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INTRODUCTION 

Chitin is the second most abundant natural polysaccharide on earth (Chen et al., 2003). 

Found as the main structural component in crustacean shells, it serves as the chemical precursor 

to chitosan (Chen et al., 2003). Chitosan is formed from chitin through the process of chemical 

deacetylation, which removes some or all of the acetyl groups from each of the carbohydrate 

monomers and exposes the amino groups (Onsosyen and Skaugrud, 1990). Depending upon the 

pH of the medium or reacting aqueous solution, the amino groups can become protonated and 

cause the molecule to become cationic (Onsosyen and Skaugrud, 1990). Chitosan can be 

characterized by the purity of the sample, the average molecular weight (MW) of the 

polysaccharide chain, and the deacetylation degree (DD) that the chitin underwent upon 

transformation to chitosan. Chitosan can also be characterized by source: commercial chitosan is 

usually derived from crab shells, whereas other varieties can be derived from shrimp and 

crawfish discards. 

This combination of cationic and structural flexibility makes chitosan highly reactive 

with a large spectrum of different chemicals in aqueous solutions (Onsosyen and Skaugrud, 

1990; Cook et al., 2011). Especially when coupled with an inorganic salt to prevent the molecule 

from elongating in solution, chitosan shows a good affinity for chelating both anions and cations. 

Its ability to flocculate solids has been studied most commonly in commercial wastewater 

treatment applications and manure separation (No and Meyers, 1989; Onsosyen and Skaugrud, 

1990; Gamage and Shahidi, 2007). More recently, chitosan has been used to flocculate algae in 

streams and even immobilize algae to promote nutrient removal (No and Meyers, 1989; 

Divakaran and Sivasankara Pillai, 2002). These characteristics of chitosan suggest that it could 
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have some useful applications in poultry production, potentially reducing the water solubility of 

certain elements in poultry litter.  

 Poultry litter has been land applied as fertilizer at prescribed rates for decades. 

Historically, poultry litter was applied at rates based upon forage nitrogen (N) needs, but more 

recently, phosphorus (P) content in the litter and soil have guided application rates (Sharpley, 

1999). These changes in management were prompted by concerns over accelerated 

eutrophication, where P has been noted or even assumed to be the factor limiting algal growth.   

The loss of P in runoff from land applied poultry litter is regulated by the amount of water 

extractable P (WEP), where WEP application rates are positively related to runoff concentrations 

and loads (Kleinman et al., 2002; DeLaune et al., 2004; Haggard et al., 2005a). The water 

solubility of P in poultry litter can be reduced by chemical amendments (Moore and Miller, 

1994), and some chemicals also reduce ammonia (NH3) volatilization during poultry production 

(Moore et al., 2000). Thus, it is conceivable that chitosan addition to poultry litter could reduce 

the water solubility of P and possibly other trace elements. 

 The goal of this study was to evaluate the effects of chitin and chitosan on reducing NH3 

volatilization and water solubility of P in poultry litter. We hypothesize that chitosan will 

significantly decrease the amount of WEP relative to poultry litter and even that treated with 

chitin. However, we do not anticipate reduced NH3 volatilization from chitosan-amended poultry 

litter despite Cook et al. (2011) observing increased total and organic N content of chitosan-

treated poultry litter relative to control after a 56-d incubation. The effects of chitin and chitosan 

additions to poultry litter were compared to aluminum sulfate (alum, Al2(SO4)3), which has been 

shown to reduce P solubility and NH3 loss during incubations. 
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MATERIALS AND METHODS 

 The study was performed through a series of three experiments which examined the 

effects of chitin and chitosan, as well as alum, on NH3 release and water solubility of P and other 

trace elements. A control and five separate amendments were used in Experiment 1, including 

alum, three grades of chitosan, and coarse-ground chitin (Table 1). A single source of unaltered 

poultry litter was divided into 10 g samples, mixed with treatments (1% w/w as is) and incubated 

at room temperature for three weeks in closed containers; four replicates were used for each 

treatment. After incubation, litter samples were analyzed for WEP content and trace element 

content at the University of Arkansas Agricultural Diagnostic Service Lab. Water extractable 

elements were determined following standard litter protocols, i.e. 1:100 ratio of dry weight 

poultry litter to water (Kleinman et al., 2007). The filtrate from the extraction procedure was 

analyzed for P, potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), sodium (Na), iron 

(Fe), manganese (Mn), zinc (Zn), copper (Cu), boron (B), and aluminum (Al) using an ICP-OES. 

The intent of this study was to evaluate the effects of chitin and chitosan grades on WEP relative 

to alum-treated litter and a control (untreated litter) at a low treatment dose (1% w/w); the trace 

element data will not be discussed. 
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Table 1. Summary of treatments used in experimental series. 

Number Treatment  Chemical Name Description 

1 Control no chemical 
amendment 

untreated 

2 Alum aluminum sulfate ground 

3 Coarse 
Chitin 

chitin from shrimp 
shells 

poly(N-acetyl-1,4,beta-D-glucopyranosamine) 

-- Chitosan -- -- 

4 Grade C chitosan 
medium molecular weight; poly(D-glucosamine) 

deacetylated 

5 Grade B chitosan from shrimp 
shells 

poly(1,4-beta-D-glucosamine) ≥75% deacetylated 

6 Grade A chitosan from shrimp 
shells 

practical grade 

 

Experiment 2 was similar to the first, except all amendments were applied at 1%, 5%, and 

10% (w/w). The amendments were added to the litter at rates typically recommended of alum 

dosage for the control of NH3 volatilization (1% w/w) or that for control of WEP (5-10% w/w) 

(Moore, 2011; Penn and Zhang, 2011). The same litter source was divided into 5 g samples for 

analysis, including four replicates for each treatment; amendments and litter were well mixed 

and then incubated at room temperature for three weeks. Samples were again taken to the 

Agricultural Diagnostic Service Lab and analyzed for water extractable elements using the 

protocol described above.    

Experiment 3 shifted the focus from water extractable elements to effects on NH3 

volatilization, but amendments were only applied at 5% and 10% (w/w) rates. A new litter 

source was used and analyzed for pH, conductivity, water content, WEP, total N (TN), total P 

(TP), and other elemental concentrations at the Agricultural Diagnostic Service Lab. The litter 

was divided into 20 g samples, which were well mixed with each amendment and then 
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transferred to separate Erlenmeyer flasks. A 15 mL vial with 10 mL of deionized water and 4 

drops of concentrated HCl was placed uncovered and upright in each flask. The flasks containing 

the samples and vials were covered and were incubated at room temperature for eight weeks; 

each treatment included 4 replicates. Vials were collected and replaced after weeks 1, 2, and 8; 

vial collection and replacement extended from 2 to 8 weeks because of initial results. The acidic 

water in the vials was analyzed for total NH3-N (as ammonium, NH4-N)  at the Arkansas Water 

Resources Center Water Quality Lab using a Lachat 8500 following EPA Method 351.2. 

Following the incubation, the litter was also analyzed for water extractable elements and TN 

content. Chitin was not analyzed per the results of Experiments 1 and 2.  

Statistical Analysis of Data 

 Multi-sample analyses of the data for each experiment were performed using computer-

based software (Statistix 9.0; Analytical Software, Tallahassee, FL). A one-way analysis of 

variance (ANOVA) analysis was performed on each group of samples, using an alpha of 0.05 to 

determine statistically significant differences between treatments. Treatment means were 

separated via least significant difference (LSD) for each of the three experiments. Significant 

differences between treatment means were denoted by lettered groups (e.g. A, B, AB, BC, etc.), 

where any common letters between treatment means represented no significant difference 

between those treatment means. 
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RESULTS  

Experiment 1 

 As expected, the control samples had the greatest WEP content (2135 mg kg-1 dry weight 

basis) after incubation, and poultry litter treated with 1% alum showed the least WEP content 

(1768 mg kg-1; Figure 1). Chitin (3) and chitosan (5, poly-(1,4-β-D-glucopyranosamine)) at 1% 

treatment showed no significant reduction in WEP content versus untreated litter and were 

significantly greater than the poultry litter samples treated by 1% alum. However, there was no 

significant difference in WEP across the three chitosan treatments at 1% in this first experiment 

and WEP contents in two of the chitosan treatments (4, poly-(D-glucosamine) deacetylated, 1826 

mg kg-1; 6, practical grade, 1853 mg kg-1) were not significantly different than WEP from 1% 

alum-treated poultry litter. 
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Figure 1. Experiment 1 on the effects of the treatments on water-extractable phosphorus (WEP) in poultry 
litter, where each chemical was applied at 1% by mass based on the mass of poultry litter as is. [The 
treatments are: 1 – Control, 2 – aluminum sulfate (alum) 1%, 3 – chitin from shrimp shells 1% (poly(N-
acetyl-1,4,beta-D-glucopyranosamine)), 4 – chitosan 1% (poly(D-glucosamine) deacetylated), 5 – 
chitosan 1% (poly(1,4-beta-D-glucosamine) ≥75% deacetylated), 6 – chitosan from shrimp shells, 
practical grade; letters above the bar graph show significant differences (ANOVA, LSD, P<0.05).] 

Experiment 2 

 At the 1% w/w treatment rate, the results were not as predictable as those from 

Experiment 1 (Figure 2). The WEP content of chitin-treated poultry litter (2689 mg kg-1 dry 

weight basis) was not significantly different than the control (2382 mg kg-1), and the WEP 

content in the untreated poultry litter was not significantly different from the three chitosan 

treatments at 1% (4, 2289 mg kg-1; 5, 2131 mg kg-1; 6, 2106 mg kg-1). However, the three 
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chitosan treatments had WEP contents which were not significantly different than the 1% alum 

treated poultry litter (1971 mg kg-1).  

 
Figure 2. Experiment 2 on the effects of the treatments on water-extractable phosphorus (WEP) in poultry 
litter, where each chemical was applied at 1% by mass based on the mass of poultry litter as is. [The 
treatments are: 1 – Control, 2 – aluminum sulfate (alum) 1%, 3 – chitin from shrimp shells 1% (ploy(N-
acetyl-1,4,beta-D-glucopyranosamine)), 4 – chitosan 1% (poly(D-glucosamine) deacetylated), 5 – 
chitosan 1% (poly(1,4-beta-D-glucosamine) ≥75% deacetylated), 6 – chitosan from shrimp shells, 
practical grade 1%; letters above the bar graph show significant differences (ANOVA, LSD, P<0.05).] 

 Treatments at 5% w/w showed more pronounced WEP trends than those at 1% w/w 

(Figure 3). There was no significant difference in WEP content (2875 mg kg-1) of chitin-treated 

poultry litter versus the control samples (2703 mg kg-1). The three varieties of chitosan showed 

significantly less WEP than control, however, and there was no significant difference in WEP 

content between the chitosan-treated poultry litters (4, 1629 mg kg-1; 5, 1697 mg kg-1; 6, 1861 

mg kg-1) and alum-treated samples (1451 mg kg-1). 
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Figure 3. Experiment 2 on the effects of the treatments on water-extractable phosphorus (WEP) in poultry 
litter, where each chemical was applied at 5% by mass based on the mass of poultry litter as is. [The 
treatments are: 1 – Control, 2 – aluminum sulfate (alum) 5%, 3 – chitin from shrimp shells 5% (ploy(N-
acetyl-1,4,beta-D-glucopyranosamine)), 4 – chitosan 5% (poly(D-glucosamine) deacetylated), 5 – 
chitosan 5% (poly(1,4-beta-D-glucosamine) ≥75% deacetylated), 6 – chitosan from shrimp shells, 
practical grade 5%; letters above the bar graph show significant differences (ANOVA, LSD, P<0.05).] 

10% w/w treatment results differed from those of 5% and 1% (Figure 4). At this 

treatment rate, WEP levels (2469 mg kg-1) in chitin-treated litter showed no significant 

difference from control (2528 mg kg-1) and were significantly greater than WEP levels in alum-

treated samples (678 mg kg-1). Poultry litter treated with all three chitosan varieties had WEP 

contents (4, 1511 mg kg-1; 5, 1366 mg kg-1; 6, 1544 mg kg-1) significantly greater than alum-

treated poultry litter but were significantly less than control. 
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Figure 4.  Experiment 2 on the effects of the treatments on water-extractable phosphorus (WEP) in 
poultry litter, where each chemical was applied at 10% by mass based on the mass of poultry litter as is. 
[The treatments are: 1 – Control, 2 – aluminum sulfate (alum) 10%, 3 – chitin from shrimp shells 10% 
(ploy(N-acetyl-1,4,beta-D-glucopyranosamine)), 4 – chitosan 10% (poly(D-glucosamine) deacetylated), 5 
– chitosan 10% (poly(1,4-beta-D-glucosamine) ≥75% deacetylated), 6 – chitosan from shrimp shells, 
practical grade 10%; letters above the bar graph show significant differences (ANOVA, LSD, P<0.05).] 

Experiment 3 

 After week 1, results showed that NH3 concentrations from the vials in the alum-treated 

flasks were significantly less than those in the control vials (Table 2). All varieties of chitosan 

tested showed no significant difference from control except chitosan 6, 10%, which actually had 

a greater NH3 concentration than control, unexpectedly. This difference was likely due to one 

outlier out of the four replicates. All varieties of chitosan had significantly greater vial NH3 

concentrations compared to alum (5% and 10%). Week 2 results showed that vial NH3 
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concentrations were not significantly different between any chitosan treatment and control litter. 

However, chitosan 6, 5% and chitosan 5, 10% both were not significantly different than alum, 

5%. But, alum treatment of poultry litter at these rates resulted in the least vial NH3 

concentrations (in general).  

Table 2. Mean ammonia (NH3-N) concentrations in acid trap vials during the 8 week incubation of 
poultry litter at room temperature. 

Treatment Description 
Week 1 (mg L-1 
NH3-N) 

Week 2 (mg L-1 
NH3-N) 

Week 8 (mg L-1 
NH3-N) 

1 Control 23.4B* 34.7A,B 480.0A 

2 Alum, 5% 5.3C 11.3C,D 171.3A,B 

3 Alum, 10% 1.6C 3.9D 65.7B 

4 Chitosan 6, 5% 20.5B 24.3B,C 249.6A,B 

5 Chitosan 6, 10% 37.1A 41.9A 370.2A,B 

6 Chitosan 5, 5% 23.0B 29.6A,B 338.9A,B 

7 Chitosan 5, 10% 20.3B 21.2B,C 226.8A,B 

8 Chitosan 4, 5% 24.8B 30.8A,B 453.9A 

9 Chitosan 4, 10% 29.3A,B 30.4A,B 441.1A 

*Superscript letters within a column denote significant difference based on means separation using least 
significant difference (ANOVA, LSD, P<0.05) 

 The results of weeks 1 and 2 were similar and suggested that chitosan had no effect on 

NH3 volatilization from litter, so it was decided the next vial sampling would occur after week 8, 

a six week incubation. Week 8 results showed no significance between control, alum at 5%, and 

all varieties of chitosan. Alum at 10% showed a significantly less NH3 concentration than control 

and both chitosan 4 treatments. 
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DISCUSSION 

Effect on Water Extractable Phosphorus 

 The results of the first experiment suggested that at least two varieties of chitosan tested 

(4 and 6) have a significant effect on WEP content versus control. Even at 1%, less than the 5% 

extension recommended application rate of alum (Moore, 2011; Penn and Zhang, 2011), these 

two varieties showed an average of 14.5% and 13.2% decreases in WEP content compared to 

untreated litter, respectively. These values are not significantly different from the 17.2% 

decrease versus control observed in alum-treated samples. The promising results from this 

experiment suggested that chitosan was worth testing at the extension recommendations. 

 In the subsequent experiment, chitosan-treated samples were not significantly different in 

WEP content than control at 1% w/w treatment. However, these values were also not 

significantly different from the WEP content decrease observed by alum-treated samples 

(17.3%). Although chitosan 6, practical grade, showed the closest performance to alum at this 

rate, the three grades of chitosan did not perform significantly differently compared to each 

other. Treatment rates at extension recommendations affected the results dramatically for all 

three varieties of chitosan and control. Chitosan 4, 5, and 6 showed 39.7%, 37.2%, and 31.2% 

decreases in WEP content, respectively, compared to untreated litter. Again, all three varieties at 

5% w/w performed comparably to each other and alum (46.3% decrease compared to control). 

At 10%, each chitosan variety was not as effective as alum, but all showed decreased WEP 

compared to untreated poultry litter. 

 These results suggested that processed chitin as chitosan, in all three varieties, performs 

comparably to alum in the chelation of P in poultry litter, especially at 5% w/w treatment. At 
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10% w/w, however, alum’s performance far surpasses that of the varieties of chitosan tested. 

Thus according to this experiment, 5% w/w is the most favorable treatment rate if chitosan were 

to succeed alum as an amendment to poultry litter to decrease WEP. Future research should 

determine if chitosan is a cost-effective management option in poultry production and evaluate 

how P chelated by chitosan transforms in soils. It is conceivable that chitosan-treated poultry 

litter could have reduced runoff P when land applied because WEP has been found to control P 

release during rainfall-runoff studies (Haggard et al., 2005b) 

Effect on Ammonia Volatilization 

  The data from the third experiment showed, because of the significantly reduced NH3 

concentrations in the vials with alum-treated samples, that the experiment performed as 

expected. It also suggested that chitin and chitosan did not significantly reduce volatilized NH3 

from poultry litter in these lab experiments. These results contradict those of Cook et al. (2011), 

which suggested that chitosan reduces N loss, whether through NH3 volatilization or other 

processes. N loss by Cook et al. (2011) was estimated indirectly by assessing the TN content of 

the litter samples post-treatment. However chitosan, depending on its deacetylation degree, can 

range between 5 to 8% TN content (Ravi Kumar, 2000). At the prescribed 10% w/w treatment 

rate in the Cook et al. (2011) experiment, this could result in up to a 40% increase in the TN 

content of treated poultry litter assuming untreated litter at 2 to 4% TN content (Wang et al., 

2006). Thus, the increase in TN may have been caused solely by the native N in the chitosan 

amine groups, not chitosan’s ability to chelate N and prevent NH3 volatilization.  

The mechanism of most amendments employed to reduce NH3 release from litter is to 

acidify the litter matrix, reducing the pH. For example, the addition of alum will reduce the 
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poultry litter pH, reducing NH3 volatilization by converting it to non-volatile, water-soluble 

ammonium (NH4
+). Chitosan would not reduce pH, so limited effect on NH3 loss is expected. 

However, chitosan can easily be dissolved in concentrated acetic acid and may be applied to 

litter in liquid form. The acid may decrease NH3 volatilization similarly to other amendments 

and may also further protonate amine groups of chitosan, which could improve WEP and trace 

element chelation. 

Conclusion 

 Chitosan, in several variations, does show increased chelation of WEP compared to 

untreated litter. Chitosan efficacy is a function of the amount of treatment added to litter and its 

efficacy compared to alum also varies with treatment level. In most instances, however, 

chitosan’s performance was not significantly different from that of alum as a litter amendment. 

Depending upon future studies into cost-effectiveness and different methods of chitosan 

application to litter, chitosan may prove to be a viable alternative to alum for litter treatment with 

respect to WEP chelation. Chitosan’s ineffectiveness at decreasing NH3 volatilization from litter, 

however, may pose a disadvantage to its use against alum. Future studies may also reveal 

agricultural benefits of the presumably increased TN content of chitosan-treated litter because of 

the native N contained in chitosan amine groups.  
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