
University of Arkansas, Fayetteville
ScholarWorks@UARK

Theses and Dissertations

5-2015

The Effects of Electrostatic Spraying with Organic
Acids in the Disintegration of Biofilms Formed by
E.coli O157:H7 and Salmonella Typhimurium on
Spinach and Cantaloupe
Ahmad Almasoud
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/etd

Part of the Agronomy and Crop Sciences Commons, Food Microbiology Commons, and the
Microbiology Commons

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu.

Recommended Citation
Almasoud, Ahmad, "The Effects of Electrostatic Spraying with Organic Acids in the Disintegration of Biofilms Formed by E.coli
O157:H7 and Salmonella Typhimurium on Spinach and Cantaloupe" (2015). Theses and Dissertations. Paper 18.

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fetd%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/103?utm_source=scholarworks.uark.edu%2Fetd%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/86?utm_source=scholarworks.uark.edu%2Fetd%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/48?utm_source=scholarworks.uark.edu%2Fetd%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd/18?utm_source=scholarworks.uark.edu%2Fetd%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Effects of Electrostatic Spraying with Organic Acids in the Disintegration of Biofilms 
Formed by E.coli O157:H7 and Salmonella Typhimurium on Spinach and Cantaloupe 



The Effects of Electrostatic Spraying with Organic Acids in the Disintegration of Biofilms 
Formed by E.coli O157:H7 and Salmonella Typhimurium on Spinach and Cantaloupe 

 
 
 
 

A thesis submitted in partial fulfillment 
of the requirements for the degree of 
Master of Science in Food Science 

 
 

By 
 
 
 

Ahmad Almasoud  
King Saud University 

Bachelor of Food science and Human nutrition, 2009 
 
 
 
 

May 2015 
University of Arkansas 

 
 
 

This thesis is approved for recommendation to the Graduate Council. 
 
 
 
____________________________________ 
Dr. Navam S. Hettiarachchy 
Thesis Director 
 
 
____________________________________            ____________________________________ 
Dr. Steve Seideman                 Dr. Andy Mauromoustakos 
Committee member                Committee member 
 
 
___________________________________ 
Dr. Young Kwon    
Committee member 
 



ABSTRACT 

Outbreaks from the consumption of fresh produce are a concern in the United States. The   

consumptions of fresh produce have increased recently which expose a large segment of society 

to such outbreaks. Spinach and cantaloupe are minimally heated or processed before 

consumption which makes them a possible source of foodborne illness. The objective of this 

research was to investigate the effect of organic acids alone and in combination to reduce 

attached Salmonella Typhimurium (S.T) and Escherichia coli O157:H7 (E.coli) on spinach and 

cantaloupe, and to disintegrate biofilm formed by these pathogens by electrostatically spraying 

with two organic acids. To quantify the attachment, enumeration of attached bacteria was 

conducted. E.coli strains used in the study are ED 14, ED 15, ED 16, MD 46, MD 47, and MD 

58. S.T strains used in the study are SD 10, and SD 11. E.coli ED 14 demonstrated the highest 

attachment property. Electrostatic spraying of organic acids showed that in spinach and 

cantaloupe lactic acid + malic acid at 2.0 % each showed the highest log reductions with 4.1 in 

spinach and 3.5 in cantaloupe, respectively. Strain dependency was observed in biofilm 

formation on spinach and cantaloupe homogenate using crystal violet assay. The images by 

confocal microscope showed the biofilm of E.coli and S.T was disintegrated by treatment with 

organic acids. Quorum sensing activity quantified by autoinducer AI-2 assay bases on the 

reporter strain V.harveyi BB 170 showed inhibition of the autoinducer compound by organic acid 

treatment.  
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Chapter 1: Introduction  

  Outbreaks from the consumption of fresh produce are a concern in the United States 

(Brooks and Flint 2008). The consumption of fresh produce has increased since the last 20 years 

(Brooks and Flint 2008; Taylor 2009; Olaimat and Holley 2012) because of the healthy trend that 

consumers around the world are adapting to by eating more fresh produce. Fresh produce are 

minimally heated or processed before consumption, which makes them a possible source of 

foodborne illness. 

  Since human pathogens are found to survive for a long-period of time in water, animal 

manure, and a variety of agricultural soils (Sivapalasingam and others 2004) contamination of 

fresh produce by pathogens can occur from the farm to the fork. For instance, fresh produce can 

be contaminated in the fields, at the time of harvesting, during handling, in processing, at green 

houses, during distribution while preparing foods at home or in restaurants (Beuchat 1996, 2002; 

Lynch and others 2009; Jahid and Ha 2012). 

  Washing with chlorine at the concentrations ranging from 50 to 200 ppm is used 

frequently for fresh produce decontamination. However, this treatment only reduces bacteria by 

less than 3 logs (Han and others 2000). Certain types of foods have been linked to certain 

pathogens outbreaks. For example, melons, tomatoes, and sprouts have been linked with 

salmonellosis (Hanning and others 2009). Leafy green vegetables have been linked with E. coli 

O157. It is essential to find a way to limit contamination of fresh produce since people consume 

a lot of fresh produce that have not been thermally treated or effectively washed (Lynch and 

others 2009). 

 Washing procedures lack a “kill” step in fresh produce decontamination (Kim and Wei 

2012). The purpose of washing is removing soil from the produce (Sapers 2001). As a result, 
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pathogens survive after washing, causing harmful diseases. 

  The ability of pathogens to survive washing is attributed to their ability to infiltrate, 

internalize, and form biofilms and on the plant tissues (Annous and others 2009; Jahid and Ha 

2012; Ukuku and others 2005), which makes them a serious problem for the food processing 

industry (Stier 2005). Biofilms are microbes that attach to surfaces or interfaces that produce 

exopolymeric substances for protection.    

 The quest for preventing foodborne illness is essential not only from the point of view of 

public health organizations but also from an economical perspective since food recalls cost a 

substantial amount of money (Taylor 2009). Biofilms formed by pathogens are becoming more 

and more resistant to antimicrobials (Van Houdt and others 2004) (Annous and others 2009) 

(Agle 2007), biocides (Annous and others 2009). Disinfectants (Rayner and others 2004), and 

sanitizers (Jahid and Ha 2012) that are used in the food industry (Annous and others 2006). 

Another problem is that biofilms are more likely to survive severe environmental conditions 

present in the food industry (Annous and others 2009). Furthermore, bacteria in biofilm are less 

affected by chemical stresses such as pH, oxygen, and physical stresses like pressure, heat, 

ultraviolet rays, and freezing (Annous and others 2009; Stier 2005; Agle 2007). 

  The formation of biofilm is the underlying reason why washing produce surfaces does 

not remove or inactivate human pathogens (Annous and others 2006; Sapers 2001). It has been 

reported that cells attached to the biofilm might be 150-3,000 times resistant to hypochlorous 

acid than cells that are not. For example, attached cells of Listeria monocytogenes can survive 

the exposure to benzalkonium chloride up to 12-20 minutes unlike free cells that only can 

survive for 30 seconds (Stier 2005). 

 Biofilm formation occurs in five stages (Tarver 2009). The first step of biofilm formation 
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is bacterial attachment. The attachment is caused by Van der Waals’ forces (Brooks and Flint 

2008; Stier 2005; Tarver 2009; Agle 2007). This initial attachment is weak and ease to be 

removed by rinsing (Stier 2005; Agle 2007). The steps involved in biofilm formation are: 

irreversible attachment of the bacteria into the surface, formation of microcolonies and biofilm 

maturation, formation of 3-D structure and water channels, and detachment form the mature 

biofilm and reattach. 

  Forming a biofilm in the lab is not an easy task since no standardized approach has been 

established so far. As a result, every lab that works on biofilms uses different methods to form it, 

which usually leads to inconsistent results with other laboratories. A standard way to form 

biofilm needs to be addressed by scientists who work with biofilms (McLean and others 2004).  

 To observe biofilm matrix, a light microscope with Alcian blue staining has been used 

(Rayner and others 2004). The use of confocal microscope depicts the three dimensions of 

biofilm (McLean and others 2004; Agle 2007), and is an effective tool to observe biofilm. 

Confocal microscope is a better choice than electron microscope in overcoming slides’ 

dehydration (Morris and others 1997; Seo and others 1999), and in identifying different kinds of 

bacteria rather than a single kind. The roughly estimated composition of a biofilm is 15% cells 

and 85% matrix (Agle 2007).  

 Stepanovic (2003) described a procedure for evaluating biofilm formation by modified 

microtiter plate test. This approach categorized the biofilm formation into four sub-sets: no 

biofilm formation, weak biofilm, moderate biofilm, strong biofilm formation.   

  There are different factors that affect the attachment of the biofilm. Surfaces that contain 

both moisture and nutrients are good environments for biofilm formation. The topography of 

fresh produce can be a factor that promotes biofilm formation. Leafy green vegetables have 
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substances such as suberin, cutin, and waxes that enhances the bacterial attachment (Jahid and 

Ha 2012). The existence of surfactants and exposure to high-temperature of fruits or vegetables 

may increase infiltration of pathogens into fresh produce (Ukuku and others 2005). Waxy 

substances on intact fresh produce surfaces suppress the attachment of microbes, which weakens 

the biofilm formation (Jahid and Ha 2012). 

 To control biofilm formation many methods have been used. Cleaning and sanitization 

weaken the persistence of bacterial biofilm (Annous and others 2009; Cramer 2012; Park and 

others 2012). A novel system; turbulent two-phase flow has been shown to be effective in 

reducing the level of biofilm by 6 log cycles. 

  Changing the properties of food contact surfaces is a strategy that can be adapted to 

reduce the formation of biofilm (Brooks and Flint 2008). For example, altering the stainless steel 

surface by implanting ions reduces the colonization of microbes. Another approach that can be 

used to prevent biofilm formation is coating the surface of substrate with an inactive material. 

This ‘molecular brush’ prevents the attachment. 

 There are different methods to disintegrate biofilms. Caustic chlorine has been shown to 

disintegrates the polysaccharide matrix rather than inactivate the microorganisms (Brooks and 

Flint 2008). It has been stated that in removing biofilm we are in need of substances that can 

penetrate the polymers surrounding the biofilm. Hydrogen peroxide/peroxyacetic acid-based 

compounds appear to breach the biofilm and makes it easier to remove (Stier 2005). Enzymes 

such as proteinase K and trypsin are used in breaking down biofilm that has been formed by 

Staphylococcal aureus (Boles and Horswill 2011). Gas-discharge plasma is a promising 

approach that can be used in biofilm inactivation (Joaquin and others 2009). However, it has 

been used on biofilms formed in model system rather than food matrix. 
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  Electrostatic spraying on biofilm on stainless steel has been shown to reduce surface 

contamination (Cramer 2012). Electrostatic spraying of antimicrobials has been shown to be 

more effective than conventional spray to control food-borne pathogens on lettuce and spinach 

(Ganesh and others 2012). 

  Biofilm formation is a complex process that includes expression of certain genes. 

Bacterial gene expression in some bacterial species may be regulated by quorum sensing. 

Quorum sensing is defined as, “cell density-dependent signaling systems by which bacteria 

modulate a number of cellular functions” through signaling compound known as autoinducers or 

bacterial pheromones. The autoinducers molecules bind to the appropriate transcription 

regulator(s) when the bacterial population reaches a threshold concentration. Binding of the 

autoinducers is followed by activation or repression of target genes. Therefore, quorum sensing 

allows bacteria to show a unified response that the benefits the population (Smith and others 

2004).  Quorum sensing is a mechanism that bacteria use as a response to harsh environment 

such as lack of nutrients or severe high/low temperature. Quorum sensing can contribute to the 

biofilm formation in food-borne bacterial such as E.coli O157:H7 and Salmonella. 

  The effect of electrostatic spraying with organic acids on biofilm formed by E.coli 

O157:H7 and Salmonella on fresh produce has yet been reported. Our lab studies conclude that 

electrostatic spraying with organic acids was effective in reducing E.coli O157:H7 and 

Salmonella on fresh produce.   
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The objectives are: 

1. To investigate the effectiveness of electrostatic spraying with Malic/ Lactic acids alone 

and in combination on biofilm formed by Escherichia coli O175:H7 on spinach. 

2. To investigate the effectiveness of electrostatic spraying with organic acids on biofilm 

formed by Salmonella Typhimurium on cantaloupe. 

3. To investigate the effectiveness of organic acids on quorum sensing (pre-step of biofilm 

formation) on spinach and cantaloupe. 
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Chapter 2: Literature Review 

• Salmonella Typhimurium

Salmonella is a motile, non-spore forming, gram-negative bacterium. Salmonella form

hydrogen sulfide in media containing glucose.  Salmonella cells can utilize citrate as a carbon 

source. They are mesophilic, with optimum growth temperature between 35 and 37 °C. 

Salmonella is rod shaped, ubiquitous, existing in animals, specifically, in poultry and swine. 

Water, soil, insects, raw meats and other vehicles are considered to be environmental sources of 

Salmonella. There are two genus of salmonella that can cause illness in humans; S.enterica and 

S.bongori.  (D’Aoust and others 2008). 

Salmonella enterica, which is of the greatest public health concern, is comprised of six 

subspecies: S.enterica subsp. enterica, S.enterica subsp. salamae, S.enterica subsp. arizonae, 

S.enterica subsp. diarizonae, S.enterica subsp. houtenae, S.enterica subsp. Indica.   

Among the six subspecies Salmonella enterica, subsp. enterica includes most serotypes 

frequently associated with foodborne salmonellosis (Ray 2005). 

The infective dose of Salmonella can be as low as 12-50cells depending upon the age and the 

health of the host (Hammack and others 2012). 

When sufficient amount of Salmonella cells is consumed, the pathogens invade mucosa 

of the small intestine, proliferate in the epithelial cells, and produce a toxin.  Patients with 

salmonellosis may show symptoms of abdominal cramps, diarrhea, nausea, vomiting, chills, and 

fever.   (D’Aoust and others 2008)  

Foods associated with salmonella include raw meats, poultry, eggs, milk and dairy 

products, fish, shrimp, cake mixes, cream-filled desserts and toppings, dried gelatin, peanut 

butter, cocoa, and chocolate. 

Salmonellosis outbreaks have been mainly related to poultry and meat products; however, 
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recent outbreaks have been linked to fresh produce (Tauxe and others 1997; Hanning and others 

2009) especially cantaloupe and sprouts (Harris and others 2003). 

As an early as 1990, multistate outbreaks from contaminated cantaloupe with Salmonella 

were reported. In 1991, two multistate outbreaks of salmonellosis were associated with 

cantaloupes. The first included Salmonella Chester and affected 245 persons with two cases of 

deaths in 30 states. The second involved Salmonella Poona and occurred in 23 states (Golden 

and others 1993).  

A multistate outbreak of Salmonella Typhimurium and salmonella Newport linked to 

cantaloupe occurred in 2012. The outbreak was wide spread (among 24 states) and had 

devastating consequences. Numerous number of people were sickened with 261 persons infected 

and 3 cases of death were confirmed (CDC 2012 a). In 2011, a multistate outbreak of human 

salmonella enteritidis infections linked to Alfalfa sprouts and spicy sprouts resulted in the 

infection of 25 persons (CDC 2011). A multistate outbreak of Salmonella Litchfield linked to 

cantaloupe took a place in 2008. The state health department identified 51 ill persons in 16 states 

as a result of the outbreak consequences (CDC 2008).   

Salmonella Typhimurium is able to form biofilm on fresh produce. The forming of the 

biofilm may be the reason for the ongoing outbreaks related to fresh produce.  

Annous and others (2005) reported the ability of Salmonella to form biofilm in a short period of 

time- 2 h at 20 °C on the rind of cantaloupe melons. It has been estimated that every year 2 to 4 

million cases of salmonellosis occur in the United States. With the low infective dose and the 

rapid ability to form a biofilm, outbreaks of salmonella are anticipated to keep increasing. 
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• Escherichia coli O157:H7

Escherichia coli (E.coli) is a gram-negative, rod-shaped, highly motile, bacterium that

presents naturally in the human gut as part of this flora. E.coli can be beneficial to the host in 

terms of preventing colonization of harmful pathogens in the gut. However, there are six classes 

of diarrheagenic (cause diarrheal illness) E.coli:enteropathogenic E.coli (EPEC); enterotoxigenic 

E.coli (ETEC); enteroinvasive E.coli (EIEC); diffusely adhering E.coli(DAEC); 

enteroaggregative E.coli (EAEC); and enterohmorrhagic E.coli (EHEC). E.coli serotype 

O157:H7 is classified under the EHEC class. The first E.coli O157:H7 identified as a pathogen 

in 1982 with hamburgers as the vehicle (Feng 2012; Doyle 1991). E.coli O157:H7 is also 

associated with a severe form of human disease because of its ability to produce Shiga toxins. 

The infective does of E.coli O157:H7 is very low (10 to 100 cells). One of the largest outbreaks 

associated with E.coli occurred in 1996 in Japan with more than 6,000 cases of E.coli infection 

and 4 cases of deaths. The outbreak affected more than 4000 schools around Sakai city (Buck 

and others 2003). Infection with E.coli O157:H7 causes hemorrhagic colitis (HC). Symptoms of 

HC include severe abdominal cramp and bloody diarrhea.  

Although E.coli O157:H7 has been always associated with outbreaks in which the food 

source is raw meat or meat products, recent outbreaks of E.coli have been associated with fresh 

produce especially leafy greens such as spinach and lettuce.  

In 2006, an outbreak of E.coli O157:H7 from spinach occurred. The outbreak resulted in 

the infection of 205 persons and 31 cases of Hemolytic-uremic syndrome (HUS), and 3 cases of 

death (Grant and others 2008). Another outbreak from the consumption of contaminated spinach 

and spring mix with E.coli O157:H7 took place in 2012. The outbreak resulted in the infection of 

33 persons and two cases of HUS (CDC 2012 b). 
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 An outbreak of E.coli O157:H7 from lettuce occurred in 2012. 58 persons were infected with the 

outbreak. The outbreak was spread over 9 states (CDC 2012 c).   

Wang and others (2012) reported that both Shiga toxins-producing E.coli O157:H7 and 

non-157 are able to attach and form biofilm on food contact surfaces and food items including 

meat and vegetables. The ability of E.coli O157:H7 to from a biofilm on food contact surfaces 

poses a high risk of cross contamination. In addition, the ability of E.coli O157:H7 to form 

biofilms on fresh produce can also hinder the effectiveness of washing treatments that have been 

used. 

• Microbial attachment on fresh produce

Bacterial attachment to biotic or abiotic surfaces is the first step in biofilm formation. 

Irreversible attachment in which bacteria are not removed by washing is the most critical step in 

biofilm formation. Fresh produce can be contaminated with pathogens in different steps in the 

process from farm to fork. There are many factors that affect the attachment of bacteria to the 

surface of produce. 

 Effect of curli and cellulose on bacterial attachment to fresh produce

Curli are very thin, coiled, extracellular structures on the cell surface of most E.coli, and 

Salmonella enterica strains. Curli and cellulose production by bacteria have been shown to have 

an impact on the attachment. However, the literature showed a variation in the role of curli and 

cellulose. The differences can stem from variation among the strains of the same pathogen, the 

surface of produce, and the source from which pathogens were isolated.  

Boyer and others (2007) reported that curli-producing E.coli O157:H7 cells attached firmly to 

lettuce whether cut or whole pieces than non-curli-producing E.coli O157:H7. However, with 
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different strains of E.coli O157:H7 there was no significant difference between the ones that 

were able to produce curli and the ones that do not.  It can be concluded that the production of 

curli is not solely responsible for firm attachment and the strain of the bacteria should be taken 

into account. Ukuku and others (2005) stated that the existence of curli and cellulose might able 

Salmonella for better attachment to fresh produce surfaces. A study by Lapidot and Yaron (2009) 

confirmed that cellulose and curli are essential for enhancing the attachment of Salmonella to 

parsley. However, Macarisin and others (2012) found that curli fibers were important for the 

attachment of E.coli O157:H7 into the spinach while the cellulose was not. A study was 

conducted to determine the effect of curli expression on cell hydrophobicity and attachment to 

cut and intact cabbage and lettuce (iceberg and Romaine). The study found that curli-producing 

strains of E.coli O157:H7 cells were more hydrophobic and attached at higher numbers than 

other weak curli-expressing strains (Patel and others 2011).  A part of Patel’s results was in 

disagreement with the Boyer’s findings who stated that although curli-producing E.coli O157:H7 

were significantly more hydrophobic, no association between cell’s hydrophobicity and 

attachment on lettuce was recognized. It can be concluded that the literature varies on the role of 

curli and cellulose onto attachment. In this research, the attachment was addressed by total plate 

count method after the fresh produce was washed to remove non-adherent bacteria.  

The effect of Cell’s hydrophobicity on bacterial attachment to fresh produce 

Bacteria cells’ hydrophobicity has been known to play a role in the attachment (Palmer 

and others (2007). However, Boyer and others 2007 reported that there is no association between 

the cell’s hydrophobicity of E.coli O157:H7 and the attachment into lettuce.  It was reported that 

hydrophobic cells of E.coli O157:H7 have higher number significantly more than non-

hydrophobic cells.  
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Hassan and Frank (2004) reported that cell’s hydrophobicity had no role on the 

attachment of E.coli O157:H7 onto lettuce and apple surfaces.  

Ukuku and Fett (2002) investigated the effect of hydrophobicity on the attachment of 

E.coli (O157:H7 and non-O157:H7), Salmonella, and Listeria monocytogenes to cantaloupe rind. 

The study found that there was linear correlation between bacterial cell surface hydrophobicity 

and the strength of bacterial attachment to cantaloupe rind.     

 The effect of food surface topography on bacterial attachment on fresh produce

The surface topography of fruits and vegetables can be complex. The topography of food 

surfaces has been shown to play a role in the attachment of bacteria. E.coli O157:H7 tend to 

attach to cut surfaces of cabbage and lettuce (iceberg and Romaine). However, the numbers of 

E.coli O157:H7 cells attached to intact or cut surfaces were not significantly different 

statistically (Macarisin and others 2012). This finding was in agreement with the findings’ of 

Takeuchi and Frank (2000) and Janes (2001) who stated that both E.coli O157:H7 and Listeria 

monocytogenes prefer to attach to the cut edges of chopped lettuce.  

Twenty four Listeria monocytogenes strains were evaluated based on their ability to 

attach and colonize on cabbage tissue. All the strains tested were attached to the cut tissue in 

comparison to the intact leaf surfaces (Ells and Truelstrup2006).  

A study was conducted to investigate the effect of the roughness of surfaces of different 

fruits (Golden Delicious apples, navel oranges, avocadoes, and cantaloupes) on the attachment of 

E.coli O157:H7.The study found that there was a positive liner correlation between the average 

roughness of fruits surfaces and the rate of adhesion of E.coli O157:H7. The confocal 

microscope was used to determine the roughness of fruit surfaces (Wang and others 2009). 
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• Foodborne pathogens associated with fresh produce

Fresh produce have been increasingly consumed, efficiently distributed, and amply 

produced in the past two decades. Contamination of fresh produce by pathogens can occur in the 

cold chain from the farm to the table including the fields, at the time of harvesting, handling, or 

processing, and during distribution (Figure 1) (Sivapalasingam and others. 2004; Harris 1997). 

However, when fresh produce are contaminated, they become less susceptible to sanitization 

(Olaimat and others 2012). Since fresh produce and fresh-cut produce require minimum 

processing, they become a vehicle for different microorganisms, some of which are pathogens. 

The increased consumption of fresh produce can be a result of the healthy trend that consumers 

around the world are adapting to by eating more fresh produce. Moreover, prepared fresh 

produce products such as bagged salad better fit more the fast life style. The bagged salad market 

has been implicated with a rise in food-borne illness cases since the produce is cut or shredded 

which increases the release of nutrients that aid microbes to grow (Annous and others 2009) 

(Warriner and others 2009). A way to overcome the problem of bagged salad is the Modified 

Atmospheric Packaging (MAP). However, MAP may help important pathogens such as E.coli to 

grow, survive, and produce toxin (Chua and others 2008). Fresh produce consummation 

increased on average 4.5% annually between 1990 and 2004 (Olaimat and others 2012). 

Simultaneously outbreaks of foodborne illness associated with the consumption of fresh produce 

have increased (Warriner and others 2009). Chlorine is widely used for washing fresh produce 

after harvesting. However, bacterial internalization and biofilm formation hinder the 

effectiveness of chlorine treatment. The biofilm formation and internalization by pathogens may 

contribute to the increased numbers of outbreaks from fresh produce. 
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• Biofilm formation on fresh produce

According to Costerton and others (1999) a biofilm is defined, “an assemblage of

microorganism adherent to each other or/and to the surface and embedded in a matrix of 

exopolymers.” The majority of microbes exist as biofilm in the environment and not as 

planktonic cells (Lemon and others 2008). Many studies concerned about bacterial biofilm on 

plants were devoted to examine the relationship between the epiphytic microorganisms on the 

leaf surface. These studies conclude that original biofilms on the plant consists of different 

bacterial species. In addition, the variation in the biofilm population is affected by the 

environmental atmosphere such as temperature, humidity, and nutrition availability. Pathogens 

such as E.coli and Salmonella are able to form biofilms on fresh produce. Biofilm formation 

occurs in five stages (Figure 2). 

The first step of biofilm formation is attachment (Stier 2005; Brooks and Flint 2008; Agle 2007). 

The attachment is caused by Van der Waals’ forces (Tarver 2009). This initial attachment is 

weak and easy to be removed (Stier 2005) by rinsing (Agle 2007). The second step in biofilm 

formation is irreversible attachment. 

Forming a biofilm in the lab is not an easy task since no standardized approach has been 

acknowledged yet .As a result, every lab that works on biofilms use different methods to form it, 

which usually leads to inconsistent results with other laboratories. A standard way to form 

biofilm needs to be addressed by scientists who are involved and work with biofilms (McLean 

and others 2004). 
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• Detection of Biofilms in vitro and fresh produce

There are many methods to evaluate biofilms in vitro and fresh produce. O'Toole (2011) 

stated that crystal violet assay can be used for biofilm evaluation in microtiter plate. This method 

is used to observe variation among different strains in the ability to form biofilm, and it is used 

prior to time-consuming work such as plating and/or observing biofilms under microscopes. 

However, crystal violet stains both dead/living cells and matrix components that may present in 

the plate hence crystal violet can provide overestimated results (Djordjevic and others 2002) To 

solve this problem, direct enumeration of bacteria in biofilms can be used for yielding data that 

are more accurate (Peters and others 2008; Merritt and others 2005).  

Peters and others (2008) used the Syto9 assay, the fluorescein diacetate assay, the 

resazurin assay, the XTT assay and the dimethyl methylene blue assay to quantify biofilm 

produced by Pseudomonasaeruginosa, Burkholderiacenocepacia, Staphylococcus aureus, 

Propionibacteriumacnes and candidaalbicansin the 96-well microtiter plates. This study 

reported that some assays such as crystal violet assay was not the best fit to quantify biofilm 

formed by specific microorganism such as Pseudomonasaeruginosa. 

Biofilms can be visualized by cryostage scanning electron microscopy. Rayner and others (2004) 

were able to visualize biofilms that formed naturally on fresh produce surfaces such as carrots, 

tomatoes, and mushrooms by cryostage scanning electron microscopy. 

Scanning electron microscopy was used to observe biofilms that formed naturally on 

roots of alfalfa, broccoli, clover, sunflower sprouts, sprouts of alfalfa that were grown in the lab 

(Fett 2000) and mung bean sprouts (Fett and Cooke 2003). 

Light microscopy with Alcian blue staining can be used to confirm the presence of the 
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biofilm matrix. Exopolymeric contains acidic polysaccharides that can be stained by Alcian blue 

stains and observed under the light microscope (Rayner and others 2004). 

Elhariry (2011) used scanning electron microscopy to observed biofilm formed by Bacillus 

cereus on cabbage and lettuce.  

• Using Organic Acids as an Antimicrobial

Organic acids such as acetic, lactic, malic, and citric, are present naturally in of foods 

naturally. Organic acids have been used as food preservatives because of their antimicrobial 

effects. Although the mechanism(s) by which organic acids act as antimicrobials is not fully 

understood, reducing the intracellular pH is considered to be the main factor in inhibiting the 

microbial growth. It has been previously stated that undissociated organic acids are able to 

penetrate the lipid membrane of the bacterial cell, and upon internalization into the cell 

cytoplasm it dissociates into anions and protons. The presence of these molecules challenges the 

bacteria cell to keep its intercellular pH to a point at which the function of its organelles is not 

affected, which can be done by exporting the excess protons. Exporting protons uses cellular 

adenosine triphosphate (ATP) and might deplete the cellular energy (Rick 2003; Davidson and 

others 2013). 

The effect of organic acids as antimicrobials has been extensively studied in the 

literature. Park and others (2011) used different organic acids (propionic, acetic, lactic, malic, 

and citric acid) with different concentrations 1% and 2% to inactivate E.coli O157H7, 

Salmonella Typhimurium, and Listeria monocytogenes on red apples and lettuce. The results of 

Park’s study on apples showed that, lactic, malic, and citric had the highest log reduction > 3.42 

against the three foodborne pathogens. However, on lettuce, malic and citric acids had the 
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highest log reduction with 2.98 and 2.86. Although many scientists have investigated the effect 

of organic acids on fresh produce products, park’s study is considered the first that investigated 

the effect of organic acids on organic produce.  

Aerosolized malic acid was used to inhibit foodborne pathogens E.coli O157H7, 

Salmonella Typhimurium, and Listeria monocytogenes on spinach and lettuce. The study 

revealed that using aerosolized 2% malic acid for 100 min resulted in the highest log reduction of 

the three pathogens on both spinach and lettuce. Moreover, the study concluded that using 

aerosolized malic did not adversely alter the quality of spinach or lettuce (Choi and other 2012). 

Malic acid (2.6%)-incorporated soy protein film has shown to reduce the log reduction of 

E.coli O157H7, Listeria monocytogenes, and Salmonella gaminara by 2.1, 2.8, and 6.0 

respectively (Eswaranandam and others 2004) 

Over and others (2009) investigated the effect of organic acids in both broth culture 

model and chicken meat systems. The study concluded that at the concentration of 150.0 mM 

citric, malic, and tartaric had the highest log reduction in the chicken system against E.coli 

O157H7, Listeria monocytogenes, and Salmonella Typhimurium by > 5, >2, and 4-6 log CFU/g, 

respectively. However, in the broth culture acetic, citric, lactic, malic, and tartaric showed 

efficiency at 75mM. 

Dipping produce with organic acids have been used to inactivate Escherichia coli and 

Listeria monocytogenes on lettuce. Dipping lettuce in different organic acids; lactic, citric, acetic, 

and ascorbic at the concentration 0.5% for 2 min reduced the number of Listeria monocytogenes 

by 1.5, 1.0, 0.8, < 1.0 log10 CFU g -1 respectively. Dipping lettuce in different organic acids; 

lactic, citric, acetic, and ascorbic at the concentration 0.5% for 2 min reduced the population of 

Escherichia coli by 1.9, 2.0, 1.3, and 1.0 log10 CFU g -1 respectively (Akbas and others 2007).  
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Washing spinach leaves with 2% L-lactic acid at 55 °C was shown to reduce bacterial 

growth of E.coli O157:H7 and salmonella by 2.7 and 2.3 log CFU/g respectively. However, an 

adverse effect of color bleaching was reported (Neal and others 2012).  

Spraying inoculated cantaloupes and bell peppers with Salmonella Typhimurium and 

E.coli O157:H7 with 2% L-lactic acid resulted in the lowest log counts on both produces. The log 

reductions for pathogens were 3 and 3.6 log CFU on cantaloupes and bell peppers respectively.  

The study concluded that 2% L-lactic acid treatment did not cause any adverse effect on the 

organoleptic characterizations of the products (Alvarado-Caillas and others 2007). 

The synergistic effect of organic acids and heat to decontaminate pathogens on fresh 

produce was investigated. Huang and Chen (2001) found that washing baby spinach with 2% 

lactic acid to inactivate E.coli O157:H7 at 40 °C for 5 min resulted in the highest reduction of 

E.coli O157:H7 (2.7 log CFU/g).  

Ganesh and others (2010) stated that malic acid in combination with grape seed 

extract/lactic acid solution applied by electrostatic spraying exhibited higher inhibition of 

pathogens that conventional spraying and can be used for commercial applications to enhance 

food safety.  

Ganesh and others (2012) used electrostatic spraying of food-grade organic acids and 

inorganic acids and plant extracts to decontaminate E.coli O157:H7 on spinach and iceberg 

lettuce.  The study findings were that combined lactic acid 3.0% , malic acid 3.0% showed 2.1 to 

4.0 log CFU/g reduction of E.coli between the days 1 and 12 on spinach and 1.1 to 2.25 log 

CFU/g reduction on lettuce.  

20 



Massey and others (2013) reported that malic acid (4%) alone and in combination with 

lactic acid (2%) resulted in a log reduction of 4.6 when the organic acids were spayed 

electrostatically into cantaloupe inoculated with E.coli O157:H7.   

• Approaches used to control biofilms on food contact surfaces

Different methods have been used to control biofilm on food contact surfaces.  It has 

been reported that a way to control biofilms is to frequently disinfecting even before the 

formation of the biofilm. Nevertheless, the time course of the pre-step for the biofilm formation, 

which is essentially attachment, is rapidly occurs in hours. This fact makes it even harder to 

decontaminate biofilm in food industries in which the frequency for biofilm formation is much 

higher than the disinfection regularity. Moreover, cleaning and sanitization weaken the 

persistence of bacterial biofilm (Annous and others 2009; Park and others 2011; Cramer 2012). 

A novel system turbulent two-phase flow has been used. This system has been shown to be an 

effective in reducing the level of biofilm by 6 log cycles (Brooks and Flint 2008).  

Changing the properties of food contact surfaces is a strategy that can be adapted to 

reduce the formation of biofilms. For example, altering the stainless steel surface by implanting 

ions reduces the colonization of microbes. Another approach that can be used to prevent biofilm 

formation is by coating the surface of substrate with an inactive material. This ‘molecular brush’ 

prevents the attachment of microbes (Brooks and Flint 2008). Moreover, modified stainless steel 

surfaces with poly (ethylene glycol) were smoother and less hydrophobic than the unmodified 

ones. Attachment and biofilm formation by Listeria monocytogenes on modified surfaces were 

reduced by 90% in comparison with the unmodified stainless steel (Wang and others 2003). 
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To reduce the attachment (a pre step of biofilm formation) of Listeria monocytogenes on 

stainless steel, a cocktail of lactic acid bacteria was used. In this study, Pediococcus acidilactic, 

Lactobacillus amylovorus, and Lactobacillus animalis were able to reduce the attachment of 

Listeria which gives the potential of using lactic acid bacteria as a biosanitizer in food contact 

surfaces (Ndahetuye 2012)  

• Approaches used to decontaminate biofilms on food contact surfaces

Biofilms formation on food contact surfaces presents a serious hazard since biofilms are 

more resistance to disinfections that usually used in the food industry. In addition, biofilms can 

result in cross contamination since cells detach from the formed biofilms and become planktonic 

cells that transfer to foods. Many studies were conducted to decontaminate biofilms formed on 

food contact surfaces. 

Trisodium phosphate (TSP) was used to decontaminate biofilms formed by listeria 

monocytogenes, Salmonella Typhimurium, E.coli O157:H7 and campylobacter jejuni on stainless 

steel. The study showed that TSP was an effective method to inactivate biofilms formed by the 

previously mentioned pathogens. The study showed E.coli O157:H7 to be most susceptible to the 

treatment (only 1% TSP with contact time of 30 s was sufficient to reduce bacteria in biofilms by 

105 CFU/cm2). On the other hand, Listeria monocytogenes was the most resistant to the treatment 

(even 8% TSP with contact time of 2 min could not reduce the bacterial log by 1). 

TSP can be used to disinfect pathogens on food contact surfaces or/and poultry products, yet the 

effectiveness of TSP on fresh produce products has not been evaluated (Somers and others 

1994). 
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Cetylpyridinium chloride (CPC) was investigated to decontaminate biofilms formed by 

E.coli O157:H7 on stainless steel. The study revealed that < 1.0% CPC was sufficient to 

inactivate E.coli O157:H7 biofilms formed on stainless steel (Plauché 2006). 

Essential oils were used to reduce biofilms formed by different Listeria strains on 

stainless steel. The study found that thyme, oregano, and carvacrol oils were the most effective 

against Listeria monocytogenes biofilms on stainless steel surfaces (Desai 2012).  

Citric acid was investigated for reducing bacterial biofilm formed on polyvinyl chloride 

pipes. The investigation found that 10.000 mg/L citric acid concentration and 60 min contact 

time were the optimal conditions for bacterial biofilm inactivation (Tsai and others 2003). 

Lactic acid and steam treatments were studied for their ability to inactivate biofilms 

formed by E.coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on polyvinyl 

chloride and stainless steel. Inoculated coupons (polyvinyl chloride/stainless steel) with the 

above pathogens were left 6 days at 25 °C to allow biofilms formation. Coupons then were 

treated with 2% lactic for 15 s or 30 s followed by exposure to steam for 20 s. After the use of 

combined treatment biofilm cells were reduced to below the detection limit (1.48 log) (Ban and 

others 2012).  

A study investigated the effectiveness of irradiation and sodium hypochlorite to 

decontaminate biofilm formed by Pseudomonas aeruginosa, Listeriainnocua, and Escherichia 

coli on polypropylene, polyethylene, and polycarbonate. The study found that gamma irradiation 

was effective for reducing the biofilms formed by different pathogens. On the other hand, 

sodium hypochlorite had a moderate effect (Byun and other 2007).  

Peracetic acid and peroctanoic acid sanitizers were investigated to their ability to 

decontaminate mixed-culture biofilms formed by Listeria monocytogenes and Pseudomonas on 
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stainless less. The study revealed that peracetic acid sanitizer was more effective than 

peroctanoic acid in biofilms decontaminations (Fatemi and Frank 1999). 

A study investigated the effectiveness of different disinfectants to decontaminate biofilm 

formed by gram positive bacteria such as Bacillus subtilis and Staphylococcus. Gram negative 

bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Salmonella Typhimurium on 

stainless steel slides (1.5 cm in width, 2 cm in length, and 3-mm in depth). The slides were left 6 

days after inoculation with the above microorganisms to allow biofilm formation. The study 

found that among eight different disinfectants, hydrogen peroxide was the most effective on all 

tested bacteria (Rushdy and Othman 2011). 

Nisin and lysozyme were investigated of their ability to decontaminate biofilm formed by 

25 different strains of Staphylococcus aureus. The study revealed that the use of 25 µg/ml nisin 

was sufficient to inhibit biofilm formation of all the strains used in the study. On the other hand, 

the lysozyme used was not effective against all the tested strains (only six strains were affected).   

The effect of the above biopreservatives (nisin and lysozyme) was studied in a 96-well 

plate made of polystyrene (Sudagidan and Yemenicioglu 2012). 

Ethylenediaminetetraacetic acid (EDTA) was studied to inhibit biofilm formed by 

Listeria monocytogenes. The study revealed that adding EDTA at the beginning of biofilm 

formation was the most effective in reducing biofilm formation. However, EDTA was not 

effective against 8-h-old biofilm. The effect of EDTA against biofilm formed was studied in a 

96-well plate made of polyvinyl chloride (Chang and others 2012). 

The effect of alkaline and acidic electrolyzed water to decontaminate biofilm formed by 

Listeria monocytogenes on stainless steel was investigated. Stainless steel coupons were 

immersed in not-rich media for 48 h at 24 °C. The study found that the use of alkaline 
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electrolyzed water followed by acidic electrolyzed water was statistically significantly higher 

inactivation of Listeria monocytogenes than the use of acidic water solely (Ayebah and others 

2005). 

Quaternary ammonium compound-based (QAC) and acid-based (AB) sanitizers were 

investigated for their ability to decontaminate one-week-old biofilm formed by E.coli O157 and 

Salmonella Typhimurium on stainless steel. The study found that both sanitizers were not 

effective to reduce the formed biofilm (Fouladkhah and others 2013). 

Scallop shell powder was used to remove biofilm formed by Listeria monocytogenes, 

Staphylococcus aureus, and E.coli O157:H7 on stainless steel. The study revealed that the use of 

scallop shell powder was effective to reduce two-day-old biofilm on stainless steel (Bodur and 

Cagri-Mehmetoglu 2012).  

The use of aerosolized sanitizers showed an important effectiveness on biofilm formed on 

stainless steel and Polyvinyl chloride (PVC) (Park and others 2012).  

 Approaches used to reduce biofilms on food and fresh produce

For biofilm decontamination, the biocide or the antimicrobial has to penetrate the 

extracellular polymeric substance (EPS) to reach into the bacteria that are protected by the EPS 

(Meyer 2003).  

The composition of EPS differs from a biofilm to another biofilm. For example, 

polysaccharides are always thought to be the most predominant component in the biofilm matrix; 

however, there were some situations when proteins and humic substances were the major 

components in the EPS matrix (Starkey and others 2004). The variation in the composition of a 

biofilm can be the result of the environmental conditions and the strain of bacteria. Chlorine can 

be used in biofilm decontamination. However, the concentration of Chlorine needed for 
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significantly decontaminate biofilm was 1,000 ppm in comparison with 10 ppm needed for 

decontaminate planktonic cells (Jahid and Ha 2012).  Studies that were conducted to eliminate 

biofilms formed on fresh produce scarce in comparison with studies investigated the elimination 

of biofilms formed on polystyrene or food contact surfaces. A study that used ozone (2 mg/L), 

chlorine (100 mg/L) and organic acid (0.25g/100 g citric acid plus 0.50 g/100 ascorbic acid) 

treatments at 10 °C for 2 min to remove biofilm formed by E.coli O157:H7, Listeria 

monocytogenes on green leaf lettuce (Lactuca sativa) found that none of the used treatments was 

sufficient to reduce the cells that were embedded in biofilms (O¨ lmez and others 2010). 

Irradiation was used to decontaminate biofilm formed by E.coli O157:H7 on spinach and 

lettuce leaves. In the experiment spinach and lettuce leaves were dip inoculated and stored at 4 

°C at (0, 24, 48, and 72 h) to allow biofilm formation. Leaves were treated with different doses 

of irradiation (0, 0.25, 0.5, 0.75, or 1 kGy). It was found that the D 10, which is the dose required 

for 1 log reduction, increased significantly when the storage time increased. It increased from 

0.19 kGy on o h to 0.52 to 0.54 kGy on spinach, and from 0.19 on 0 h to 0.40 to 0.43 kGy on 

lettuce (Niemira and Cooke 2010). 

Washing with sodium hypochlorite at different concentrations (0, 300, or 600 ppm) with 

a contact time of 3 min to reduce biofilm formed by E.coli O157:H7 on leaves of spinach and 

lettuce had a moderate effect. The log reductions of baby spinach, lettuce were 1.3 and 1.8 log 

CFU/g respectively (Niemira and Cooke 2010). 

Since Irradiation is not preferable by many consumers, there is a need for approaches that 

are more appealing. The use of organic acids (natural compound in foods) and the use of 

electrostatic spraying can help in disintegrating biofilms on fresh produce by the use of hurdle 

technology.  
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• Quorum Sensing

Quorum sensing is “cell density-dependent signaling systems by which bacteria modulate 

a number of cellular functions” through signaling compound known as autoinducers or bacterial 

pheromones (Smith and others 2004). Quorum sensing is a strategy that bacteria uses as a 

response to environmental stresses such as lack of nutrients or sever temperature. Quorum 

sensing can contribute to the biofilm formation in food-borne pathogens bacteria such as E.coli 

O157:H7 and Salmonella. Biofilm is considered to be a layer of mainly polysaccharides that 

protect the bacteria against external factors. Gram- negative bacteria such as E.coli O157:H7 and 

Salmonella Typhimurium produce two types of autoinducers: acylated homoserine lactones (AI-

1) and furanosyl borate diester (AI-2) (Lu and others 2005). Bacteria producing the above

mentioned autoinducers have to possess a luxS gene which code the Luxs proteins that 

biosynthesis AI-2. 

Various investigations have been conducted to inhibit AI-2 activity. Pillai and others 

(2006) reported that some food extracts such as turkey patties, chicken breast, mozzarella 

cheeses, beefsteak, beef patties, and goat milk cheese were able to inhibit AI-2 activity, which 

was determined by using V.harveyi reporter strain BB170. The inhibition of AI-2 activity 

percentages by food extracts were 99.8% for turkey patties, 97.5% for chicken breast, 93.7% for 

mozzarella cheeses, 90.6% for beefsteak, 84.4% for beef patties, and 65.3% for goat milk cheese. 

Lu and others (2004) stated that food additives such as sodium propionate, sodium benzoate, 

sodium acetate inhibited the activity of AI-2 activity. These authors used the additives at FDA-

recommended concentrations. Sodium propionate virtually inhibited AI-2 activity. Sodium 

benzoate and sodium acetate inhibited the AI-2 activity by 93.3% and 75% respectively.  

However, sodium nitrate did not have any significant effect even when used at high 
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concentration (200 ppm). V.harveyi reporter strain BB170 assay was used to determine the effect 

of the additives on AI-2 like activity. The authors also determined the effect of the additives on 

the reporter strain to confirm that the reduction in the AI-2 activity was not due to the growth 

inhibition of the reporter strain but to the effect of the additives.   

  Widmer and others (2007) reported that using fatty acids isolated from poultry meat 

reduced the activity of AI-2. Since all the fatty acids share similar structure, their inhibitory 

activity might stem from the chemical structure. However, more studies are needed to determine 

the mechanism by which fatty acids inhibit AI-2 activity. Soni and others (2008) identified the 

fatty acids that Widmer reported and found that palmitic acid, steric acid, oleic acid, and linoleic 

acid were able to inhibit AI-2 activity. The fatty acids were used at various concentrations (1, 5, 

and 10 mM). The level of inhibition correlates with the increase in the concentration of the fatty 

acids. Oleic acid was the most effective fatty acids among palmitic acid, steric acid, and linoleic 

acid V.harveyi reporter strain BB170 assay was used to determine the effect of the fatty acids on 

AI-2 like activity. Bodini and others (2009) indicated that p-coumaric acid was able to hinder the 

activity of quorum sensing in Chromobacterium, Agrobacterium, and Pseudomonas.  Further 

studies are needed to understand p-coumaric acid role in the inhibition of quorum sensing. 

  Choo and others (2006) found that vanilla extracts have been shown to have quorum 

sensing inhibition property. Vanilla extract contains vanillin, 4-hydroxybenzaldehyde, 4-

hydroxybenzyl methyl ether, esters, phenols, and hydrocarbons. All of the above mentioned 

compounds do not have a similar structure to the natural autoinducer which enable them to stack 

to the autoinducer molecule and block it. Hence, the compound that inhibits quorum sensing in 

vanilla has not been discovered yet. Investigations are needed to determine the compounds in 

vanilla that inhibits the quorum sensing activity and the mechanism by which it does. 
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Koh and Tham (2009) disclosed that traditional Chinese medicinal plants were effective 

against quorum sensing activity. In Koh’s study 10 traditional Chinese medicinal plants were 

investigated for their ability to inhibit quorum sensing activity. Eight plants of the traditional 

Chinese medicinal plants inhibited quorum sensing Prunus armeniaca, Prunella vulgaris, 

Nelumbo nucifera, Panax notoginseng (root and flower), Punica granatum, Areca catechu, and 

Imperata cylindrica. The results from the study indicate that traditional Chinese medicinal plants 

have compounds inhibit the quorum sensing activity. However, more investigations are needed 

to identify and isolate the compounds that inhibit quorum sensing activity. 

Quave and others (2011) recorded that Italian medicinal plants were effective against 

quorum sensing activity. In Quave’s study, three medicinal plants (Ballota nigra, Castanea sative, 

and Sambucus ebulus) were able to inhibit quorum sensing activity in methicillin-resistant 

Staphylococcus aureus (MRSA). However, the active compounds in the plants are not known 

yet. More studies can be conducted to identify and isolate the active compounds.  

Lee and others (2013) screened 498 plant extracts for their ability to inhibit E.coli O157:H7. 

Only 16 plants inhibited the biofilm formation of E.coli O157:H7 without having an effect on the 

planktonic cells, and 14 plants extracts hinder the motility of the E.coli O157:H7. The most 

active plant carex dimorpholepis was able to inactivate AI-2 quorum sensing genes. However, 

the carex dimorpholepis did not show a bactericidal effect.  

The effect of organic acid on auotinducer-2 activity has not been investigated hence the 

study investigated the effect of organic acid on autoinduce-2 (quorum sensing molecule) on fresh 

produce samples (spinach and cantaloupes). 

Cell-to-cell signaling known as quorum sensing has been shown to have a role in biofilm 

formation in foodborne pathogens. Bacterial gene expression in some bacterial species may be 
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regulated by quorum sensing, a cell density-dependent signaling system mediated by chemical 

auotinducer molecules produce by bacteria.  The autoinducer bind to the appropriate 

transcription regulator(s) when the bacteria population reaches a threshold concentration 

sufficient to facilitate binding to the receptor.   As a result, a method to interpret quorum sensing 

can be used as a preventative measure to hinder biofilm formation on fresh produce. 

In most of the reported studies, investigation are lacking isolating and identifying of the active 

compound that inhibit quorum sensing. More research is needed to identify other compounds that 

can interpret the quorum sensing process such as organic acids. This study investigated the effect 

of organic acid on quorum sensing in fresh produce homogenate.  Since AI-2 is the quorum 

sensing compound, Vibrio harveyi BB170 was used since it produces bioluminescence as a 

response to AI-2. 
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Figure 1-Mechanisms by which produce can become contaminated with pathogenic 
microorganisms adapted from (Harris 1997) with permission.  
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Figure 2-Diagram showing the development of a biofilm as a five-stage process adapted from 
(Stoodley and others 2002) with permission.  
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Chapter 3: Effects of electrostatic spraying with organic acids in the disintegration 
of biofilms formed by E.coli O157:H7 on spinach. 

Introduction 

Outbreaks from the consumption of fresh produce are a concern in the United States 

(Brooks and Flint 2008). In 2013, a multistate outbreak of E.coli O157:H7 infection linked to 

ready-to-eat salads occurred. The outbreaks resulted in the infection of 33 persons and 

hospitalization of seven and two persons developed hemolytic uremic syndrome.  No deaths 

cases were reported as a consequence of the outbreak.  

Another multistate outbreak took place in 2012 linked E.coli O157:H7 to organic spinach and 

spring mix blend. 33 persons were infected and 13 were hospitalized. Two ill persons developed 

hemolytic uremic syndrome.   

The consumption of fresh produce has increased since the last twenty years (Brooks and 

Flint 2008; Taylor 2009)) because of consumer demand.    

Contamination of fresh produce by pathogen from the farm to the fork. For instance, 

fresh produce can be contaminated in the fields, at the time of harvesting, handling, or 

processing, and during distribution (Sivapalasingam and others 2004; Beuchat 1996). Certain 

types of foods have been linked to certain pathogen outbreaks; for example, salmonellosis with 

melons, tomatoes, and some selections of sprouts.  E. coli O157:H7 has been associated with 

leafy green vegetables since only a few cells are required for   E.coli O157:H7 is able to survive 

for extended periods in water, soil, and can tolerate refrigerated temperatures. E.coli O157:H7 

can be destroyed by high temperatures such as cooking (Kendall and Davis 2014). Fresh produce 

are not thermally treated, hence makes them a possible source of foodborne illness. The primary 

purpose of washing produce is not to remove bacteria, but to remove soil from the produce 

(Sapers 2001). As a result, dependence on conventional washing will not remedy the problems of 
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pathogen outbreaks in fresh produce. Other approaches are needed to alleviate the burden of 

fresh produce contamination. 

It is recognized that human pathogens have the ability to form biofilm on fresh produce 

(Annous and others 2009; Jahid and Ha 2012; Morris and others 1997; Kim and Wei 2012; 

Rayner and others 2004). Biofilm formation occurs in five steps 1. Reversible attachment 

2.iireversiable attachment 3.formation of microcolonies and biofilm maturation 4. Formation of

three-D structure 5. Detachment from the mature biofilm and reattach. Biofilms can be resistant 

to antimicrobials (Van Houdt and others 2004; Annous and others 2009a; Agle 2007), biocides 

(Annous and others 2009), disinfectants (Rayner and others 2004; Jahid and Ha 2012) and 

sanitizers (Jahid and Ha 2012) that are used in food industry (Annous and others 2006), which 

makes biofilm a serious problem to this industry (Stier 2005). In addition, Biofilms are more 

likely than planktonic bacteria to survive in harsh environmental conditions (Simões and others 

2010). 

Various methods have been used to disintegrate biofilms.  Horswill and Boles (2011) 

reported that enzymes such as proteinase K and trypsin can be used in disintegrating biofilms 

that has been formed by Staphylococcal aureus. Another approach has been in washing with 

caustic chlorine in disintegrating the polysaccharide matrix of the biofilm rather than inactivation 

of the microorganisms (Brooks and Flint 2008). Irradiation has been reported to reduce 

pathogens that exist in biofilm and/or internalized within the tissue of fresh produce (Annous and 

others 2009a). However, Niemira and Cooke (2010) reported that irradiation was not effective 

against biofilm formed by E.coli O157:H7 in spinach.  

Various Investigations have been conducted to study the anti-microbial activity of 

organic acids. 
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Malic acid (2.6%) incorporated soy protein films reduced the log number CFU/mL from 

8.3, 9.0, and 8.9 of L. monocytogenes, S. gaminara, and E. coli to 5.5, 3.0, and 6.8, respectively 

(Eswaranandam and others 2004). López-Malo and others (2012) concluded that organic acids 

are effective antimicrobial against salmonella. Organic acids are GRAS (Generally recognized as 

safe), inexpensive, slightly affect the taste of the product, and have unlimited acceptable daily 

intake (López-Malo and others 2012). 

Several studies have been conducted using electrostatic spraying as a technique to reduce 

bacterial growth. For example, electrostatic spraying with 200 ppm of ala-quaternary ammonium 

significantly reduced biofilm formed by Listeria monocytogenes on ceramic tile, FRP (plastic 

wall board), polypropylene conveyor belt mesh tops (24% open mesh), and stainless steel (Dow 

2008). This study found that the use of electrostatic sprayer was very effective as a pre-treatment 

in controlling biofilm formation in all surfaces used in the study.  

Russell (2003) reported that electrostatic spraying was an effective method to reduce pathogens 

from eggshell surfaces.  It was stated that a combination of malic acid with a solution of grape 

seed extract and lactic acid by electrostatic spraying showed significant inhibition of pathogens 

in comparison to conventional spraying (Ganesh and others 2010). The U.S Department of 

Agriculture Research Service (ARS) reported that electrostatic spraying on biofilm formed on 

stainless steel might reduce surface contamination (Cramer 2012). 

The objective of the study was to investigate the effectiveness of electrostatic spraying with 

organic acids on attachment and biofilm formation of E.coli O157H7 on spinach leaves.  
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Material and Methods 

1. Culture preparation

Agar slant cultures of green fluorescent protein GFP-labeled ED 14 E.coli O157:H7 

(CV267); ED15 E.coli O157:H7 (6980-2); ED16 E.coli O157:H7 (6982-2); MD58 E.coli 

O157:H7 (CV261), MD46 E.coli O157:H7 (F4546); and MD47 E.coli O157:H7 (K4492) were 

obtained from the University of Georgia, Center for Food Safety, Griffin, GA. Frozen stock 

cultures were made with a single colony of each microorganism. Frozen stock cultures at -70 °C 

of the above were thawed, transferred to 10 mL of brain heart infusion homogenate (BHI) 

(Becton Dickinson Microbiology Systems, Becton Dickinson and company, Sparks, MD, 

U.S.A.) and incubated at 37 °C for 24 h with 200-rpm using a New Brunswick Scientific (Edison 

NJ, U.S.A.) agitating incubator. Second-day inoculum was prepared by inoculating 10 µl of first-

day culture into fresh 10 mL of BHI and incubated in a shaker maintained at 37 °C for 24 h. The 

second-day culture (107 log CFU/mL) was used to inoculate spinach in the studies.  Fresh 

spinach leaves were purchased from a local grocery store 

2. Determination of the E.coli O157:H7 bacterial strain adhesion

Spinach leaves were washed with water to remove any debri, disinfected with sodium 

hypochlorite solution (6.25 mL/ L deionized water) to reduce microbial background, and 

rewashed with sterile deionized water to remove any chlorine residual. Disinfected spinach 

leaves were randomly cut with sterilized stainless steel cork-borer to produce leaf disks of 1 cm 

diameter. These Spinach leaf disks were transferred into a 24-well plate that contained 1.9 mL of 

0.1% peptone water. One hundred microliters of peptone and bacterial culture (1:1) was also 

added to 24-well plate. The 24-well plate was incubated for 24 h at 37 °C. Spinach disks were 

rinsed with sterile water to remove non-attached cells, transferred to Whirlpak bag that contained 
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2 mL of PBS and stomached for 3 min. Stomached samples were serial diluted using PBS and 

spread-plated on MacConkey agar media. The plates were incubated at 37 °C for 24 h and 

colony counts were taken after incubation period. The number of counted colonies represents 

attached bacteria.  

3. Investigation the effect of electrostatic spraying with organic acids on attached bacteria

Disinfected spinach leaves were randomly cut with sterilized stainless steel cork-borer to 

produce leaf disks of 1 cm in diameter. The leaf disks were transferred into 24-well plate that 

contained 1.9 mL of 0.1% peptone water. One hundred microliters of peptone and E.coli 

O157:H7 (1:1) was also added and incubated for 24 h at 37 °C. The spinach leaf disks were 

rinsed with sterile water to remove non-attached cells, transferred to Whirlpak bag for spraying 

electrostatically with malic and lactic acid solutions alone (1.0, 2.0, 3.0, 4.0 %) and in 

combination (0.5+0.5, 1.0+1.0, 1.5+1.5, 2.0+2.0%). After spraying, spinach disks were 

transferred to Whirlpak bag that contained 2 mL of PBS and stomached for 3 min. Stomached 

samples were serial diluted using PBS and spread-plated on MacConkey agar media. The plates 

were incubated at 37 °C for 24 h. Colony counts were taken after incubation period to enumerate 

the amount of E.coli O157:H7 on spinach leaves. Log reductions were calculated by subtracting 

the log counts obtained by spraying electrostatically with malic and lactic acid solutions alone 

(1.0, 2.0, 3.0,4.0 %) and in combination (0.5+0.5, 1.0+1.0, 1.5+1.5, 2.0+2.0%) from the log 

counts obtained from the control.  

4. Crystal violet binding assay

Crystal violet binding assay described by Kim and others (2009) was used to study the 

biofilm-forming ability of the E. coli. Crystal violet binds to polysaccharides of biofilm matrix. 

Through the binding to adhering biofilm, the amount of biofilm produced can be measured. The 
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bound crystal violet can be mobilized (separates from the biofilm) with ethanol and the 

absorbance at 595 nm can be determined. Spinach leaves were disinfected with sodium 

hypochlorite solution. A 96-well plate was prepared by adding the bacterial culture 107 along 

with spinach homogenate and incubated for 24 h at 37 °C to allow attachment and biofilm 

formation (optimum temperature for E.coli). This work was done to investigate the effect of 

organic acids on the biofilm formed by various E.coli O157:H7 strains (ED 14, ED 15, ED 16, 

MD 46, MD 47, MD 47, and MD 58).  

4.1 Antimicrobials preparation 

A stock solution was prepared by dissolving 1.0 g of malic acid powder into 10 mL of 

sterile water. The stock was diluted to prepare 1.0, 2.0, 3.0, and 4.0% of malic acid 

concentrations. Lactic acid stock was prepared by dissolving 8.35 mL of lactic into 10 mL of 

sterile water. The stock was diluted to prepare 1.0, 2.0, 3.0, and 4.0% of lactic acid 

concentrations. The above antimicrobial test solutions (100 µl) were added to rows of wells in a 

96-well plate containing spinach homogenate and bacterial culture and the plate was incubated 

for 24 h at 37 °C. Non-inoculated wells were used as control.  

4.2 Homogenate preparation  

Fresh spinach was purchased from a local grocery store on the day of the experiment. 

Spinach leaves were disinfected using as sodium hypochlorite solution discussed earlier. Leaves 

were ground and stomached with sterile water. Homogenate of the spinach (90 µl) was dispensed 

into each wells of 96-well plate for the bacteria to grow and form biofilm by E.coli O157:H7.  

4.3 Measuring the absorbance  

Biofilm formation and reduction of E.coli O157:H7 were indirectly assessed by staining 

with crystal violet and measuring crystal violet absorbance, using detaining solution. The 
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incubated plate containing spinach homogenate, E.coli O157:H7 culture and antimicrobial was 

washed three times with deionized water and left to dry for 30 min under laminar hood. After 

drying, the plate was stained with 125 µl of 0.2% crystal violet for 30 min at room temperature. 

The wells were rinsed three times with deionized water and left to dry under laminar hood for 15 

min.   To solubilize the crystal violet 200 µl of 95% ethanol was added. Absorbance was 

measured by microplate reader at 595 nm.  

5. Preparation and determination of biofilm and its disruption with organic acids

A Confocal microscope was used to observe biofilm on fresh produce. Fresh spinach was 

purchased from a local grocery store on the day of the experiment. Leaves were rinsed with 

water, and submerged in sodium hypochlorite solution (6.25 mL/liter) for 3 min to reduce 

microbial background. The leaves were then submerged in sterile water for 3 min to wash off 

any chlorine residual. The leaves were placed in petri dish, inoculated with 25 µl of ED 14 E.coli 

O157:H7 second day culture, and stored at 8 °C for 72 h to allow biofilm formation. After 

storing, spinach leaves were washed with 2 ml of sterile water to remove un-attached bacteria.  

Glutaraldehyde 1.0% was added to fix the slides. Gum Arabic (25 µl) was added to preserve the 

3D structure of the formed biofilm. After 24 h, 50 µl of glycerol was added to prevent 

dehydration of the inoculated spot.    

The inoculated spot was removed by using sterile scalpel and placed to microscopic 

slides. Slides were sprayed with organic acids using the electrostatic sprayer and water was used 

as control.  The sprayed spinach leaves were left to dry under the safety cabinet. Upon drying, 

the leaves were observed under confocal microscope to observe biofilm disruption. 
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Statistical analysis 

Completely Randomized Design was used in the study. One-way Analysis of variance 

(ANOVA) was performed using JMP 11.0. Significant difference was determined at (P < 0.05). 

Tukey HSD multiple comparison was used to compare means. The experiments were repeated 

three times with triplicate replications.    

Results and Discussion 

1. Determination of the bacterial strain adhesion

Total plate count of attached bacteria was used to determine the strain that showed the highest 

level of attachment on the spinach leaf disks before determining the effect of electrostatic 

spraying with malic acid, lactic acid alone and in combination on attached E.coli O157:H7. The 

number of bacteria was counted after rinsing the spinach disk with water to remove non-adherent 

bacteria the total plate counts of different strains of bacteria are given in Table.1. The E.coli 

strain ED 14 had the highest count of cells, 74 CFU/cm which showed its stronger adherence to 

the spinach in comparison to other strains. Some strains such as ED 16 did not show any 

adherence. Strains ED 15 and MD 46 attachments were not significantly different from each 

other (5.0 and 9.0 CFU/cm respectively). MD 58 strain showed a high number of CFU/cm).  

Hence, the E.coli strain ED 14 was chosen to investigate the effect of electrostatic spraying on 

the reduction of attached bacterial cells on spinach disk and the disruption of biofilm formation. 

2. Evaluation of electrostatic spraying with organic acids on attached bacterial

ED 14 (the strain that showed the best attachment attribute into spinach disk) was 

investigated to determine the effect of electrostatic spraying with lactic, malic acids alone and in 

combination on spinach. Log reductions (CFU per disk) were obtained by subtracting the number 
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of bacterial colonies on the antimicrobial (lactic/malic) treated disk from the number of colonies 

on the inoculated disk treated with pH-adjusted to 2.4 (similar to pH as that of other treatments)  

to eliminate pH effects contributing to decontamination water (control).  

The results of the enumeration of attached E.coli can be found in Table 2. The combination 

treatment of LA 2.0 + MA 2.0 demonstrated the highest log reduction of 4.14. The data indicated 

that lactic acid was more effective than malic acid in reducing the attached E.coli O157:H7 on 

spinach leaf. The highest concentration of lactic acid (4.0 %) reduced the attached E.coli 

O157:H7 by 3.17 logs. Malic acid (4.0%) resulted in a log reduction of 2.03.  

Our study demonstrated that the effect of combined treatment is synergistic and not 

additive. When LA 2.0% and MA 2.0% were applied separately they resulted in log reductions 

of 1.46 and 0.74, respectively. However, the combined treatment of LA 2.0% + MA 2.0% 

resulted in a log reduction of 4.1. Kroupitskiet and others (2009) reported 2.5, 1.7 log reductions 

on intact and cut edges of lettuce leaves respectively (P< 0.05), with 200 ppm free chlorine 

treatment. The lettuce was inoculated with Salmonella Typhimurium for 2 h to allow attachment   

In our study, E.coli O157:H7 was given 24 h to allow attachment  to give the bacteria sufficient 

time to attach. Park and others (2011) used other organic acids (propionic, acetic, lactic, malic, 

and citric acid) with different concentrations 1% and 2% to inactivate E.coli O157H7, 

Salmonella Typhimurium, and Listeria monocytogenes in lettuce. The results by Park and others 

(2011) study showed that malic and citric acids had the highest log reduction of 2.98 and 2.86, 

respectively. After 10 min treatment. In our study, the treatment time did not exceed 10 sec and 

the reduction was higher than Park and others (2011) study Liao and Cooke (2001) reported that 

trisodium phosphate (3% to 12%) used to decontaminate Salmonella Chester attached on pepper 

disks, resulted in log reductions of 1 to 2. Tamblyn and Conner (1997) reported that malic acid 
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applied by dipping for 15 sec at 23 °C at various concentrations (0.5, 1.0, 2.0, 4.0, and 6.0%) had 

0 log reduction (P< 0.05) on Salmonella typhimurium firmly attached to broiler chicken.  

3. Crystal violet binding assay

Crystal violet stains the biofilm formed and this method was used to study/evaluate 

biofilm in the 96-well plate. The method was conducted as explained earlier.  Absorbance of the 

mobilized crystal violet gives indirect assessment of the biofilm formed and any biofilm 

reduction from organic acids. Absorbance of ED 14, ED 15, ED 16, MD 46, MD 47, and MD 58 

were 1.56, 1.30, 1.18, 1.00, 1.31, and 1.12 respectively. The results in Table. 3 shows that the 

effect of organic acids on E.coli O157:H7 was strain-dependent. The variation in biofilm 

formation among the strains might be due the different sources of the strains. ED 15, ED 16, and 

MD 58 were isolated from beef. MD 46, MD 47, and ED 14 were isolated from alfalfa sprout, 

lettuce, cattle respectively 14 strain had the highest biofilm formation (1.56).  However, it is not 

significantly different ED 15, ED 16 and MD 47 with 1.30, 1.18, and, 1.31 respectively. The 

strain that had the lowest biofilm formation was MD 46 with an absorbance of 1.0. Therefore, it 

was the strain most vulnerable to organic acids.  The combined treatments of MA + LA 3.0% 

resulted in a biofilm reduction of 0.13. However, the combined treatment of MA + LA 3.0% 

resulted in the highest biofilm reduction in ED 15, ED 16, MD 46, MD 47, and MD 58 with 

absorbance values of 0.23, 0.21, 0.13, 0.18 and 0.27 respectively. It is noted that the combined 

treatment was not significantly different from lactic acid 4.0% (P <0.05). In ED 14, the 

combined treatment of MA + LA 3.0% resulted in the highest biofilm reduction and was 

significantly from other treatments Lactic acid (1.0, 2.0, 3.0, and 4.0%) and malic acid (1.0, 2.0, 

3.0, and 4.0%) (P <0.05). Kim and others (2009) studied the biofilm formation ability of E.coli 

O157:H7 on spinach homogenate. The highest absorbance of biofilm formation was (1.0) on 
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spinach homogenate. However, when the same strain was used in meat homogenate such as beef, 

pork, chicken, and turkey, the biofilm formed was higher than fresh produce. The biofilm 

formation in beef, pork, chicken, and turkey homogenate was 1.2, 1.5, 1.3, and 1.09, 

respectively. The strain used in Kim’s study was isolated from cattle feces. Therefore, the strain 

might be more prone to develop better biofilm on meat homogenate than fresh produce 

homogenate.   From this data the strain used in our study had better biofilm-capability than 

Kim’s study in spinach. (ED 14 absorbance is 1.56 while Kim’s strain is 1.0 on spinach) by 

comparing the values of absorbance of the strain used in our study and in Kim’s study. The strain 

used in our study resulted in higher absorbance values meaning more biofilm. The studies were 

done under the same conditions. The only variable was the strains used.  

Although crystal violet is a rapid method to determine biofilm formation, results can be 

an overestimation since crystal violet stains matrix components that may be present in the 96-

well plate and does not allow visual observation of the formed biofilm.  The crystal violet assay 

could only allow to study biofilm on spinach homogenate on 96-well plate. Therefore, to study 

biofilm on spinach leave, confocal microscope was used.  

4. Biofilm observation under confocal microscopy

Confocal microscopy was used for its ability to visualize the 3D structure of the biofilm 

and to observe the slide without any dehydration treatment that might affect the formed biofilm.    

Figure 1 shows that the pH-adjusted water treatment (control) had a little effect on the under the 

microscope. Figure 2shows that most bacterial cells were present as a biofilm and proves that the 

biofilm was not fully disrupted. Nevertheless, Figure 3 shows that most bacteria are individually 

present as single cells and not protected by layer of biofilm. The result demonstrate that malic 

acid treatment at 4.0% concentration was effective in disrupting biofilm formed by E.coli on 
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spinach. The thickness of the biofilm formed by E.coli O157:H7 on spinach could not be 

measured by the confocal microscope.  
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Table 1-Number of attached colonies of various E.coli O157:H7 strains on spinach disk 

*Strains of E.coli O157:H7. Values provided are means ± standard deviations (P<0.05).
Strains connected by the same letters are not significantly different from each other

Strain* No. of attached colonies 
(CFU/disk) 

ED 14 74 ± 2.1A 
ED 15   5± 1.9DE 
ED 16   0.0 ± 0.0E 
MD 46   9.0 ± 1.4D 
MD 47  27± 1.6C 
MD 58           33±2.7B 
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 Table 2-Log reductions of attached E.coli strain ED 14 on spinach disk after 
electrostatically spraying with different organic acids.  

*Treatments: control- spraying with water; LA-Lactic acid; MA- Malic acid.
Values connected by same letters are not significantly different (P < 0.05). 
Values are expressed as means ± standard deviations 

Treatments (%)* Log reductions 
Control 0H 
LA 1.0 1.13 ±0.37E 
LA 2.0 1.48 ± 0.07D 
LA 3.0 2.14 ± 0.04C 
LA 4.0 3.17±0.42B 
MA 1.0 0.52±0.03G 
MA 2.0 0.74± 0.05FH 
MA 3.0 1.72±0.03D 
MA 4.0 2.03±0.05C  
LA 0.5+ MA 0.5 0.91±0.06EF 
LA 1.0+MA 1.0 1.03±0.09E 
LA 1.5+ MA 1.5 2.04±0.05C 
LA 2.0 + MA 2.0 4.14±0.06A 
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Table 3-Crystal violet assay of E.coli O157:H7 strains after malic and lactic treatments 
alone and in combinations in spinach homogenate incubated for 24h.  

*Treatments: control- no treatment; LA - Lactic acid; MA- Malic acid.
** Strains of E.coli O157:H7  
Values are expressed as means ± standard deviations. 
Values connected by same letters are not significantly different (P < 0.05). 

Treatment%* ED 14** ED 15** ED 16** MD 46** MD 47** 
Control  1.56±0.16A 1.30±0.30A 1.18±0.23A 1.00±0.26A 1.31±0.46A 

LA 1.0  0.93±0.04BC 0.90±0.23B 0.33±0.12B 0.28±0.17C 0.53±0.18B
LA 2.0 0.91±0.03BCD 0.84±0.27BC 0.50±0.4BC 0.22±0.02C 0.50±0.30BC
LA 3.0 0.85±0.04CDE 0.73±0.40BC 0.40±0.2BC 0.21±0.06C 0.40±018BCD
LA 4.0  0.83±0.08DE 0.70±0.28BC 0.38±0.2BC 0.17±0.09C 0.34±0.14BCD
MA 1.0  0.96±0.04B 0.65±0.24BC 0.55±0.4BC 0.71±0.32B 0.35±0.18BCD
MA 2.0  0.94±0.04BC 0.60±0.24BC 0.33±0.12C 0.25±0.08C 0.31±0.13BCD
MA 3.0  0.87±0.05BC 0.55±0.10C 0.29±0.09C 0.24±0.04C 023±0.03CD 

MA 4.0  0.79±0.05E 0.53±0.23CD 0.26±0.07C 0.15±0.03C 0.22±0.04CD 

MA LA 3.0  0.64±0.02A 0.23±0.08D 0.21±0.09C 0.13±0.02C 0.18±0.10D 
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Predominant layer of biofilm 

Single attached bacterium 

Figure 1-Micrograph showing attachment and biofilm formation of GFP-labeled E.coli 
O157:H7 strain ED 14 on spinach leave. (Magnification – 50x) 
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Figure 2-Micrograph showing the effect of electrostatic spraying with malic 2.0 % on 
attachment and biofilm formation of GFP-labeled E.coli O157:H7 strain ED 14 on spinach 
leave. (Magnification–50x). 
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Figure 3-Micrograph showing the effect of electrostatic spraying with malic 4.0 % on 
attachment and biofilm formation of GFP-labeled E.coli O157:H7 strain ED 14 on spinach 
leave. (Magnification – 50x). 

Disrupted biofilm 
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Chapter 4: Effect of electrostatic spraying with organic acids in the disintegration 
of biofilm formed by Salmonella Typhimurium on cantaloupe melon. 

Introduction 

Outbreaks associated with the consumption of fresh produce have increased in the last 

two decades. The increase in the outbreaks coincides with the increase of the consummation of 

fresh produce in the last 20 years because of the healthy trend that consumers around the world 

are adapting to by eating more fresh produce (Olaimat and Holley 2012).  

Salmonella outbreaks from fresh produce have been on the rise specifically outbreaks 

related to tainted cantaloupe melons (Annous and others 2005). A multistate outbreak of 

salmonella associated with cantaloupe melon occurred in 2011(CDC 2011). The outbreak 

resulted in the infection of 20 persons. A more severe multistate outbreak of Salmonella 

Typhimurium and Salmonella Newport occurred in the following year. The outbreak resulted in 

the infection of 261people (228 persons with outbreak strain Salmonella Typhimurium and 33 

with Salmonella Newport) in 24 states. This outbreak resulted in the hospitalization of 94 

persons and three cases of death were confirmed as a result of the outbreak (CDC 2012). The 

outbreak’s consequences did not only harm consumers but also affected the producer. The Food 

and Drug Administration announced a recall of cantaloupes originating from Chamberlain Farms 

of Owensville in Indiana (FDA 2012). Cantaloupes can be contaminated on the farm with 

Salmonella either directly through seeds, manure in fertilizer and irrigation water or indirectly 

through wild animals and insect vectors. Processing practices such as washing, icing, and hydro 

cooling presently pose a potential risk for the cross contamination of melons (Oria 2001). 

However, according to a survey of farm and processing facilities, the main source of melon 

contamination with Salmonella is the submergence of cantaloupes in tainted water in the post-

harvest facilities (Gagliardi and others 2003). 
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Washing treatments have been shown to be ineffective in reducing pathogens on 

cantaloupe. Ukuku and Sapers (2001a) reported that the effectiveness of washing cantaloupes 

with chlorine or hydrogen peroxide was sufficient in reducing Salmonella Stanley up to 3 log 

CFU/cm2 when the treatments immediately followed the inoculation. However, both of the 

treatments were ineffective in reducing inoculated cantaloupes with Salmonella that were stored 

at 4 or 20 °C for 3 days.   

Washing with chlorine or hydrogen peroxide was ineffective in removing E.coli 

ATCC 25922 on cantaloupe surfaces (Ukuku and others 2001b). Washing artificially-inoculated 

apples with E.coli O157:H7 and treating with 1% H2O2 was effective in reducing the population 

of the pathogen; however, the treatment was less effective on the population of E.coli O157:H7 

inoculated on cantaloupe (Sapers and Sites 2003). The use of warm water (50 °C) was 

insufficient to reduce the population of microbes on the rind of cantaloupes. Adding some 

surfactants such as sodium dioctyl sulfosuccinate, sodium 2-ethylhexyl sulfate, or sodium 

dodecyl did not enhance the effectiveness of water even when the solutions were applied at 50 

°C (Sapers and others 2001). 

Washing with chlorine is widely used to decontaminate fresh produce. Chlorine at 

concentrations of 50 to 200 ppm with a contact time of 1 to 2 min is routinely used as a produce 

sanitizer in wash, spray, and flume waters by the food industries (Beuchat and others., 1998; 

Cherry 1999; Pirovani and others., 2004). Chlorine dioxide (3 ppm) and acidified sodium 

chlorite (500 to 1200 ppm), peracetic acid (40 and 80 ppm), hydrogen peroxide (2%), ozone (20 

ppm) and lactic acid are other alternative chemical sanitizers for produce. However, washing 

with chlorine is both inconsistent and unpredictable (Rodgers and others 2004).  Moreover, 
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chlorine may interact with organic matter causing formation of harmful byproducts like 

trihalomethanes that have been linked to miscarriages and cancer (Huang and Batterman 2009). 

The synergistic effect of chlorine washing and irradiation to decontaminate aerobic 

microbes was investigated. Palekar and others (2004) first washed cantaloupe melons with 

chlorine then treated the cantaloupe’s slices with low dose of irradiation. This study found that 

the combined treatment was effective in reducing the microbial load. However, more work is 

needed to target specific pathogens linked to cantaloupes’ outbreaks such as Salmonella.   

It is recognized that human pathogens have the ability to form biofilms on fresh produce 

(Morris and others 1997; Rayner and others 2004; Annous and others 2009; Jahid and Ha 2012; 

Kim and Wei 2012).Salmonella was able to form biofilm on cucumber, mango, guava, parsley, 

and cantaloupe melons (Annous and others 2005; Lapidot and others 2006; Tang and others 

2012). Biofilms can be resistant to antimicrobials (Van Houdt and others 2004; Agle 2007; 

Annous and others 2009a ;), biocides (Annous and others 2009b), disinfectants (Rayner and 

others 2004; Jahid and Ha 2012) and sanitizers (Jahid and Ha 2012) that are used in the food 

industry (Annous and others 2006), which makes biofilms a serious problem to this industry 

(Stier2005). In addition, Biofilms are more likely than planktonic bacteria to survive severe 

environment conditions (Simões and others 2010) 

 Studies conducted to eliminate biofilms formed on fresh produce are scarce. In addition, 

the nature of the cantaloupes’ surfaces facilities the attachment and biofilm formation by 

microorganisms (Cherry 1999). The main aim of this study therefore was to investigate the effect 

of electrostatic spraying with organic acids to disintegrate biofilms formed by Salmonella 

Typhimurium on cantaloupes. 
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Material and Methods 

1. Culture preparation

Agar slant cultures of green fluorescent protein GFP-labeled SD 10 and SD 11 Salmonella 

Typhimurium were obtained from the University of Georgia, Center for Food Safety, Griffin, 

GA. Frozen stock cultures were made with a single colony of each microorganism. Frozen stock 

cultures at -70 °C of the above were thawed, transferred to 10 mL of brain heart infusion  (BHI) 

(Becton Dickinson Microbiology Systems, Becton Dickinson and company, Sparks, MD, 

U.S.A.) and incubated at 37 °C for 24 h with 200-rpm agitation using a New Brunswick 

Scientific (Edison NJ, U.S.A.) agitating incubator. Second-day inoculum was prepared by 

inoculating 10 µl of first-day culture into fresh 10 mL of BHI and incubated in the shaker 

maintained at 37 °C for 24 h. The second-day culture (107 log CFU/mL) was used to inoculate 

cantaloupes rinds in the studies.  Fresh cantaloupes were purchased from a local grocery store. 

2. Determination of the Salmonella Typhimurium bacterial strain adhesion

Cantaloupe rinds were selected because it’s the first part that bacteria attach to and 

therefore internalize into the edible part. Rinds can aid the attachment of bacteria because of its 

surface properties such as roughness, crevices, and pits. Cantaloupes rinds were washed with 

water to remove any debris, disinfected with sodium hypochlorite solution (6.25 mL/ L 

deionized water), and rewashed with sterile deionized water. Disinfected cantaloupes rinds were 

randomly cut with sterilized stainless steel cork-borer to produce rind disks of 1 cm diameter. 

Cantaloupes rind disks were transferred into a 24-well plate that contained 1.9 mL of 0.1% 

peptone water and 100 µl of peptone and bacterial culture (1:1). The 24-well plate was incubated 

for 24 h at 37 °C. Cantaloupe rinds were rinsed with sterile water to remove non-attached cells, 

transferred to Whirlpak bag that contained 2 mL of PBS and stomached for 3 min. Stomached 
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samples were serial diluted using PBS and spread-plated on XLT4 (Xylose Lysine Tergitol 4) 

agar media. The plates were incubated at 37 °C for 24 h and colony counts were taken after 

incubation period to enumerate the number of Salmonella Typhimurium Cantaloupe rinds. 

3. Evaluation of electrostatic spraying with organic acids on attached bacterial 

Cantaloupe rinds were randomly cut with sterilized stainless steel cork-borer to produce 

cantaloupe disks of 1 cm in diameter. The rind disks were transferred into 24-well plate that 

contained 1.9 mL of 0.1% peptone water and 100 µl of 1:1 peptone + Salmonella Typhimurium 

culture and incubated for 24 h at 37 °C to allow bacterial attachment. The cantaloupe rind disks 

were rinsed with sterile water to remove non-attached cells, transferred to Whirlpak bag for 

spraying electrostatically with malic and lactic acid solutions alone (1.0/ 2.0/ 3.0/ 4.0 %) and in 

combination (0.5+0.5/ 1.0+1.0/ 1.5+1.5/ 2.0+2.0%). After spraying, rind disks were transferred 

to Whirlpak bag that contained 2 mL of PBS and stomached for 3 min. Stomached samples were 

serially  diluted using PBS and spread-plated on XLT4agar media. The plates were incubated at 

37 °C for 24 h. Colony counts were taken after incubation period to enumerate the amount of 

Salmonella Typhimurium on cantaloupe rinds. Log reductions were calculated by subtracting the 

log counts obtained by spraying electrostatically with malic and lactic acid solutions alone (1.0/ 

2.0/ 3.0/ 4.0 %) and in combination (0.5+0.5/ 1.0+1.0/ 1.5+1.5/ 2.0+2.0%) from the log counts 

obtained for the control.  

4. Crystal violet binding assay. 

Crystal violet binding assays described by Kim and others (2009) with was used to study 

the biofilm-forming ability of the Salmonella Typhimurium. Cantaloupe rinds were disinfected 

with sodium hypochlorite solution. A 96-well plate was prepared by adding the bacterial culture 
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along with cantaloupe homogenate and incubate for 24 h at 37 °C to allow attachment and 

biofilm formation. This work was done to investigate the effect of organic acids on the biofilm 

formed by Salmonella Typhimurium strains SD 10 and SD 11.  

4.1 Antimicrobials preparation 

A stock solution was prepared by dissolving 1.0 g of malic acid powder into 10 mL of 

sterile water. The stock was diluted to prepare 1.0, 2.0, 3.0, and 4.0% of malic acid 

concentrations. Lactic acid stock was prepared by dissolving 8.35 mL of lactic into 10 mL of 

sterile water. The stock was diluted to prepare 1.0, 2.0, 3.0, and 4.0% of lactic acid 

concentrations. Combined treatment of 3.0% of lactic and malice acid was also prepared as it 

showed to be effective based on our lab work (Ganesh and others 2010). 

The above antimicrobial test solutions (100 µl) were added to rows of wells in a 96-well plate 

containing rind homogenate and bacterial culture and the plate was incubated for 24 h. Non-

inoculated wells were used as a control.  

4.2 Homogenate preparation  

Fresh cantaloupes were purchased from a local grocery store on the day of the 

experiment. Cantaloupe rinds were disinfected using as sodium hypochlorite solution discussed 

earlier. Rinds were ground and stomached with sterile water. Homogenate of the cantaloupe (90 

µl) was dispensed into each wells of 96-well plate for the bacteria to grow and form biofilm.  

4.3 Measuring the absorbance  

Biofilm absorbance, measured as intensity reduction of a light beam transmitted through 

the film, should correlate with its mass. The incubated plate containing cantaloupe homogenate, 

Salmonella Typhimurium culture and antimicrobial was washed three times with deionized water 

and left to dry for 30 min. After drying, the plate was stained with 125 µl of 0.2% crystal violet 
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for 30 min at room temperature. After removing the staining solution, the wells were rinsed three 

times with deionized water and let to dry. To solubilize the crystal violet 200 µl of 95% ethanol 

was added. Absorbance was measured by microplate reader at 595 nm.  

5. Biofilm observation under confocal microscopy. 

A Confocal microscope was used to observe biofilm on cantaloupe. Fresh cantaloupe was 

purchased from a local grocery store on the day of the experiment. Rinds were rinsed with water, 

and submerged in sodium hypochlorite solution (6.25 mL/liter) for 3 min to reduce microbial 

background. The rinds were then submerged in sterile water for 3 min to wash off any chlorine 

residual. The rinds were placed in petri dish, inoculated with 25 µl of SD 10 Salmonella 

Typhimurium second day culture, and stored at 8 °C for 72 h to allow biofilm formation. After 

storing, cantaloupe rinds were washed with 2 ml of sterile water to remove un-attached bacteria. 

The inoculated spot was removed by using sterile scalpel and place on microscopic slides. Slides 

were sprayed with organic acids using the electrostatic sprayer and water was used as control.  

The sprayed cantaloupe rinds were left to dry under the safety cabinet. Upon drying, the rinds 

were observed under confocal microscope to observe biofilm disruption. 

Statistical analysis 

Completely Randomized Design was used in the study. One-way Analysis of variance 

(ANOVA) was performed using JMP 11.0. Significant difference was determined at (P < 0.05). 

Tukey HSD multiple comparison test was used to compare means. The experiments were 

repeated three times with triplicate replications. 
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Result and discussion 

1. Determination of the Salmonella Typhimurium bacterial strain adhesion.

Finding the strain that has better attachment quality is essential to my work since the first 

step in biofilm formation is the irreversible attachment. There are many factors such as 

topography of food surface, contact time, flagella and fimbriae, cell surface charge, cell surface 

hydrophobicity, and curli expression that contribute to the attachment of pathogens into plant 

surface. Also, the literature is elusive in stating the factors that can aid in the attachment. The 

total plate count is straightforward method to determine the attachment based on the number of 

the recovered colonies after rinse the cantaloupe. Therefore, the total plate count to compare the 

attachment properties between the two Salmonella stains (SD 10 and SD 11) was used. Table 1, 

shows  that SD 10 has better attachment since the recovered colonies after washing with water to 

remove non-adherent bacteria is 70 colonies. SD 11 was poorly attached to the cantaloupe disk. 

Only three colonies were counted after rinsing the cantaloupe rind disk with water. SD 10 was 

chosen to evaluate the effect of electrostatic spraying with organic acid on cantaloupe since it 

showed better attachment properties than SD 11.  

2. Enumeration of attached salmonella after spraying with organic acids

The enumeration of attached Salmonella strain SD 10 on cantaloupe disk after 

spraying with organic acids is given in Table 2. The combined treatment of 2.0% Lactic acid+ 

2.0 % malic acid had the highest log reduction (3.58). Lactic acid proved to be more effective 

than malic acid in reducing the attached Salmonella. The highest concentration of lactic acid 

used resulted in 3.36 log reduction while malic acid had a log reduction of 1.97. The difference 

between log reduction caused by spraying with the combined treatment of LA 2.0% +MA 2.0% 
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(10 7) is not significant from that of LA 4.0% (P >0.05). From an economical prospective, it is 

recommended that the industry could use lactic acid at 4.0% concentration instead of the 

combined treatment. 

Lactic acid at 4.0% can have its adverse effect on flavor. However, the inedible rinds of 

cantaloupes was treated and not the edible part. Therefore, flavor attributes should not be 

affected.  The combined treatment of LA 2.0%+ MA 2.0 % had log reduction of 3.58. When 

solely used, lactic acid at 2.0% and malic acid at 2.0% resulted in 1.55 and 1.05 log reductions, 

respectively. The highest log reduction observed in spinach was 4.14 in comparison with 3.58 in 

cantaloupes. This can be explained by the morphology characteristics of cantaloupe rinds such as 

roughness, crevices, and pits that aid the attachment of microorganisms. 

Few studies focused on decontaminating cantaloupes rinds. Annous and others (2013) used hot 

water (at 90 °C) to decontaminate cantaloupe rinds inoculated with Salmonella Poona. The hot 

water resulted in a log reduction > 5.0 log CFU/g of rind (109). Sapers and others (2001) reported 

that washing cantaloupe rinds with mild-heat water treatment (at 50 °C) was not effective in 

reducing the microbial load on the cantaloupes. Ukuku and Sapers (2001a) reported that the 

effectiveness of washing cantaloupes with chlorine or hydrogen peroxide was sufficient in 

reducing Salmonella Stanley up to 3 log CFU/cm2 when the treatments immediately followed the 

inoculation (the pathogen was not given time for attachment). In this work, Salmonella was 

given 24 h to attach to cantaloupe disk and log reduction achieved was higher 3.58 CFU/cm. 

Alvarado-Caillas and others (2007) reported that spraying 2% L-lactic acid on cantaloupes 

inoculated with Salmonella Typhimurium and E.coli O157:H7 resulted in log reduction of 3.0 

for both  pathogens. In this work, higher concentration of lactic was used (4.0%) to obtain a log 

reduction of 3.58. The use of hot water seems to be the most effective measure to decontaminate 
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Salmonella. However, recontamination of cantaloupe can occur if the same water is used to 

decontaminate cantaloupe.   

3. Crystal violet binding assay

Crystal violet assay was conducted to determine the biofilm formation and the effect of 

organic acids on biofilm formed by salmonella in cantaloupe homogenate. Overall, the biofilm 

formation is strain dependent. The SD 11 strain developed slightly higher biofilm than SD 10 

with absorbance readings of 0.65 and 0.60 respectively (P>0.05). However, it can be shown from 

Table 3 that biofilm formed by SD 11 is a more susceptible to organic acids. In both strains, the 

combined treatment resulted in the lowest absorbance (lower biofilm formation) with 0.24, 025 

to SD 10 and SD 11, respectively.  The different concentration of organic acids used did not 

significantly differ from each other (P>0.05).The combined treatment of LA+MA 3.0% reduced 

the biofilm formed by Salmonella strains (SD 10 and SD 11) significantly (P<0.05). Almost all 

the studies utilize crystal violet to evaluate biofilm formation in media (model) and not in foods 

matrix. However, Kim and others (2009) reported the use of crystal violet to evaluate biofilm 

formation by E.coli O157:H7 in different foods homogenates (Beef, pork, chicken, turkey, 

cantaloupe, lettuce, alfalfa, and spinach). Kim and others (2009) found that E.coli O157:H7 

formed the highest biofilm after 24 h of incubation with cantaloupe homogenate. However, 

Kim’s study did not utilize crystal violet to evaluate biofilm formation by salmonella strains on 

fresh produce. In this work, the ability of Salmonella strains to form biofilm on cantaloupe 

homogenate was investigated. 
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4. Biofilm observation under confocal microscopy 

  Confocal microscopy was used to detect disruption on biofilm formed by Salmonella on 

cantaloupe rinds. The rinds were sprayed with combined treatment since it is this treatment that 

resulted in the highest log reduction (3.58) on attached Salmonella on cantaloupe rind. 

 Figure.1 shows the surface of non-inoculated cantaloupe surface. The surface of cantaloupe rind 

can aid the attachment of bacteria for its roughness and crevices. It shows that the bacteria can be 

protected from the washing treatment. In the electrostatic spray, charged particulates are smaller 

than 100 um. Therefore, it can internalize the surface of cantaloupe rinds where the bacteria can 

be hidden.  
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Table 1-Number of Attached colonies of Salmonella strains on cantaloupe rind 

*Strains of Salmonella
Values are expressed as means± standard deviations. 
Values connected by the same letters are not significantly different (P<0.05) 

Strain* No. of attached  colonies (CFU/disk) 
SD 10 70.5 ± 4.7A
SD 11 3.5 ± 1.4B 
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Table 2-Log reductions of Salmonella strain SD 10 on cantaloupe disk after 
electrostatic spraying with different organic acids 

*LA: Lactic acid; MA: Malic acid
Values are expressed as means± standard deviations. 
Values with the same letters are not significantly different (P<0.05). 

Treatments (%)* Log reductions 
Control 0H 
LA 1.0 1.05 ±0.44EF 
LA 2.0 1.55 ± 0.01DE 
LA 3.0 2.45 ± 0.09BC 
LA 4.0 3.36±0.10A 
MA 1.0 0.44±0.05GH 
MA 2.0 1.05± 0.16EF 
MA 3.0 1.90±0.12D 
MA 4.0 1.97±0.08CD  
LA 0.5+ MA 0.5 0.90±0.03FG 
LA 1.0+MA 1.0 2.00±0.06EF 
LA 1.5+ MA 1.5 2.65±0.06B 
LA 2.0 + MA 2.0 3.58±0.04A 
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Table 3-Crystal violet assay of two strains of Salmonella after malic acid and lactic acid 
treatments alone and in combination in cantaloupe homogenate incubated for 24 h at 37 °C 

Treatment (%)* SD 10** SD 11** 
Control 0.60±0.10A 0.65±0.02A 
LA 1.0 0.54±0.11AB 0.54±0.01B 
LA 2.0 0.45±0.12BC 0.43±0.04C 
LA 3.0 0.41±0.06CD 0.38±0.01D 
LA 4.0 0.30±0.06DE 0.26±0.02E 
MA 1.0 0.49±0.08ABC 0.53±0.03B 
MA 2.0 0.44±0.10BC 0.44±0.03C 
MA 3.0 0.30±0.02DE 0.35±0.01D 
MA 4.0 0.30±0.02DE 0.35±0.01D 
MA + LA 3.0 0.24±0.08E 0.25±0.14E 

*LA: Lactic acid; MA: Malic acid
** SD 10 and SD 11 are strains of Salmonella Typhimurium 
Values are expressed as means± standard deviations  
Values with the same letters are not significantly different (P<0.05). 
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Figure 1-Non-inoculated surface of cantaloupe rind showing the crevices and pits between 
which the bacteria can entrap, attach, and form biofilm.  
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Figure 2-Biofilm formed by Salmonella on cantaloupe rinds after electrostatic spraying 
with water treatment (control).   
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Figure 3-Biofilm disruption on cantaloupe rinds after electrostatic spraying with LA 
2.0%+ MA 2.0%.   

Single cells 
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Chapter 5: Effect of organic acids on quorum sensing in E.coli O157:H7 and Salmonella 
Typhimurium on spinach and cantaloupe.  

Introduction 

Quorum sensing is defined as “cell density-dependent signaling system by which bacteria 

modulate a number of cellular functions” through signaling compound known as autoinducers or 

bacterial pheromones (Smith and others 2004).Quorum sensing is a strategy that bacteria use as a 

response to environmental stresses such as lack of nutrients or sever temperature.  

Autoinducer is a term given to the signal molecules compounds that bacterial cells utilize to 

control the expression of specific genes.  

Gram- negative bacteria such as E.coli O157:H7 and Salmonella Typhimurium produce 

two types of autoinducers: acylated homoserine lactones (AI-1) and furanosyl borate diester (AI-

2) (Lu and others 2005). Bacteria that produce AI-1 and AI-2 autoinducers have to possess a

luxS gene which code the Luxs proteins that biosynthesize AI-2. (Figure 1). The autoinducer 

molecules affect various gene expression such as virulence, toxicity, sporulation, plasmid 

transformation, antibiotic production, and biofilm formation (Bainton and others 1992; Bassler 

and Greenberg 1997; Davies and others 1998; Luo and Farrand 2001; Oger and Farrand 2002; 

Sperandio and others 2001). 

Quorum sensing is a type of regulatory process that ensures that there is sufficient cell 

density before a specific gene product is made. This process allows bacteria to increase in 

numbers before starting to produce a particular gene produce such as biofilm.  

When the concentration of AI-1 and AI-2 exceed a certain threshold within the cells, it 

binds and activates a regulatory protein which then binds to a specific site on the DNA. The 

binding of this regulatory protein transcription activator results in the production of biofilm 

(Bassler 1999).  
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The AI -2 activity inhibition has been reported by other investigators. Widmer and others 

(2007) used fatty acids isolated from poultry meat and shown reduction of AI-2 activity. Bodini 

and others (2009) demonstrated that p-coumaric acid was able to hinder the activity of quorum 

sensing.  Choo and others (2006) work showed that vanilla extracts quorum sensing inhibition 

property. Koh and Tham (2009) used traditional Chinese medicinal plants and published the 

effectiveness of traditional Chinese medicinal against quorum sensing activity. However, the 

effect of organic acid on auotinducer-2 activity has not been investigated hence the study 

investigated the effect of organic acid on autoinduce-2 (quorum sensing molecule) on fresh 

produce samples (spinach and cantaloupes).  

Quorum sensing has been shown to have a role in biofilm formation in foodborne 

pathogen such as E.coli O157:H7 and Salmonella Typhimurium. The role of quorums sensing in 

biofilm formation is to ensure that there is enough number of bacteria before biofilm formation. 

As a result, a method to interpret quorum sensing can be used as a preventative measure to 

hinder biofilm formation on fresh produce. To detect the presence of AI-2 in foods samples, 

Vibrio harveyi BB170 was be used since it produces bioluminescence as a response to AI-2 

existence.   

1. Materials and Methods

Autoinducer (AI-2) detection assay in spinach and cantaloupe was conducted as

described by Kim and others (2009). For this purpose E.coli O157:H7/ Salmonella culture, 

spinach/cantaloupe homogenate, and vibrio culture were prepared.   

1.1 E.coli O157:H7 / Salmonella Typhimurium culture preparation  

Agar slant cultures of green fluorescent protein GFP-labeled ED 14 E.coli O157:H7 

(CV267); ED15 E.coli O157:H7 (6980-2); ED16 E.coli O157:H7 (6982-2); MD58 E.coli 
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O157:H7 (CV261), MD46 E.coli O157:H7 (F4546); MD47 E.coli O157:H7 (K4492) ; 

Salmonella Typhimurium SD 10 and  Salmonella Typhimurium SD 11 were obtained from the 

University of Georgia, Center for Food Safety, Griffin, GA. Frozen stock cultures were made 

with a single colony of each microorganism. Frozen stock cultures at -70 °C of the above were 

thawed, transferred to 10 mL of brain heart infusion homogenate (BHI) (Becton Dickinson 

Microbiology Systems, Becton Dickinson and company, Sparks, MD, U.S.A.) and incubated at 

37 °C for 24 h with 200-rpm agitation using a New Brunswick Scientific (Edison NJ, U.S.A.) 

agitating- incubator. Second-day inoculum was prepared by transferring 10 µl of first-day culture 

into fresh 10 mL of BHI and incubated in a shaker maintained at 37 °C for 24 h. The second-day 

culture (107 log CFU/mL) was used to inoculate spinach and cantaloupe in the following studies.   

1.2 Spinach/cantaloupe homogenate preparation for autoinducer assay 

  Fresh produce (spinach/cantaloupe) were purchased from a local grocery store on the day 

of the experiment. Leaves/Rinds were rinsed with water, and submerged in sodium hypochlorite 

solution (6.25 mL/liter) for 3 min to reduce the microbial background. The leaves/rinds were 

submerged in sterile water for 3 min and left under the biological safety cabinet for 2 h to dry. 

Spinach leaves/ cantaloupe rinds were placed in sterile bags weighted and macerated. Sterile 

water was added at a volume of twice the weight of the sample to each bag and stomached for 3 

min at 8.0 strokes/sec. Spinach/cantaloupe homogenate (90 µl) was dispensed into a of 96-well 

plate (Bacton Dickinson and Co. Franklin lakes, NJ).   

Ten microliter of the second day culture of E.coli O157:H7/ Salmonella Typhimurium (107) was 

added to the spinach/cantaloupe homogenate respectively. The 96-well plate incubated for 12 h 

at 25 °C.  
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The bacterial cultures were then removed and centrifuged at 13,000 rpm at 25 °C for 5 min to 

separate the cell-free supernatants that contained the autoinducer and the supernatant was stored 

at – 20 °C to conduct autoinducer activity assay.  

1.3 Autoinducer activity assay 

The reporter strain V. harveyi BB170 (ATCC BBA-1117), only senses the AI-2 molecule, 

and V.harveyi BB152 (ATCC BBA-1119), which produces AI-1 and AI-2 was cultured 

overnight in autoinducer bioassay (AB).  

The AB medium was prepared as follows. A solution consisting of NaCl (17.5 g/L), 

Mgso4 (12.3 g/L), and vitamin-free casamino acids (2 g/L) was dissolved in 1 L of water and 

adjusted to pH 7.5 and was sterilized by autoclaving (15 min, 121°C). When the solution was 

cooled, autoclave-sterilized 1 M potassium phosphate (pH 7.0, 10 mL/L), 50% glycerol (20 

mL/L), filter-sterilized 0.1 M L-arginine (10 mL/L) were added Overnight culture V. harveyi 

BB170  was diluted (1:5000) in fresh AB medium. The diluted cells (90 µl) was dispensed into 

each well of 96-well plate.  

For autoinducer activity assay, each cell-free culture of E.coli O157:H7/ Salmonella 

Typhimurium (10 µl) grown in spinach/cantaloupe homogenate was added to the reporter strain 

dispensed into 96-well microplate. Wells contain V.harveyi BB152 served as a positive control 

because it produces both AI-1 and AI-2. The plate was incubated at 30 for 3 h with shaking. 

Luminescence was measured by using a plate reader. This assay was used to determine which 

stain among the E.coli O157:H7 strains (ED 14, ED 15, ED 16, MD 46, MD 47, and MD 58) and 

Salmonella Typhimurium strains (SD 10 and SD 11) has the highest relative AI-2 activity values. 

Determine the effect of organic acids on the AI-2 activity 
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  To determine the effect of organic acids on AI-2 produced by E.coli O157:H7/ and 

Salmonella Typhimurium, these were added to the above 96-well plate that contain the reporter 

strain V. harveyi BB170 and the cell-free supernatant of inoculated fresh produce different 

concentrations of organic acids. Lactic acid (1.0, 2.0, 3.0, 4.0%) and malic acid (1.0, 2.0, 3.0, 

4.0%) respectively.  Combined concentrations of lactic and malic acids were also investigated. 

LA+MA1% and LA+MA 4%. The 96-well plate was incubated at 30° C for 3 h with shaking. 

Luminescences were measured by using a plate reader at 490 nm.  

Determine the effect of organic acids on V.harveyi strain BB170 bacteria 

  Overnight AB medium cultures of V.harveyi BB170 were diluted (1:5000) with fresh AB 

medium. The subculture of V.harveyi BB170 and organic acids that had the highest AI-2 activity 

(Lactic acid 4%, Malic acid 4%, and LA+ MA 4%) were added to individual sterilized tubes at 

the ration of 9:1 (vol/vol, V.harveyi BB170: organic acids solution sample), the same as the AI-2 

bioassay, and the incubated at 30° C for the same incubation time as the AI-2 bioassay. A serial 

dilution was made for enumeration viable cells of V.harveyi BB170 on Marine agar (Becton 

Dickinson).  

Statistical analysis 

Completely Randomized Design was used in the study. One-way Analysis of variance 

(ANOVA) was performed using JMP 11.0. Significant differences was determined at (P < 0.05). 

Tukey HSD multiple comparison test was used to compare means. The experiments were 

repeated three times with triplicate replications.     
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Result and discussion  

Relative AI-2 activities of E.coli and Salmonella on spinach and cantaloupe 

The result of Relative AI-2 in spinach homogenate inoculated with various strains of 

E.coli for 12 h is given in Table.1. The relative AI-2 activity was calculated as follows: average 

value of the sample/ average value of the negative control.   From Table.1 it can be shown that 

ED 14 strain had the highest relative AI-2 activity 55 RLU and it is significantly different from 

ED 15, ED 16, MD 46, MD 47 and MD 58. Therefore, ED 14 was selected to investigate the 

effect of various organic acids concentrations; Lactic acid (1.0, 2.0, 3.0, and 4.0%) and malic 

acid (1.0, 2.0, 3.0, and 4.0%). Lactic +Malic 1.0% and Lactic +Malic 4.0% to inhibit AI-2 

compound.   

Table.3 shows the relative AI-2 activity by two Salmonella Typhimurium strains (SD 10 

and SD 11) in cantaloupe homogenate after 12 h incubation. SD 10 strain had much higher 

relative AI-2 activity of give the activity in comparison to SD 11 (53, 21) respectively. Hence, 

SD 10 strain was chosen to investigate the effect of various organic acids concentrations; Lactic 

acid (1.0, 2.0, 3.0, and 4.0%) and malic acid (1.0, 2.0, 3.0, and 4.0%). Lactic +Malic 1% and 

Lactic +Malic 4% to inhibit AI-2 activity.  

Effect of organic acids on the AI-2 activity 

Varying concentrations of Lactic acid (1.0, 2.0, 3.0, and 4.0%) and malic acid (1.0, 2.0, 

3.0, and 4.0%). Lactic +Malic 1.0% and Lactic +Malic 4.0%.were tested for their ability to 

inhibit AI-2 activity in spinach and cantaloupe inoculated with E.coli O157:H7, ED 14 strain and 

Salmonella Typhimurium, SD 10 strain Inhibition of E.coli O157:H7, ED 14 AI-2 activity in 

spinach homogenate is shown in table.2. Overall, lactic acid was more effective than malic acid. 

The highest concentration of malic acid 4.0% resulted in 37% inhibition whereas the lactic acid 
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4.0% inhibited the AI-2 activity by 80%. The combined concentrations of lactic acid and malic 

acid was also investigated. When the two organic acid were combined, the inhibition of relative 

AI-2 activity was not significant from lactic acid 4.0%. It was expected that the combined 

organic acids would result in synergistic effect or additive effect. The combined treatment of 

LA+MA 1.0% result only in inhibition of 17%. While LA+MA4.0% inhibit the relative activity 

by 25%. This can be explained by the fact that the inhibitory properties of the organic acids are 

due to their chemical structure.  The use of two organic acids can cause an overlapping of their 

work to inhibit the AI-2 active compound.   

Table. 4 shows the inhibition of Salmonella Typhimurium, SD 10 strain by organic acids 

Lactic acid (1.0, 2.0, 3.0, and 4.0%) and malic acid (1.0, 2.0, 3.0, and 4.0%). Lactic +Malic 1.0% 

and Lactic +Malic 4.0%. The combined treatment of LA+MA 4% had the highest inhibition by 

80 %/. However, it is not significantly different than lactic acid 4% which resulted in inhibition 

of 76%.  Other studies investigated different compounds to inhibit AI-2 activity. Lu and others 

(2004) investigated the effectiveness of some food extracts and food additives in inhibiting AI-2 

activity. Turkey patties showed the highest inhibition of 99.8% among the food additives used, 

sodium propionate virtually inhibited AI-2 (99.6%). Soni and others (2008) reported that mixture 

of palmitic acid, steric acid, oleic acid, and linoleic acid resulted in inhibition of AI-2 activity 

between 52 to 65%.  

Widmer and others (2007) reported that using fatty acids isolated from poultry meat 

reduced the activity of AI-2. Combined solution of steric acid, palmitic acid, oleic acid, and 

linoleic acids inhibited the AI-2 activity by 59.5%. Choo and others (2006) found that the use of 

1.0% and 2.0% vanilla extract reduce the quorum sensing by 87.73 % and 98.41%.   
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The effect of organic acids on V.harveyi strain BB170 bacteria 

To confirm that the declined AI-2 actively was not the result of growth inhibition of the 

reporter strains V. harveyi BB170.  The influence of organic acids on the multiplication of the 

reporter strain was studied.  A mixture of (1:9) of organic acids in combination with the diluted 

reporter strain V. harveyi BB170 in AB medium was incubated at  30° C as mentioned 

previously After incubation, the samples were plated on Marine agar.  Table.5. shows the effect 

of organic acid on V.harveyi BB170 growth. The treatments selected were Lactic acid 4.0%, 

Malic acid 4.0%, and LA+ MA 4.0% because it was at these concentrations that AI-2 inhibition 

was the highest with 80%, 46%, and 80%respectively. The growth of V.harveyi in AB medium 

without any added organic acids (control) was 5.36 (log CFU/mL). LA 4.0% treatment resulted 

in 5.28 (log CFU/mL) LA+MA 4.0% had a Vibrio harveyi growth of 5.21 (CFU/mL). It should 

be noted that there were no significant differences between the control (growth in AB medium) 

and the various treatments, suggesting that inhibition of reporter strain growth was not the basis 

of AI-2 activity inhibition by the organic acids.   
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Figure 1-Simplified scheme of quorum sensing principle. 
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Table 1-Relative AI-2 like in spinach homogenate inoculated with various stains of E.coli 
for 12 h 

*Strains of E.coli O157:H7. Values provided are means ± standard deviations
Values conducted by the same letter are not significantly different (P<0.05). 
** Relative AI-2 like activity was calculated as the ration of luminescence of the test sample to the 
negative control (AB medium) 

Strain* Relative AI-2 like activity** 
ED 14 55 ± 2.14A 
ED 15 28 ± 2.60B 
ED 16 36 ± 2.61C 
MD 46 15.2 ± 2.30D 
MD 47 15.3 ± 0.94D 
MD 58 14.27 ± 0.92D 
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Table 2-Inhibition of ED 14 AI-2 activity in spinach by organic acids 

Treatments%* Inhibition %** 
LA 1.0 26±0.06E 

LA 2.0  33±0.03CD 

LA 3.0 49±0.05B
LA 4.0 80±0.02A 

MA 1.0 23±0.04F
MA 2.0 26±0.02F
MA 3.0 28±0.03DE 

MA 4.0 37±0.04C
LA MA 1 17±0.03E 

LA MA 4 25±0.03E 

Values provided are means ± standard deviations 
Values connected by the same letter are not significantly different (P<0.05). 
*LA: lactic acid, MA: Malic acid
** calculated based on the positive control values. 
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Table 3-Relative AI-2 like in cantaloupe homogenate inoculated with stains of Salmonella 
for 12 h  

* Strains of Salmonella typhimurium. Values provided are means ± standard deviations
Values connected by the same letter are not significantly different (P<0.05). 
** Relative AI-2 like activity was calculated as the ration of luminescence of the test sample 
to the negative control (AB medium) 

Strain* Relative AI-2 like activity** 
SD 10 53 ± 0.92A 

SD 11 21 ± 0.71B 
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Table 4-Inhibition of Salmonella typhimurium SD 10 AI-2 activity in cantaloupe by organic 
acids 

Treatments (%)* Inhibition (%)** 
LA 1.0 27±0.03F
LA 2.0 36±0.02DE 

LA 3.0 58±0.01B
LA 4.0 76±0.02A 

MA 1.0 16±0.04G 

MA 2.0 26±0.02F
MA 3.0 28±0.03DE 

MA 4.0 46±0.04C
LA MA 1 39±0.03D 

LA MA 4 80±0.01A 

Values provided are means ± standard deviations 
Values connected by the same letter are not significantly different (P<0.05). 
*LA: lactic acid, MA: Malic acid
** calculated based on the positive control value.   
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Table 5-Effect of organic acids on the growth of the reporter strain V. harveyi BB170 

Values provided are means ± standard deviations 
Values connected by the same letter are not significantly different (P<0.05). 
*AB medium: Autoinducer bioassay medium; LA: Lactic acid; MA: Malic acid

Treatment* Growth (log CFU/mL) 
AB medium 5.36 ± 0.14A 

LA 4 % 5.28 ± 0.23A 
MA 4% 5.25 ± 0.05A 

LA MA 4% 5.21 ± 0.21A 
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Conclusion 

Outbreaks from fresh produce is a continuing problem in the U.S. that has economical 

and health consequences. The persistence of the problem can be partly attributed to pathogens 

such as E.coli O157:H7 and Salmonella forming biofilms. In this work, electrostatic spraying 

with organic acids was utilized (hurdle-technology) to reduce biofilm formed by E.coli O157:H7 

and Salmonella on spinach and cantaloupe respectively. Biofilm formation initiates with the 

irreversible attachment of bacteria onto plant surface. Lactic acid 4.0 % was able to reduce E.coli 

O157:H7 by 4.1 on spinach while combined malic acid 3.0%+ lactic 3.0% reduced Salmonella 

on cantaloupe by 3.58. The safety of fresh produce industry can be enhanced by the use of 

natural antimicrobials applied by electrostatic sprayer.  Further studies on the effect of 

electrostatic spraying on other fresh produce and food contact surfaces are recommended. The 

inhibition of quorum sensing was also studied. The current study suggests that organic acids are 

effective against quorum sensing.   
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