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1. Introduction 

 

Over the past few years, the ability to readily harvest the extracellular matrix (ECM) of cells 

has experienced many innovative developments that have led to an increase in the availability of 

ECM for study and experimentation.  This accessibility along with the long standing history of 

the ECM as a potential biomaterial has turned into a growing movement to utilize and apply the 

ECM and its byproducts to biomedical research and therapies [1].  A breadth of applications has 

emerged spanning uses such as three-dimensional scaffolds in cell culture research to direct 

medical procedures implemented as fillers for ostechondral defects and the creation of cardiac 

and vasculature reconstructive tissue for implantation [2].  The adaptable nature of the ECM 

along with its favored properties of biodegradation and biocompatibility make it highly desirable 

as an implantable biomaterial, but problems have arisen during its implementation that have 

hampered its therapeutic potential.  In particular, one of the greatest benefits with of ECM-based 

implantations may also be one of the greatest limiting factors –the short time in which it is 

biodegraded or resorbed [3].  As the body has the ability to produce ECM, so it too possesses the 

ability to resorb it which it readily does when large quantities of implanted ECM are introduced 

in vivo.  A pharmaceutical or chemical treatment to improve the functional time of implantable 

ECM is potentially available, but there exists a need for a cost effective, in vitro model to 

evaluate these inhibitory agents for their ability to hamper ECM degradation.   

 

1.1 The Physiological Environment of Extracellular Matrix 
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The extracellular matrix is not definable by its material alone as its composition can differ 

depending on the microenvironment of the body or organism that houses it.  Instead, the ECM is 

most definable by its functional characteristics including its abilities to allow cellular adhesion, 

provide structure, and even act as a repertoire for intercellular signals such as growth factors [3].  

That being said, all ECM shares some common compositional components with the most 

abundant of these being the structural proteins- collagen and elastin- and the adhesive proteins- 

fibrinogen and laminin [4].  In particular, collagen is the most common underlying protein found 

in ECM comprising up to 90% of the dry weight in some tissues [5].  Collagen is subdivided into 

twenty-eight types to better distinguish among its structures and functions.  The most widespread 

of these functioning in the ECM are types I and III [5] utilized in a span of biological locations 

ranging from structure of skin, vasculature, interstitial tissue, granulation tissue and scar tissue 

[6].  Due to this prevalence throughout the body, collagen is one of the major targets of 

reconstruction since it comprises most of the structure of the ECM.  It was for this reason that the 

model system to evaluate ECM degradation used DQ collagen as an analog.  DQ collagen is a 

collagen conjugate molecule that susceptible to all the same enzymes of natural collagen (Figure 

1).  It is conjugated with a fluorescent molecule that is only exposed when the DQ collagen is 

cleaved, allowing variations in the level of collagen degradation to be evaluated by measuring 

changes in expressed fluorescence [7].  The molecules that cause this degradation are naturally 

occurring proteins called matrix metalloproteases (MMP) which can be found anywhere there is 

ECM reconstruction.  
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 These MMPs operate with the use of a catalytic Zn2+ active site in their structure 

allowing the hydrolysis of ECM proteins [8].  The MMP group that specifically degrades 

collagen is known as the collagenases.  The collagenases operate as endopeptidases cleaving 

collagens I, II, and III at an interior-domain site marked by the N-terminus [8].  Due to the 

effectiveness of MMPs at low concentrations over short time intervals, they are synthesized as 

zymogens that must have a section of the pro-peptide domain removed in order for the zinc-

dependent active site to become available [8].  In addition, members of another family of 

proteins known as the tissue inhibitors of metalloproteinase (TIMPs) are produced in areas of 

reconstruction to keep MMP activity in check.  Physiological conditions of reconstruction that 

lead to matrix metalloproteases synthesis are angiogenesis, wound healing, and tissue 

remodeling for growth or normal wear.   

 The cells responsible for ECM reconstruction are known as fibroblasts.  These cells 

produce and export both the proteins that comprise the ECM as well as the MMPs that help 

remove them.  To accommodate this high level of protein secretion, fibroblasts are characterized 

by extensive endoplasmic reticulum and long, branched cytoplasm.  Their primary goal is to 

Figure 1. Representation of DQ collagen structure before and after degradation by MMPs.  Before degradation, fluorescent 
signal is quenched by close proximity of fluorescent molecules on the intact collagen [7].  As MMPs degrade the collagen 

structure, more fluorescent molecules are exposed resulting in a greater signal.  Ownership of graphic belongs to 
http://aetherforce.com/how-fluorescent-light-works/. 
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maintain the structure of the ECM and as such they are found in connective tissues and in sites of 

wound healing.  In the model of ECM degradation, 3T3 cells were used as analogs for a potential 

reconstructive environment.  The 3T3 cells are fibroblasts capable of both ECM secretion and 

the ability to secrete collagen degrading MMPs that are necessary to break down the structure of 

DQ collagen [9]. 

 

1.2 Potential Control Mechanisms for Degradation of Extracellular Matrix Implants 

 

In order to lengthen the functional time of implantable ECM, the mechanism of 

degradation must be inhibited.  The matrix metalloproteases are the primary method by which 

ECM is broken down, and the TIMP family of proteins exists as proof that inhibition of these 

proteases is possible naturally.  In particular, the glycoprotein TIMP-1 plays an inhibitory role 

with most of the MMPs including the collagenases [10].  Furthermore, there exist synthetic or 

chemical molecules that likewise inhibit the catalytic actions of MMPs.  One such molecule is 

Batimastat (BB-94) which has been proven to be a dose dependent inhibitor of MMPs during the 

inflammatory response [11].  In order to evaluate the potential to increase the effective time of 

ECM based implants, an in vitro assay was developed to monitor the natural degradation rate of 

ECM in culture with DQ collagen and 3T3 fibroblasts.  The protein TIMP-1 and the molecule 

BB-94 were incorporated into this model to evaluate their potential use in controlling the 

degradation rate of ECM implants. 

 

2. Methods 
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2.1 Preparation of Foam Scaffold and Well Plates 

 

Foam scaffolds were prepared by first creating a polymer solution of polyurethane and 

DMAC.  The solution was prepared with 2g of polyurethane beads being allowed to dissolve 

completely in 20 mL of DMAC over a 24 hour period.  The next step involved mixing 10 grams 

of table sugar with 200 μL of deionized water to create a sugar slurry.  The sugar slurry was 

spread into molds -dimension 15 mm diameter by 1 mm height- sized for use in twenty-four well 

plates.  The molds were then placed into an oven at 60 degrees centigrade for 20 minutes to 

allow some of the excess water to evaporate off.  At this point the polymer solution was applied 

to sugar filled molds until the molds were filled.  This required between an average of 1.2 to 1.4 

mL of polymer solution per well.  The polyurethane foams were then submerged in deionized 

water for 24 hours at room temperature.  Following the first 24 hour period, the now solid and 

porous polyurethane foams were removed from their molds and placed in a separate DI water 

bath at room temperature.  The new bath was stirred constantly, and the DI water was changed 

every 8 hours for another 24 hour period to remove all traces of remaining sugar.  The foams 

were then removed from the bath and placed 8 apiece into 50 mL centrifuge tubes and allowed to 

freeze overnight in a -25 degree centigrade freezer.  After the foams were completely frozen, 

they were lyophilized for another 24 hours.  The foams were stored sealed at room temperature 

until placed into a twenty-four well plate and sterilized using gas sterilization.   

 

2.2 Cell Culture 
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 Frozen vials of 3T3 fibroblasts were thawed in 37 C water bath and added to 16 mL of 

warm media at same temperature in a T-175 flask.  Following seeding, cells were incubated for 

45 minutes at 37 C.  The media was then removed and replaced so only the cells that adhered to 

the flask would remain.  Cells were incubated at 37 C.  Cells were fed every 24 hours with a 

fresh 17 mL of media until confluence.  Average times of confluence ranged between 5-7 days.   

 Following confluence, cells were then split into three flasks.  After removing all media 

from the flask, trypsin EDTA (7 mL) was added and allowed to incubate with the cells for 15 

minutes.  After this time, 7 mL of warm media were added to neutralize the trypsin.  The 

resulting 14 mL solution was put into a centrifuge vial and spun down at 300 G for 5 minutes.  

The remaining solution was removed and the resulting pellet was re-suspended in 12 mL of 

media.  This new solution was added to 3 T-175 flasks (4 mL each) along with 13 mL warm 

media.  These flasks were cultured using the above steps until confluence.   

 

2.3 Well Plate Preparation 

 

 Foams that had been gas sterilized were treated with fibronectin before cells were seeded 

onto them.  To start, the sterile foams were rinsed with 500 μL of sterile PBS and left to sit for 5 

minutes.  The foams were each rinsed a total of three times.  Fibronectin solution (500 μL) was 

then applied to the foams.  Well plates were wrapped in para-film and stored cold for 36 hours.   

 Cells were removed from T-175 flasks using steps described in 2.2.  Following removal, 

the cells were counted using a hemocytometer.  A total of 8 million cells were seeded per foam 

and warm media was added until the total solution in each individual well was 500 μL.  The well 

plates were then incubated for 24 hours at 37 C.  
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2.4 Testing for Signal to Noise 

 

 Two well plates were used for this test.  One well plate had half of its wells left without 

foams in order to establish controls on the degradation rate of the DQ collagen.  The DQ 

collagen was prepared in three concentrations of 2 μg/mL, 10 μg/mL, and 50 μg/mL.  A total of 

nine foams would be exposed to each concentration over a period of 4 days.  The first three 

foams from each concentration (n=3) would be sampled after 24 hours, the next three foams 

would be sampled after 48 hours, and the final 3 foams would be sampled at 96 hours along with 

each of the foamless control wells.  To sample the wells, three 100 μL samples were taken from 

the 500 μL solution in each well.  The 100 μL samples were put into a 96 well plate.  Fluorescent 

readings were taken on days 1, 2 and 4 with excitation wavelengths at 485/20 nm and emission 

wavelengths at 528/20 nm to best comply with manufacturer’s suggestions.  Foams were 

removed from original plate at time of sampling and placed into a new sterile well plate before 

being suspended in 10% formalin.  DAPI staining was performed on foams to make sure cell 

adhesion had taken place and the well samples were valid (Figure 2).  Test was repeated twice.  
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2.5 Effect of TIMP-1 and BB-94 on MMP Inhibition 

 

Similar to the signal to noise test, two 24 well plates were used for this test.  All foams in 

this test received DQ collagen at the concentration and for the amount of time that yielded the 

greatest signal to noise ratio in the previous tests.  TIMP-1 working solution was prepared with 

sterile PBS to form concentrations of 2 ng/mL, 10 ng/mL, and 100 ng/mL when added to the 500 

μL of media in each well.  Batimistat was made into working solution with DMSO at 

concentrations of 10 nM, 100 nM, and 1000 nM when added to the 500 μL of media in each 

well.  BB-94 solution was added so that the total amount of solution in the well was less than 5% 

DMSO do minimize its effects on the cells.  The DMSO was also sterile filtered to minimize 

chance of contamination.   

One well plate was filled with seeded foams.  Each column corresponded to one of the 

concentrations of BB-94 or TIMP-1 listed above (n=4).  Only eight foams were added to the 

other plate which received no MMP inhibitor.  Samples were taken in the same manner as in 2.4.  

Following the sample collection phase, foams were fixed in 10% formalin in a new well plate.  

Foams were DAPI stained to check for cellular adhesion to the foam.  Sample foams without cell 

adhesion were eliminated from being represented in the final results. 

 

2.6 Statistical Analysis 

Figure 2. Representation of DAPI staining results from the seeded foam scaffoldings that had participated in the assay.  
Foam A is an example of a foam that was successfully seeded as seen by the prevalence of distinguishable nuclei visible on 
the polyurethane foam.  Foam B is an example of a foam that was eliminated from the assay for failure to seed any cells. 
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All data sets are represented by the mean and standard deviation. Comparisons between 

samples groups were evaluated using a student's t-test.  A standard 0.05 level of significance was 

used for all statistical tests. 

 

3. Results 

 

 The first phase of experimentation was 

performed in order to find an acceptable 

signal to noise ratio of testing over a period of 

four days.  Readings were taken on days 1, 2, 

and 4.  The first run had two samples that 

performed differently than the controls at the 

level of statistical significance (Figure 3).  The 

first occurred at day 2 at a concentration of 50 

ug/mL.  The mean value of the sample was 

1612 ± 18.76 while the mean for the control 

was 1409 ± 16.08 giving < 1% chance that the 

two groups were the same.  The second 

notable sample occurred on day 4 at the 

concentration of 50 ug/mL DQ collagen.  The 

mean value of the sample was 2292 ± 102.4 

with the mean of the control being 1427 ± 

Figure 3. Fluorescent values for concentration of DQ 
collagen in presence of fibroblasts, first run.  Only 50 

ug/mL in B and C were shown to be statistically significant 
with signal to noise ratios of about 8:7 and 2:1 

respectively.   
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50.76 also giving < 1% probability that the two groups were the same.   

 The second run of the assay likewise resulted in two samples that displayed significantly 

different fluorescent values.  However, both of these samples appeared only on the fourth day of 

evaluation (Figure 4).  The first was the 2 

ug/mL concentration of DQ collagen at an 

average of 412 ± 23.96 for the sample and an 

average of 277.7 ± 3.858 giving < 1% chance 

that the sample and control were the same.  

The second was at the 50 ug/mL concentration 

at an average of 2717 ± 233.8 for the sample 

with the control averaging at 2048 ± 31.51 

yielding a probability of < 1% that the two 

groups were the same.  From the above assays 

it was decided that the most substantial signal 

to noise ratio existed at the fourth day at 50 

ug/mL of DQ collagen since both assays 

displayed statistical significance at these 

points.   

 The final test was used to determine 

the effectiveness of BB-94 and TIMP-1 to 

prevent collagen degradation (Figure 5).  From 

the two MMP inhibitors, there were a total of 

three concentrations that were shown to be 

Figure 4. Fluorescent values for concentration of DQ 
collagen in presence of fibroblasts, second run.  Two 

samples in C at 2 and 50 ug/mL were shown to be 
statistically significant with signal to noise ratios of about 

4:3 and 7:5 respectively.   
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statistically less degraded than the controls.  The first was the only concentration of TIMP-1 that 

was shown to be potentially significant, and it occurred at the lowest concentration of only 1 

ng/mL.  The mean of this TIMP-1 sample was 1878 ± 62.56 as compared to the controls mean of 

2252 ± 175.9 giving a probability value of < 5%.  Batimistat was shown to reduce degradation at 

concentrations of 100 nM and 1000 nM.  The mean fluorescent value at 100 nM was 1832 ± 

109.2 while the mean value for 1000 nM was 1751.5 ± 158.6 showing that both had < 5% 

probability of being from the control group.   

 

4. Discussion 

 

The signal to noise ratio collected from the first two assays was most acceptable for the 

time period of 4 days at a concentration of DQ collagen at 50 ug/mL.  Both assays showed that 

this result was statistically significant from the control populations, and was visibly more 

distinguishable when plotted due to a larger difference in the mean fluorescent values.  A 

possible explanation for these results is the higher concentration of DQ collagen was likely more 

sensitive to the MMPs secreted by the 3T3 cells since the chances of an MMP finding a binding 

Figure 5. Results of assay testing with inhibitory agents BB-94 (A) and TIMP-1 (B).  BB-94 showed significant results at 100 
nm and 1000 nm with means of 1832 ± 109.2 and 1751.5 ± 158.6 respectively.  TIMP-1 only was shown to be successful in 

MMP inhibition at 1 ng/mL concentration with a mean of 1878 ± 62.56.  The control group represented had a mean of 2252 
± 175.9, which is higher than in either of the previous assays. 

12 
 



 

site to initiate cleavage were greater.  The 4 day time period allowed the cells to be metabolically 

active longer thereby increasing the concentration of functional MMPs in the model. 

When the inhibitory molecule BB-94 and the MMP inhibitor protein TIMP-1 were 

introduced, the results displayed distinctive patterns of success.  The assay displayed a pattern of 

increasing inhibition effectiveness with an increase in concentration of BB-94.  Batimistat was 

successful in the inhibition of MMPs at concentrations of both 100 nM and 1000 nM.  Although 

these two groups were independent of the control group, they were statistically similar 

potentially implying that the most efficient concentration of BB-94 lies at or around 100 nM with 

diminishing returns resulting from introducing higher concentrations of the drug.  However, 

more testing would be needed to support this hypothesis.  TIMP-1 yielded surprising results with 

only the lowest concentration being statistically successful at inhibition when compared to the 

controls.  A caveat to this result is that the populations of TIMP-1 concentrations were 

statistically indistinguishable from one another with a much more comparable mean than the BB-

94 populations.  The results also do not indicate that increasing the concentration of TIMP-1 will 

have any effect on the inhibition of MMPs within the scope of concentrations tested.   

This particular run of the assay was limited by the inclusion of only fibroblasts within the 

model.  When dealing with ECM reconstruction in vivo, there are other cell types that would 

contribute to the body’s response to an implant, namely macrophages and endothelial cells.  

Macrophages are common responders to all medical implants in vivo since they are mediators of 

the inflammatory response to foreign material [12].  Endothelial cells are found throughout the 

body in various forms, but mainly serve to regulate vasculature systems through protein 

expression including the excretion of MMPs during reconstructive events such as angiogenesis 

[13].  Although the model did not include these cells initially, it is easily adaptable to 
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accommodate them in future iterations since the structural foam for cell seeding is coated in 

fibronectin, a glycoprotein known to attach both endothelial cells and macrophages [14].  Other 

inhibitory molecules or proteins can likewise be readily incorporated into the assay since the 

setup in not inherently dependent on the choice of inhibitor molecule.  Further testing could also 

be done employing therapeutic MMP inhibitors already approved by the FDA such as Periostat 

[15] or developing therapeutics such as the breast cancer treatment drug Tanomastat [16].  

Overall, the assay proved to be successful in its ability to determine the effectiveness of MMP 

inhibitors as potential protectors to ECM based biomaterials by showing the inhibitory effects of 

BB-94 and TIMP-1. Furthermore, it displays a degree of versatility that will allow it to be 

utilized in successive evaluations of inhibitory molecules and proteins.   
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