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Abstract 

This thesis develops expected travel distance expressions for both single- and dual-

command operations in a unit-load warehouse design with multiple docks. Storage racks are 

aligned perpendicular to the wall containing docks. Results are presented for continuous and 

discrete formulations. Because of the importance of how docks are located on a wall, different 

dock locations are investigated, including uniformly distributed docks along one wall, specified 

distances between adjacent docks located symmetrically about the mid-point of a warehouse 

wall, and any distribution of locations along one wall. Among the results obtained, we find that 

the width-to-depth ratio of the storage area (commonly called shape factor) that minimizes 

expected distance traveled is a function of the number of docks and their locations. We find that 

the spacing between adjacent docks and the distance the first dock is from either the left end of 

the wall containing the docks or the centerline of the warehouse can significantly affect the 

optimal shape factor. Two cases are treated for the distance between adjacent docks: a) the 

distance is a function of the width of the storage area or the width of the storage area is a 

function of the number of docks and the distance between them and b) the distance is a fixed 

value. In the former case, our results are consistent with those obtained by others; however, in 

the latter case, some of our results will be surprising to many who have studied similar design 

problems. 
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1   Introduction 

Unit-load warehouses are commonly used in industry. Such warehouses receive and ship 

products on pallets or in other unit-load quantities. In a unit-load warehouse, storage racks are 

frequently aligned perpendicular to the wall containing the dock(s) to form picking aisles which 

are used to perform storage and retrieval operations. For unit-load storage and retrieval 

operations, either single- or dual-command operations are used.  

In a single-command operation, a worker travels from a dock to a storage location where the 

unit-load is stored and returns empty to the dock or a worker travels empty from a dock to a 

storage location, retrieves a unit-load and transports it to the dock. A dual-command operation 

occurs when a worker travels from a dock to a storage location where the unit-load is stored, then 

travels empty to another storage location where another unit-load is retrieved before returning to 

the dock. 

The performance of a warehouse is impacted by the number and locations of docks. In the 

warehouse configuration we consider, a single dock, centrally located along one wall is often 

assumed, with subsequent calculations based on this assumption. However, warehouses typically 

have multiple docks for receiving and shipping. Therefore, this study focuses on formulating 

expected travel distance expressions with multiple docks in a traditional layout with both single- 

and dual-command storage and retrieval operations. Our results indicate that the expected travel 

distances increase with an increasing number of docks.  

The shape factor, the ratio of warehouse width to warehouse depth, is another important design 

parameter because the shape of the warehouse directly affects the number and length of the 

picking aisles.  Studies in the literature are inadequate to show the relations between the shape 



2 
 

factor and the number and locations of docks, as well as the distance between docks. Based on 

the formulation developed, we acknowledge that the shape factor is affected by the distance 

between docks in addition to the number and locations of the docks. Specifically, we found that 

the optimal shape factor decreases with an increasing number of docks if the distance between 

docks is a function of the width of the storage area; whereas, the optimal shape factor increases 

with an increasing number of docks if the distance between docks is a fixed value. 

In the thesis, two approaches are used in formulating expected distances: discrete and 

continuous. Discrete formulations include the locations of aisles and storage locations within the 

warehouse and account for travel between any two storage locations in the warehouse occurring 

along an aisle or a combination of aisles; whereas, continuous formulations treat the interior of 

the warehouse as a continuous region with rectilinear travel occurring between any two storage 

points in the region.   

Although discrete formulations yield more accurate representations of expected travel distances, 

results obtained from continuous approximations might not be significantly different from those 

obtained from discrete formulations. Continuous formulations tend to be more easily solved than 

their counterpart discrete formulations; as such, insights regarding the impact of the number and 

locations of docks on expected distance traveled are more easily obtained. In our research, the 

percentage error introduced by using a continuous approximation is obtained by comparing 

results from continuous formulations with discrete formulations. 

Throughout this thesis, a random storage policy and rectilinear travel are assumed. We limit our 

study to travel on the floor of the warehouse and do not consider travel required to access tiers in 

the rack above floor-level. Hence, two travel distances are of interest: travel that is parallel to the 
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wall(s) containing the dock(s) and travel that is perpendicular to the wall(s) containing the 

dock(s). In the study, we concentrate on parallel travel because, with rectilinear travel, neither 

perpendicular travel nor travel-between distance is affected by the dock(s) location(s).  

Throughout, we assume constant travel velocity and ignore pickup and deposit times. Workers 

use picking aisles to access racks and use cross-aisles at the ends of the picking aisles to move 

between picking aisles. Picking aisles are considered to have the same width and to be two-way, 

such that workers performing storages and retrievals can access each side of the aisle.  

The remainder of the thesis is organized as follows. First, we review the literature of the 

warehouse layout we consider for both single- and dual-command operations. In Section 3, we 

present the notation used to model travel distances for the warehouse configuration we consider. 

Section 4 addresses continuous space formulations and Section 5 provides discrete formulations 

for both parallel and perpendicular travel. In Section 6, we provide both a discrete formulation 

and a formulation that includes continuous approximation components for both single- and dual-

command operations. (Multi-dock formulations are provided in Sections 4, 5 and 6.) While 

presenting the models, we perform sensitivity analyses to illustrate the effect various design 

decisions can have on expected distance traveled and on the warehouse shape that minimizes 

expected distance traveled. In Section 7, we examine the impact on shape factor and expected 

distance traveled by restricting certain docks to be used for receiving and others to be used for 

shipping. In Section 8, we examine a mixture of single-command and cross-docking travel in the 

warehouse and its impact on the shape factor. In Section 9, the research findings are summarized, 
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design conclusions are drawn, the significance of the research is addressed, and 

recommendations are provided for further research. 1 

2   Literature Review 

Francis (1967) appears to have been the first to model single-command travel distance for the 

warehouse layout we consider. He obtained the shape factor for a single dock that is centrally 

located along one wall. Bassan et al. (1980) provided cost models for the warehouse layout we 

consider by developing optimal design parameters. They analyzed optimal location of docks and 

concluded that all docks should be located as near as possible to the center of a single wall. 

Ratliff and Rosenthal (1983) developed a procedure to calculate the minimum pick tour for an 

order-picker. They defined this problem as an order-picking problem and recognized it is a 

travelling salesman problem which is an NP-Hard problem.  

Hall (1993) compared some routing strategies for a manual order picker under assumptions of a 

random storage policy and a centrally located dock. Peterson (1997) and de Koster and van der 

Poort (1998) used simulation to compare the results for optimal and heuristic routes with a 

random storage policy for the warehouse layout we consider. Hwang et al. (2004) used 

simulation results to demonstrate the validity of their formulaic results.  

Mayer (1961) appears to have been the first researcher to model dual-command operations for 

the warehouse layout we consider by permitting an order-picker to move two loads in a cycle. 

Malmborg and Krishnakumar (1987) assumed an order-picker interleaves a storage and a 

retrieval in each operation in their formulation of order picking costs in the warehouse layout we 

                                                 
1 Some parts of this thesis can be found in the paper by Tutam and White (2015), particularly the 
first three sections of the thesis. 
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consider. Pohl et al. (2009) were the first to describe optimal dual-command travel distances for 

a range of traditional layouts. They modeled the expected single- and dual-command travel 

distances in the warehouse layout we consider under the assumption of a centrally located dock. 

They considered the layout to be a special case of a multi-aisle automated storage and retrieval 

system (AS/RS) by ignoring vertical travel in the model derived by Hwang and Ko (1988) and 

assuming the dock is centrally located on a warehouse wall. They determined the number of 

aisles which minimizes dual-command travel distances for traditional layouts. Expected distance 

between two random points in a warehouse is defined as the “travel-between” (TB) distance in 

their model. 

As noted, shape factor directly affects the number and length of the picking aisles. The shape 

factor which minimizes the expected travel distance in a warehouse is defined as the optimal 

shape factor and denoted as S*.  Francis (1967) investigated the impact of warehouse shape and 

concluded that the optimal width-to-depth ratio is 2:1 for a centrally located dock. Specifically, 

for single-command operations, Thomas and Meller (2014) show that *
SCS ranges from 2:1 to 

1.5:1 as the number of docks ranges from one to infinity. They considered docks are located over 

the entire width of the warehouse; hence, if the width increases, either the number of docks or 

the distance between adjacent docks increases. Our work differs from theirs by treating the 

number of docks and the spacing between adjacent docks as a design parameter, rather than a 

decision variable. In addition, we do not require that docks be uniformly distributed about the 

centerline of the warehouse. 

3   Notation 

In this section, we define the notation used in the thesis, as illustrated in Figure 1. 
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a = distance between centerlines of adjacent aisles 

n = number of picking aisles 

W = width of the storage area  

L = length of picking aisles 

v = half the width of a cross-aisle 

D = depth of the storage area (D = L + 4v)  

A = total storage area (A = WD)  

S = shape factor (S = W / D) 

k = number of docks 

ω = the width of a dock        

δ = distance between the centerlines of two adjacent docks (i.e. ith and (i+1)th docks) (δ > ω)  

SC = single-command distance 

TB = travel-between distance  

DC = dual-command distance (DC = SC + TB)  

 

 

 

 

 

 

 

 
δ ω

W

DL

a

Figure 1: Warehouse notation 
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4   Continuous Space 

In this section, we develop models of expected travel distance for single-command operations in 

a unit-load warehouse with one or more dock(s). However, in contrast to Figure 1, we ignore the 

storage racks and aisles and assume that storage and retrieval points are uniformly distributed 

over a rectangular region of width W and depth D.  

We calculate the expected rectilinear distance to perform a single-command operation between a 

centrally located dock and a random location in the warehouse by treating separately the two 

dimensions of rectilinear travel: (1) parallel travel, and (2) perpendicular travel. Given a storage 

width of W and uniformly distributed destination points, the expected parallel distance between a 

centrally located dock and a random point is W / 4; therefore, the roundtrip expected distance is 

W / 2. Given a storage depth of D and uniformly distributed destination points, the expected 

perpendicular distance between a centrally located dock and a random point is D / 2; hence, the 

roundtrip expected distance is D. Finally, the expected distance to perform a single-command 

operation is  

 [ ] DWSCE += 2  (1) 

By using the relationship between a given area (A = WD) and the shape factor (S = W / D), we 

can obtain the width and length of the warehouse with respect to the given area and the shape 

factor as follows. Because W = SD, A= SD2 and D = SA . Hence, W = SD = AS . Therefore, 

replacing W and D with AS  and SA  respectively, in Equation 1, the expected single-

command distance can be expressed as a function of A and S 

 [ ] SASASCE += 2  (2) 
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Taking the first derivative of  Equation 2 with respect to S, setting it equal to zero, and solving 

for S, we obtain the optimal shape factor, *
SCS = 2. The same result is obtained by Francis (1967). 

So, for a single, centrally located dock, the optimal shape factor (width-to-length) is 2:1.2 

 

 

 

 

 

 

 

 

 

 

 

Relaxing the single dock limitation, we treat four cases for the location of k docks: (a) a given 

value of k uniformly distributed along a wall (see Figure 2.a), (b) a flexible value of k with docks 

covering entirely a wall (see Figure 2.b), (c) centrally located on a wall with a fixed distance 
                                                 
2 The second derivative is positive, so the function is convex and the value obtained is the 
optimal shape factor. The convexity of the expected distance function holds throughout the thesis 
for subsequent calculations of the optimal shape factor. 

(a)  (b)  

(c)  (d)  

Figure 2: (a) k = 3 uniformly distributed docks, (b) k docks located across the entire wall, (c)       
k = 3 centrally located on the wall with a fixed distance between adjacent docks, and 
(d) k = 3 docks located along a wall with a fixed distance between adjacent docks 



9 
 

between adjacent docks (see Figure 2.c), and (d) not centrally located on a wall, but with a fixed 

distance between adjacent docks (see Figure 2.d). In addition to the cases shown in Figure 2, we 

considered the case of a single dock that is located a specified distance from the centerline of the 

warehouse. 

In continuous space, we do not attempt to approximate the expected dual-command distance. To 

do so, we would need to sum the expected single-command distance and the expected travel-

between distance. From Bozer (1985), the expected parallel distance between two independent 

uniformly distributed points over the interval (0, W) is W / 3. Likewise, the expected 

perpendicular distance is D / 3. However, as evident from Figure 3, given the rack structure in 

the warehouse, assuming rectilinear travel can occur between two random points is not realistic.   

Specifically, because travel must occur along aisles, rectilinear travel cannot occur between two 

points in different picking aisles; instead, it requires perpendicular travel to the end of the 

picking aisle, plus parallel travel to the next picking aisle, plus perpendicular travel to the 

destination point in the picking aisle. Hence, a continuous space approximation of travel-between 

distance significantly underestimates the actual distance traveled. 

 

 

 

 

 
Figure 3: Continuous (black) and discrete (red) travel distances 
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4.1   k docks uniformly located on one wall 

Because perpendicular travel does not depend on the number and location(s) of dock(s), adding 

another dock to the warehouse does not affect the perpendicular travel distance.  Therefore, we 

are interested in measuring the expected parallel distance traveled. We begin by assuming two 

docks (k = 2) are located along one wall in such a way that one-third of the wall is to the left of 

the centerline of the leftmost dock and one-third of the wall is to the centerline of the right of the 

rightmost dock (hereafter, we refer to this distribution of docks as being uniformly distributed 

along the wall). Assuming the leftmost dock is the first dock, others are numbered sequentially 

through to the rightmost dock. The average roundtrip parallel distance traveled to the left of the 

centerline of the first dock is W / 3 and the probability travel will be to the left is 1 / 3; also, the 

average parallel distance traveled to the right of the centerline of the first dock is 2W / 3 and the 

probability travel will be to the right is 2 / 3. Therefore, the expected parallel distance traveled 

from the centerline of the first dock to a random point is3 

 [ ] ( )( ) ( )( ) 9532323311 WWWDE =+=  (3) 

With the dock locations being symmetric about the center of the warehouse, the expected 

roundtrip distance expression for the second dock is the same as the first dock, [ ] [ ]21 DEDE = . 

Assuming each dock is equally likely to be used, the expected single-command travel distance 

can be written as 

 [ ] DWSCE += 95  (4) 

Substituting shape factor and storage area into Equation 4 yields 

                                                 
3 Hereafter, distances to, from, and between docks are based on centerlines of the docks. 
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 [ ] SASASCE += 95  (5) 

Taking the first derivative of Equation 5 with respect to S and setting it equal to zero, we obtain 

 [ ] 02185 =−= SSASASdSCEd  (6) 

Solving for *
SCS , we obtain a value of 1.8.   

Using similar steps, we can develop a general expression for k uniformly located docks along 

one wall. The average roundtrip parallel distance traveled to the left of the ith dock is

( ) ( )1+∗ kWi  and the probability travel will be to the left is ( )1+ki ; also, the average roundtrip 

parallel distance to the right of the ith dock is ( )( ) ( )11 +−+ kWik and the probability travel will 

be to the right is ( ) ( )11 +−+ kik . Therefore, the expected single-command distance for k docks 

is given by 

  [ ] ( ) D
k

Wik
k

ik
k

Wi
k

i
k

SCE
k

i
+

















+
−+









+
−+

+







+








+
= ∑

=1 1
1

1
1

11
1             

                                        ( )
( ) D
k

Wk
+

+
+

=
13

12   (7) 

Following the same steps as for k = 1 and k = 2, we obtain *
SCS  as 

 ( )
( )12

13*

+
+

=
k
kSSC  (8) 

As k approaches infinity, *
SCS approaches 1.5. A similar calculation by Thomas and Meller 

(2014), with uniform dock usage and random storage, also yields an optimal shape factor of 1.5. 
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Based on Equation 8, we can determine the shape factor for any given number of uniformly 

distributed docks. 

From Equation 8, the optimal width ( *W ) and depth ( *D ) for the warehouse are given by 

( ) ( )[ ]1213* ++= kkAW  and ( ) ( )[ ]1312* ++= kkAD . The minimum expected single-

command distance is given by [ ] ( ) ( )[ ] ( ) ( )[ ]13121312* +++++= kkAkkASCE . Therefore, 

when optimally configured, the expected parallel distance equals the expected perpendicular 

distance, and the warehouse is “balanced” insofar as parallel and perpendicular travels are 

concerned. 

4.2   k docks located across an entire wall 

Thomas and Meller (2014) considered locating docks across an entire wall. We can interpret 

their approach as locating the maximum number (k) of docks along one wall, as in Figure 2.b, 

and letting the distance between adjacent docks equal δ. In such a case, the width of the 

warehouse (W) equals (k + 1)δ, and the expected single-command distance is given by 

 DkSCE +
+

=
2

)1(][ δ
 (9) 

Letting D = A / (k + 1)δ taking the first derivative of Equation 9 with respect to k, setting the 

result equal to zero and solving for k gives 12 2* −= δAk , 2* AD =  and 

AkW 2)1(* =+= δ . Solving for the optimal shape factor, we obtain a value of *
SCS  = 2. 

Therefore, dock configurations similar to those in Figures 2.a and 2.b yield the same optimal 
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shape factor for single-command travel. Likewise, when designed optimally, the expected 

parallel travel equals the expected perpendicular travel. 

4.3   k docks centrally located on the wall with a fixed distance between adjacent docks 

Another relaxation of the single dock assumption is to locate k docks centrally, but with a fixed 

distance between adjacent docks. As noted previously, perpendicular travel is not affected by the 

number and locations of docks. Therefore, we are again interested in formulating the expected 

parallel distance. Assuming two docks are located along one wall with a fixed distance (δ) 

between adjacent docks, the average roundtrip parallel distance to the left of the first dock is    

(W – δ) / 2 and the probability travel will be to the left is (W – δ) / 2W; also, the average 

roundtrip parallel distance to the right of the first dock is (W + δ) / 2 and the probability travel 

will be to the right is (W + δ) / 2W. Therefore, the expected roundtrip parallel distance between 

the first dock and a random point is as follows 

 [ ]
W

W
W

WW
W

WWDE
22222

22

1
δδδδδ +

=





 +






 +

+





 −






 −

=  (10)          

Because the expected roundtrip distance expression for the second dock is the same as the first 

dock, [ ] [ ]21 DEDE = . With the assumption of docks being used equally, the expected single-

command distance can be written as 

 [ ] D
W

WSCE +
+

=
2

22 δ  (11) 

As before, we substitute SA  and SA in Equation 11 for W and D, respectively. Then, 

taking the first derivative with respect to S, setting it equal to zero and solving for S yields 
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A

SSC

2
* 2 δ

+=  (12) 

Following the same steps used for k = 2, we develop a general expression for k docks with a 

fixed distance (δ) between adjacent docks. The average roundtrip parallel distance to the left of 

the ith dock is ( )[ ]{ } 212 δ−−− ikW and the probability travel will be to the left is

( )[ ]{ } WikW 212 δ−−− ; also, the average roundtrip parallel distance to the right of the ith dock is 

( )[ ]{ } 212 δ−−+ ikW  and the probability travel will be to the right is ( )[ ]{ } WikW 212 δ−−+ . 

Therefore, the expected single-command distance for k docks with a fixed value δ is 

 ( )[ ] ( )[ ]∑
= 









 −−−






 −−−

=
k

i W
ikWikW

k
SCE

1 2
12

2
121][ δδ  

                                     ( )[ ] ( )[ ] D
W

ikWikW
+










 −−+






 −−+

+
2

12
2

12 δδ    

                                 D
W

kWSCE +
−

+=
6

)1(
2

][
22δ                                (13) 

By using the same steps as used for k = 2, we obtain *
SCS  as 

 
A

kSSC 3
)1(2

22
* −

+=
δ  (14) 

In contrast to earlier results, with multiple docks separated by a fixed distance, the optimal shape 

factor is greater than 2. Unlike the case with uniformly distributed docks, the optimal shape 

factor increases with an increasing number of docks. This result is important because warehouses 
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having a fixed distance between adjacent docks are quite common. Obtaining an optimal shape 

factor greater than 2 is an unexpected, but useful result. 

To illustrate the impact of the number of docks on the optimal shape factor, we consider the 

following values for the design parameters: A = 60,000 ft2 and δ = 12 ft. As shown in Figure 4, 

with single-command operations, the optimal shape factor increases with an increasing number 

of docks when the distance between docks is fixed, whereas it decreases with an increasing 

number of uniformly distributed docks. 

 

 

 

 

 

 

 

 

Why do the differences reflected in Figure 2.a and 2.c yield such different optimal shape factors? 

Because the proportionality among D, W, and δ is lost when the spacing between docks is fixed. 

We recognize the result is counter intuitive. As noted, with a specified number of uniformly 

distributed docks along one wall, when optimally configured the expected parallel distance 

Figure 4: Optimal shape factor values for single-command operations with different dock 
distributions when A = 60,000 ft2. 
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equals the expected perpendicular distance. That is not the case with a specified number of docks 

and a specified distance between adjacent docks, when they are centrally located along one wall.  

From Equations 13 and 14, with, say, k = 2, DWWSCE ++= 22][ 2δ  and 

DWASSC =+= 2* 2 δ . Therefore, ( )AWD 2* 2 δ+= . Hence, the optimal parallel distance is 

WW 22 2δ+  and the optimal perpendicular distance is ( )22 δ+AAW . It can be shown that the 

expected parallel distance is greater than the expected perpendicular distance when the 

warehouse is optimally shaped. Therefore, in contrast to the case with uniformly distributed 

docks, having specified distances between adjacent docks creates an imbalance in parallel and 

perpendicular expected distances and results in the warehouse being wider and shallower (less 

deep) than for the uniformly distributed case. Basically, if W is a function of either the number or 

spacing between docks, as in Figure 2.a and 2.b, then the optimal shape factor for single-

command operations is less than or equal to 2.0. However, if the number of and spacing between 

docks is fixed, then the optimal single-command shape factor for single-command operations is 

greater than 2.0. 

4.4   k docks not centrally located on the wall with a fixed distance between adjacent docks 

Next, we relax the assumption that the docks are centrally located. As noted previously, 

perpendicular travel does not depend on the number and locations of docks. Therefore, we are 

again interested in formulating the expected parallel distance. We begin by assuming a single 

dock is located with a fixed distance (ϕ) from the left wall. The average roundtrip parallel 

distance to the left of the dock is ϕ and the probability travel will be to the left is ϕ / W; also, the 
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average roundtrip parallel distance to the right of the dock is (W – ϕ) and the probability travel 

will be to the right is (W – ϕ) / W. Therefore, the expected single-command distance is 

 [ ] ( ) D
W

WD
W

W
W

SCE +−+=+
−

+= φφφφ 2
3
6 222

 (15) 

As before, substituting SA  and SA in Equation 15 for W and D, respectively, then, taking 

the first derivative with respect to S, setting it equal to zero and solving for S yields 

 
A

SSC

2
* 21 φ

+=  (16) 

Assume two docks are located along one wall in such a way that the first dock is located a 

distance ϕ from the left wall and there is a fixed distance δ between the docks. For the first dock, 

the average roundtrip parallel distance to the left of the dock is ϕ and the probability travel will 

be to the left is ϕ / W; also, the average roundtrip parallel distance to the right of the first dock is 

(W – ϕ) and the probability travel will be to the right is (W – ϕ) / W. Unlike models developed in 

previous sub-sections (Because [ ] [ ]21 DEDE ≠ ), we must also explicitly account for the location 

of the second dock. So, for the second dock, the average roundtrip parallel distance to the left of 

the dock is (ϕ + δ) and the probability travel will be to the left is (ϕ + δ) / W; also, the average 

roundtrip parallel distance to the right of the second dock is (W – ϕ – δ) and the probability travel 

will be to the right is (W – ϕ – δ) / W. Therefore, the expected single-command distance between 

a randomly selected dock and a random point in the warehouse is 

    [ ] ( ) ( ) ( ) D
W

W
WW
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SCE +
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                                           D
W

W ++−
++

+= )2(
3

366 22

δφδφδφ   (17) 

Substituting S and A in Equation 17, taking the first derivative for shape factor, setting it equal to 

zero and then solving in terms of S yields 

 
A

SSC

22
* 221 δφδφ ++

+=  (18) 

Using steps similar to those employed previously, we develop a general expression for k docks 

where the leftmost dock is located a fixed distance ϕ from the left wall and a fixed distance δ 

between adjacent docks as illustrated in Figure 2.c. The average roundtrip parallel distance to the 

left of the ith dock is ( )[ ]δφ 1−+ i and the probability travel will be to the left is ( )[ ] Wi δφ 1−+ ; 

also, the average roundtrip parallel distance to the right of the ith dock is ( )[ ]δφ 1−−− iW  and the 

probability travel will be to the right is ( )[ ] WiW δφ 1−−− . Therefore, the expected single-

command distance between k docks and a random point in the warehouse is 

 [ ] ( )[ ] ( )[ ] D
W

iW
W
i

k
SCE

k

i
+







 −−−

+
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= ∑
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22 111 δφδφ   

Reducing, we obtain 

 ( ) ( ) ( )( ) Dk
W

kkkWSCE +−+−
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+= δφδφδφ 12
3

132166][
222

 (19) 

Using steps similar to those employed for k = 1, we obtain *
SCS  as 

 ( ) ( )
A

kkkSSC 3
1321661

222
* δφδφ +−+−+

+=  (20) 
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As expected, increasing k, δ, and/or ϕ, increases *
SCS . Also, increasing A decreases *

SCS . For 

example, with A = 60,000 ft2 and δ = 12 ft, Figures 5 and 6 illustrates the impact of the number 

of docks on the optimal shape factor for different values of ϕ. Notice, the optimal shape factor 

Figure 6: Optimal shape factor with ϕ = 20 ft for single-command operations 

Figure 6: Optimal shape factor with ϕ = 50 ft for single-command operations 
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for single-command operations is less than 2.0 for the smaller value of ϕ and, for the larger value 

of ϕ is less than 2.0 for a small number of docks. 

4.5   Single dock offset by θ from centerline of the warehouse 

Unlike Section 4.4, in this section we assume the location of a single dock is measured from the 

centerline of the warehouse instead of the left wall of the warehouse.  We develop a general 

expression for a single dock located a fixed value θ from the centerline of the warehouse. For the 

dock, the average roundtrip parallel distance to the left of the dock is (W / 2 – θ) and the 

probability travel will be to the left is (W / 2 – θ) / W; also, the average roundtrip parallel 

distance to the right of the dock is (W / 2 + θ) and the probability travel will be to the right is     

(W / 2 – θ) / W. Therefore, the expected single-command distance between a single dock and a 

random point in the warehouse is 

 [ ] ( ) ( ) D
W

WD
W

W
W

WSCE ++=+
+

+
−

=
222 2

2
22 θθθ

 (21) 

As before, substituting SA  and SA in Equation 21 for W and D, respectively, taking the 

first derivative with respect to S, setting it equal to zero and solving for S yields 

 
( )

A
SSC

2
* 22 θ

+=  (22) 

From Equation 22, if the non-central location of the dock is determined by measuring the offset 

distance from the centerline of the warehouse, rather than measuring the distance from the left 
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wall, the optimal shape factor is greater than 2.0. 4 

5   Discrete Space  

Although continuous space formulations can be used to gain useful insights regarding the effect 

of the number and location of docks on the optimal shape factor, they do not accurately measure 

the travel that occurs in a warehouse. This is particularly true for dual-command operations. 

Specifically, as noted previously, the expected rectilinear travel-between distance calculation is 

not a realistic measurement of travel between two points in different picking aisles.  

In this section, we develop a general formulation of the expected parallel distance traveled from 

docks located at any points along a wall to random points in storage. When continuous space 

formulations were used, we ignored the locations of docks relative to centerlines of picking 

aisles and back-to-back rack locations. Here, we wish to calculate the exact distance between the 

centerline of a dock and the nearest centerline of a picking aisle. Knowing that distance, the 

distances to all other picking aisles are easily calculated.  

To facilitate the development of the general formulation of the expected parallel distance 

traveled from docks located at any points along the wall, we let di denote the distance from the 

left end of the wall containing the docks to the centerline of dock i and ti denote the distance 

from the left end of the wall containing the docks to the back-to-back rack location that is closest 

to dock i. In so doing, we consider four cases involving di and ti: (a) di > ti, (b) di < ti, (c) di = ti, 

and (d) | di – ti | = a / 2. 

                                                 
4 Letting θ be the distance from the centerline to the dock, the optimal single-command shape 
factor is 2 + (2θ)2 / A when there is a single dock. Whereas, from Equation 27, with a single dock 
the optimal single-command shape factor is 1 + 2ϕ2 / A. 
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For the case shown in Figure 7.a, because di > ti, dock i is located to the left of the closest 

picking aisle. Therefore, the distance to the closest picking aisle is a / 2 + ti – di, which means the 

closest picking aisle is to the right of dock i. To the left of dock i the number of picking aisles 

equals ti / a, and the distance to the closest picking aisle to the left of dock i equals a / 2 – ti + di. 

Therefore, the distance traveled from dock i to picking aisle j to the left equals 

ii dtaaj +−+− 2)1(  for j = 1, 2, …, ti  / a. To the right of dock i, there are n – ti  / a picking 

aisles, and the distance to the closest picking aisle to the right of dock i equals a / 2 + ti – di, so 

the distance traveled from dock i to picking aisle j to the right equals 

iii dtaaatj −++−− 2)1(  for   j =  ti  / a + 1, ti  / a + 2, …, n. 

 

 

 

 

 

 

 

 

 

d i

t id i

t i

d i

t i

t i

d i

(a)  (b)  

(c)  (d)  

Figure 7: Dock locations (a) di > ti, (b) di < ti, (c) di = ti and (d) | di – ti | = a / 2 
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For the case illustrated in Figure 7.b, because di < ti, dock i is located to the right of the closest 

picking aisle. Therefore, the distance to the closest picking aisle is a / 2 – ti + di, which is to the 

left of dock i. The number of picking aisles to the left of ti still equals  ti / a, and the number of 

picking aisles to the right of ti still equals n –  ti / a, because we are measuring ti from the left end 

of the wall containing the docks. Consequently, the equations for case (a) apply for case (b). 

For the case shown in the Figure 7.c, because di = ti, the location of dock i coincides with a back-

to-back rack location. Therefore, the distance to the closest picking aisle is a / 2, and the number 

of picking aisles to the left of ti continues to equal ti / a and the number of picking aisles to the 

right of ti continues to equal n – ti / a. Again, the equations for case (a) apply, because (ti – di) 

equals zero. 

For the case illustrated in Figure 7.d, because |di – ti| = a / 2, dock i is located at a centerline of a 

picking aisle. Therefore, no parallel travel occurs to reach the nearest picking aisle. To resolve 

the choice of traveling to the right or to left to reach the “nearest” adjacent picking aisle, we 

resolve the decision by using a Mathematica equation, Round[x, y]. Specifically, we let                

ti = Round [di, a]. Alternately, using Excel, we can let ti = a * ROUND (di/a, 0) or                        

ti = MROUND  (di, a). Defining ti in this way results in the equations for case (a) applying to 

case (d). 

With random storage, each picking aisle is equally likely to be visited. Therefore, to determine 

the expected parallel roundtrip distance for dock i, we add the two equations shown above, 

multiply the sum by 2 and divide by the number of picking aisles. For k docks, the expected 

parallel roundtrip distance is given by  
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Simplifying Equation 23, the expected parallel roundtrip follows 

 ( )∑
=

−+−







=

k

i
iiii ttddnana

kna
SCE

1

222 2421][  (24) 

Because perpendicular distance does not depend on the location of the dock(s), to obtain the 

expected perpendicular distance expression for any dock we calculate the expected number of 

storage locations visited in a storage row and multiply the value obtained by the product of 2 and 

the width of a storage location 

 ( )fvj
m

wSCE
m

j
++






= ∑

−

=

212][
1

1
  (25) 

where m is the number of storage locations along one side of a picking aisle, w is the width of a 

storage location and f is the distance from the centerline of the first storage location to the 

centerline of cross-aisle located between the docks and storage racks (f = v + w/2). 

The summation in Equation 25 reduces to w (m - 1). Substituting v + w/2 for f and D – 4v for 

wm, we obtain the expected perpendicular distance 

 DSCE =][  (26) 

To obtain the expected single-command distance, we sum Equation 24 and Equation 26. A 

general discrete expression for the expected single-command distance follows 
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where D is the expected perpendicular distance and C is the expected parallel distance.  

To determine the expected travel-between distance with discrete space, we again consider two 

parts: (1) parallel travel, and (2) perpendicular travel. Because all picking aisles have the same 

length, all storage locations in the picking aisles are equally likely to be chosen. Note that the 

probability of the two storage locations being in the same aisle is not the same as the probability 

of the two storage locations being in different aisles. The probability the two locations are in the 

same aisle is 1 / n and the expected perpendicular distance between the two locations is given by 
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The probability of two locations being in different aisles is (1 – 1 / n) and the expected 

perpendicular distance between the two locations is given by 
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The expected parallel travel is given by Pohl et al. (2009) as follows 

 ( )
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Combining the parallel and perpendicular components, a discrete formulation for the expected 

travel-between distance is given by 
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5.1   k docks uniformly located on one wall 

As defined before, di is the distance between the left wall and dock i; it is measured along the 

bottom cross-aisle of the warehouse. When docks are located uniformly, we can develop an 

expression for the locations of docks to facilitate subsequent calculations. With k docks, the 

width of the warehouse is divided by (k + 1) to obtain the spacing between adjacent docks. 

Hence, the distance between adjacent docks and between an end-wall and its closest dock equals 

W / (k + 1). Therefore, the distance between the left wall and the ith dock is given by 

 ( )
11

1
1 +

=
+

−+
+

=
k

Wi
k
Wi

k
Wdi  (33) 

Substituting Equation 33 in Equation 27 for di, we verify the accuracy of the continuous 

formulation derived in Equation 7 for expected single-command distance. Table 1 provides 

values of the error introduced by using a continuous approximation instead of the discrete 

formulation provided in Equation 27. The errors shown are based on the following parameter 

values:  m = 75 ft, w = 4 ft, mw = L = 300 ft, v = 6 ft, f = 8 ft, a = 20 ft, and δ = 12 ft. Values 

ranging from 1 to 30 are used for k, depending on the value of n, and values ranging from 3 to18 

are used for n.  
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The continuous approximation overestimated the expected single-command distance for all cases 

considered. We calculate the percentage error for the continuous formulation by subtracting the 

expected distance obtained using a discrete formulation from the expected distance obtained 

using a continuous formulation, dividing the result by the discrete formulation result, and 

multiplying the quotient obtained by 100. Therefore, the percentage error is  

[ ] [ ]( ) [ ]( ) 100*DDC SCESCESCE − .5   

Table 1: The percent error for a continuous approximation of single-command distance with 
uniformly distributed docks 

 

 

 

 

 

 

 

 

 

 

                                                 
5 Superscript C denotes continuous approximation and superscript D denotes discrete 
formulation. 

  Number of aisles (n) 

  3 6 9 12 15 18 

N
um

be
r o

f d
oc

ks
 (k

) 

1 0.9506 0.0000 0.2691 0.0000 0.1408 0.0000 
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
3 0.4664 0.2828 0.1297 0.0000 0.0668 0.0694 
4 0.3717 0.1686 0.1030 0.0713 0.0000 0.0412 
5  0.0000 0.1538 0.0000 0.0789 0.0000 
6  0.1597 0.0973 0.0672 0.0499 0.0387 
7  0.1793 0.1001 0.1006 0.0512 0.0434 
8  0.1392 0.0000 0.0585 0.0433 0.0000 
9  0.1484 0.0959 0.0623 0.0721 0.0358 
10   0.0922 0.0636 0.0471 0.0365 
11   0.1036 0.0000 0.0529 0.0547 
12   0.0909 0.0626 0.0464 0.0360 
13   0.0917 0.0613 0.0468 0.0352 
14   0.0867 0.0597 0.0000 0.0343 
15    0.0696 0.0462 0.0366 
16    0.0614 0.0454 0.0352 
17    0.0545 0.0479 0.0000 
18    0.0610 0.0451 0.0350 
19    0.0585 0.0507 0.0356 
20     0.0440 0.0341 
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From Table 1, the error percentage resulting from using a continuous approximation for single-

command operations varies from 0.0 to 0.95 percent, with an average value of 0.078 percent. 

Because very little error is introduced by using the continuous approximation, we employ it in 

subsequent calculations. As shown, increasing the number of aisles results in decreasing the error 

for the continuous approximation. 

5.2   k docks centrally located on a wall with a fixed distance between adjacent docks 

When docks are located centrally, but with a fixed distance between adjacent docks, we develop 

a different expression for di . If we have k docks with a fixed distance (δ) between adjacent 

docks, the distance from the left wall to the first dock (d1) will be {W – (k – 1) δ} / 2, and the 

distance from the left wall to subsequent dock locations is obtained by adding multiples of the 

fixed distance (δ). Thus, the distance to the ith dock from the left wall is given by: 

 ( ) ( )δδ 1
2

1
−+

−−
= ikWdi  (34) 

Substituting Equation 34 into Equation 27, we verified the accuracy of the continuous 

formulation derived in Equation 13 for expected single-command distance by comparing results 

with those obtained from the discrete formulation. Values of the error percentage introduced by 

using a continuous approximation are provided in Table 2, based on the same parameter values 

used in the previous section.  

From Table 2, the error percentage resulting from using a continuous formulation for single-

command operations varies from 0.0 to 0.95 percent, with an average value of 0.083 percent. As 
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shown, increasing the number of aisles results in decreasing the error percentage for the 

continuous approximation. 

Table 2: The percent error for a continuous approximation of single-command distance with a 
fixed distance between adjacent docks 

   Number of aisles (n) 
    3 6 9 12 15 18 

N
um

be
r o

f d
oc

ks
 (k

) 

1 0.9506 0.0000 0.2691 0.0000 0.1408 0.0000 
2 0.1504 0.1563 0.0429 0.0676 0.0225 0.0397 
3 0.3371 0.1848 0.0965 0.0800 0.0506 0.0470 
4 0.3717 0.0862 0.1070 0.0374 0.0561 0.0220 
5  0.1374 0.0960 0.0598 0.0505 0.0352 
6  0.1993 0.0708 0.0870 0.0373 0.0512 
7  0.1163 0.0952 0.0510 0.0503 0.0301 
8  0.1515 0.0948 0.0667 0.0501 0.0394 
9  0.1484 0.0756 0.0656 0.0401 0.0388 
10   0.0833 0.0661 0.0443 0.0392 
11   0.1082 0.0532 0.0577 0.0316 
12   0.0753 0.0655 0.0403 0.0390 
13   0.0917 0.0624 0.0493 0.0372 
14   0.0867 0.0565 0.0467 0.0338 
15    0.0572 0.0488 0.0343 
16    0.0710 0.0405 0.0427 
17    0.0531 0.0483 0.0320 
18    0.0630 0.0451 0.0381 
19    0.0585 0.0433 0.0355 
20         0.0422 0.0377 

 

5.3   k docks not centrally located on a wall with a fixed distance between adjacent docks 

Relaxing the assumption that the docks are centrally located, we assume the first dock is located 

a distance ϕ from the left wall. Again, we update the di expression in Equation 27. Now, the 

distance from the left wall to the ith dock is given by 
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 ( )δφ 1−+= idi  (35) 

Substituting Equation 35 into Equation 27, we compared the results obtained from the 

continuous approximation using Equation19 with the results obtained from the discrete 

formulation in Equation 27. Values of the error percentage introduced by using a continuous 

approximation are provided in Table 3, based on the parameter values used in the previous two 

sections and letting ϕ = d1 = 20 ft. 

Table 3: The percent error for a continuous approximation of single-command distance for not 
centrally located docks on a wall with a fixed distance between adjacent docks 

   Number of aisles (n) 
    3 6 9 12 15 18 

N
um

be
r o

f d
oc

ks
 (k

) 

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
2 0.3007 0.1322 0.0774 0.0515 0.0370 0.0280 
3 0.2494 0.1116 0.0655 0.0436 0.0313 0.0237 
4  0.1014 0.0598 0.0399 0.0286 0.0216 
5  0.1359 0.0807 0.0540 0.0387 0.0292 
6  0.1133 0.0679 0.0455 0.0327 0.0247 
7  0.1356 0.0821 0.0552 0.0398 0.0300 
8  0.1262 0.0774 0.0523 0.0377 0.0285 
9   0.0735 0.0500 0.0361 0.0273 
10   0.0827 0.0566 0.0410 0.0310 
11   0.0750 0.0517 0.0376 0.0285 
12   0.0821 0.0570 0.0416 0.0316 
13   0.0784 0.0549 0.0402 0.0306 
14    0.0530 0.0390 0.0298 
15    0.0569 0.0422 0.0323 
16    0.0532 0.0396 0.0304 
17    0.0564 0.0423 0.0326 
18    0.0545 0.0411 0.0318 
19     0.0400 0.0310 
20         0.0420 0.0328 

 

From Table 3, the error percentage resulting from using a continuous formulation for single-
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command operations varies from 0.0 to 0.30 percent, with an average value of 0.054 percent. As 

shown, increasing the number of aisles results in decreasing the error percentage for the 

continuous approximation. 

6   Quasi-Discrete Space 

With a desire to calculate the optimal shape factor for the discrete formulations, we employed 

approximations to facilitate calculations. Specifically, we employed a continuous approximation 

for E[TB]. As a result, in this section, formulations are partially discrete and partially continuous.  

As noted previously, travel-between distance is not affected by the number or locations of docks. 

Therefore, it is the same for all cases considered in the previous sections. To illustrate the 

approach, we consider the case in which a fixed distance exists between adjacent docks, which 

are centrally located.  

Specifically, in Equation 32, we replace m2 -1 with m2 and replace (2m2 – 3m +1)/m with         

(2m – 3). The resulting approximation for expected travel-between distance is  
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Table 4 provides values for the percent error of the approximation for travel-between distance 

using the values of the parameter values stated previously. As indicated, the error introduced by 

using a continuous approximation varies from 0.76 percent to 0.92 percent, with an average of 

0.83 percent. 
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Table 4 : The percent error for a continuous approximation of travel-between distance 

Number of aisles (n) 
3 6 9 12 15 18 

0.9167 0.948 0.9064 0.857 0.809 0.7646 
 

Combining Equations 13 and 36 and simplifying, a continuous approximation of the expected 

distance for a dual-command operation is given by  
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Replacing n and D in Equation 37 with 2aAS   and SA , respectively, and taking the first 

derivative with respect to S yields 
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Setting Equation 38 equal to zero and solving with the Mathematica (2013) software package for 

*
DCS  yields the following result containing complex numbers 
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where ( ) ( ) ( )41223123626 41354415324135 aAAaAeAeAaAAR +++=  and  

)1(4102 222 −−+−= kavAae δ          

To illustrate the impact of the number of docks on the optimal shape factor, we consider design 

parameters having the following values: A = 60,000 ft2, a = 20 ft, v = 6 ft and δ = 12 ft. As 
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shown in Figure 8, with single-command operations, the optimal shape factor increases the 

number of docks increases when the distance between docks is fixed. As expected, with dual-

command operations, the optimal shape factor increases slightly with an increasing number of 

docks when a fixed distance exists between adjacent docks.  

 

 

 

 

 

 

7   Using Different Docks for Receiving and Shipping 

In the previous sections, we did not distinguish between docks insofar as their functions were 

concerned. In fact, we assumed docks were equally likely to be used. Now, we extend our 

analysis to allow a cluster of docks to be designated as receiving docks and another cluster be 

designated as shipping docks.  To facilitate the development of the formulations, we introduce 

new notation and add subscripts to distinguish the two clusters of docks.   

We assume the cluster of docks located to the left of the warehouse centerline are devoted to 

receiving, whereas shipping docks are located to the right of the warehouse centerline. For the 

Figure 8: The effect on the optimal shape factor of increasing the number of docks with single- 
and dual-command operations 
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receiving docks, we use ϕR to denote the distance from the left wall to the closest receiving dock, 

δR to denote the distance between adjacent receiving docks, and kR to denote the number of 

receiving docks. Similarly, we use ϕS, δS and kS for the distance from the right wall to the closest 

shipping dock, the distance between adjacent shipping docks, and the number of shipping docks, 

respectively. As shown in Figure 9, the only difference in measuring distances for the two 

clusters is that we measure the distance for the shipping docks from the right wall instead of the 

left wall. From Equation 19, the expected single-command expression is given by 
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Employing the same procedure as previously, we obtain the formula for the optimal shape factor 

                        ( ) ( )( )[ ]{ 1321663
)(3

1 222* +−+−++
+

= RRRRRRRR
SR

SC kkkAk
kkA

S δδφφ  

                                          ( ) ( )( )[ ]}1321663 222 +−+−+++ SSSSSSSS kkkAk δδφφ  (41) 

Based on Equation 41, increasing the area (A) decreases the value of the optimal shape factor. In 

addition, *
SCS  is a convex function of ϕR, ϕS, δR, δS, kR, and kS. Therefore, an increase in the value 

of each of the parameters can increase or decrease the value of the optimal shape factor 

depending on the stationary points of each. However, it appears that the stationary point occurs 

in a non-feasible region, namely for negative-valued distances and a fractional number of docks. 

This is a subject we plan to explore further in the future.  
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Previously, we found that an increase in the number of docks decreased the value of the optimal 

shape factor. Hence, having separate receiving and shipping docks with fixed distances between 

adjacent docks and the nearest walls yields an interesting result insofar as the optimal shape 

factor is concerned. This, too, is a subject for further research.  

 

Figure 9: Different docks used for receiving and shipping 

8   Cross-Docking Travel 

In this section, we consider a mixture of single-command and cross-docking travel in the 

warehouse and its impact on the shape factor. 

As in the previous section, we designate the cluster of docks located to the left of the warehouse 

centerline for receiving, whereas shipping docks are located to the right of the warehouse 

centerline. There exist kR docks on the left side (the leftmost dock is the first dock) and kS docks 

on the right side (the rightmost dock is the first dock). The total number of docks is k (k = kR + 

kS). The distance between the two clusters of docks is B. If the distance between adjacent docks 

is not the same for receiving and shipping, then the expected distance for cross-docking is  
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where ( ) ( ) SSRRLR kkWB δδφφ 11 −−−−−−=  

RδRφ Sδ Sφ
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Simplifying Equation 59 yields the expected roundtrip distance to perform cross-docking  

 ( ) ( ) ( ) SSRRSR kkvWCDE δδφφ 1122][ −−−−−−+=  (43) 

For a unit-load warehouse that only performs single-command operations, including cross-

docking, three distinct unit-load moves occur: transporting a unit-load to storage from receiving, 

transporting a unit-load from storage to shipping, and transporting a unit-load from receiving to 

shipping (cross-docking). From the perspective of shipping, unit-loads arrive either from storage 

or, via cross-docking, from receiving.  

We let the probability a unit-load arrives at shipping from storage be pS and the probability be pC 

that a unit-load arrives at shipping via cross-docking, such that pS + pC = 1.00. Before a unit-load 

can arrive at shipping from storage, it is transported to storage from receiving. Therefore, with 

probability pS, the expected distance traveled is equal to the sum of the expected distance from 

receiving to storage and the expected distance from storage to shipping. With probability pC , the 

expected distance traveled equals the expected cross-dock distance. Drawing on the results in 

Section 7, the overall expected distance traveled by a unit-load is given by 

 ( ) ( )GpFEpSCE CS ++=][  (44) 

where 
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Replacing W and D with the warehouse area and shape factor, we obtain 
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Taking the first derivative with respect to S, setting it equal to zero, and solving for *
SCS  gives 

                                ( ) ( ) ( ){ 1321326
6

1 2222* +−++−+
−

= SSSRRR
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SC kkkkA
A
pS δδ  

                                ( ) ( )}SSSSSRRRRR kk δδφφδδφφ −++−++ 66  (46) 

To illustrate the effect cross-docking can have on the optimal shape factor, we assign the 

following values to the parameters: A = 60,000 ft2, kR = 5, kS = 7, ϕR = 20 ft, ϕS = 30 ft, δR = 12 ft, 

δS = 14 ft. The probability of cross-docking ranges from 0 to 1. As indicated in Equation 46, 

there exists a linear relationship between the optimal shape factor and the probability of cross-

docking. As expected, cross-docking tends to decrease the optimal shape factor. Also, the 

optimal shape factor is less than 1.5 for all cases considered.    

Given the convexity of *
SCS with respect to the distance related parameters and the number of 

docks, in the feasible region for the values of the parameters, increasing the number of docks 

increases the optimal shape factor. Moreover, increasing the distance the closest dock is to either 
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the left or right wall also increases the optimal shape factor. Conversely, increasing the area (A) 

or the probability of cross-docking (pC) increases the optimal shape factor. 

9   Summary, Conclusions, Significance and Recommendations 

9.1   Summary 

Although warehouses generally have more than one dock, researchers have focused primarily on 

one centrally located dock. In the thesis, we extended studies conducted by Francis (1967), Pohl 

et al. (2009) and Thomas and Meller (2014) by considering multiple docks with fixed distances 

between adjacent docks and by examining the effect of additional docks on the optimal shape 

factor. 

In the first of the five continuous space cases considered, we found that increasing the number of 

docks decreases the spacing between adjacent docks and the optimal shape factor is less than 2.0. 

Letting the docks be spread uniformly over the wall, we verified the result given by Thomas and 

Meller (2014) that increasing the number of docks with a fixed distance between adjacent docks 

increases the width of the warehouse and results in the optimal shape factor being less than 2.0. 

Subsequently, we found that having a fixed number of docks and a fixed distance between 

adjacent docks causes the optimal shape factor to be greater than 2.0. Then, we found, for non-

centrally located docks, that specifying the offset distance when measured from the left wall of 

the warehouse can result in the optimal shape factor being either less than 2.0 or greater than 2.0, 

depending on the magnitude of the offset distance and the number of docks. Finally, we found 

that specifying the offset distance when measured from the centerline of the warehouse results in 

the optimal shape factor being greater than 2.0. 
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Using a continuous approximation for single-command operations resulted in an error of 

approximately 0.08 percent. Because of an approximate error of 56.86% for travel-between 

operations in continuous space, we developed a discrete formulation to obtain more accurate 

expected distances for dual-command operations. Because the discrete formulation was 

cumbersome, to obtain expected dual-command distance, we combined the continuous space, 

single-command formulation with a continuous approximation based on our discrete formulation 

of expected travel-between distance. The combination yielded an average error of 0.5 percent for 

the cases considered. 

9.2   Conclusions 

Based on the research performed, we concluded that the number and locations of docks 

significantly affects the expected distance traveled in warehouses. Also, when the distance 

between adjacent docks is fixed, the magnitude of the distance affects the expected distance 

traveled in warehouses. Finally, when docks are offset from the centerline of the warehouse, the 

optimal shape factor is significantly impacted by the decision to measure the offset distance from 

the left wall or the centerline of the warehouse. 

9.3   Significance 

Having developed a variety of mathematical models of travel distances in a unit-load warehouse, 

we now address the significance of the research insofar as the design and operation of unit-load 

warehouses are concerned. Consider the design of a new unit-load warehouse. The designer must 

determine the number of docks to be included in the design, as well as their relative locations. If 

a fixed number of docks are needed and the distance between adjacent docks is to be specified, 
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then the width of the warehouse should be more than twice its depth; our results can guide the 

designer in determining how much greater than 2.0 the shape factor should be.  

On the other hand, if the designer wants to include docks over the entire width of a wall because 

it is cheaper to include them during construction than to add them later, if needed, then it is 

important to know if all docks will, in fact, be used and, if so, will they be used equally. If so, 

then a shape factor less than 2.0 should be used in designing the warehouse. However, if docks 

are included across the entire width of a wall and only a subset of the docks will be used, then a 

shape factor greater than 2.0 should be evaluated.  

For an existing warehouse with docks installed across the entire width of a wall, if not all of the 

warehouse is needed for the storage and retrieval of unit-loads, then the storage area should be 

configured in such a way that the width of the storage area is more than double the depth of the 

storage area, i.e., a shape factor greater than 2.0. The balance of the space in the warehouse can 

be used for offices, restrooms, break areas, battery charging stations for industrial trucks, etc.  

The most significant contribution of the study is identifying conditions for which the optimal 

shape factor should be greater than 2.0 for a unit-load warehouse. A secondary contribution is 

gaining an understanding of the effect on the optimal shape factor of the number and location of 

docks and cross-docking. Models produced by the study can be used to obtain exact values for 

design parameters, instead of relying on rules of thumb or intuition. 

9.4   Recommendations 

Recommendations for future research include: 

1. consideration of other traditional layout configurations with multiple docks, 
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2. consideration of the effect of dock locations on the expected distance for single- and 

dual-command operations in warehouses having non-traditional aisle structure,  

3. consideration of the effects of multiple docks on expected distance traveled and the 

optimal shape factor when class-based storage and/or turnover-based storage is used, 

4. consideration of having docks with unequal probabilities of usage,  

5. further consideration of cross-docking with receiving and shipping docks physically 

separated, and  

6. determination of the optimal number of docks and their locations by considering 

congestion, dock cost, and travel cost. 
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