

dent of |T |. The glue complexity of each tile is also bounded by a similar constant that is

independent of |T |. Therefore, when we apply the simplification techniques given in Sec-

tion 8.4, the scale-factor increase will be a constant independent of |T |. Hence, the tile set

Uτ can be 2-simplified with only a constant sized increase in scale-factor, and the scale fac-

tor for UT simulating T ′ remains to be O(|T ′|4 log(|T ′|2)) for τ = 1.

Note that the representation function used for this construction as well as the proof of

correctness are nearly identical to those for the construction of Section 8.5, and they can

be found in [30].

8.7 Conclusion

We have shown how to transform STAM+ systems (at temperature 1 or > 1) of arbitrary

signal complexity into STAM+ systems which simulate them while having signal complex-

ity no greater than 2 and 1, respectively. However, if the original tile set being simulated is

T , the scale factor and tile complexity of the simulating system are approximately O(|T |2).

It seems that these factors cannot be reduced in the worst case, i.e. when a tile of T has a

copy of every glue of the tile set on each side, and each copy of each glue on the tile acti-

vates every other, yielding a signal complexity of O(|T |2). However, whether or not this is

a true lower bound remains open, as well as what factors can be achieved for more “typi-

cal” systems with much lower signal complexity.

A significant open problem which remains is that of generalizing both constructions

(the signal reduction and the 3D 2HAM simulation) to the unrestricted STAM. Essentially,

this means correctly handling glue deactivation and possible subassembly dissociation.

While this can’t be handled within the standard 3D 2HAM where glue bonds never change
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or break, it could perhaps be possible if negative strength (i.e. repulsive) glues are allowed

(see [21] for a discussion of various formulations of models with negative strength glues).

However, it appears that since both constructions use scaled up macrotiles to represent in-

dividual tiles of the systems being simulated, there is a fundamental barrier. The STAM

assumes that whenever two tiles are adjacent, all pairs of matching glues across the adja-

cent edge which are both currently on will immediately bind (which is in contrast to other

aspects of the model, which are asynchronous). Since both constructions trade the abil-

ity of individual tile edges in the STAM to have multiple glues with scaled up macrotiles

which distribute those glues across individual tiles of the macrotile edges, it appears to be

difficult if not impossible to maintain the correct simulation dynamics. Basically, a par-

tially formed side of a macrotile could have only a subset of its initially on glues in place,

but enough to allow it to bind to another macrotile. At that point, if glue deactivations are

initiated which result in the dissociation of the macrotile before the remaining glues of the

incomplete macrotile side assemble, then in the simulating system, those additional glues

won’t ever bind. However, in the simulated system they would have. This results in a situ-

ation where, after the dissociation, the simulated system would potentially have additional

pending glue actions (initiated by the bindings of the additional glues) which the simulat-

ing system would not, breaking the simulation.

Overall, laboratory experiments continue to show the plausibility of physically imple-

menting signalling tiles [49], while previous theoretical work [50] shows some of their po-

tential, and the results in this chapter demonstrate how to obtain much of that power with

simplified tiles. We feel that research into self-assembly with active components has a huge

amount of potential for future development, and continued studies into the various trade-

offs (i.e. complexity of components, number of unique component types, scale factor, etc.)

between related models provide important context for such research. We hope that our re-

sults help to contribute to continued advances in both theoretical and experimental work

along these lines.
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Chapter 9

Conclusion

We have introduced many new theoretical models of self-assembly. We have also defined

notions of simulation between these models as well as notions of simulation between ex-

isting models. As we continue to advance the theory of self-assembly, we find that in such

a relatively budding field, as fast as questions can be answered, new ones arise, and that

working on open problems inevitably leads to more open problems. Therefore, it seems

fitting that the conclusion of this thesis simply be a series of open questions and possible

directions for future research. We begin with questions about the temperature 1 aTAM

which are subject of much discussion in the self-assembly community.

9.1 Universality in subclasses of the class of all aTAM systems

As previously mentioned, in [64], Winfree showed that the class of directed aTAM systems

at temperature 2 is computationally universal, and in [22], Doty et al. showed that the

aTAM is intrinsically universal for itself by showing that there is a temperature 2 system

that when appropriately seeded can simulate any given aTAM system (even those with

temperature 6= 1). The following questions regarding the aTAM remain open. (1) Is the

class of directed aTAM systems at temperature 1 is computationally universal? (2) Is the

class of temperature 1 aTAM systems intrinsically universal? It is conjectured that the an-

swer to both of these questions is “no”. In the proof that the aTAM is intrinsically univer-

sal for itself, one can observe that even for directed systems, the intrinsically universal tile

set fundamentally relies on nondeterminism. It is unknown if this relying on nondetermin-

ism is necessary when simulating directed systems. Hence we have the following question.

Is the class of directed aTAM systems intrinsically universal for itself?
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9.2 Simulation in the polyTAM

We have seen that the geometry of tiles can be utilized to achieve computation, but many

questions regarding simulation remain open. Therefore, it would be interesting to seek a

classification of which polyTAM systems can simulate other polyTAM systems. For exam-

ple, we have seen that any polyomino gives rise to a single shaped polyTAM system such

that this system forms an infinite grid. Then, given an aTAM system, with the appropri-

ate assignment of glues to edges of polyomino tiles with a single shape one could deduce

that given any aTAM system T with temperature τ and any polyomino P , there exists a

single shape polyTAM system S with shape P and temperature τ such that S simulates

T . Along similar lines, one can conclude that the polyTAM at temperature 2 is IU for the

aTAM since the aTAM at temperature 2 is IU for itself. While this simple line of reasoning

shows that the single shaped polyTAM with tiles shaped like a unit square can be simu-

lated by some single shaped polyTAM system with tiles shaped like any given polyomino,

this is far from a complete picture of how polyTAM systems are related via simulation.

9.3 Extending the RTAM

The RTAM at temperature 1 was shown to be non-Turing-complete. Insofar as this model

accurately capture the physical system which it sets out to describe, this seems to cast

doubt on the effectiveness of this physical system to algorithmically drive self-assembly.

Assuming the RTAM is a sufficiently accurate model, is there an extension of the RTAM

that would be feasible to implement physically and able to perform computation? A can-

didate for such an extension would be something like the Dupled RTAM (analogous to the

Dupled aTAM). In addition, we have seen that at temperature 2, the RTAM is Turing-

complete. In order to simulate a Turing machine we showed that the RTAM can simu-

late zig-zag systems as defined in the aTAM. A more general question remains open. Is

the RTAM IU for the aTAM? Essentially, this question is asking if cooperation is power-

ful enough to completely overcome the fact that in the RTAM tiles may be reflected before
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binding.

9.4 Is the STAM IU?

Finally, we have seen that the STAM+ is IU for itself and that the 3-D 2HAM is IU for the

STAM+. Is the STAM (which allows supertiles to disassociate) IU for itself? Since the 3-D

2HAM does not allow for tile detachment, it trivially follows that the 3-D 2HAM is not IU

for the STAM. However, the 3-D 2HAM with negative glues could allows for tile detach-

ment and therefore, the result that the 3-D 2HAM is IU for the STAM+ may generalize,

which leads us to the following question. Is the 3-D 2HAM with negative glues IU for the

STAM?
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