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Abstract 

The Mississippi Valley-Type (MVT) Central and East Tennessee (TN) Districts contain 

economically significant lead-zinc deposits that occur in the Early Ordovician carbonates of the 

Knox Group. Although both districts share similar host rock, have similar temperatures of 

formation, and typically fill open spaces of collapse breccias or replace their host carbonates, 

previous studies may suggest that these ores did not form from the same mineralizing fluids and 

may have different Pb sources. Nu Plasma MC-ICP-MS Pb isotopic analyses on sulfides from 

Central and East TN were conducted and the metal sources evaluated. Results were plotted on 

covariation diagrams with respect to the average crustal growth curve from Stacy and Kramers 

(1975) and the orogene curve from Zartman and Doe (1981). Lead isotope data from both 

Central and East TN plot beyond the present day age (0 m.y. ago) indicative of a crustal source 

of Pb-Zn. Central TN 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios range from 19.334 – 20.128, 

15.548 – 16.034, and 38.837 – 40.034 respectively. Eastern TN  206Pb/204Pb, 207Pb/204Pb, and 

208Pb/204Pb ratios range from 19.341 – 19.455, 15.638 – 15.789, and 39.045 – 39.591 

respectively. Pb isotope ratios from the Young Mine in the East TN District plot within ranges 

defined by other East TN District samples from previous studies. Three Pb isotope ratios from 

the Elmwood Mine in the Central TN District plot near these East TN samples, while the 

remaining Elmwood samples remain suspect to analytical error as they plot away from any other 

recorded Central TN deposits. It appears that the thick, black, metal-rich shales of the 

Appalachian Basin have been the source of the Pb-Zn and ore fluids of MVT deposits that 

formed the East TN deposits. When East TN Pb data from this study are compared to Central TN 

Pb data from previous studies, Central TN Pb is commonly more radiogenic, suggestive of a 



  

mineralizing fluid with different compositions. Further analysis of Central TN Pb deposits is 

needed to further constrain this source. 
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Introduction 

 

Mississippi Valley Type (MVT) deposits host a large proportion of the Earth’s economic 

lead and zinc. The most abundant minerals in MVT deposits are sphalerite, and galena (zinc and 

lead, respectively), in addition to barite, fluorite, calcite and dolomite. Often, the MVT deposits 

occur in clusters, forming Pb and Zn ore districts at the margins of sedimentary basins; most 

districts cover hundreds and in some cases, thousands of square miles (Misra, 1999).  

MVT deposits are characterized by low temperature of formation (50°C to 

200°C), epigenetic (formed after host) emplacement and stratabound (generally restricted 

to carbonates). As illustrated in Figure 1 (Robb, 2005), MVT deposits form from 

diagenetic interactions between the host carbonates and both metal-bearing and sulfur-

bearing basinal brines forced into the region by orogenic uplift.  

 

 
Figure 1: diagram illustrating the concept of hydrological continuity between a compressional 

orogenic belt and a foreland sedimentary basin through which orogenically and topographically 

driven fluids flow, and within which MVT Zn-Pb deposits form (Robb, 2005). 
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MVT Deposits are typically present at shallow depths on flanks of basins, have a 

relatively simple mineralogy (sphalerite, galena, pyrite, marcasite, dolomite, calcite, and quartz), 

and are not associated with igneous activity (with the exception of deposits from the Illinois-

Kentucky District) (Leach and Sangster, 1993; Sangster, 1995; Misra, 1998; Leach et al., 2001). 

The global distribution of MVT deposits varies from continent to continent as illustrated in 

Figure 2 (Leach et al., 2010). 

The world’s largest MVT districts include Pine Point (Northwest Territories, Canada), 

the Irish Midlands (Ireland), Upper Silesia (Poland), the Viburnum Trend (also called the New 

Lead Belt), and Old Lead Belt (United States) and the Upper Mississippi Valley (United States) 

(Figure 1). Important MVT districts within the United States include the East Tennessee, Central 

Tennessee, and Tri-State (Kansas, Missouri, and Oklahoma) in addition to the aforementioned 

Viburnum Trend and Old Lead Belt (Arkansas and Missouri), Upper Mississippi Valley (Illinois, 

Iowa, and Wisconsin), and the Northern Arkansas Districts (Rakovan, 2006) (Figures 2 & 3). 

Relatively little research has been published on MVT deposits specifically those of 

Central and Eastern TN resulting in a very limited understanding of both the origin of the 

hydrothermal fluid and of the Pb and Zn. This study is an attempt to contribute to the overall 

understanding of Central and Eastern TN MVT deposits through use of Pb isotope geochemistry. 

Since Pb is common in ore deposits, either as primary Pb or as minor/trace elements, Pb isotopes 

will be used to establish isotopic provinces/ranges for Central and Eastern TN from which the 

source of the Pb and Zn might be inferred (Kesler, et al., 1994). Lead, zinc, and commonly 

copper, share similar geochemical behavior in 
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Figure 2: Global distribution of MVT Lead-Zinc Deposits and Districts (Leach, 2010).
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hydrothermal fluids, so measured Pb isotope compositions closely approximate the composition 

of the mineral and hydrothermal fluid at the time of crystallization (Tosdal, et al., 1999).   

Figure 3: Tri-State District (1); Northern Arkansas Zn District (2); Viburnum Trend, Southeast 

MO (3); Upper Mississippi Valley District (7); Eastern Tennessee District (9); Central Tennessee 

District (11) (Modified after Kendrick and Burgess, 2002). 
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Objectives  

The objectives of this study are to:  

1) Obtain Pb isotope data from 14 sphalerite (Zn ore) samples collected from the Elwood 

Mine located in the Central TN District and the Young Mine located in the Mascot-

Jefferson City District (East TN) 

2) Establish the radiogenic nature of the ore. Are these samples ordinary or do they contain 

anomalous amounts of Pb similar to “J-type” MVT deposits? 

3) Compare Pb isotope ratios from this study to Pb isotope ratios of East and Central TN 

ratios from previous studies 

4) Compare Pb isotope ratios from this study to Pb isotope ratios of other districts in the US 

from previous studies 

5) Establish the source/reservoir of the Pb/Zn abundant in MVT ore in Central and East TN 

6) Contribute to the overall understanding of the nature and occurrence of MVT ore in 

Central and East TN 
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The Geology of the Central Tennessee District 

The Central Tennessee District is comprised of the Gordonsville-Elmwood Mine located 

approximately 50 miles east of Nashville, TN in the northeastern corner of the Central Basin 

with the Eastern Highland Rim to the east and the Western Highland Rim to the west (figure 4). 

Structurally, the Central Basin is a broad anticlinal feature known as the Nashville Dome. 

Regional dip along the flanks of the dome is gentle (Misra et al., 1996). The burial depth of the 

Knox Group (zone of ore mineralization) reaches a minimum of about 300ft from the surface at 

the deeply eroded apex of the dome (Winslow and Hill, 1973). 

 
Figure 4: location of mineral districts in the Knox Group relative to major physiographic 

provinces and geologic structures in Tennessee. The Central Tennessee District (1) is in 

essentially horizontal strata in the subsurface along the axis of the Cincinnati Arch. The Copper 

Ridge (2), Mascot-Jefferson City (3), and Sweetwater (4) districts are in inclined strata exposed 

in the imbricate thrust fault belts of the Valley and Ridge province in East Tennessee. (From 

Kyle, 1976). 
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An extensive erosional unconformity separates the Upper Cambrian-Lower Ordovician 

Knox Group (interpreted as shallow-water marine dolostones) from the overlying Middle 

Ordovician limestones (deeper-water marine) (Figure 5). Rubble breccias mark paleosinkhole 

sites and are just below the unconformity and dissolution has been identified at more than 1600ft 

below the paleokarst surface (Gilbert and Hoagland, 1970). Most ore occurs in altered limestone 

beds in the lower and middle members of the Mascot Dolomite (uppermost formation in the 

Knox Group) within dissolution collapse breccias and caverns in a paleoaquifer system that are 

thought to have developed in the soluble limestone horizons related to karst development on the 

regional unconformity at the top of the Knox (Gaylord, 1995) (Figure 6).  

Where the Mascot dolomite is the principle host to the ore, it is described as light-gray to 

brown, finely crystalline dolostone interbedded with ~20% limestone that is variably dolomitized 

and silicified. Many of the dolomites near altered and mineralized areas display reaction rims 

where sulfides have remobilized around breccia clasts (Gaylord, 1995). Throughout the Central 

TN District, limestone beds have been partially or completely replaced by dolostone and silica 

(crypto- and/or microcrystalline quartz). The dolomitization is well developed in areas of 

previous porosity and permeability enhancement through earlier dissolution activity related to 

the Knox paleoaquifer system (Gaylord, 1995).  

Pb-Zn and S Source/Age of Mineralization  

It has been suggested that the Pb and Zn were carried into the region by migrating oil-

field brines from the Appalachian Basin (Anderson, 1991; Baird and Dennen, 1985), and that 

these Pb-Zn bearing oil-field brines and associated hydrocarbons were mobilized by 

Appalachian orogenies (Anderson, 1991). The source of these fluids likely originated from 
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Figure 5: generalized stratigraphic section of the Central Tennessee zinc district (Modified from 

Crawford and Hoagland, 1968). 
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Figure 6: generalized high-domal ore structure depicting collapse structures created through dissolution from paleoaquifer 

system; common to Central and Eastern Tennessee MVT Districts (from McCormick et al., 1971).
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evaporation of seawater or from the dissolution of evaporite minerals, like halite, in the 

subsurface. Sulfur sources obtained from sulfur isotope studies (Kesler et al., 1994) were 

ultimately derived from a seawater sulfate and that sulfide precipitation in Central TN involved 

the mixing of a metal-rich brine with reduced sulfur at the deposition site (Misra et al., 1996). 

Estimated salinities from fluid inclusion studies (Gratz and Misra, 1983) range from 21-23% 

weight equivalent NaCl and are similar to modern day oil-field brines. 

Exact sources of Pb-Zn in the Central Tennessee District remains somewhat of a mystery 

but Leach et al. (2005) identified several potential crustal sources for all MVT deposits: 

basement rocks, weathered regolith, basal sandstones, and carbonate aquifers. Pb-Zn metal 

concentrations that are contained within the ore fluids/brines commonly transport via metal 

chloride complexing and are controlled by temperature, pH, and the activity of reduced sulfur 

(Leach et al., 2005). Misra at al. (1995) suggested the source of Central Tennessee Pb and Zn to 

at least be more radiogenic than Eastern Tennessee, as well as homogenous, suggesting a well 

mixed source, potentially from a young nearby sedimentary basin.   

Based on field observations of Kyle (1976), the age of mineralization occurred in the 

Lower Mississippian. Paleomagnetic studies by Lewchuk and Symons (1993) suggested an age 

of MVT mineralization to be Late Permian and to have lasted an estimated 8 million years, 

suggesting strong correlation with the Alleghenian-Ouachita Orogeny (Lewchuk and Symons, 

1995). Brannon et al. (1995) suggested an age of 260±42 million years for the main-stage calcite 

growth using Th-Pb age dating, and 35±14 million years for late-stage calcite using 238U-206Pb 

dating.  
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The Geology of the Eastern Tennessee District 

The East Tennessee District is composed of the Mascot-Jefferson City, Copper Ridge, 

Embreeville, and Powell River areas; the major being Mascot-Jefferson City which is located 

approximately 20 miles northeast of Knoxville, TN. The Young Mine is located within the 

Mascot-Jefferson City district and in the central part of the valley of the Appalachian Valley and 

Ridge Province (Figure 4). The dominant structure of the valley is a series of sub-parallel sheets 

or belts of rocks, thrust up on southeast dipping faults. The Appalachian Plateau bounds the 

Valley and Ridge Province to the northwest and is comprised of a thick Paleozoic sequence 

which has been disrupted by a series of NE-SW-trending thrusts presumably during the 

Alleghenian Orogeny (Hatcher and Odom, 1980). 

Locally, the Young Mine is located on top of a dome structure known as Hodges dome 

that has been displaced on the north flank by a high-angle, post-ore reverse fault with 

approximately 100ft of vertical displacement. This dome is situated between two low angle 

thrust faults knows as the Bays Mountain to the south and the Mill Spring to the north, both of 

which are thought to have occurred during the Appalachian Orogeny (McCormick et al., 1969).   

The Kingsport and Mascot formations host the majority of the ore and were deposited in 

marine peritidal environments on a stable continental shelf (Churnet et al., 1982).  Upward 

bending of the shelf from attempted subduction of the North American craton beneath volcanic 

arcs to the east (Shanmugam and Lash, 1982) resulted in the regionally extensive unconformity 

(post-Knox unconformity) that separates the Chicamauga Group (Middle Ordovician) from the 

upper part of the Knox Group (Lower Ordovician) (Harris, 1971) (Figure 7). Almost all pre-

Chicamauga carbonates contain varying amounts of ore but the vast majority occurs within the 

Lower Ordovician Kingsport and Mascot formations. The ore-bearing structures are similar to 
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that of Central Tennessee and are related to extensive dissolution and alteration of host 

carbonates through a paleoaquifer system. This volume loss due to dissolution of limestone 

resulted in re-crystalline dolomite that ultimately fractured and collapsed from overlying weight, 

forming collapse-breccia structures  (Figure 6). Generally, these structures are irregular in shape 

and can range up to 900ft wide, 1,500ft long, and 100ft high (McCormick et al., 1969).  

The host rock consists of one of two types of dolostone: fine-grained and medium- to 

coarse-grained. The fine-grained dolostone occurs as regionally persistent beds, indicative 

of primary or sedimentary origin. The medium- to coarse-grained dolostone formed through 

replacement, like much of Central Tennessee. Where ore exists in medium- to coarse-

grained dolostone, the dolomitization must have occurred prior to cessation of sphalerite 

mineralization, because sphalerite partially replaced dolomite rhombs in dolomitized 

limestone (Matlock and Misra, 1992). An accepted general paragenetic sequence for the ore 

deposition in the Young mine is as follows: deposition of the Kingsport and Mascot 

formations; emergence of the Upper Knox (unconformity); karstification along the erosional 

surface; dolomitization and dissolution of limestones (alteration and solution resulting in 

loss of volume and ultimately formation of collapse breccias); multi-solution hydrothermal 

influx from a nearby basin resulting in deposition of ore; folding and thrust faulting from 

Appalachian Orogeny; erosion and exposure (Rasnick et al., 1992).  

Pb-Zn and S Source/Age of Mineralization  

Bachtadse et al. (1987) suggested through paleomagnetism that mineralization was 

Pennsylvanian in age. Kesler et al. (1988) proposed through use of Sr isotope ratios that the 
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Figure 7: generalized stratigraphic section of the East Tennessee zinc district (Modified 

from Crawford and Hoagland, 1968). 
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the age of was 405±32 million years ago and occurred during the Alleghenian Orogeny. 

However, later studies by Nakai et al. (1990, 1993) suggested an earlier age of 347 million years 

ago and then 377±29 million years ago respectively, using Rb-Sr dating of the main-stage 

sphalerite. Nakai et al. (1990) suggested the hydrothermal fluids associated with the ore 

mineralization were expelled during thrusting through the Acadian Orogeny. Misra (1992) 

however doubted Nakai’s interpretation since thered was little evidence of the Acadian orogeny 

in the southern Appalachian Valley and Ridge Province.  

Noble (1963) proposed the MVT deposits were formed from an expulsion of Pb-Zn rich 

fluid from the compaction of thick argillaceous sediments in adjacent basins, specifically the 

Appalachian basin adjacent to both East and Central TN districts. This thick sequence of shales 

compacted vast volumes of brines rich in metals that ultimately made its way into the Knox 

Group carbonates (Hoagland, 1976).  Kesler (1988) used Sr isotope ratios to determine that the 

Ordovician Sevier basin and underlying Cambrian and Lower Ordovician sediments were a 

potential source for mineralizing fluids. Fluid inclusion studies suggest MVT deposits from East 

Tennessee formed from moderately hot (100° to 180°C) and highly saline brines (17 to 22% 

weight equivalent NaCl) indicating a disassociation with magmatic activity and that likely, the 

ore fluids were instead deep basinal and re-circulated meteoric water (Roedder, 1971).  

Sulfur isotope studies by Jones et al. (1990) suggest seawater sulfate as the sulfur source, 

initially derived from evaporites or brines of Precambrian and early Cambrian age. Kesler et al. 

(1994) suggested through use of Pb isotope ratios that the most likely source of Pb originated 

from the North American Craton to the west, the Blue Ridge massif (which is exposed 

immediately adjacent to the Eastern Tennessee district), or sediment derived from the Mount 

Rogers formation.  
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Table 1 below is a compilation from a number of studies comparing Central and East 

Tennessee MVT districts from Misra et al. (1996) and references therein. 

Table 1: Comparison of the Central Tennessee (Elmwood-Gordonsville) and East Tennessee 

(Mascot-Jefferson City) Mississippi Valley-Type zinc districts (Modified from Misra et al., 

1996). 

  Central Tennessee East Tennessee 

  (Elmwood-Gordonsville Mines) (Mascot-Jefferson City District) 

Main Ore 

Interval 

Upper Knox Group (Lower 

Ordovician) - middle member of 

the Mascot Dolomite 

Upper Knox Group (Lower 

Ordovician) - Kingsport Formation 

and lowermost part of the Mascot 

Dolomite 

Nature of 

Mineralization 

Open-space filling chemical 

precipitates in strata-bound late 

mineral-matrix breccias at the 

peripheral parts of collapse breccia 

bodies; minor mineralization in 

semiconcordant dissoulution 

caverns and vugs in dolomitized 

limestone horizons, commonly with 

large euhedral crystals  

Open-space filling chemical 

precipitates in strata-bound late 

mineral-matrix breccias at the 

peripheral parts of collapse breccia 

bodies; important cavity-filling and 

replacement mineralization in 

"bedded-ore structures" (strata-bound 

mantos) in dolomitized limestone 

horizons  

      

  Abundant unfilled open space Rare unfilled open space 

      

  Early fine rock-matrix breccia is 

essentially unmineralized 

Early fine rock-matrix breccia is 

essentially unmineralized 

Ore-gangue 

mineralogy 

    

Ore min. Low-Fe sphalerite Low-Fe sphalerite 

Main gangue 

min. 

Sparry calcite Sparry dolomite 

Minor min. Quartz, fluorite, barite, galena, 

dolomite 

Quartz, pyrite/marcasite, calcite 

Trace min. Pyrite/marcasite, enargite, celestite Fluorite, galena, chalcopyrite, 

anhydrite 

Sphalerite  Fe (wt %) = 0.14 - 0.54 Fe (wt %) = 0.03 - 0.48 

composition Cd (wt %) = <0.1 - 0.76 Cd (wt %) = 0.10 - 0.79 

  Relatively high Ge and Ga (~300 

and ~600 ppm respectively; 

Hoagland, 1976) 

Relatively low Ge and Ga (~80 and ~5 

ppm respectively; Hoagland, 1976)  
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Table 1: Comparison of the Central Tennessee (Elmwood-Gordonsville) and East Tennessee 

(Mascot-Jefferson City) Mississippi Valley-Type zinc districts (Modified from Misra et al., 

1996) (Cont.). 

Fluid inclusion 

data 

Misra and Gratz (1988); Misra and 

Lu (1992) 

Taylor et al., (1983) 

Main-stage 

min. 

Sphalerite                                                                             Sphalerite                                                                             

  Th = 93° - 153°C (Mean = 

115±11°C)  

Th = 90° - 200° C (Mean = 138°C)   

  Tm = -24° - -14°C (Mean = -

20.3°±3.1°C) 

Tm = -8° - -40°C (Mean = -20°C) 

Late-stage min. Amber (to clear) calcite Vug-fill fluorite 

  Th = 59° - 116°C (Mean = 

92±13°C)  

Th = 114° - 116°C (Mean = 

115±0.7°C) 

  Tm = -20° - -2°C (Mean = -

6.8±4.0°C)           

Tm = -7.5° - -10°C (Mean = -

9.3°±0.7°C) 

S isotope ratios Kesler et al. (1994); Misra and 

Torssander (1995) (Figure 9)  

Jones (1993)  

  δ34 (sulfides) = -8.44 - -0.4 permil δ34 (sulfides) = 27.6 - 36.1 permil        

  δ34 (barite) = 27.42 - 32.8 permil   

Pb isotope 

ratios 

Galena  Sulfides (Kesler et al., 1994)  

  206/204 = 19.603 - 19.697   206/204 = 19.378 - 19.469       

  207/204 = 15.742 - 15.805  207/204 = 15.721 - 15.730       

  208/204 = 39.292 - 39.474 208/204 = 39.441 - 39.538 

Ore fluids and 

ore-stage 

precipitation 

Mixing of metal-bearing basinal 

brines with H2S derived from oil or 

other organic matter (Kesler et al., 

1994c; this study)  

Mixing of metal-bearing basinal 

brines with H2S derived by 

thermochemical reduction of sulfate 

(Jones, 1993)  

  Salinity of mineralizing fluids by 

dissolution of evaporite (Kesler et 

al., 1995) 

Salinity of mineralizing fluids by 

seawater evaporation (Kesler et al., 

1995) 

Age of min. Lower Mississippian (Field data; 

Kyle, 1976)         

Pennsylvanian (Paleomagnetic; 

Bachtadse et al., 1987))              

  Late Permian (Paleomagnetic; 

Lewchuk and Symons, 1993)   

405±320 Ma (Rb-Sr; Kesler et al. 

1988) 

Age of min. 

(Cont) 

260±42 Ma for main-stage calcite 

(Th-Pb; Brannon et al. 1995a) 

377±29 Ma (Rb-Sr isochron for main-

stage sphalerite; Nakai et al., 1990)   

  35±14 Ma for late stage calcite 

(238U-206Pb method; Brannon et al, 

1995a) 

347±20 Ma (Rb-Sr isochron for main-

stage sphalerite; Nakai et al. 1993) 
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Table 1: Comparison of the Central Tennessee (Elmwood-Gordonsville) and East Tennessee 

(Mascot-Jefferson City) Mississippi Valley-Type zinc districts (Modified from Misra et al., 

1996) (Cont.). 

General ref. Kyle (1976), Gaylord and Briskey 

(1983), Briskey et al. (1986), Gratz 

and  Misra (1987) 

Crawford and Hoagland (1968), Misra 

et al., (1983), Misra and Fulweiler 

(1995) 
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Why Pb Isotopes? 

There are 4 stable isotopes of lead: 204Pb, 206Pb, 207Pb, and 208Pb. Of those, only 204Pb is 

non-radiogenic and not the product of radioactive decay. The other three isotopes are the final 

products of three decay chains from uranium (U) and thorium (Th) and can be illustrated as 

follows: 

238U  206Pb; 235U  207Pb; 232Th  208Pb 

The true decay chains of 206Pb, 207Pb, and 208Pb are in fact much more complex, but usually 

ignored since each is short-lived. The overall abundances of daughter products of decay have 

grown throughout the 4.6 billion years of the Earth’s existence (Figure 8). 

 
Figure 8: Relative primordial and present-day abundance of the isotopes of uranium (U), thorium 

(Th), and lead (Pb) showing half-lives in billion of years (Ga). Modified from Cannon et al. 

(1961) and Gulson (1986). 

 

Time-integrated growth of Pb isotopes from a starting time of t0, to an ending time of t1, 

in a setting where no U, Th, and their daughter products have migrated can be described by the 

following equations: 
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(206Pb/204Pb)t1 = (206Pb/204Pb)t0 + (238U/204Pb)(eλt0 – eλt1) 

(207Pb/204Pb)t1 = (207Pb/204Pb)t0 + (235U/204Pb)(eλ’t0 – eλ’t1) 

(208Pb/204Pb)t1 = (208Pb/204Pb)t0 + (232Th/204Pb)(eλ’’t0 – eλ’’t1) 

where λ, λ’, and λ’’ are the decay constants of 238U, 235U, and 232Th respectively. These constants 

and symbols are compiled in Table 2 for reference. 

Symbol Value Explanation 

λ 0.155125 x 10-9/a Decay constant of 238U 

t1/2 4.47 Ga Half-life of 238U 

λ' 0.98485 x 10-9/a Decay constant of 235U 

t1/2 0.70 Ga Half-life of 235U 

λ'' 0.49475 x 10-9/a Decay constant of 232Th 

t1/2 14.01 Ga Half-life of 232Th 

μ Variable 232U/204Pb 

κ Variable 232Th/238U 

Table 2: constants and symbols critical to Pb Isotope Geochemistry (From Tosdal et 

al., 1999). 

 

These equations show measured present-day Pb compositions are equal to the sum of the 

initial Pb compositions plus the radiogenic compositions added over time. Because 204Pb is 

stable and fixed, and because the abundances of 206Pb, 207Pb, and 208Pb change over time, Pb 

isotope data is examined as the ratio of 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb (Tosdal et al., 

1999). Common or ordinary Pb as described by Doe (1970) is Pb that has a low U/Pb and/or 

Th/Pb ratio in which no significant radiogenic lead has been generated in place, generally with a 

206Pb/204Pb ratio less than 20. Because of the long-lived isotopes of U, and that each U parent 

decays into two separate Pb daughters, a time control is created. This time control occurs 

because at the time when Pb is isolated from U, the composition becomes a function of the U/Pb 

ratios of the sources and the respective resident times of the Pb in the sources. With different 
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sources (the mantle, lower, and upper crust), each has a distinct U/Pb ratio, of which the isotopic 

composition of Pb reflects a particular source (Köppel and Saager, 1976) 

The half-life of 235U is 0.70 Ga where the half-life of 238U is 4.47 Ga. During the earth’s 

early history, the abundance of 207Pb increased more rapidly than 206Pb. The rate of 207Pb growth 

diminishes with time as the parent, 238U disappears. As result, 207Pb growth over the last billion 

years has been negligible (Doe, 1970; Tosdal; 1999) (Figure 9). 

 
Figure 9: Growth of radiogenic Pb with time showing the rapid increase in 207Pb in the early 

history of the earth because of the relative short half-life of 235U (700 m.y.) followed by only 

limited growth in 207Pb in the last 1 billion years (Ga). The limited growth of 207Pb results from 

the fact that most 235U has already decayed, and only a small fraction of the original primordial 

abundance is still present. Modified from Gariepy and Dupre (1991).  

 

In order to understand Pb isotopic variations, two parameters, U/Pb and Th/U ratios are 

important, as a basic understanding of U, Th, and Pb geochemical properties (Faure, 1977). Both 
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U and Th have comparable geochemical properties. They act together and can substitute for each 

other in compounds. During partial melting and fractional crystallization, U and Th are 

concentrated in the liquid phase. In contact with aqueous fluid, however, Th is insoluble (Taylor 

and McLennan, 1985). Uranium, when present in oxidizing conditions, forms uranyl ions that 

are extremely soluble in aqueous fluids, and when in these conditions, can be significantly 

fractionated from Th. Lead is soluble at moderate to high temperatures often associated with 

hydrothermal, magmatic, or metamorphic environments. At low temperatures, however, it is 

generally not soluble and associated with organic matter. Lead is also a larger ion than either of 

its parents, U and Th, and will behave differently as a result during partial melting and/or 

metamorphism. The contrasting geochemical behavior of U, Th, and Pb is recorded in the Th/U 

(κ or 232Th/238U) and U/Pb (μ or 238U/204Pb), which can be directly measured as elemental 

concentrations, calculated using modern parameters, or inferred from Pb data (Tosdal et al., 

1999) (Table 3). 

  Bulk Earth Depleted Mantle Continental Crust 

U (ppb) 21 3.5 1,200 

Th (ppb) 88 8.5 5,800 

Pb (ppb) 170 50 8,600 
238U/204Pb 9.1 4.7-5.9 10.6-10.8 
232Th/238U 4.2 2.3-2.5 4.6-4.7 

Table 3: Present-day U-Th-Pb compositions of the Crust-Mantle system (modified from 

Allegre et al., 1988; Gariepy and Dupre, 1991). 

 

Doe and Zartman (1979) developed the “plumbotectonics” model in which they formed a 

hypothetical model of the evolution of Pb on earth. This model consisted of three different Pb 

sources: the upper crust, lower crust and the mantle. They modeled orogenies at 400 million-year 

intervals based on evidence that continental accretion started around 4 billion years ago. During 

each orogenic event, portions of each of the sources (upper crust, lower crust and mantle) were 
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converted into new upper and lower crust. Initially, all crustal material originated from the 

mantle. After, both the mantle and older crust contributed in the generation of newer crust 

through orogenic events. During each orogeny, Pb, U, and Th are extracted from the upper and 

lower crust, and mantle sources and chemically mixed and redistributed into newly formed upper 

and lower crust and some recycled in the mantle. The “plumbotectonics” model curves for each 

of the major sources were derived empirically and presented on two covariation diagrams: the 

Thorogenic diagram (Figure 10.A) which plots 208Pb/204Pb versus 206Pb/204Pb or the radiogenic 

daughter of Th versus the radiogenic daughter of the most abundant U isotope and the 

Uranogenic diagram (Figure 10.B) which plots 207Pb/204Pb versus 206Pb/204Pb, or the least 

abundant isotope of U versus the most abundant. 
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Figure 10: Thorogenic (A) and uranogenic (B) Pb isotope diagrams showing the 

plumbotectonic curves of Zartman and Doe (1981). Relative values of Th/U (κ or 
232Th/238U) and U/Pb (μ or 238U/204Pb) are shown. Arrows denote radioactive decay of the 

parent U and Th isotopes to the respective daughter isotopes of Pb. Tick marks on curves 

represent 500 million years of growth (From Tosdal et al., 1999). 
 

Since Pb is commonly found in ore deposits like galena and sphalerite in economic or 

trace amounts, Pb isotopes can more accurately be detected to as few as 1 part per billion (ppb) 
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through improvement and development of more sensitive instrumentation (Billström, 2008). 

Because the concentrations of U with respect to Pb is low in ore minerals, growth in the Pb 

composition is minimal to negligible for minerals formed in the Phanerozoic, approximately 540 

million years ago to present. For this reason, assuming a closed system, measured Pb isotopic 

composition approximates the composition of the mineral and fluid at the time of crystallization. 

For older minerals in Proterozoic and Archean, there has been enough time for sufficient growth 

of Pb through decay. In this instance, those minerals would need to be time-corrected to obtain 

initial concentrations (Tosdal et al., 1999). 

Pb can also be used to determine the source of associated metals such as Zn, Cu, Au, and 

Ag but is limited by the assumption that the Pb was derived from the same source, transported, 

and the deposited by the same hydrothermal fluid (Tosdal et al., 1999). However, since Pb, Zn, 

and Cu have comparable geochemical behavior, this assumption is most likely true, particularly 

in base metal-rich magmatic hydrothermal systems, or Pb-rich deposits in sedimentary settings 

(Henley et al., 1984).  

Historically, Pb type has been defined based on the ratios of 206Pb/204Pb, 207Pb/204Pb, and 

208Pb/204Pb. Heyl (1974) initially summarized that there were two distinct types of lead: common 

or “ordinary” Pb that followed the hypothetical evolution of Pb through time, as related to the 

plumbotectonic model as described by Doe and Zartman (1979) and anomalous Pb. Common Pb 

is presumed to have a homogenous source from the mantle or lower crust through mixing of the 

upper crustal leads (Gaylord, 1992) and follows the hypothetical evolution of Pb. Anomalous Pb 

is Pb with isotopic ratios considerably different from ordinary Pb and likely the result of 

preferential concentration of radiogenic lead over a long period of time or a consequence of the 

mixing of radiogenic Pb and common Pb during a much shorter time (Gaylord, 1992). 
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Two growth curves are used in this study: the Stacy and Kramers (1975) average crustal 

growth curve and the Zartman and Doe (1981) orogene growth curve. Each of these curves 

represents Pb-isotope compositions of continental crust, mantle, and orogene based on U/Pb and 

Th/U ratios. Stacy and Kramers (1975) is based on two stages of evolution of Pb within the 

continental crust. The first stage begins 4.57 Ga ago with primordial isotope ratios that were 

recorded in troilite of an iron meteorite in Devils Canyon. (Tatsumoto et al., 1973). The second 

stage starts at 3.7 Ga and represents geochemical differentiation of the first reservoir (Table 4). 

The growth curves from Stacy and Kramers (1975) and Zartman and Doe (1981) are established 

through use of the equations described previously in this section where λ, λ’, and λ’’ are the 

decay constants of 238U, 235U, and 232Th respectively; t0 corresponds to the starting time of 

growth; t1 corresponds to the ending time of growth; (206Pb/204Pb)t1, (
207Pb/204Pb)t1, and 

(208Pb/204Pb)t1 are the ratios at t1; and (206Pb/204Pb)t0, (
206Pb/204Pb)t0, and (206Pb/204Pb)t0 are the 

initial ratios. 

 

S&K (1975) 

Time 

(b.y.) 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb 

Start 1st stage 4.6 9.307 10.294 29.487 

Start 2nd Stage 3.7 11.152 12.998 31.210 

Present Day 0.0 18.700 15.628 38.630 

Table 4: Two-stage parameters for average Pb from continental crust (Stacy and Kramers, 1975). 

Zartman and Doe (1981) begins at 4 Ga ago and continuously evolves throughout the earth’s 

history to present day (Table 5) (Tosdal et al., 1999). 

 

 

Z&D (1981) 

Time 

(b.y.) 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb 

Start  4.0 10.320 12.120 30.560 

Present Day 0.0 18.890 15.610 38.810 

Table 5: Single-stage or continuous parameters for average Pb from the orogene (Zartman and 

Doe, 1981). 
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Previous Investigations of Pb Isotopes Used In MVT Studies 

Cannon et al. (1961) provided one of the first pioneering compilations of published and 

unpublished Pb isotope data on nearly 1,300 Pb samples from a number of academic and 

government sources from around the world. The main objective was to measure and study the 

variations of Pb, and from those variations, interpret the geologic environments in which the 

sample of Pb has evolved. They developed their analyses to be plotted on triangular diagrams 

where 206Pb + 207Pb + 208Pb = 100 rather than the modern practice of using ratios of 206Pb/204Pb, 

207Pb/204Pb, and 208Pb/204Pb because methods were not precise to measure such low amounts of 

the invariant 204Pb isotope. 

Cannon et al. (1961) raised several questions in the investigations into Pb isotopes. From 

where did the ore originate? Was the Pb originally from a crustal source or much deeper in the 

mantle? When was the ore deposited and how long did mineralization progress? Cannon et al. 

(1961) established several variables that play into the hypothetical evolution of Pb throughout 

earth’s history: the original amounts of Pb, Th, and U in the local environment, the time-span for 

which radioactive decay has occurred, the isotopic composition of Pb, and the geologic 

processes that have contributed to modern day Pb concentrations. 

Several commonalities arose in Cannon et al. (1961). They established 4 classes of Pb 

types based on similar isotopic ratios: ordinary lead, U-lead, Th-lead, and J-lead. 83% of 

samples were considered ordinary lead, as these samples followed the hypothetical model of the 

evolution of lead through earth’s history and had a ratio of 206Pb/204Pb less than 20. Th-lead is 

slightly enriched in 208Pb relative to ordinary leads and U-lead is slightly enriched in 206Pb and 

207Pb relative to ordinary leads. J-leads, or “Joplin type” leads (as first described by Nier (1938)) 

are considered exceptional leads because of their enriched abundances of radiogenic isotopes 
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relative to ordinary lead. These leads do not follow the hypothetical model of lead evolution, 

and imply “impossible” Pb ratios. For that reason, J-leads have since attracted considerable 

attention and research due to their anomalous and mysterious nature.  

Several genetic implications were derived from the compilation of the Pb isotope data. 

The simplest concept was that the original crustal source remained virtually a closed system and 

was unaltered by geochemical change through time, except for generating minor quantities of 

ore. Other hypotheses from Cannon et al. (1961) suggested that igneous and metamorphic 

processes geochemically mixed the radiogenic Pb with ordinary lead, disrupting the natural or 

hypothetical model of U and Th decay into Pb, producing the variability of Pb ratios that are 

were detected, and that all ratios were a reflection of either a closed system or an open system 

where sources of Pb were allowed to mix. 

Heyl et al. (1966) conducted a regional study of the Pb isotopes of galena from the Upper 

Mississippi Valley, the Illinois-Kentucky, and the Appalachian Valley (East TN) districts. A 

total of 7 galena samples were collected (only two occurring in the East TN; the other five from 

New Jersey and Pennsylvania) and analyzed to determine their range in isotopic composition. 

The galenas from East TN were somewhat more radiogenic than those from the northern 

Appalachians (NJ and PA) showing slight enrichments in 206Pb/204Pb and 208Pb/204Pb. All the 

leads analyzed from the Appalachian Zn and Pb deposits were notably different in isotopic 

composition from those in the major Mississippi Valley districts. They concluded that the 

features of the deposits in the folded Appalachians are similar in many respects to those in the 

Mississippi Valley, but the Pb isotopic compositions suggest that at least the galenas have had a 

different origin than the J-Type leads of the Mississippi Valley, and they may be unrelated 

genetically (Heyl, et al., 1966).  
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Cannon and Pierce (1969) established that Pb in stratiform lead-zinc deposits were found 

to vary notably in isotopic composition, and those variations could be used as guideposts for 

geologists in search of major lead/zinc deposits. They noted that most deposits in the eastern 

hemisphere contained ordinary Pb of reasonable model age. In the western hemisphere however, 

particularly in the Mississippi Valley, the deposits contained the aforementioned J-Lead, which 

were relatively enriched in radiogenic 206Pb, 207Pb, and 208Pb (Cannon and Pierce, 1969). 

Nearly 10% of their analyzed samples fell within the “J-Lead” zone beyond the zero end 

of the best-fit curve (Figures 11-13). Most of those samples represented galenas from the major 

lead-zinc districts of the Mississippi Valley. Figure 11 shows the 3 distinct types of Pb ratios 

plotted in terms of 206Pb + 207Pb + 208Pb = 100. Figure 12 is an enlargement of the small triangle 

found in the lower right side of figure 11 and illustrates the distribution of Pb isotopes of 

samples relative to the ordinary Pb evolution line. Figure 13 is an enlargement of the upper half 

of Figure 12, illustrating the majority of analyzed samples fell within the “J-lead” or anomalous 

range, and notably, samples from East TN were among the least radiogenic that plotted beyond 

the 0 m.y. age (Cannon and Pierce, 1969). 
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Figure 11: isotopic composition of Pb from 1,280 Pb ore minerals – plotted in terms of 206Pb + 

207Pb + 208Pb = 100. (Cannon et al., 1961). 

 

 
Figure 12: frequency distribution of Pb isotope analyses of worldwide ore-leads. Enlargement of 

triangle from figure 11 (Cannon and Pierce, 1967). 
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Figure 13: ore-leads in Phanerozoic stratiform lead-zinc deposits of North America (Cannon and 

Pierce, 1967). This area corresponds to the upper half of Figure 12. 

 

Heyl et al. (1974) discussed only MVT deposits with the distinguishing characteristic of 

the “J-type” Pb. They stated that Pb in galena in all large deposits in the Mississippi Valley was 

appreciably enriched in radiogenic isotopes (with the exception of those deposits from the 

Appalachian Valley where their ratios were less than 20.0, only slightly radiogenic). This 

enrichment in most of the Mississippi Valley deposits was interpreted as signifying a shallow 

crustal source that likely came from a heated basinal brine that moved through the region. The 

Pb was likely derived from Precambrian basement and carbonate cements in sandstone aquifers 

and that within each ore district, Pb isotope patterns reflected solution flow direction and areas of 

major localized ore deposition (Heyl et al., 1974). 

Kesler et al. (1994a) focused on a Pb isotopic analysis of MVT deposits in the Southern 

Appalachians (Eastern TN). From the spatial distribution of the Pb isotope compositions, it was 

hypothesized that there were at least two distinct mineralizing solutions represented by two Pb 
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clusters (Figure 14): an “upper cluster” solution dominated the Lower Ordovician paleoaquifer 

whereas a “lower cluster” dominated the Lower Cambrian paleoaquifer, and the two solutions 

mixed in most areas except the Mascot-Jefferson City district, where Zn mineralization was the 

strongest.  

 
Figure 14: Approximate ranges of compositional groups that account for Pb-isotope 

compositions of MVT deposits in the southern Appalachians (Kesler et al., 1994). 
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Kesler stated that these two Pb clusters likely originated from relatively young, well-

mixed sedimentary basins. Furthermore, the isotopic compositions of Pb in the Southern 

Appalachians (Eastern TN) differed significantly from those found in mid-continent deposits, 

suggesting a different source, confirming the previous studies of Heyl et al., (1974) and Cannon 

et al., (1961). Kesler et al. (1994a) suggested tectonic influences on the distribution of the ore 

deposits in the Southern Appalachians and that MVT mineralization likely occurred during the 

peak of Taconic and Acadian orogenies and associated metamorphism but before the 

Alleghenian orogeny. 

Gaylord (1995) compiled Pb isotope data (Table 6) on samples taken from various 

locations in the Appalachians and Central TN districts in which he established three separate Pb 

isotope populations. As shown in Figures 15 and 16, samples from diagenetic and Canadian 

deposits and the small mines in Pennsylvania and New Jersey have common Pb isotope ratios 

falling near the “zero-age” isochron. The major Appalachian deposits are intermediate between 

those samples near the “zero-age” isochron and those of the strongly radiogenic “J-leads” of the 

Mississippi Valley. With the exception of the analyzed samples from Central TN, all the deposits 

defined a linear trend implying relations by a uniform process of Pb isotope evolution. Gaylord 

(1995) suggested that this relationship resulted from one of two scenarios: the interaction of two 

separate and isotopically different Pb sources, or from the physical/chemical processes operating 

on a single source material.  
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Location 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb 

Central TN, veins1 19.42 15.41 38.30 

Central TN, Knox1 19.22 15.32 38.03 

Mascot, TN2 19.56 15.77 39.66 

Flat Gap, TN3 19.14 15.85 39.43 

Flat Gap, TN4 19.17 15.76 39.46 

Embreeville, VA5 19.46 15.81 39.26 

Austinville, VA6 19.19 15.85 39.17 

Friedensville, PA2 19.24 15.68 39.66 

Bamford, PA4 18.74 15.75 38.70 

Sinking Valley, PA4 18.61 15.71 38.80 

Califon, NJ4 18.68 15.68 38.39 

Pine Point, NWT, Canada6 18.47 15.84 38.54 

Gays River, NS, Canada6 18.29 15.76 38.48 

Central TN, Elmwood7 19.637 15.742 39.292 

Central TN, Hartsville7 19.697 15.742 39.292 

Table 6: Lead isotope ratios for Appalachian and other “Strata-bound” carbonate-hosted lead-

zinc deposits. 1Hoagland (1976). 2Russell and Farquhar (1960). 3Crawford and Hoagland (1968). 
4Heyl et al. (1966). 5Brown and Weinberg (1968). 6Brown (1962). 7Unpublished data; 

permission to publish by B. R. Doe (Modified from Gaylord and Briskey, 1983). 
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Figure 15: Plot of ratios 207Pb/204Pb versus 206Pb/204Pb for galenas from selected strata-bound carbonate-hosted zinc-lead 

deposits (after Gaylord and Briskey, 1983). 
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Figure 16: Plot of ratios 208Pb/204Pb versus 206Pb/204Pb for galenas from selected strata-bound carbonate-hosted zinc-lead 

deposits (after Gaylord and Briskey, 1983). 
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Misra et al. (1996) analyzed Pb from five galena samples taken from the Elmwood-

Gordonsville mines in Central TN, confirming the well-established anomalous nature of this ore. 

Misra et al. (1996) also distinguished the notable feature of isotopic homogeneity, which 

contrasted sharply to other MVT deposits such as those in southeast Missouri, the Upper 

Mississippi Valley, and the Illinois-Kentucky District.  

Figure 17 from Misra et al. (1996) shows three populations of Pb isotope ratios based on 

samples from Copper Ridge (C-R; East TN), Mascot-Jefferson City (M-J; East TN), and the 

Central TN (CT) District. Isotopic analysis shows that the CT deposits contain the most 

radiogenic Pb, and plot within a relatively narrow range away from East TN deposits. As 

proposed by Misra et al. (1996), this homogeneity is indicative of a well-mixed source, likely 

from relatively young sedimentary basin where local isotopic differences had not developed 

before MVT brines were expelled.   
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Figure 17: Pb isotope ratios of ore galena samples from the Central Tennessee (CT) 

district (Elmwood-Gordonsville mines) compared with those of sulfide samples from the 

Mascot-Jefferson City (M-J) district and Copper Ridge (CR) district reported by Kesler et 

al. (1994a) (From Misra et al., 1996). 
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Methods  

Ore samples were collected by hand (with help of Nyrstar production geologists) in both 

the Elmwood Mine in Central Tennessee and the Young Mine in Eastern Tennessee. Each 

sample was photographed and wrapped in several layers of aluminum foil and plastic bags and 

broken into smaller pieces with a hammer. Around 0.1 grams of sphalerite from each of the 

crushed samples were handpicked, collected and transferred to clean, HNO3- and HCl-leached 

Teflon containers. Sulfide minerals were chemically processed in the class 1,000 Radiogenic 

Isotope Clean Laboratory at University of Arkansas. 

Teflon beakers used for dissolution and collection of final samples were soaked in cold 

aqua regia for no less than 48 hours. Beakers were then placed in boiling 1:1 HCl and 1:1 HNO3 

for no less than 30 minutes. After cooling from the boil, each beaker was then successively 

rinsed with purer water beginning with deionized, Milli-Q, and then finally two-bottle (2B) 

Teflon distilled water. The resin (Dowex AG1-8X, 200-400 mesh) used in Pb separation was 

mixed with 6N HCl and cleaned with 0.5N HNO3 and 2B water. Three ml syringe bodies with 

filters (frits) attached at the narrow end were used as columns. These columns were stored in a 

1:1 HCl bath between uses; before use, they were leached in 1:1 HNO3 and rinsed successively 

with deionized, Milli-Q, and 2B water.  

Approximately 100 mg of sphalerite sample were dissolved in 1 ml 1N HBr and then 1 

ml 0.5N HNO3 in Teflon containers, placed on a hotplate in the laminar flow hood, and allowed 

to sit overnight. The dried samples were re-dissolved in 1 ml 1N HBr and dried for a total of 

three times. One ml 1N HNO3 was added to dissolve the remaining sample. One last addition of 

1 ml 1N HBr was needed to collect the sample from the Teflon container. Each sample was 

transferred to HNO3-leached 1.5 ml centrifuge tubes. Each loaded tube was placed into 
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centrifuge for 15 minutes, rotated 180° and centrifuged for an additional 15 minutes. The 

centrifuging process separated the Pb-bearing HBr solution from any remaining suspended 

particles in the tube.  

Lead was separated and purified using cation exchange columns and an HBr medium. 

After adding 2 ml of 2B water, resin was added to each exchange column. Each column was 

cleaned with 2 ml of 2B water, 2 ml of 0.5N HNO3 and then conditioned successively with 2 ml 

of 2B water, and 2 ml of 6N HCl before loading each sample. The samples, contained in 0.2 ml 

of 1N HBr, were loaded in the columns and allowed to drain. The Pb was adsorbed on the clean 

resin while other elements passed through. Before sample collection, each sample was rinsed in 

3 successive additions of 1 ml 1N HBr. For sample collection, a final addition of 1 ml 0.2N 

HNO3 was added and collected in clean HNO3- and HCl-leached Teflon containers, and placed 

on hot plate to dry. Dried samples were covered with lids, and removed from the laminar flow 

hood for analysis. 

Lead isotope ratios were determined by inductively coupled plasma mass spectrometry 

on University of Arkansas’ Nu Plasma II MC-ICP Mass Spectrometer. Four ml of 1N HNO3 was 

added to each sample vial. The sample was introduced into the plasma by an uptake system with 

a rate of 40 microliters/min-1. The aerosol from the nebulizer is injected into the center region of 

the plasma and desolvated and ionized. The data collected for each sample represented averages 

of 60 ratio measurements each. The average standard errors on the analyzed samples were 

0.1020% for 208Pb/204Pb, 0.0360% for 207Pb/204Pb, and 0.0390% for 206Pb/204Pb. The data were 

corrected for instrumental fractionation by comparison with replicate analyses of the National 

Bureau of Standards common Pb standard SRM-981. Measured average values of 9 analyses of 
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this standard are as follows: 208Pb/204Pb = 36.650; 207Pb/204Pb = 15.474; and 206Pb/204Pb = 

16.922. 
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Results 

A total of 14 sphalerite samples were collected from two separate mines in Central and 

Eastern Tennessee representing two MVT districts. Nine samples were taken from the Young 

Mine located in New Market, TN, approximately 20 miles northeast of Knoxville, TN and five 

samples were taken from the Elmwood Mine located in Gordonsville, TN, approximately 50 

miles east of Nashville, TN. The results of Pb-isotope analyses of samples from both this study 

and similar studies have been compiled in Table 5. Pb isotope ratios from this study have been 

plotted on conventional covariation diagrams and are shown in Figure 18. A compilation of all 

East and Central Tennessee samples from Appendix 2 has been plotted on covariation diagrams 

as shown in Figure 19, and a compilation of samples from Appendix 2 has been plotted on 

covariation diagrams as shown in Figure 20  

From Table 7, 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of samples from the 

Elmwood Mine range from 19.334 – 20.128, 15.548 – 16.034, and 38.837 – 40.034 respectively, 

and ratios of samples from the Young Mine range from 19.341 – 19.455, 15.638 – 15.789, and 

39.045 – 39.591 respectively. Samples can be categorized into two clusters: the first cluster 

contains all samples from the Young Mine (East Tennessee) in addition to 3 Elmwood Mine 

samples (Central Tennessee). The second cluster contains only Elmwood Mine samples and 

consists of a much wider range of Pb isotope data, arousing suspicion as to the analytical 

accuracy of these samples. Further evaluation and comparison of these samples can be seen in 

the Discussion section.
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Table 7: Results of Pb Isotope analyses of this study 

Sample Location/District Mine 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb Sample Type 

E11 
Gordonsville, 

Central TN 
Elmwood 19.334 15.698 39.329 Sphalerite 

E11 (duplicate) 
Gordonsville, 

Central TN 
Elmwood 19.407 15.784 39.609 Sphalerite 

E21 
Gordonsville, 

Central TN 
Elmwood 20.128 15.763 39.174 Sphalerite 

E31 
Gordonsville, 

Central TN 
Elmwood 19.966 16.034 40.034 Sphalerite 

E51 
Gordonsville, 

Central TN 
Elmwood 19.414 15.748 39.475 Sphalerite 

E81 
Gordonsville, 

Central TN 
Elmwood 19.872 15.548 38.837 Sphalerite 

1 9215A1 
Mascot - 

Jefferson City 
Young 19.417 15.682 39.340 Sphalerite 

1 9215B1 
Mascot - 

Jefferson City 
Young 19.442 15.706 39.376 Sphalerite 

2 9922A1 
Mascot - 

Jefferson City 
Young 19.341 15.713 39.395 Sphalerite 

2 9922B1 
Mascot - 

Jefferson City 
Young 19.443 15.735 39.423 Sphalerite 

2 9922C1 
Mascot - 

Jefferson City 
Young 19.455 15.638 39.045 Sphalerite 

4 2248A1 
Mascot - 

Jefferson City 
Young 19.349 15.706 39.357 Sphalerite 

4 2248B1 
Mascot - 

Jefferson City 
Young 19.437 15.789 39.591 Sphalerite 
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Table 7: Results of Pb Isotope analyses of this study 

4 2248C1 
Mascot - 

Jefferson City 
Young 19.411 15.728 39.484 Sphalerite 

5 4338B1 
Mascot - 

Jefferson City 
Young 19.407 15.692 39.332 Sphalerite 
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Figure 18: Pb-isotope data from this study displayed on uranogenic (top) and thorogenic 

(bottom) diagrams. Red curve represents the average crustal growth from Stacy and Kramers 

(1975). Green curve represents the orogene growth curve from Zartman and Doe (1981). Error 

bar indicates ±0.05% per atomic mass unit. 
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Discussion 

The Pb isotopic data from this study (Table 7) were plotted on Pb covariation diagrams 

(Figures 18) with a crustal growth curve from Stacy and Kramers (1975) and an orogene curve 

from Zartman and Doe (1981) as already described in the aforementioned “Why Pb Isotopes” 

section. All Pb isotope ratios from samples taken from the Elmwood and Young Mines plot 

beyond the present day age (“0 m.y.”) for both the Stacy and Kramers (1975) average growth 

curve and the Zartman and Doe (1981) orogene growth curve.  With regard to the spatial 

distribution and isotopic variations of the Pb ratios, an examination of Figure 18 reveals 

approximately two groups defined by samples belonging to: 

1) Young Mine + Elmwood Mine 

2) Solely Elmwood Mine 

The first group defined by the Young Mine samples  + 3 Elmwood samples are relatively 

homogenous whereas the second group defined by the 3 outlying Elmwood samples are much 

more heterogeneous and are suspect to analytical error. All samples lie beyond and/or above the 

average crustal growth curve of Stacy and Kramers (1975) and the orogene growth curve of 

Zartman and Doe (1981) indicative of an upper crustal Pb source. The host rocks of both groups 

are Paleozoic (Ordovician) age and carbonates, which supports epigenetic mineralization of the 

ore.  Three samples from the Elmwood Mine plot close to the field defined by samples from the 

Young Mine. This similarity could be due to ore deposition of a similar hydrothermal fluid but 

additional analysis of sulfides from Central TN is needed to confirm. The narrow range of East 

TN Pb data is indicative of a well-mixed source. Although ores from East and Central Tennessee 

are among the least radiogenic of the “MVT” class of ore deposits in the US, isotopic ratios from 

this study do confirm they are of the Mississippi Valley Type. 
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A comparison of Pb isotope ratios from this study has been made with the Pb isotope ratios 

from Kesler et al. (1994), Misra et al. (1994) and Gaylord (1995; and references therein) 

(Appendix 2), as shown in Figure 19 below. As with Figure 18, this compilation of Pb isotope 

data has been plotted on covariation diagrams with the average crustal growth curve from Stacy 

and Kramers (1975) and the orogene growth curve from Zartman and Doe (1981). With 

reference to spatial distribution and isotopic variation of all ore samples, there appears to be at 

least 3 major groups, one of which contains ores from both East and Central TN. Each group is 

defined by the following: 

1) East TN samples from Kesler et al. (1994) 

2) East TN samples from this study and Kesler et al. (1994) and 

Central TN samples from this study 

3)   Central TN samples from Misra et al. (1996) and Gaylord (1995) 

Group 1, containing only East TN deposits, represents the least radiogenic of all samples from 

Table 7 and plots nearest (yet still beyond) the 0 m.y. age of both curves from Stacy and 

Kramers (1975) and Zartman and Doe  (1981). Group 2 contains primarily ore samples from 

East TN, in addition to three Central TN samples from this study, and is slightly more radiogenic 

than group 1. Group 3 contains ore samples from Central TN, and is the most radiogenic ore of 

all East and Central TN deposits (Misra et al., 1996). Despite the relatively radiogenic nature of 

these Central TN deposits, they are still among the least radiogenic MVT deposits in the United 

States. 

 All East TN samples from this study plot within group 2 and are most similar to those of 

East TN deposits from the Copper Ridge and Mascot-Jefferson City Districts (Kesler et al., 
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1994). This is suggestive of a similar source of Pb brought in by hydrothermal fluid from the 

nearby Appalachian Basin. Three Central TN samples from this study also plot within group 2. 

The remaining three Central TN samples from this study all plot well beyond ranges defined by 

all three groups. As such, analytical accuracy of these three samples is suspect. 

As suggested by Tosdal et al. (1999) MVT deposits are expected to be more 

heterogeneous in their sedimentary rock-hosted deposits where multiple fluids might have mixed 

at the site of ore deposition, and where fluids might have traveled through differing aquifers 

equilibrated with rocks of different chemical and isotopic compositions. Both of these factors 

could result in Pb isotopic compositions intermediate between multiple sources. The resultant 

variability in Pb isotopic ratios from both East and Central TN samples from this study can be 

attributed to this hypothesis, as already suggested by Kesler et al. (1994a-b) and Misra et al. 

(1996). 

A further evaluation of Pb isotope compositions from this study in terms of their 

relationships to Pb isotope data from other well-studied MVT deposits found throughout the 

United States (Viburnum Trend a.k.a. the New-Lead Belt, Tri-State, Southeast Missouri a.k.a. 

the Old-Lead Belt, Illinois-Kentucky, and Central Appalachian districts) can be seen on Figure 

20. Each polygon or outlined group in Figure 20 represents ranges of Pb isotope ratios of ore 

samples that define that particular district. A complete compilation of Pb isotope data used to 

define these groups can be found in Appendix 2.  

Most samples (with the exception of the three outliers from the Elmwood Mine) plot 

nearest or within ranges defined by samples from the Central Appalachian, East TN, and Central 

TN districts. Pb isotope ratios of the Viburnum Trend, the Old-Lead Belt, the Tri-State, and the 
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IL-KY Districts plot further away from the 0 m.y. age implying more evolved Pb, but still of a 

crustal source.  Since Pb isotope ratios of ore samples from this study are isolated to fields of 

their own (with the exception of Central Appalachian samples), the likely source of the 

hydrothermal fluid is from a differing basin. Data from this study as well as from Misra et al. 

(1996), Kesler et al. (1996), and Kesler et al. (1994) suggest the Appalachian Basin.  

Samples defining the Central Appalachian deposits from Figure 20 are from the 

Austinville-Ivanhoe, Timberville, Friedensville and the Nittany Arch sub-districts. These sub-

districts are located within the Appalachian Mountains from southern Virginia to as far north as 

Pennsylvania. Kesler et al. (1994b) suggested that Pb from the Nittany Arch and Timberville 

deposits originated from Paleozoic igneous rocks or sediments derived from them while the Pb 

from the Friedensville deposits came from underlying Grenville-age basements rocks. Only Pb 

data from the Timberville deposit compared similarly to Pb data from East TN suggesting a 

possible correlation. As summarized from Kesler et al. (1994b), this relationship indicates that 

although MVT brines in the Central Appalachians participated in significant cross-formational 

flow, they were not as regionally extensive as those in the Southern Appalachians (East TN). 

This might be a factor that accounts for the relative scarcity of larger MVT deposits found in the 

Central Appalachians, as opposed to the abundant MVT deposits found in the southern 

Appalachians (East TN) and in Central TN. 

Lead isotopic data defining the Illinois-Kentucky (IL-KY) District are from deposits 

found in an area covering nearly 1,000 mi2 in southern Illinois and western Kentucky (Yancey, 

1995). Most ore deposits in this district are found within the thick carbonate sequences of 

Mississippian age, interbedded with thinner shales and sandstones. The age of these deposits 

contrasts with the Ordovician age (Knox Group) East and Central TN ore deposits. Origin of the 
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Pb and F found in the IL-KY district is still disputed but two scenarios have been suggested. 

Early workers (Currier, 1923; Grogan and Bradbury, 1968) attributed the Pb and F to that of an 

igneous source of hydrothermal fluids likely from, or associated with, the nearby Hicks Dome, 

composed of a system of ultramafic igneous dikes and diatremes. Additionally, alkalic elements 

present at Hicks Dome are uniquely associated with magmatic sources. It has been suggested 

that isotopic and trace-element analysis of galenas from the IL-KY district supports this 

magmatic-hydrothermal genesis.  

Another scenario suggests the more commonly accepted basinal brine model where 

fluorine and metal rich fluids from a non-magmatic source (likely the Illinois Basin) migrated to 

the deposition site. This migration occurred through episodic basin compactional dewatering and 

gravity-driven flow to the site of deposition, in response to regional tectonic events. The uplift of 

the Appalachian fold-belt to the east and the Ouachitas to the south provided enough relief to 

cause large-scale flow (Lasemi, 2010). Hayes and Anderson (1992) suggested that such a large-

scale, regionally extensive, and interconnected hydrothermal system was responsible for MVT 

mineralization in the IL-KY district and that this fluid extended into Central KY and Central TN. 

Additionally, based on the similar paragenetic sequences, hydrothermal carbonate minerals in 

both Central TN and Central KY appear to correlate with the IL-KY district, indicative of a 

similar hydrothermal source. 

Lead isotope ratios from the IL-KY district from Figure 20 plot further away from crustal 

growth curve of Stacy and Kramers (1975) and the orogene growth curve of  Zartman and Doe 

(1981) indicative of a more evolved Pb as compared to those Pb isotope ratios from East and 

Central TN. Although these two districts share very similar ore geneses, a comparison of Pb 

isotopes confirms separate hydrothermal sources. 
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Lead isotopic data defining the Viburnum Trend (“New-Lead Belt”) are from the western 

half of the much larger Southeast Missouri Pb district. The main host of the ore is the Upper 

Cambrian Bonneterre Formation that overlies the basal Lamotte Sandstone. The Lamotte 

Sandstone unconformably overlies the Precambrian basement. Crocetti et al. (1988) summarized 

from Pb isotopic analyses that the isotopic composition of the Pb can be explained by the mixing 

of two separate sources of Pb: the first source containing normal Pb derived from basinal brines 

(similar to the source responsible for those deposits found in Central TN, Central and Southern 

Appalachians), and the second source containing radiogenic Pb from the underlying Precambrian 

basement of Grenvillian age. This basinal brine as proposed by Rowan et al. (1984), Viets et al. 

(1984), and Leach and Rowan (1986), originated from the Arkoma-Ouachita basin and migrated 

north into southeast Missouri while leaching Pb from the Grenvillian basement during 

transportation.  

Pb isotope ratios defining the Tri-state district are from an area covering nearly 2,000 mi2 

in southwest Missouri, northeast Oklahoma, and southeast Kansas. Nier (1938) first described 

these anomalous ore deposits from their extremely radiogenic Pb isotope compositions and 

called them “J-type” from their discovery site in Joplin, MO. Ore mineralization in the Tri-State 

occurs in the Ordovician through Pennsylvanian, but is primarily restricted to the Mississippian 

(Keokuk and Warsaw Formations) (Leach and Sangster, 1994). As summarized by Viets and 

Leach (1990), Pb isotope ratios from the Viburnum Trend are isotopically similar to those of the 

Tri-state, indicative of a common brine source, but much more radiogenic than East and Central 

TN deposits. 
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Figure 19: Pb isotopic compositions of ore samples from this study; Kesler et al., 1994; Misra et 

al, 1996; Heyl et al., 1966, plotted on uranogenic (top) and thorogenic (bottom) covariation 

diagrams. Red curve represents the average crustal growth curve from Stacy and Kramers 

(1975). Green curve represents the orogene growth curve from Zartman and Doe (1981). Error 

bar indicates ±0.05% per atomic mass unit. 
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Figure 20: Pb isotopic compositions of ore samples from of this study; Kesler et al., 1994; Misra 

et al., 1996; Hoagland, 1976; Russell and Farquhar, 1960; Crawford and Hoagland, 1968; Heyl 

et al., 1966; Goldhaber et al., 1995; and Kesler et al., 1994b, plotted on uranogenic (top) and 

thorogenic (bottom) covariation diagrams. Red curve represents the average crustal growth curve 

from Stacy and Kramers (1975). Green curve represents the orogene growth curve from Zartman 

and Doe (1981). Each polygon is defined by a range of Pb isotope ratios from that particular 

district. Error bar indicates ±0.05% per atomic mass unit. 
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Conclusions 

1) Pb isotope ratios of sulfides from this study can be divided into two separate groups:   

a) Young Mine + Elmwood Mine 

b) Elmwood Mine 

 

2) All samples from this study (Figure 18) plot beyond both Stacy and Kramers’ (1975) average 

crustal growth curve and Zartman and Doe’s (1981) orogene growth curve, confirming an 

upper crustal source of Pb for both Central and East Tennessee districts. 

 

3) Pb data from this study plot in similar fields defined by data from previous studies as shown 

in Figure 19 (Kesler et al. 1994; Misra et a., 1996; Gaylord, 1995). East Tennessee samples 

from this study are the least radiogenic, and plot in a relatively tight cluster. This is indicative 

of a well-mixed, homogenous source of hydrothermal fluid possibly derived from the nearby 

Appalachian Basin. 

 

4) When comparing samples from this study to Central Appalachian deposits from Kesler et al. 

(1994b), several observations are made: 

a. Central Appalachian deposits contain the least radiogenic Pb of the samples compiled 

on Figure 20, slightly less radiogenic than Pb data from this study. 

b. Pb data from this study plot nearest the Timberville District deposits found in the 

Central Appalachians. Kesler et al (1994b) suggested the sources of all Pb in Central 

Appalachia originated from Paleozoic igneous rocks and sediments derived from 

them but an addition of a much younger, Triassic diabase Pb source was responsible 

for the distribution of Pb found specifically in Timberville District deposits.  



 

 

 

54  

 

5) East Tennessee deposits from this study plot in the same field as deposits specifically from 

the Mascot-Jefferson City and Copper Ridge Districts in East TN. Kesler et al. (1994a) 

suggested that there were two mineralizing solutions responsible for the spatial distribution 

and isotopic composition of ore found in East Tennessee. These two solutions were allowed 

to mix through a Lower Cambrian paleoaquifer that extended from Georgia to Virginia, and 

a Lower Ordovician paleoaquifer that extended from East Tennessee northward into 

Virginia. The spatial extent of these two paleoaquifers contributed to the range and 

variability of Pb ratios in ore deposits found in both East Tennessee and the Central 

Appalachians. 

 

6) Pb isotope data from this study plot nearest but still beyond the average crustal growth 

curves. This confirms their less radiogenic nature as compared to the more anomalous and 

radiogenic “J-Type” leads found in the Tri-State and Southeast Missouri Districts.  

 

7) The isotopic compositions of three samples from the Elmwood mine in Central Tennessee 

appear suspicious and may be subject to analytical error. As result, the compositions of these 

samples should be reanalyzed before any further interpretation is made. 

 

8) Although both East and Central Tennessee deposits from this study share similar Pb isotopic 

ratios (with exception to the three spurious samples from Central TN), isotopic data from 

Misra et al. (1996) and Kesler (1994a) suggests these two districts did not mineralize from 

the same hydrothermal fluid and are not necessarily related genetically. Misra et al (1996) 

concludes that deposits from Central TN might be part of a much larger mid-Continent brine 
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province that could’ve originated from a basin similarly responsible for deposits in the Tri-

State and Southeast Missouri Districts (such as the Arkoma-Ouachita). However, further 

analysis and comparison of Central TN Pb isotope data is needed. 
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Appendix 1.1 

Appendix 1.1: Detailed Pb isotope measurement data of the analyzed ore samples 

Sample 208Pb/204Pb % error 207Pb/204Pb % error 206Pb/204Pb % error 

E1 39.329450 0.0408 15.698330 0.0124 19.334380 0.0107 

E1 (duplicate) 39.608520 0.0436 15.783770 0.0133 19.407410 0.0114 

E2 39.174120 0.2520 15.763180 0.1050 20.128300 0.1330 

E3 40.034220 0.1950 16.034370 0.0784 19.966280 0.0943 

E5 39.475160 0.0379 15.747670 0.0109 19.413730 0.0093 

E8 38.837130 0.3020 15.547600 0.1150 19.871770 0.1420 

1 9215A 39.339850 0.0437 15.681660 0.0130 19.417460 0.0117 

1 9215B 39.376460 0.0348 15.706390 0.0106 19.441750 0.0103 

2 9922A 39.394870 0.0468 15.712900 0.0142 19.340640 0.0111 

2 9922B 39.423250 0.1380 15.735110 0.0422 19.443040 0.0386 

2 9922C 39.044900 0.1190 15.638190 0.0388 19.455090 0.0352 

4 2248A 39.356860 0.0775 15.705630 0.0239 19.348700 0.0206 

4 2248B 39.591210 0.1220 15.789410 0.0381 19.436650 0.0339 

4 2248C 39.483650 0.0456 15.728200 0.0147 19.411310 0.0149 

5 4338B 39.332140 0.0317 15.692090 0.0099 19.406790 0.0084 

Average (n = 15) 39.386786 0.1020 15.730967 0.0360 19.521553 0.0390 
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Appendix 1.2 

Appendix 1.2: Detailed Pb isotope measurement data of standards 

Lead Standard 208Pb/204Pb % error 207Pb/204Pb % error 206Pb/204Pb % error 

SRM-981 36.621470 0.0293 15.461380 0.0117 16.900750 0.0113 

SRM-981 36.627290 0.0229 15.466770 0.0095 16.923870 0.0102 

SRM-981 36.632370 0.0451 15.462870 0.0184 16.910260 0.0200 

SRM-981 36.639770 0.0185 15.472150 0.0077 16.925270 0.0089 

SRM-981 36.622240 0.0187 15.461200 0.0077 16.908300 0.0084 

SRM-981 36.677020 0.0238 15.486240 0.0101 16.937000 0.0110 

SRM-981 36.672560 0.0143 15.481660 0.0060 16.930190 0.0064 

SRM-981 36.683730 0.0193 15.487970 0.0081 16.931460 0.0083 

SRM-981 36.671890 0.0175 15.485360 0.0071 16.931450 0.0075 

Average (n = 9) 36.649816 0.0233 15.473956 0.0096 16.922061 0.0102 

Todt et al., 1996) 36.712000   15.484000   16.939000   
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Appendix 2 

Appendix 2: Compilation of Pb Isotope data: Pb Isotope analyses of this study1; Kesler et al., 19942; Misra et al., 19963; 

Hoagland, 19764; Unpublished data from B. R. Doe5; Russell and Farquhar, 19606; Crawford and Hoagland, 19687; Heyl et al., 

19668; Goldhaber et al., 19959; and Kesler et al., 1994b10. 

Sample Location/District Mine 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb Sample Type 

E11 
Gordonsville, 

Central TN 
Elmwood 19.334 15.698 39.329 Sphalerite 

E11 (duplicate) 
Gordonsville, 

Central TN 
Elmwood 19.407 15.784 39.609 Sphalerite 

E21 
Gordonsville, 

Central TN 
Elmwood 20.128 15.763 39.174 Sphalerite 

E31 
Gordonsville, 

Central TN 
Elmwood 19.966 16.034 40.034 Sphalerite 

E51 
Gordonsville, 

Central TN 
Elmwood 19.414 15.748 39.475 Sphalerite 

E81 
Gordonsville, 

Central TN 
Elmwood 19.872 15.548 38.837 Sphalerite 

1 9215A1 
Mascot - 

Jefferson City 
Young 19.417 15.682 39.340 Sphalerite 

1 9215B1 
Mascot - 

Jefferson City 
Young 19.442 15.706 39.376 Sphalerite 

2 9922A1 
Mascot - 

Jefferson City 
Young 19.341 15.713 39.395 Sphalerite 

2 9922B1 
Mascot - 

Jefferson City 
Young 19.443 15.735 39.423 Sphalerite 

2 9922C1 
Mascot - 

Jefferson City 
Young 19.455 15.638 39.045 Sphalerite 
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Appendix 2: Compilation of Pb Isotope data: Pb Isotope analyses of this study1; Kesler et al., 19942; Misra et al., 19963; 

Hoagland, 19764; Unpublished data from B. R. Doe5; Russell and Farquhar, 19606; Crawford and Hoagland, 19687; Heyl et al., 

19668; Goldhaber et al., 19959; and Kesler et al., 1994b10 (Cont.). 

4 2248A1 
Mascot - 

Jefferson City 
Young 19.349 15.706 39.357 Sphalerite 

4 2248B1 
Mascot - 

Jefferson City 
Young 19.437 15.789 39.591 Sphalerite 

4 2248C1 
Mascot - 

Jefferson City 
Young 19.411 15.728 39.484 Sphalerite 

5 4338B1 
Mascot - 

Jefferson City 
Young 19.407 15.692 39.332 Sphalerite 

Y-92 
Mascot - 

Jefferson City 
Young 19.431 15.726 39.502 Sphalerite 

Y-492 
Mascot - 

Jefferson City 
Young 19.446 15.726 39.490 Sphalerite 

Y-322 
Mascot - 

Jefferson City 
Young 19.409 15.733 39.462 Sphalerite 

Y-232 
Mascot - 

Jefferson City 
Young 19.469 15.734 39.462 Sphalerite 

Y-492 
Mascot - 

Jefferson City 
Young 19.579 15.731 39.433 

Sparry 

Dolomite 

Y-232 
Mascot - 

Jefferson City 
Young 19.437 15.698 39.438 

Sparry 

Dolomite 

Y-242 
Mascot - 

Jefferson City 
Young 19.529 15.703 39.435 

Sparry 

Dolomite 

NW-442 
Mascot - 

Jefferson City 
New Market 19.382 15.721 39.441 Sphalerite 
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Appendix 2: Compilation of Pb Isotope data: Pb Isotope analyses of this study1; Kesler et al., 19942; Misra et al., 19963; 

Hoagland, 19764; Unpublished data from B. R. Doe5; Russell and Farquhar, 19606; Crawford and Hoagland, 19687; Heyl et al., 

19668; Goldhaber et al., 19959; and Kesler et al., 1994b10 (Cont.). 

NW-442 
Mascot - 

Jefferson City 
New Market 19.500 15.726 39.618 

Sparry 

Dolomite 

IMMEL-X2 
Mascot - 

Jefferson City 
Immel 19.415 15.734 39.534 Galena 

IMMEL-X2 
Mascot - 

Jefferson City 
Immel 19.416 15.730 39.530 Pyrite 

IMMEL-X2 
Mascot - 

Jefferson City 
Immel 19.418 15.733 39.532 Sphalerite 

IMMEL2 
Mascot - 

Jefferson City 
Immel 19.414 15.729 39.507 Sphalerite 

C-392 
Mascot - 

Jefferson City 
Coy 19.378 15.737 39.485 Sphalerite 

C-16-L2 
Mascot - 

Jefferson City 
Coy 19.444 15.731 39.527 Sphalerite 

C-16-D2 
Mascot - 

Jefferson City 
Coy 19.452 15.734 39.538 Sphalerite 

C-392 
Mascot - 

Jefferson City 
Coy 19.526 15.731 39.235 

Sparry 

Dolomite 

CS-37-965.52 Copper Ridge Idol 19.401 15.732 39.497 Sphalerite 

I-61-8612 Copper Ridge Idol 19.007 15.673 39.055 Sphalerite 

I-64-10792 Copper Ridge Idol 19.587 15.735 39.435 Sphalerite 
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Appendix 2: Compilation of Pb Isotope data: Pb Isotope analyses of this study1; Kesler et al., 19942; Misra et al., 19963; 

Hoagland, 19764; Unpublished data from B. R. Doe5; Russell and Farquhar, 19606; Crawford and Hoagland, 19687; Heyl et al., 

19668; Goldhaber et al., 19959; and Kesler et al., 1994b10 (Cont.). 

FG-33-3702 Copper Ridge Flat Gap 18.994 15.668 39.020 Sphalerite 

FG-71-3382 Copper Ridge Flat Gap 19.445 15.725 39.476 Sphalerite 

FG-65-122 Copper Ridge Flat Gap 18.979 15.663 39.015 Galena 

FG-17-314-D2 Copper Ridge Flat Gap 19.036 15.665 38.865 
Sparry 

Dolomite 

E-21-4552 Copper Ridge Eidson 19.405 15.727 39.457 Sphalerite 

IN-61-4862 Copper Ridge Independence 19.513 15.736 39.571 Sphalerite 

IN-61-496-D2 Copper Ridge Independence 19.042 15.662 39.008 
Sparry 

Dolomite 

BW-2-3262 Copper Ridge 
Big War 

Creek 
19.053 15.675 39.090 Sphalerite 

CR-24-1942 Copper Ridge Shiloh 19.414 15.731 39.490 Sphalerite 

Gal-13 
Gordonsville, 

Central TN 

Elmwood-

Gordonsville 
19.609 15.767 39.372 Galena 

Gal-23 
Gordonsville, 

Central TN 

Elmwood-

Gordonsville 
19.657 15.795 39.454 Galena 

Gal-33 
Gordonsville, 

Central TN 

Elmwood-

Gordonsville 
19.626 15.805 39.474 Galena 
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Appendix 2: Compilation of Pb Isotope data: Pb Isotope analyses of this study1; Kesler et al., 19942; Misra et al., 19963; 

Hoagland, 19764; Unpublished data from B. R. Doe5; Russell and Farquhar, 19606; Crawford and Hoagland, 19687; Heyl et al., 

19668; Goldhaber et al., 19959; and Kesler et al., 1994b10 (Cont.). 

Gal-43 
Gordonsville, 

Central TN 

Elmwood-

Gordonsville 
19.603 15.777 39.393 Galena 

Gal-53 
Gordonsville, 

Central TN 

Elmwood-

Gordonsville 
19.634 15.764 39.364 Galena 

unnamed4 
Gordonsville, 

Central TN 
- 19.420 15.410 38.300 vein 

unnamed4 
Gordonsville, 

Central TN 
- 19.220 15.320 38.030 Knox 

unnamed5 
Gordonsville, 

Central TN 
Elmwood 19.637 15.742 39.292 - 

unnamed5 
Gordonsville, 

Central TN 
Hartsville 19.697 15.742 39.292 - 

unnamed6 
Mascot - 

Jefferson City 
Mascot 19.560 15.770 39.660 - 

unnamed7 Copper Ridge Flat Gap 19.140 15.850 39.430 - 

unnamed8 Copper Ridge Flat Gap 19.170 15.760 39.460 - 

78BRD-39 Viburnum Trend Milliken 21.321 15.905 40.302 
Disseminated 

Galena 

&8BRD-49 Viburnum Trend Milliken 21.943 15.903 40.604 Cubic Galena 

78BRD-79 Viburnum Trend Milliken 21.363 15.932 40.139 
Disseminated 

Galena 
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Appendix 2: Compilation of Pb Isotope data: Pb Isotope analyses of this study1; Kesler et al., 19942; Misra et al., 19963; 

Hoagland, 19764; Unpublished data from B. R. Doe5; Russell and Farquhar, 19606; Crawford and Hoagland, 19687; Heyl et al., 

19668; Goldhaber et al., 19959; and Kesler et al., 1994b10 (Cont.). 

79RE-19 Viburnum Trend Milliken 21.510 15.954 40.526 Chalcopyrite 

SWC9 Viburnum Trend Milliken 21.420 15.960 40.515 Chalcopyrite 

Dol-IISW9 Viburnum Trend Milliken 21.179 15.820 40.120 Dolomite 

Dol-IIISW9 Viburnum Trend Milliken 21.401 15.905 40.430 Dolomite 

75D-219 Viburnum Trend Fletcher 21.429 15.919 40.363 
Disseminated 

Galena 

75D-239 Viburnum Trend Fletcher 21.248 15.910 40.080 
Disseminated 

Galena 

FOGA9 Viburnum Trend Fletcher 21.160 15.990 40.430 
Octahedral 

Galena 

FOGB9 Viburnum Trend Fletcher 21.190 16.020 40.520 
Octahedral 

Galena 

FCG9 Viburnum Trend Fletcher 21.620 15.960 40.801 Cubic Galena 

FLCG9 Viburnum Trend Fletcher 21.670 15.980 40.780 Cubic Galena 

FCM19 Viburnum Trend Fletcher 21.490 15.900 40.520 Chalcopyrite 

FCM29 Viburnum Trend Fletcher 21.580 16.010 40.870 Chalcopyrite 

FCM39 Viburnum Trend Fletcher 21.530 15.930 40.605 Chalcopyrite 

FCM49 Viburnum Trend Fletcher 21.560 15.980 40.740 Chalcopyrite 
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Appendix 2: Compilation of Pb Isotope data: Pb Isotope analyses of this study1; Kesler et al., 19942; Misra et al., 19963; 

Hoagland, 19764; Unpublished data from B. R. Doe5; Russell and Farquhar, 19606; Crawford and Hoagland, 19687; Heyl et al., 

19668; Goldhaber et al., 19959; and Kesler et al., 1994b10 (Cont.). 

FCM59 Viburnum Trend Fletcher 21.530 15.980 40.740 Chalcopyrite 

FCM69 Viburnum Trend Fletcher 21.560 15.990 40.780 Chalcopyrite 

FC9 Viburnum Trend Fletcher 21.701 15.990 40.710 Chalcopyrite 

77DR-29 Viburnum Trend Buick 21.258 15.901 40.058 
Early Octa. 

Galena 

77DR-29 Viburnum Trend Buick 21.020 15.869 39.821 
Late Octa. 

Galena 

77DR-39 Viburnum Trend Buick 21.360 15.894 40.103 
Late Octa. 

Galena 

77DR-39 Viburnum Trend Buick 21.631 15.917 40.559 
Late Cubic 

Galena 

C-19 Viburnum Trend Buick 21.512 15.914 40.412 Cubic Galena 

C-49 Viburnum Trend Buick 21.510 15.914 40.529 Cubic Galena 

37S-59 Viburnum Trend Buick 21.509 15.910 40.405 Cubic Galena 

T-239 Viburnum Trend Magmont 21.207 15.886 39.961 
Octahedral 

Galena 

T-479 Viburnum Trend Magmont 21.820 15.858 39.700 
Disseminated 

Galena 

LDT-159 Viburnum Trend Magmont 21.286 15.898 39.976 
Disseminated 

Galena 

T-99 Viburnum Trend Magmont 21.058 15.873 39.851 
Disseminated 

Galena 



 

 

 

7
2
  

Appendix 2: Compilation of Pb Isotope data: Pb Isotope analyses of this study1; Kesler et al., 19942; Misra et al., 19963; 

Hoagland, 19764; Unpublished data from B. R. Doe5; Russell and Farquhar, 19606; Crawford and Hoagland, 19687; Heyl et al., 

19668; Goldhaber et al., 19959; and Kesler et al., 1994b10 (Cont.). 

MMC-19 Viburnum Trend Magmont 21.285 15.859 40.174 
Octahedral 

Galena 

MMB-19 Viburnum Trend Magmont 21.474 15.842 40.415 
Octahedral 

Galena 

MMB-29 Viburnum Trend Magmont 21.246 15.874 40.054 
Disseminated 

Galena 

MMB-39 Viburnum Trend Magmont 21.404 15.870 40.177 
Disseminated 

Galena 

KBH-V-5.219 Viburnum Trend Viburnum 28 22.576 15.992 41.694 Cubic Galena 

KBH-V-5.219 Viburnum Trend Viburnum 28 21.182 15.883 39.874 
Octahedral 

Galena 

OG29-1A9 Viburnum Trend Viburnum 29 21.460 15.945 39.995 
Octahedral 

Galena 

OG29-1B9 Viburnum Trend Viburnum 29 21.410 15.930 39.970 
Octahedral 

Galena 

OG29-1A19 Viburnum Trend Viburnum 29 21.520 15.960 40.060 
Octahedral 

Galena 

CG29-1A9 Viburnum Trend Viburnum 29 21.360 16.001 40.490 Cubic Galena 

CG29-1B19 Viburnum Trend Viburnum 29 21.430 16.045 40.710 Cubic Galena 

CG29-1A19 Viburnum Trend Viburnum 29 21.280 15.910 40.160 Cubic Galena 

BS29-1A9 Viburnum Trend Viburnum 29 20.870 15.860 39.650 Sphalerite 

BS29-1A19 Viburnum Trend Viburnum 29 20.830 15.875 39.690 Sphalerite 
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Appendix 2: Compilation of Pb Isotope data: Pb Isotope analyses of this study1; Kesler et al., 19942; Misra et al., 19963; 

Hoagland, 19764; Unpublished data from B. R. Doe5; Russell and Farquhar, 19606; Crawford and Hoagland, 19687; Heyl et al., 

19668; Goldhaber et al., 19959; and Kesler et al., 1994b10 (Cont.). 

BS29-1B9 Viburnum Trend Viburnum 29 20.860 15.880 39.680 Sphalerite 

100.3997 9 Old Lead Belt 
Derby-Doe 

Run 
20.877 15.851 39.782 Galena 

H-19 Old Lead Belt Hayden Creek 20.972 15.864 39.949 Galena 

FM60-309 Old Lead Belt Madison 21.600 15.926 40.824 Galena 

Pot60-19 Old Lead Belt Potosi Fm. 20.958 15.865 40.250 Galena 

74-1 9 Old Lead Belt 
Surface 

sample 
21.251 15.916 40.240 Galena 

G-11 9 Old Lead Belt   20.750 15.850 39.720 Galena 

G-12 Tri-State Weber 22.210 15.960 41.300 Cubic Galena 

- Tri-State Blue Goose 21.942 15.920 41.076 Cubic Galena 

- Tri-State Blue Goose 21.901 15.922 41.072 Cubic Galena 

YORK-1.110 Kinzers Fm. York Quarry 19.078 15.674 38.709 Sphalerite 

DOWN-1.110 Ledgers Fm. Downington 18.272 15.636 38.252 Sphalerite 

AK-2.110 Timberville 
Armstrong-

Kiser 
19.233 15.692 38.794 Sphalerite 

BC-9.110 Timberville 
Bowers-

Cambell 
19.211 15.686 38.923 Sphalerite 
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Appendix 2: Compilation of Pb Isotope data: Pb Isotope analyses of this study1; Kesler et al., 19942; Misra et al., 19963; 

Hoagland, 19764; Unpublished data from B. R. Doe5; Russell and Farquhar, 19606; Crawford and Hoagland, 19687; Heyl et al., 

19668; Goldhaber et al., 19959; and Kesler et al., 1994b10 (Cont.). 

BC-9.210 Timberville 
Bowers-

Cambell 
19.169 15.686 38.960 Sphalerite 

BC-9.310 Timberville 
Bowers-

Cambell 
19.551 15.727 38.989 

Sparry 

Dolomite 

BC-29.110 Timberville 
Bowers-

Cambell 
18.973 15.672 38.925 Galena 

MM-11.110 Timberville Martin 19.055 15.683 39.029 Galena 

MM-11.310 Timberville Martin 19.090 15.691 39.032 
Sparry 

Dolomite 

MH-2.110 Timberville Mole Hill 18.441 15.647 38.169 Sphalerite 

TW-7.110 Timberville Weatherholz 18.970 15.672 38.739 Sphalerite 

VR-5.110 Timberville Vetter 19.042 15.674 38.717 Sphalerite 

VR-5.210 Timberville Vetter 19.419 15.698 38.763 
Sparry 

Dolomite 

FRDMA-110 Friedensville New Hartman 17.722 15.942 37.220 Sphalerite 

UB-3.110 Friedensville Ueberroth 17.760 15.475 37.293 Sphalerite 

CL-5.110 Friedensville Ueberroth 18.049 15.529 37.383 Sphalerite 

UB-810 Friedensville Correll 18.256 15.541 37.627 Sphalerite 

CP-KY-410 Nittany Arch Keystone 18.510 15.619 38.526 Galena 
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Appendix 2: Compilation of Pb Isotope data: Pb Isotope analyses of this study1; Kesler et al., 19942; Misra et al., 19963; 

Hoagland, 19764; Unpublished data from B. R. Doe5; Russell and Farquhar, 19606; Crawford and Hoagland, 19687; Heyl et al., 

19668; Goldhaber et al., 19959; and Kesler et al., 1994b10 (Cont.). 

CB-KY-510 Nittany Arch Keystone 18.505 15.620 38.527 Galena 

CP-SS-510 Nittany Arch 
Samuel 

Snyder 
18.583 15.618 38.537 Galena 

CP-SS-610 Nittany Arch 
Samuel 

Snyder 
18.560 15.622 38.388 Galena 

CP-SD-110 Nittany Arch Schad 18.540 15.619 38.579 Galena 

CP-SD-310 Nittany Arch Schad 18.535 15.624 38.591 Sphalerite 

CP-SD-510 Nittany Arch Schad 18.543 15.618 38.582 Galena 

CP-SD-1010 Nittany Arch Schad 18.554 15.635 38.623 Sphalerite 

CP-SD-2010 Nittany Arch Schad 18.534 15.614 38.585 Galena 

18 8 IL-KY Fluorite  Fairview 20.050 15.840 39.920 Galena 

19 8 IL-KY Fluorite  Deardor 20.220 15.890 40.110 Galena 

20 8 IL-KY Fluorite  Hill 20.280 15.900 40.160 Galena 

21 8 IL-KY Fluorite  Oxford 20.330 15.930 40.150 Galena 

22 8 IL-KY Fluorite  Dyer Hill 20.360 15.890 40.100 Galena 

23 8 IL-KY Fluorite  Rag Hill 21.010 15.960 40.640 Galena 
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Appendix 2: Compilation of Pb Isotope data: Pb Isotope analyses of this study1; Kesler et al., 19942; Misra et al., 19963; 

Hoagland, 19764; Unpublished data from B. R. Doe5; Russell and Farquhar, 19606; Crawford and Hoagland, 19687; Heyl et al., 

19668; Goldhaber et al., 19959; and Kesler et al., 1994b10 (Cont.). 

24 8 IL-KY Fluorite  Hicks Dome 19.910 15.800 40.560 Galena 

25 8 IL-KY Fluorite  Dike Vein 20.700 15.980 40.510 Galena 
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