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Abstract 

We consider a variant to the shortest path network interdiction problem with symmetric 

information from Israeli and Wood (Networks 40, 97-111,2002) which arises in the context of 

nuclear smuggling prevention. In the basic shortest path interdiction problem, an interdictor has a 

limited number of interdictions with which he can lengthen arcs in a network in order to 

maximize the length of the network’s shortest path. This thesis considers the case in which the 

interdictor does not make all of the interdictions at once. Rather, the interdictor must make the 

interdictions over a set number of periods. Each period has a budget for the number of 

interdictions that can be placed during the period. The interdictor must prioritize the interdictions 

and decide the order in which the interdictions should take place. This problem is formulated as 

an integer program with an objective to maximize the average of the shortest paths across all 

periods.   
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Section 1- Introduction 

Network interdiction as described by Collado and Papp [2] is the “monitoring or halting 

of an adversary’s activity on a network.” The adversary maneuvers across the network with the 

intent to optimize an objective such as minimizing the likelihood of being detected, minimizing 

the travel distance across the network, or maximizing the flow capacity for goods through the 

network. An interdictor affects the network in order to combat the adversary.  

The shortest path network interdiction problem models a hostile situation in which two 

forces, an interdictor and an attacker, compete.  The attacker desires to find the shortest path on a 

network from an initial node to the final node. The interdictor’s role is to eliminate or lengthen 

arcs in the network to maximize the shortest path the attacker can take. It is assumed that the 

attacker is aware of the interdictor’s impact on the network, so the situation is a Stackelberg 

game, a concept first described by economist Heinrich Stackelberg in his 1934 publication, 

Market Structure and Equilibrium [9]. The shortest path maximization problem is described in 

further detail by Israeli and Wood [4] but we summarize the relevant concepts in this paper. 

Network interdiction problems have various real world applications. One of the main 

applications discussed in literature is nuclear smuggling. Morton et al. [7], Michalopoulos et al. 

[5], and others use this application as the focus of their discussion and modeling of network 

interdiction. In this case, the arcs of the network represent the checkpoints along and surrounding 

the border of a country. Probabilities are associated with each arc that describe the attacker’s 

chance of smuggling nuclear material through the checkpoint undetected. The interdictor has a 

limited number of detectors he can place to increase the probability of detecting the nuclear 

material at a given checkpoint. Other applications include infectious disease control, counter-
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terrorism, and smuggling of other sorts as discussed by Collado and Papp [2]. The maximum-

reliability path has received attention on a general network as seen in Dimitrov’s work in nuclear 

smuggling [3]. The maximum-reliability path interdiction problem can be transformed into a 

shortest path interdiction problem by applying a logarithm to the objective as shown by Morton 

[6]. 

There are several variants and extensions to the network interdiction problems. One 

variant is the asymmetric information case where the attacker and interdictor have different 

levels of information about the network [1].  As demonstrated by Salmeron [8], asymmetric 

interdiction models can be used when the interdictor has the possibility to exploit an information 

advantage by using deception tactics. Another variant is stochastic network interdiction. As 

addressed by Morton et al. [7], in a stochastic network interdiction the attacker’s characteristics 

are not known with certainty.  The prioritization variant, which is overviewed in the following 

paragraph, is considered in this research. Michalopoulos et al. [5] models this case on a bipartite 

network. This thesis models prioritization on a general network. 

In the prioritization case the interdictor does not make all of the interdictions at once. 

Rather, the interdictor must make the interdictions over a set number of periods. Each period has 

a budget for the number of interdictions that can be placed during the period. The interdictor 

must prioritize the interdictions and decide the order in which the interdictions should take place. 

This case can be applied to the nuclear smuggling application. A country attempting to secure its 

borders may only have the budget to purchase and place detectors periodically. Rather than 

placing the interdictions all at once and maximizing the shortest path or probability of detection, 

the nation may have a yearly budget for detectors and must place them in sequence.  Because the 

placement of detectors occurs over time, there is a non-negligible possibility that smuggling 



3 
 

occurs before detector placement is complete.  This study attempts to model a prioritization 

scenario and decide the optimal allocation of interdictions that maximizes the average shortest 

path length through a network across all time periods. 

The formulation of the model as an integer program that solves the prioritization network 

interdiction problem on a general network is developed in Section 2. Section 3 describes the 

generation of test networks and the data used to test the proposed model. The results from these 

test networks are analyzed in Section 4, and conclusions and recommendations for future work 

are discussed in Section 5. 

Section 2 - Methodology 

In this section the mathematical formulation of the prioritization problem is described. 

When solved using optimization software, this integer program will determine for a general 

network which arcs should be interdicted and in what order they should be interdicted to 

maximize the average length of the shortest path across the network.  

Because determining the shortest path of a network is a minimization problem, the model 

for maximizing the shortest path length is a classic max-min problem. To model a max-min 

problem, a dual problem can be created from the shortest path minimization problem. The dual 

of a minimization problem is a maximization problem. This dual thus creates a max-max 

problem which can be solved using standard integer programming methods.  

In modeling the prioritization problem certain assumptions must be made. First, it is 

assumed that the interdictor and attacker have identical perceptions. There is symmetric 

information such that both are aware of the same network. Both are aware of the current arc 

lengths and what the length of an arc will be if it is interdicted. Next, it is assumed that the 
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attacker can travel both ways on an arc; i.e., the attacker can travel from node 2 to node 3 on an 

arc (2,3) or from node 3 to node 2. It is also assumed that when an interdiction is placed it affects 

the travel between the nodes both ways. The objective of the model is to maximize the average 

of the shortest path across all periods. The model formulated here does not assume extra weight 

should be attached to making the shortest path longer in earlier periods or having the longest 

shortest path possible at the end of the last period. 

Let 𝐺 = (𝑁, 𝐴) define a directed network with nodes 𝑁 = {1, … , 𝑠} and arcs 𝐴 ⊆ 𝑁 × 𝑁.  

In keeping with the assumption of bi-directional travel on arcs, the directed arc set is assumed to 

be such that whenever (𝑖, 𝑗) is included in 𝐴, (𝑗, 𝑖) is also included in 𝐴.  For each arc (𝑖, 𝑗) ∈ 𝐴 

we define 𝑐𝑖,𝑗 as the current arc length and 𝑤𝑖,𝑗 as the change in the arc length if an 

interdiction is placed on the arc. A maximum of 𝑏 interdictions can be placed in each 

period, and the total number of periods is 𝑓.  The set 𝐾 = {1, … , 𝑓} defines the periods. 

Binary variable 𝑧𝑖,𝑗,𝑘 is equal to one if arc (𝑖, 𝑗) is interdicted in period 𝑘. Let function 𝑔𝑘(𝑧) 

denote the shortest path length in period 𝑘.  

An intuitive formulation of the prioritization problem is given by Model (1) – (5).  

Max 
 ∑

1

𝑓

 

𝑘∈𝐾

𝑔𝑘(𝑧) 

 

(1) 

s.t. 
∑ 𝑧𝑖,𝑗,𝑘

 

(𝑖,𝑗)∈𝐴

≤ 2𝑏, ∀𝑘 ∈ 𝐾 

 

(2) 

 
∑ 𝑧𝑖,𝑗,𝑘

 

 

𝑘 ∈𝐾

≤ 1, ∀(𝑖, 𝑗) ∈ 𝐴 (3) 

 𝑧𝑖,𝑗,𝑘 = 𝑧𝑗,𝑖,𝑘
 

, ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾  

 
(4) 

 𝑧𝑖,𝑗,𝑘 ∈ {0,1}, ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾 

 
(5) 
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Objective (1) seeks to maximize the average length of the shortest path 𝑔𝑘(𝑧) over all 

periods. An optimal solution to this problem will provide a sequence of interdictions where order 

matters in maximizing the average shortest path.  For each period 𝑘, Constraint (2) limits the 

number of interdictions to be less than or equal to the number of interdictions available in that 

period. The budget is multiplied by two because an interdiction placed on an arc (𝑖, 𝑗)—as 

enforced by Constraint (4) —implies the opposing arc (𝑗, 𝑖) is also affected by the interdiction. 

For example, if the arc between node 2 and node 3 is to be interdicted in period 1 so that z2,3,1 = 

1, travel along the arc is affected from node 3 to node 2 as well so z2,3,1 = 1. Constraint (3) 

ensures that an arc can only be interdicted once.  As will become clear when 𝑔𝑘(𝑧) is formally 

defined in Model (6) – (8), an arc that is interdicted in period 𝑘 remains at its maximum length 

throughout the remainder of the time horizon. Constraint (5) prohibits partial interdiction of an 

arc. 

Given fixed interdiction variables 𝑧, the shortest path length 𝑔𝑘(𝑧) in period 𝑘 is defined 

formally in Model (6) – (8).  

𝑔𝑘(𝑧) = Min 
 ∑ (𝑐𝑖,𝑗 + 𝑤𝑖,𝑗 ∑ 𝑧𝑖,𝑗,𝑘′

𝑘

𝑘′=1

) 𝑥𝑖,𝑗

 

(𝑖,𝑗)∈𝐴

 

 

 (6) 

s.t. 
∑ 𝑥𝑖,𝑗 −

 

𝑗:(𝑖,𝑗)∈𝐴

∑ 𝑥𝑗,𝑖

 

𝑗:(𝑖,𝑗)∈𝐴

=  {
1 𝑖 = 1                  
0 𝑖 = 2, … , 𝑠 − 1

−1 𝑖 = 𝑠                  
 

 

: 𝑦𝑖,𝑘 (7) 

 𝑥𝑖,𝑗 ≥ 0, ∀(𝑖, 𝑗) ∈ 𝐴  (8) 

    

 The variable xi,j is equal to one if the attacker traverses arc (𝑖, 𝑗). Objective (6) seeks to 

minimize the length of the path traversed by the attacker. The length of arc (𝑖, 𝑗) is equal to the 

original length of the arc 𝑐𝑖,𝑗 plus an additional 𝑤𝑖,𝑗 if the arc has been interdicted in or before 
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period 𝑘. Constraint (7) is the flow balance constraint, which ensures that the path represented by 

𝑥 begins at node 1 and ends at node 𝑠. Constraint (8) requires that the 𝑥-variables satisfy only 

nonnegativity; however, the existence of a binary optimal solution to the shortest path linear 

program is well known. 

To convert the max-min problem presented in Model (1) – (5) to a max-max problem the 

dual of Model (6) - (8) must be taken. Let yi,k denote the dual variable associated the 𝑖th 

Constraint (7). By strong duality, the dual of Model (6) – (8) will have an optimal objective 

value equal to the optimal objective value in Model (9) – (11), so the dual’s optimal objective is 

equal to 𝑔𝑘(𝑧). The dual is stated in Model (9) – (11).    

𝑔𝑘(𝑧) = Max 
 𝑦1,𝑘 − 𝑦𝑠,𝑘 

 
(9) 

s.t. 
𝑦𝑖,𝑘 

− 𝑦𝑗,𝑘 ≤ 𝑐𝑖,𝑗 + 𝑤𝑖,𝑗  ∑ 𝑧𝑖,𝑗,𝑘′

𝑘

𝑘′=1

, ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾 

 

(10) 

 yi,k  unrestricted,         ∀𝑖 ∈ 𝑁 (11) 

 

Replacing 𝑔𝑘(𝑧) in Model (1) – (5) with the objective of Model (9) – (11) and adding the 

constraints from Model (9) – (11) to Model (1) – (5) yields the  a single-stage (i.e., max-max) 

formulation of the prioritization problem. This is shown below in Model (12) – (18). 
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Max 
 ∑

1

𝑓
(𝑦1,𝑘 − 𝑦𝑠,𝑘)

 

𝑖∈𝐾

 

 

(12) 

s.t. 
∑ 𝑧𝑖,𝑗,𝑘

 

(𝑖,𝑗)∈𝐴

≤ 2𝑏, ∀𝑘 ∈ 𝐾  

 

(13) 

 ∑ 𝑧𝑖,𝑗,𝑘
 

 

𝑘 ∈𝐾

≤ 1, ∀(𝑖, 𝑗) ∈ 𝐴  (14) 

 
𝑦𝑖,𝑘 

− 𝑦𝑗,𝑘 ≤ 𝑐𝑖,𝑗 + 𝑤𝑖,𝑗 ∑ 𝑧𝑖,𝑗,𝑘′

𝑘

𝑘′=1

, ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾  

 

(15) 

 
𝑧𝑖,𝑗,𝑘 = 𝑧𝑗,𝑖,𝑘

 
 , ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾 

 
(16) 

 
𝑧𝑖,𝑗,𝑘 ∈ {0,1}, ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾 

 
(17) 

 yi,k  unrestricted,         ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾 (18) 

   

 To demonstrate a solution using this model let us compare our approach to another 

approach on a sample network. Another approach that could be taken to the prioritization 

problem is the “greedy approach.” Rather than looking at the effect on future periods of placing 

an interdiction as in our model, the greedy approach places an interdiction that will maximize the 

current shortest path. Consider the following network as an example with two periods having a 

budget of one interdiction each. The arc lengths 𝑐𝑖,𝑗 are labeled on each arc (𝑖, 𝑗) with the change 

in length 𝑤𝑖,𝑗 in parentheses beside the arc lengths. 

 

Figure 1 Greedy vs. Prioritization Approach 
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The greedy approach to the prioritization problem would interdict the arc (6,7) first 

making the first period’s shortest path have a distance of six. In the second period, no 

interdiction made could extend the shortest path farther, so the shortest path length would be six 

at the end of the second period as well. The average shortest path length over two periods for the 

greedy approach is six. Our prioritization model would consider all of the periods at once and 

would provide the optimal solution of interdicting the arc (1,2) and then the arc between (1,3). 

The shortest path in the first period would only be four, but at the end of the second period the 

shortest path would be 9. The average would be 6.5, a better solution than that given by the 

greedy approach. 

Section 3 - Data 

To test the model formulation, a series of test networks were generated ranging in 

network size and number of interdiction periods. Grid networks were generated using VBA and 

Excel. The CPLEX solver 12.6 in AMPL was then used to solve Model (12) – (18) for the 

different networks. This is discussed in further detail in Section 4. 

 Though the prioritization problem and network interdiction problems in general are 

relevant and real-world applicable, there is not a great source of real world data available for the 

testing of interdiction models for obvious reasons. Border security and smuggling information is 

sensitive and hard to reach material. This is one potential reason why Bayrak and Bailey [1] and 

Salmeron [8] perform computational experiments using randomly generated grid networks of 

varying size. We utilize a similar approach in this paper to generate a set of test instances for 

Model (12) – (18). 
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Preliminary tests were first completed to assess the network size limits of the model and 

solver. Then, networks were generated ranging in size to observe the capabilities of the model 

and solver. Each size network had square and rectangular networks generated to mitigate the 

effect of network width, the number of arcs needed to get from the starting node to the final node 

of a network. For instance, for the 100-node network size, four column by 25 row networks as 

well as 10 by 10 networks were generated. For each size configuration, what we called “network 

sets,” three different networks were randomly generated. Each network generated was tested 

with different numbers of periods and budgets.  The following table displays the different 

network instances used: 

Table 1 Test Network Sets 

Network Set Columns Rows Nodes 

A 3 6 20 

B 6 3 20 

C 4 25 102 

D 10 10 102 

E 10 50 502 

F 20 25 502 

G 20 125 2502 

H 50 50 2502 

 

 Each network has a dummy source and sink node. These nodes are attached to the 

network with dummy arcs so that the attacker’s path can start from any node in the first column 

of the network and end at any node in the last column. The arc lengths, parameter 𝑐𝑖,𝑗, were 

randomly generated using VBA between one and 50. The change in arc length, parameter 𝑤𝑖,𝑗 

was set to 10 for every arc. The following is a six column by three row network example: 
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Figure 2 Network Example B1 

 

Section 4 - Results 

 The solver CPLEX was used to solve the model on each of the test networks generated. 

This test run we call the “Prioritization Test.” An additional round of tests was run on the 

networks with a different objective. The objective was changed from maximizing the average 

shortest path length to maximizing 𝑦1,𝑓 − 𝑦𝑠,𝑓, the final shortest path length.  Under this 

objective, the interdiction problem reduces to a basic shortest path network interdiction problem, 

i.e., as modeled by Israeli and Wood [4], with no prioritization. This test run is referred to as the 

“At Once Test” as all of the interdictions are placed at once as opposed to in sequence. These 

results can be compared to see how effective our model is at not only maximizing the average 

shortest path but also at maximizing the final shortest path.  

The test runs were limited to 3600 seconds on each of the networks. For each test run the 

solve time, relative optimality gap percentage, objective value, and final shortest path distance 

were recorded. The results for each test run are summarized in the table below. Three different 

networks were tested for each network set. Each network was tested with four different levels of 

interdictions. Each test was run again with the at once test objective of maximizing the shortest 
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path without periods. The solve time was recorded. The objective value for the prioritization test 

is the average of the shortest path lengths across all periods. The objective value for the at once 

test is the maximum shortest path length with all interdictions placed at once. The relative 

optimality gap percentage (RELMIPGAP) is the percentage difference between the objective 

value and the objective value of the best bound remaining. The final shortest path length for each 

prioritization test was recorded to compare to the objective of the at once test for each network. 

The difference between the two is displayed in the far right column. 

Table 2.1 Test Results 

Network Prioritization Test At Once Test   

Network 

Interdi-

ctions 

Solve 

Time 

(Limit 

3600) Objective RELMIPGAP 

Final 

SP 

Length 

Solve 

Time 

(Limit 

3600) Objective RELMIPGAP 

Test 

Difference 

A1 3 0.11 24.3333 0 31 0.062 31 0 0 

A1 5 0.094 27 0 31 0.078 31 0 0 

A1 10 0.125 29 0 31 0.109 31 0 0 

A1 15 0.172 29.6667 0 31 0.125 31 0 0 

A2 3 0.078 26.6667 0 30 0.062 30 0 0 

A2 5 0.078 28 0 30 0.078 30 0 0 

A2 10 0.141 29 0 30 0.11 30 0 0 

A2 15 0.249 29.3333 0 30 0.125 30 0 0 

A3 3 0.109 35.3333 0 39 0.093 39 0 0 

A3 5 0.125 39.6 0 48 0.156 48 0 0 

A3 10 0.187 43.8 3.24E-16 48 0.125 48 0 0 

A3 15 0.141 45.2 3.14E-16 48 0.125 48 0 0 

B1 3 0.093 122 0 132 0.078 132 0 0 

B1 5 0.078 132 0 152 0.078 152 0 0 

B1 10 0.125 142 2.00E-16 152 0.109 152 0 0 

B1 15 0.156 145.333 3.91E-16 152 0.156 152 0 0 

B2 3 0.094 88.6667 0 94 0.078 94 0 0 

B2 5 0.171 93.6 0 102 0.14 104 0 2 

B2 10 0.983 105.6 1.35E-16 124 0.109 124 0 0 

B2 15 0.889 111.733 1.27E-16 124 0.25 124 0 0 

B3 3 0.078 82 0 92 0.109 92 0 0 

B3 5 0.202 92 0 112 0.078 112 0 0 
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Table 3.2 Test Results Cont. 

Network Prioritization Test At Once Test   

Network 

Interdi-

ctions 

Solve 

Time 

(Limit 

3600) Objective RELMIPGAP 

Final 

SP 

Length 

Solve 

Time 

(Limit 

3600) Objective RELMIPGAP 

Test 

Difference 

B3 10 0.109 102 0 112 0.11 112 0 0 

B3 15 0.156 105.333 1.35E-16 112 0.171 112 0 0 

C1 5 0.624 45.8 0 51 1.388 51 0 0 

C1 10 68.36 50 9.95E-05 56 3606.9 56 0.018728 0 

C1 15 3605.65 52.9333 0.020726 60 3606.45 60 0.033647 0 

C1 25 3604.98 57.8 0.031765 68 2.496 68 0 0 

C2 5 0.53 41.8 0 45 7.145 45 0 0 

C2 10 1213.98 45.9 9.97E-05 52 3607.63 52 0.029054 0 

C2 15 3604.26 49.6667 0.02122 59 3604.87 59 0.019379 0 

C2 25 3602.31 54.52 0.016704 62 1.654 62 0 0 

C3 5 0.359 43.2 1.64E-16 47 3.386 47 0 0 

C3 10 28.611 48.8 9.98E-05 56 3606.29 56 0.013616 0 

C3 15 1640.77 52.5333 9.99E-05 62 0.686 62 0 0 

C3 25 3601.44 56.32 0.00071 62 1.482 62 0 0 

D1 5 0.593 126 0 146 0.25 146 0 0 

D1 10 2.715 143.2 1.98E-16 170 0.655 170 0 0 

D1 15 122.258 154.533 9.96E-05 182 3603.81 182 0.015 0 

D1 25 3602.17 169.76 0.009819 200 3602.89 200 0.006478 0 

D2 5 0.25 143.2 0 156 0.203 156 0 0 

D2 10 0.764 158.1 1.80E-16 183 0.53 183 0 0 

D2 15 353.28 168.6 9.89E-05 195 3.322 195 0 0 

D2 25 3720.01 183.68 0.008736 215 3604.96 215 0.008907 0 

D3 5 0.592 139 0 159 0.187 159 0 0 

D3 10 1.124 155.3 1.83E-16 180 2.106 180 0 0 

D3 15 143.771 165.733 9.96E-05 191 3.026 191 0 0 

D3 25 2560.6 178.76 1.00E-04 199 0.514 199 0 0 

E1 5 11.576 146 7.80E-05 152 4.524 152 0 0 

E1 10 3601.55 151.1 0.008531 159 3604.32 159 0.005462 0 

E1 15 3603.12 154.867 0.013376 164 3605.96 164 0.01429 0 

E1 25 3602.19 160.88 0.019964 174 3606.37 175 0.014396 1 
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Table 4.3 Test Results Cont. 

Network Prioritization Test At Once Test   

Network 

Interdi-

ctions 

Solve 

Time 

(Limit 

3600) Objective RELMIPGAP 

Final 

SP 

Length 

Solve 

Time 

(Limit 

3600) Objective RELMIPGAP 

Test 

Difference 

E2 5 11.732 137 7.01E-05 142 1202.66 142 0 0 

E2 10 3602.83 142.9 0.007573 151 3602.97 151 0.006144 0 

E2 15 3604.06 147.133 0.01256 160 3600.71 160 0.000271 0 

E2 25 3667.24 154.12 0.018828 170 3606.48 170 0.008456 0 

E3 5 75.442 119.6 2.94E-05 122 3602.64 122 0.016515 0 

E3 10 3602.25 124.5 0.01591 132 3602.92 132 0.016759 0 

E3 15 3602.05 128.467 0.021541 140 3606.09 140 0.005764 0 

E3 25 3676.94 135.24 0.027966 151 3605.17 151 0.023788 0 

F1 5 2.512 317 0 330 4.586 330 0 0 

F1 10 3602.19 330.2 0.001191 352 3600.69 352 0.000418 0 

F1 15 3673.14 338.733 0.004564 361 3601.8 362 0.002762 1 

F1 25 3603.73 350.76 0.008742 375 3813.21 375 0.011953 0 

F2 5 1.763 302.2 0 311 3.416 311 0 0 

F2 10 22.152 314.7 1.81E-16 336 8.268 336 0 0 

F2 15 3670.75 324 0.001834 347 3602.08 347 0.007205 0 

F2 25 3603.28 337.08 0.005952 366 3722.37 366 0.005531 0 

F3 5 11.59 325.4 9.08E-05 332 3.76 332 0 0 

F3 10 3601.61 332.7 0.004027 343 3601.8 343 0.005608 0 

F3 15 3601.27 338.733 0.0058 353 3601.77 353 0.006213 0 

F3 25 3654.37 348.76 0.007914 372 3733.77 372 0.002688 0 

G1 5 158.544 267.6 6.43E-05 272 3685.24 272 0.000402 0 

G1 10 3649.58 273.1 0.005952 282 3683.04 282 0.00149 0 

G1 15 3602.95 277.667 0.006823 291 3655.02 291 0.011455 0 

G1 25 3608.99 285.76 0.010404 303 3621.44 303 0.014753 0 

G2 5 3601.55 307.4 0.00163 310 3811.48 310 0.004156 0 

G2 10 3660.7 311.2 0.005858 318 3683.95 318 0.010782 0 

G2 15 3605.89 314.267 0.008888 324 3655.88 324 0.003164 0 

G2 25 3617.01 319.16 0.012557 330 3622.52 330 0.008554 0 

G3 5 24.945 282.2 0 291 6.069 291 0 0 

G3 10 3685.55 292.7 0.002228 309 3692.98 309 0.005277 0 
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Table 5.4 Test Results Cont. 

Network Prioritization Test At Once Test   

Network 

Interdi-

ctions 

Solve 

Time 

(Limit 

3600) Objective RELMIPGAP 

Final 

SP 

Length 

Solve 

Time 

(Limit 

3600) Objective RELMIPGAP 

Test 

Difference 

G3 15 3605 299.8 0.003982 318 78.5 319 8.37E-05 1 

G3 25 3610.04 309.24 0.007993 329 3619.3 329 0.005276 0 

H1 5 40.389 780.8 1.46E-16 800 4.898 800 0 0 

H1 10 3605.04 794 0.001138 812 71.105 812 0 0 

H1* 15 3606.09 751 1.33E+72 751 3633.98 823 0.002277 72 

H1* 25 3612.22 751 1.33E+72 751 3612.03 850 0.000503 99 

H2 5 33.837 816.8 0 828 4.961 828 0 0 

H2 10 3602.39 825.4 0.001099 838 3668.18 838 0.005967 0 

H2* 15 3607.13 800 1.25E+72 800 3632.87 848 0.002358 48 

H2* 25 3618.52 800 1.25E+72 800 3622.67 868 0.004147 68 

H3 5 9.797 724 0 744 5.335 744 1.53E-16 0 

H3 10 3033.13 749 1.52E-16 794 14.196 794 0 0 

H3* 15 3604.53 694 1.44E+72 694 24.523 824 1.38E-16 130 

H3* 25 3611.25 694 1.44E+72 694 147.749 854 0 160 

 

The test results show that the prioritization problem is able to be solved in most cases at 

or close to the optimal objective value. The relative optimality gap is less than 1% for 80% of the 

prioritization tests. The gap is less than 3.5% for all but six of the prioritization tests. These tests, 

noted by the asterisks in the table, did not have a solution reached within an hour. These large 

networks with higher number of periods push the limit of the solver. As more interdictions are 

introduced the number of feasible solutions increases exponentially. Also, it should be noted that 

this occurs in the 50 by 50 networks but not in the 20 by 125 networks. Both sets have networks 

with 2500 nodes, but the wider networks are not solved as efficiently. 

The final shortest path length does not always increase as more interdictions are used.  In 

network A1 for instance, the final shortest path length remains at 31 even when more 
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interdictions and periods are made available. These are cases when no more interdictions can be 

made to change the attacker’s path choice.  

 The prioritization tests often have solutions with maximum final shortest path lengths as 

shown in the table to the right. Out of the 90 solved tests, 86 tests resulted in solutions with the 

maximum final shortest path length. This could show that the solution to the prioritization 

problem solution often has the same interdictions as made to maximize the final shortest path. It 

could also show that in some instances the prioritization solution includes a set of interdictions 

that is completely different from the interdictions made to maximize the shortest path. Further 

research can be done to determine the relationship between the prioritization problem and at once 

problem. The results indicate that the prioritization model is highly effective at maximizing the 

final shortest path length. 

 An example solution is broken down in the following figures. The network displayed 

here is the second “B” network generated with five periods of interdictions, B2.5.  The network 

before any interdictions are placed is displayed first. The path highlighted in red is the shortest 

path. A picture of the network at the end of each period is then displayed with the interdiction 

placed during that period as well as the new shortest path at the end of that period.  

 

Figure 3 Network B2.5. The shortest path length is 72. 
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Figure 4 Network B2.5 period 1. The shortest path length is now 82. 

 

Figure 5 Network B2.5 period 2. The shortest path length is now 90. 

 

Figure 6 Network B2.5 period 3. The shortest path length is now 94. 
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Figure 7 Network B2.5 period 4. The shortest path length is now 100. 

 

Figure 8 Network B2.5 period 5. The shortest path length is now 102. 

 The shortest path length at the end of period 5 is 102. The average shortest path length 

over all periods is 93.6. This is an example of a problem that has alternate optimal solutions. 

Another solution that the solver did not choose has an average shortest path length of 93.6 and a 

final shortest path length of 104. This solution has smaller shortest path lengths in the earlier 

periods. This highlights how no weight is given to the final period and is an example of a case 

where the solution given by the prioritization model does not maximize the final shortest path 

length.  
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Section 5 – Conclusion and Future Research 

This paper has designed a model for prioritizing network interdictions on a general 

symmetric information network under certainty. The solution to the prioritization problem gives 

the optimal sequence of interdictions that maximizes the average length of the shortest path over 

a set number of periods. Twenty-four grid networks of varying size were generated to test the 

model. Another test run, the “At Once” test, was made to evaluate the prioritization model’s 

ability to maximize the shortest path. 

 The tests run using the prioritization model on a variety of networks and interdiction 

levels show the model is efficient at solving problems up to networks with 2500 nodes and 25 

periods of interdictions. The model also is effective at maximizing the final shortest path of a 

network. Further research can be done to discover the relationship between the solutions to the 

prioritization problem and the maximum shortest path “At Once” problem. 

 The model developed here can pave the way to further research in the network 

interdiction field. First, using this model as groundwork, different more efficient ways of solving 

the problem can be innovated. The model has limits when put through a solver, and these limits 

can be expanded with further work. The solve time could also be shortened making the approach 

scalable to realistically sized problem instances. 

 Another area of further research for the prioritization problem could be combining the 

prioritization variant with other variants of the network interdiction problem. The asymmetric 

information problem [1] could be solved as a prioritization problem. The deception problem [8] 

could be made into a prioritization problem as well. Also, the prioritization could be applied to a 
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flow capacity network problem as opposed to the shortest path problem. Stochastic attacker 

behavior could be modeled as in [6,8] by having an unknown source and sink node. 
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