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Abstract  

 

 Nowadays, the manipulation of light by using metallic nanostructures has wide 

applications in photonics, optoelectronics and energy conversion. Along with other universities 

all over the world, the University of Arkansas is researching on nano-antennas’ design, 

fabrication and applications. Current research in Dr. El-Shenawee’s Terahertz Imaging and 

Spectroscopy Computational Electromagnetics Group, has computationally investigated the 

behaviors of plasmonic nanostructures by using the commercial finite element electromagnetic 

solver Ansys® HFSS. This work reproduced the previous work of spectral absorption 

enhancement of infinite and finite arrays of silver and gold nanotoroids with sizes of the inner 

radii: 13nm – 21nm, while outer radius of 42nm and more on an amorphous silicon absorbing 

layer. There are three significant factors in modeling this configuration such as surface 

resolution, optical properties of materials, and boundary conditions.  A convergence study was 

performed on a gold sphere dimer with 40 nm radii and 1 nm gap between spheres. This 

illustrated that an at least surface resolution of 0.02 nm was needed to provide converging results 

in an acceptable computational time for conducted simulations. Furthermore, the Lorentz- Drude 

models for silver and gold were studied to obtain the optical properties. In addition, in order to 

reduce computation time and memory consumption by reduction of computational domain, the 

appropriate symmetry boundary conditions were applied.  

In this work, three samples of infinite arrays of gold nanotoroids with the sizes of inner 

radii: 50nm, 60nm and 100nm, respectively, while outer radius of 150nm were simulated as well. 

These gold nanotoroids were fabricated on glass substrate and then optically characterized by 

ellipsometry’s transmission measurement. The optical characterization was performed in Dr. 



  

Shui-Qing Yu’s Applied Nano and Bio Photonics Group. The observed differences between 

compute simulations and experimental results in shifting resonance frequencies were analyzed.  

This thesis is organized as: 

 Part I is discussing about the finite element method, boundary conditions and 

Lorentz-Drude Model. Part II involves Lorentz-Drude model for gold and silver, convergence 

study using HFSS, simulations of infinite silver and gold nanotoroid arrays and ellipsometry 

transmission measurement on gold nanotoroid arrays. Part III is about conclusions and future 

research. The Appendix A is providing Matlab codes of Lorentz-Drude model for gold and 

silver.  
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I. Introduction 

A. Finite Element Method 

Generally, electric and magnetic phenomena are described by Maxwell’s equations. 

Moreover, most of electromagnetic work will be involved with fields that are harmonic, time 

dependence with steady state conditions. In this case, assuming an tje   time dependence, the 

Maxwell’s equations can be written as phasor forms: 

EEjH    

HjE   

where E  and H are the phasors of the electric and magnetic fields, σ ,   and μ are 

conductivity, permittivity and permeability of material, respectively, and  is angular frequency 

of incident wave. Those equations can be solved using the finite element method (FEM) that is a 

numerical technique to find approximate solutions to boundary value problems.  

The element in FEM can have one, two, or three dimensional shapes (1D, 2D or 3D). In 

fact, many problems are truly 3D, and there is no simple way to describe them with lower order 

geometry. The numerical simulations in this thesis are performed using the commercial Finite 

Element Method (FEM) Ansys® HFSS. HFSS uses 3D FEM with basic building blocks to 

discretize the model to conform to arbitrary geometry. The basic building blocks are called as 

tetrahedra, and those tetrahedra have various shapes at different regions of the model to obtain 

accuracy solutions. The entire collection of tetrahedra is called a mesh. With appropriate 

boundary conditions, the differential equations can be represented as a system of equations and 

solved simultaneously. 
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Upon discretizing the configuration into tetrahedra and applying the wave excitations, 

HFSS creates a matrix form to solve those differential equations:  

    bxA   

where  A  is a defined matrix that is created from the geometry,  b  is a vector representing the 

excitation and  x  is a variable vector that need to be solved.  x  represents the unknown E  and 

H in all points of the computational domain. In fact, the value of the H-field or E-field at points 

inside each tetrahedron is interpolated from the vertices of the tetrahedron. The vertices contain 

the components of a field that are tangential to the edges of an element. The midpoint of selected 

edges contains the component of a field that is tangential to the face of an element and normal to 

the edge.  

The generation of the appropriate mesh is the most important process of the FEM.  The 

tetrahedron can be linear with straight edges and planar faces, or it can be non-linear with curved 

edges and/or curved faces. There is a trade-off among the size of mesh, the desired level of 

accuracy and the amount of available computing resources. In fact, the solution from using 

thousands of elements is more accurate than those from using relatively few elements. In order to 

generate a precise field quantity, each element must cover a region that is small enough for 

sufficiently interpolated from the nodal values. However, for meshes with a large number of 

elements, it is necessary for matrix computation to require a significant amount of computing 

power and memory. Therefore, it is desirable to use a mesh fine enough to obtain an accurate 

field solution, and it does not overwhelm the memory and processor. Otherwise, high 

performance computer needs to be used. 

In order to produce the optimal mesh, HFSS uses an iterative process, which is an 

adaptive analysis. This analysis helps the mesh to be automatically refined in critical regions. In 
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the beginning process, HFSS generates an initial mesh following the surface approximation 

settings. The initial mesh is generated only once before the solution process, but it can be 

regenerated if the current mesh is unavailable. Moreover, the mesher will automatically repair to 

recover an accurate mesh for the model, and the repairs will be stored in the solution profile. In 

addition, if there is any material dependent wavelength, HFSS refines the initial mesh to satisfy 

lambda refinement. After generation of the resulting mesh, HFSS computes the electromagnetic 

fields that exist inside the structure when it is excited at the solution frequency. Moreover, HFSS 

also uses the current finite element to estimate the regions of the domain whose the exact 

solution has strong errors, then tetrahedra in these regions are refined. After generating the 

refined mesh, HFSS generates another solution. This is the iterative process, in which HFSS 

keeps recomputing the error and then performing refinement until the convergence are satisfied 

or the maximum number of adaptive passes is reached. For a frequency sweep, HFSS solves the 

problem at the other frequency points without refining the mesh.  

HFSS original model surfaces may be planar, cylindrical or conical, toroidal, spherical or 

splines, and they are called true surfaces, see fig. 1. In order to create a finite element mesh, 

HFSS divides all true surfaces into triangles, see fig. 2. For planar surfaces, the triangles lie on 

the model faces, which means that the normal of the true surface and the meshed surface are the 

same. For non-planar surfaces, the triangles lie a small distance from the true surface. The 

distance is called the surface deviation that has the same unit as the model. The surface deviation 

is bigger near the triangle centers and smaller near the triangle vertices. Moreover, HFSS also 

uses the normal deviation that is measured in degrees to determine the difference between the 

normal of the curved surface and the corresponding mesh surface. The aspect ratio of triangles is 

the ratio of circumscribed radius to the in-radius of the triangle. It is unity for an equilateral 
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triangle and approaches infinity as the triangle becomes thinner. The surface approximation is 

applied to the initial mesh. For the initial mesh, all the vertices lies on the true surface, but the 

adaptive meshing adds the vertices to the meshed surfaces, not to the true surfaces.  

 

Figure 1. HFSS Original True Surfaces (Software Interface Screen Shot) 
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Figure 2. HFSS Mesh Operation on ½ Nanotoroid 

 

In HFSS, the problem region and the meshing region are distinguished. The meshing 

region is the area where an initial mesh is generated, and it also covers the problem region. The 

problem region is the region in which the solution is generated and the mesh is refined. Hence, it 

is possible to understand the fact that the meshing region is a domain that happens when 

generating the initial mesh. The meshing region will enclose the structure, but must be at least 10 

times larger than the model. The part of the meshing region that is not object is the background 

object. Since the background object is defined as a perfect conductor, no solution is generated 

inside the background. Meanwhile, the problem region is just large enough to include the entire 

design. Hence, if it is necessary to obtain effects outside of the structure, such as radiated effects, 

then there is a virtual object that needs to be created to expand the size of the problem region [1].  

There are some strengths and some weaknesses for the finite element method. The 

greatest strength of the method is its generality that is easy to define arbitrary geometries with 

various levels of resolution. Moreover, this method is unique by automatic mesh refinement. The 

mesh refinement helps to resolve small details in larger problem space. However, it needs to be 



 

6 

discretized entire volume, and there is a large matrix to compute [2]. Therefore, high 

performance computation is generally advised to be used.    

B. HFSS Boundaries 

There are two kinds of models in HFSS, such as open and closed ones. The closed model 

represents a structure that allows no energy to escape except through an applied port, while the 

open model represents an electromagnetic model that allows energy to radiate away. As default, 

HFSS assumes all outer surfaces of the solution space are covered by a perfect electric conductor 

boundary. Hence, in order to create an open model, it is necessary to specify a boundary on the 

outer surfaces that will overwrite the default [1]. 

Perfect E 

Perfect E boundaries represent perfectly conducting surfaces in a structure. By 

default, the electric field is assumed to be normal to all surfaces exposed to the background, 

which means that the entire structure is surrounded by perfectly conducting walls. In perfect 

E boundary condition, the final field solution must have the tangential component of the 

electric field to go to zero, see fig. 3. 

It is also possible to assign perfect E boundaries to surfaces within a structure. In 

order to model the perfectly conducting surface, the perfect E boundaries can be applied. 

Moreover, the surfaces of all objects that are made by perfectly conducting materials are 

automatically assigned to be perfect E boundaries [1]. 
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Figure 3. Electric Fields on Perfect E Surface[1] 

Perfect H 

The perfect H boundary forces the tangential component of the H-field to be the same 

on both sides of the boundary. For internal planes, this results in a natural boundary through 

which the field propagates. For planes on the outer surface of the model, this results in a 

boundary that simulates a perfect magnetic conductor (the tangential component of the H 

field is zero), see fig. 4. 

Those cases in which it is necessary to determine which type of symmetry boundary 

to use, a perfect E or a perfect H are distinguished based on two points. If the symmetry is 

such that the E-field is normal to the symmetry plane, then use a perfect E plane. If the 

symmetry is such that the E-field is tangential to the symmetry plane, then use a perfect H 

plane [1]. 

 

Figure 4. Electric Fields on Perfect H Surface[1] 

Radiation 

A radiation boundary is created to allow waves to radiate infinitely far into space 

where it is eventually attenuated. The radiation boundary condition should not produce any 

unphysical reflection. In other words, the wave is absorbed at the radiation boundary plane, 

so the system makes the boundary to balloon infinitely far away from the structure. Hence, 
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open space is represented by surfaces that are modeled by radiation boundaries. Energy is 

allowed to radiate from these boundaries instead of being contained within them. The 

second-order radiation boundary condition is an approximation of free space. The accuracy 

of the approximation depends on the distance between the boundary and the object from 

which the radiation emanates. A radiation surface does not need to be spherical. However, it 

must be exposed to the background, convex with regard to the radiation source, and located 

at least one-quarter of a wavelength away from the radiating sources. In some cases, the 

radiation boundary may be located closer than one-quarter wavelength. Portions of the 

radiation boundary where little radiated energy is expected can be located closer than one-

quarter wavelength [1]. 

 

Figure 5. Electric Fields on Perfect E (x-z plane) and Perfect H (x-y plane) Surfaces  
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C. Lorentz-Drude Model 

In this thesis, gold (Au) and silver (Ag) are frequency dependent materials. The optical 

properties of those materials can be calculated using the hybrid Lorentz-Drude model. The model 

provides a dielectric function over a wide frequency range. 

Lorentz-Drude model:  








K

k kk

pk

r
i

f

0
22

2

,)(



  

where ,r  is the optical dielectric constant at infinite frequency (for isotropic plasma-like 

metals: ,r =1) and p  is the plasma frequency, while k , kf , and p  are the resonance 

frequency, strength and damping frequency, respectively, of each thk  resonator. For 0k  and 

0 , the general Lorentz-Drude model simplifies to the Drude model of free electrons. The values 

of parameters for gold and silver are listed below in Table 1 [12]. 
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Table 1. Parameters for Lorentz - Drude Model [12] 

Parameters Ag Au 

p  9.01 9.03 

0f  0.845 0.760 

0  0.048 0.053 

1f  0.065 0.024 

1  3.886 0.241 

1  0.816 0.415 

2f  0.124 0.010 

2  0.452 0.345 

2  4.481 0.830 

3f  0.011 0.071 

3  0.065 0.870 

3  8.185 2.969 

4f  0.840 0.601 

4  0.916 2.494 

4  9.083 4.304 

5f  5.646 4.384 

5  2.419 2.214 

5  20.29 13.32 

where p , i  and i  are in eV. if  has no units. 
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II. Approach and Implementation 

A. Lorentz-Drude Model for Gold and Silver 

It is necessary to perform modeling gold and silver’s optical properties because those 

materials are frequency dependent. In fact, their optical parameters change drastically under high 

frequency conditions. Hence, the optical properties of silver and gold are modeled by Lorentz-

Drude Model [12]. Those models were computed using Matlab. Moreover, in practical, there are 

measurements of the real and imaginary parts of reflection index to characterize those materials’ 

optical parameters. The results from modeling were plotted together with those experimental 

data from “Handbook of Optical Constants of Solids” [3] or from Burford [5] to observe their 

difference. The values of real part of relative permittivity are close together between Lorentz – 

Drude Model and Experimental Data, while the loss tangent values are different in the range of 

high frequency (when wavelength is less than 300 nm). In this thesis, the desire spectrum range 

is from 400 nm to 900 nm. In this range, the complex permittivity from Lorentz-Drude model is 

close to experimental data for both gold and silver. The Lorentz-Drude model for gold was used 

to set parameters when configuring the gold material in the case of convergence study using 

HFSS (see section 2.2). For other simulations of infinite nanotoroid arrays (see section 2.3 and 

2.4), the measured data from Burford [5] were used. 
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Figure 6. Gold’s Real Part of Permittivity 

 

 

Figure 7. Gold's Loss Tangent 
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Figure 8. Silver's Real Part of Relative Permittivity 

 

Figure 9. Silver's Loss Tangent 
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B. Convergence Study using HFSS 

Procedure 

To obtain the appropriate surface resolution with considerations of affordable 

computational time and of reliable results, there was a convergence study with HFSS 

applying on the dime sphere with radius of 80 nm and 1 nm gap between spheres. The 

computational domain was the air box, whose dimensions were 400 nm x 400 nm x 800 nm, 

see fig. 10. The air box had its centre at the origin. Its length lied on the direction that 

parallels with y-direction, while its width lied on the one that parallels with x-direction. Its 

height paralleled with z-direction. To reduce computational domain to 400nm x 200nm x 

400nm, it was necessary to apply appropriate boundaries [4]. There were three significant 

boundaries that were used in this setup such as E symmetry, H symmetry and radiation 

boundaries. Those symmetry boundaries helped to reduce the computational domain to one 

forth of the original one. Based on how to set up the excitation plane wave, the symmetry 

boundaries were applied properly.  

In this case,  )0,/1,0(0 mVE


 and )0,0,1(0k , which means that the wave propagated 

in positive x-direction, were set as how the excitation wave propagates. E symmetry made 

the tangent component of the electric field become zero, so the E symmetry boundary was 

applied on the intersection between one face of the air box and the x-z plane. Moreover, H 

symmetry let the electric field to be parallel, so the H symmetry boundary was applied on 

one face of the air box that intersects with the x-y plane. Other faces of the computational 

domain were set as radiation boundaries [1], [4]. The receiver was placed at the origin that 

was the central point of the gap between the spheres to get the maximum radiated power, and 
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it was a near field measurement for the fact that HFSS near field region is the region closest 

to the source [1]. The gold material was configured using data that are obtained from 

Lorentz-Drude model.  

The goal of this convergence study was to obtain accuracy resonant wavelength of the 

dime sphere by changing the surface resolution. Moreover, another factor that was also 

significant to be considered for simulation was the number of tetrahedra of the model 

because they indicated the computational time and memory for the required solver. 

 

Figure 10. The Gold Sphere Dimer for HFSS 

Convergence Study 

 

 

Figure 11. The HFSS Configuration of the Gold 

Sphere Dimer after Applying Appropriate 

Boundaries 

 

 

Numerical Results 

Following the convergence procedure in Burford [5], the influence of surface 

resolution to the solution was showed in Table 2 and Fig. 12. The recorded results were the 
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number of tetrahedra of the model, RAM, computational time and the magnitude of electrical 

field curves from the measurement.  

Table 2. Convergence Study of HFSS 

Surface 

Resolution (nm) 

Number of 

Tetrahedra of 

the Air Box 

Number of 

Tetrahedra of 

the Gold Sphere 

Required 

Memory of the 

Solver (MB) 

Time for Matrix 

Solution (s) 

1.0 1766 871 82.4 13 

0.5 2169 1083 96.7 18 

0.1 4023 2632 175 20 

0.05 7060 5452 333 54 

0.02 12238 11207 577 59 

0.01 23694 21658 1080 144 

0.008 29009 27583 1420 295 

Discussion of Results 

Upon observing the magnitude of the electrical field in fig. 12, the resonance of the 

sphere dimer in this case is found at 632 nm, which agrees with Hoffman et al. results in [4]. 

With small surface approximation values, the results converge to the accuracy wavelength. 

However, it is also found that the more precise the surface resolution is, the larger the 

memory requirement is. In fact, the surface resolution determines the number of tetrahedra 

that affect the memory and time for matrix solution. In both experiences, Hoffman et al. [4] 

and this thesis, the curves at surface resolution of 0.02 nm are close to the ones at the 

resolution of 0.01 nm. However, the number of tetrahedra in 0.01 nm surface resolution is 

twice larger than the number of the tetrahedral in 0.02 nm surface resolution. Hence, after 

convergence study above, the surface resolution of 0.02nm which provides the accuracy 

result in acceptable computation time is used for all later simulations. 
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Figure 12. This work 

 

Figure 13. Hoffman et al. [4] 
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C. Simulation of Infinite Silver Nanotoroid Arrays on Armophous Silicon Layer  

Procedure 

Spectral absorption enhancement of infinite square arrays of silver nanotoroids with 

sizes of the inner radii: 13 nm, 15 nm and 21 nm, respectively, while outer radius of 42 nm 

on an amorphous silicon absorbing layer was observed. The a-Si layer had thickness of 500 

nm. The silver and a-Si parameters were from Burford thesis’ measured data [5]. The spacing 

from each nanotoroid’s centre to other’s one was 900 nm. )0,0,/1(0 mVE


 and )1,0,0( 0k , 

which means that the wave propagated in negative z-direction, were excitation vectors. This 

case was selected to reproduce the results in Burford [5]. 

Again, the appropriate boundaries were applied to reduce the computational domain. 

The two same kind boundary symmetries (perfect E or perfect H) were placed face to face to 

get the mirror effect [5], [6]. Each perfect E plane and each perfect H plane mirrored a 

quarter of nanotoroid to become a full size of nanotoroid, while the other perfect E plane and 

the other perfect H plane helped to clone each nanotoroid to four nanotoroids around [5], [6]. 

The perfect E boundaries were applied on y-z plane and another plane that was parallel with 

y-z plane, while the perfect H boundaries were on x-z plane and another plane that was 

parallel with x-z plane. The other faces of the computational domain were radiation 

boundaries. 

In addition, it was significant to determine step count when sweeping the frequency to 

observe the resonant spectra. In fact, the step size needed to be small enough to not overstep 

the peak because the peak was thin. However, it costed the computational time with small 

steps. Hence, in this case, there were 500 step counts that were performed. 
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Figure 14. The Infinite Square Arrays of Silver 

Nanotoroids [5] 

 
 

Figure 15. The HFSS Configuration of those Infinite 

Square Arrays after Applying Appropriate Boundaries 

[5],[6] 

 

  

Figure 16.  Applied Perfect E and Perfect H Symmetries [5],[6] 
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Furthermore, it was found that the nanotoroids should be 2 nm floating above the a-

Si-layer to get the proper model [6]. The enhancement factor was calculated as the following 

equation [5]: 

 





Si

2

lesNanoparticwithout

Si

2

lesNanoparticwith

dVEσ

dVEσ
λEF 



 

Results 

 

Figure 17. Resonant Spectra of Silver Nanotoroids 
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Figure 18. Burford [5] 

 

 

Discussion of Results 

The obtained resonant peaks in this work are located at   = 630, 670 and 845 nm for 

inR  = 13, 15 and 21nm, respectively, while Burford’s resonant peaks in [5] occurs at   = 

652, 682 and 820 nm. However, in both presentations, the value of enhancement factor 

reduces when the inner radius increases. Moreover, by Mary et al. [7], peak scattering by the 

single Au nanotoroid is shifted to longer wavelengths, and the amplitude of the scattering 

reduces as well. This work did not perform the converged study for frequency solutions on 

the high performance computer, while Burford did in [5], and the separation distance 

between nanotoroids was smaller than Burford’s configuration in [5].   

D. Simulation of Infinite Gold Nanotoroid Arrays  

 

Other simulations were performed on the gold nanotoroid arrays whose inner radii: 

50nm, 60nm and 100nm, respectively, while outer radius of 150nm. The computational 
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domain was the air box, 900nm x 900nm x 1000nm. The spacing from each nanotoroid’s 

centre to other’s one was 900 nm. )0,0,/1(0 mVE


 and )1,0,0( 0k , which means the wave 

propagated in negative-z direction, were excitation vectors. The gold parameters were from 

the measured data in Burford [5]. 

Similarly to the case of silver nanotoroids, the appropriate boundary conditions were 

applied to reduce the computational domain. The perfect E boundaries were applied on y-z 

plane and another plane that was parallel with y-z plane, while the perfect H boundaries were 

on x-z plane and another plane that was parallel with x-z plane. The other faces of the 

computational domain were radiation boundaries. 

Again, it was significant to determine step count when sweeping the frequency to 

observe the resonant spectra because the solution frequency was determined from the step 

count. However, it costed the computational time with small steps. Hence, in this case, there 

were 500 step counts that were performed. 

The obtained results are showed in fig. 19. They are in the desire range of wavelength 

that is from 450nm to 850nm, and the recorded data are their radiated power. The resonances 

of each sample involve two peaks with different magnitudes, called Fano-like feature. The 

Fano resonance feature happens when there is interference between scattering fields. The 

interaction effects happens when the separation distance between nanotoroids is not large 

enough [14].  There is a situation in which all three samples are put near to each other. In 

fact, when measuring the real samples of those gold nanotoroids, the fabricated samples are 

close to each other on the glass substrate. The total field scattered a multi-nanotoroid cluster 

can be represented as a superposition of individual fields scattered from each sphere [15]. 
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Hence, the summation of all curves was presented to supply the information about the 

resonance.  

 
 

Figure 19. Resonant Spectra of Gold Nanotoroids in Air 

E. Ellipsometry’s Transmission Measurement on Gold Nanotoroid Arrays 

 

Procedure 

Those gold nanotoroids were fabricated on glass substrate
1
. The whole fabrication 

process started from glass substrate. After 2% 495K PMMA coating (80nm) and baking at 

180 degree for 2 minutes, 5nm thick Chromium was deposited as anti-changing layer. The 

sample then was loaded into e-beam chamber for exposure. Before resist developing, the 

Chromium layer was removed in we etchant. The developing process was 35 seconds 

immersion in mixed solution (MIBK:IPA = 1:3). With followed metal deposition and lift-off, 

the nanotoroid arrays were formed. The geometrical arranges of those arrays are shown in 

                                                 
1
 Performed by Liang Huang 
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figures below. Patterns of d1, d2 and d3 had 1000 x 1000 nanotoroids whose inner radii were 

50nm, 60nm and 100nm, respectively. 

Moreover, those samples were optically characterized by ellipsometry’s transmission 

measurement. The measurement was performed following these steps: 

 Calibrate with the small reference sample :  

o Mount the small reference sample on. 

o Put the alignment probe on. 

o Use the software’s align sample function. 

 Calibrate the whole system: 

o Use the software’s calibration function. 

 Monitor if the light focuses on the position as same as the square on the camera: 

o Take the reference sample off, and mount the square sample on with the 

shiny side up. 

o Use the software’s align sample function again. 

o Switch the sample to the rough side. 

o On the camera monitor software, close the show function to not see the 

white square on the camera anymore. 

o Turn off the light; it should be seen as the purple dot on the camera 

monitor as well as on the square sample. 

o On the camera monitor, choose the show function to see the white square, 

and move the white square to the position that covers the signal. 

 Real Sample Measurement: 

o Take off the square sample, and mount the real sample on. 
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o Let the white square on the camera monitor onto the sample. 

o Align sample. 

o Choose the software’s R&T function. 

o Choose baseline only. 

o Choose pT, sT and uT. 

o Set the angle from 90 to 90 degree. 

o Save baseline, push the sample holder back to measure directly from input 

to output through air medium. After finishing this step, the software 

automatically normalizes the data with the baseline to get the transmission 

coefficient to be smaller than 1.  

o  Let the holder back to original position. 

o Choose R& T again. 

o Choose data only. 

o Choose pT, sT and uT again. 

o Set the angle from 0 to 0 degree. Run the softwave, and get the data. 

The quality of the pattern d2’s fabricated sample is not qualified. In fact, the expected 

inner radius for pattern d2 is 60 nm, but in the real sample, it obtains as 53 nm only. It is 

significantly sensitive in case of changing the sizes of the nanotoroids, which means that 

there is a big shift in wavelength comparing with small variation of the size of nanotoroids. It 

will lead the measured result to shift in the desire spectrum. 
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Figure 20. Nano rings CAD design
1
 

 

 

Figure 21. Pattern d1’s Zoom in Nanotoroid (Inner 

Diameter/ Outer Diameter: 102/302nm) 

 

 

 

Figure 22. Pattern d2’s Zoom in Nanotoroid (Inner 

Diameter/ Outer Diameter: 106/299nm) 

 

 

Figure 23. Pattern d3’s Zoom in Nanotoroid (Inner 

Diameter/Outer Diameter: 199/313nm) 

 

 

 

 

 

                                                 
1
 Performed by Liang Huang 
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Results 

 

Figure 24. Ellipsometry’s Transmission Measurement Performing on Gold Nanotoroids for Normal Incidence 

Light (0 degree) 

 

 

Discussion of Results 

The measurement’s result is slightly different than the simulations’ ones. Firstly, the 

measurement is performed without using the focusing probes, which means that the light 

shines over all three samples. Hence, the curve here will represent the total behavior of three 

samples together. Moreover, the three patterns are fabricated at positions which are so close 

to each other, their scattering field will interfere each other. In addition, the glass substrate’s 

characteristics also affects to the experimental result, while the simulation is performed on 

those nanotoroids by themselves without the glass substrate. 
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In the simulation, two peaks happen at the wavelength of 600 nm and 750 nm, 

respectively, while in the fabricated samples, their peaks happen at the wavelength of 585 nm 

and 680 nm. It leads to the observation that the presence of glass substrate is the reason to 

shift the wavelength to lower values. Moreover, the simulation’s peaks are wider than the 

real samples’ peaks.  
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III. Conclusions and Future Research 

 

The goal of this thesis is to perform computational investigation of gold and silver 

nanotoroids, which are organized in finite arrays. Then, optical characterization of infinite gold 

nanotoroid arrays is performed to observe some difference between simulation and experimental 

situation. To have enough reliable information to create a model of those nanotoroids, there are 

some factors that the performer also needs to study such as the parameters of those frequency 

dependent materials, the surface resolution and reduction of computational domain by applying 

appropriate boundary conditions.  

In this thesis, the Lorentz-Drude models for gold and silver are studied. After computing 

by Matlab, the results are different from the experimental data from Palik [3]’s, when it comes to 

high frequency. However, the desire range that the thesis looks at is from 450 to 850 nm, and in 

that range, the Lorentz-Drude models have the same result with the experimental data. Moreover, 

after convergence study with HFSS on an object of a gold sphere dimer with a radius of 40nm 

and a gap of 1nm, a surface approximation of 0.02 nm which provides an accurate result in 

acceptable computation time is used for all simulations. In addition, in order to reduce 

computation time and memory requirements by reduction of computational domain, the 

appropriate boundary conditions are studied and applied. In fact, the E symmetry boundary is 

applied on the plane to which vectors of electric field are perpendicular, while the H symmetry 

boundary is applied on the plane to which vectors of electric field are parallel. In addition, in the 

model of infinite arrays, the face-to-face settings of the same kind symmetry boundaries are 

applied to acquire reduction of computational domain.  

For experimental study, some nanotoroids are chosen to be fabricated as arrays on the 

glass substrate and optical characterized by ellipsometry’s transmission measurement. These 
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nanotoroids have inner radii of 50nm, 60nm and 100nm, while the outer radius is 150nm. The 

resonant peaks that are obtained by simulation appear at some frequencies that are close to the 

ones obtained by ellipsometry’s measurement on fabricated samples. From this study, there is the 

observation that the glass substrate shifts the resonant wavelength to the high frequency 

spectrum. 

Future work is to further study ellipsometry optical characterization. In fact, the optical 

properties of materials have an important role in modeling of some solar devices. Optical 

characterization not only helps to obtain material properties, but it also helps to create some 

theoretical model based on practical data. 
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Appendix A: Matlab Code 

%% Lorentz-Drude Model for Gold 

omega_p = 9.03; 

f = [0.760; 0.024; 0.010; 0.071; 0.601; 4.384]; 

omega_k = [0; 0.415; 0.830; 2.969; 4.304; 13.32]; 

gamma = [0.053; 0.241; 0.345; 0.870; 2.494; 2.214]; 

freq = xlsread('freq.xlsx'); 

h = 4.135667516E-15; 

omega = h*freq; 

numerator = f*(omega_p)^2; 

epsilon = 1 + numerator(1) ./(omega_k(1)^2- omega.^2 + 1i*omega*gamma(1)) ... 

    + numerator(2) ./(omega_k(2)^2- omega.^2 + 1i*omega*gamma(2)) ... 

    + numerator(3) ./(omega_k(3)^2- omega.^2 + 1i*omega*gamma(3)) ... 

    + numerator(4) ./(omega_k(4)^2- omega.^2 + 1i*omega*gamma(4)) ... 

    + numerator(5) ./(omega_k(5)^2- omega.^2 + 1i*omega*gamma(5)) ... 

    + numerator(6) ./(omega_k(6)^2- omega.^2 + 1i*omega*gamma(6)); 

Au_e_real = real(epsilon); 

Au_e_img = imag(epsilon); 

Au_loss_tang = -Au_e_img./Au_e_real; 

xlswrite('Gold.xlsx', [freq, Au_e_real, Au_loss_tang]); 

 

%% Lorentz-Drude Model for Silver 

omega_p = 9.01; 

f = [0.845; 0.065; 0.124; 0.011; 0.840; 5.646]; 

omega_k = [0; 0.816; 4.481; 8.185; 9.083; 20.29]; 

gamma = [0.048; 3.886; 0.452; 0.065; 0.916; 2.419]; 

freq = xlsread('freq1.xlsx'); 

h = 4.135667516E-15; 
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omega = h*freq; 

numerator = f*(omega_p)^2; 

epsilon = 1 + numerator(1) ./(omega_k(1)^2- omega.^2 + 1i*omega*gamma(1)) ... 

    + numerator(2) ./(omega_k(2)^2- omega.^2 + 1i*omega*gamma(2)) ... 

    + numerator(3) ./(omega_k(3)^2- omega.^2 + 1i*omega*gamma(3)) ... 

    + numerator(4) ./(omega_k(4)^2- omega.^2 + 1i*omega*gamma(4)) ... 

    + numerator(5) ./(omega_k(5)^2- omega.^2 + 1i*omega*gamma(5)) ... 

    + numerator(6) ./(omega_k(6)^2- omega.^2 + 1i*omega*gamma(6)); 

Ag_e_real = real(epsilon); 

Ag_e_img = imag(epsilon); 

Ag_loss_tang = -Ag_e_img./Ag_e_real; 

xlswrite('Silver.xlsx', [freq, Ag_e_real, Ag_loss_tang]); 
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