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1. Background

1.1 Watersheds and Watershed Management

Water is one of the most important natural resources. It “drives all human systems and those of most
other organisms as well” (Heathcote, 1998). Watersheds are particularly important in managing water
resources, as they are broadly defined as the area of land that contributes runoff to a particular point.
Managing a watershed is crucial for maintaining good ecosystem and human health. Runoff is an
important aspect of watershed management. Runoff is precipitation that falls onto the earth but does
not infiltrate into the soil, evapotranspire through plants, or get stored. Runoff carries with it nutrients,
sediments, and pollutants until it eventually reaches a body of water. Nutrients, sediments, and
pollutants that did not get deposited along the way may end up in water bodies. Simulation of runoff is

an initial step in watershed management.

There has also been a push recently to organize governmental organizations and entities based on
watershed boundaries. The watershed-based approach of policy-making, although not well known to
most Americans, has been around since the time of John Wesley Powell. With growing human
population and the corresponding growth of environmental concerns, the idea of watershed-based
governmental organization is again being considered. Watershed boundaries are identified as good
boundaries for political control because they “are meaningful ecologically, defined spatially, can be
nested hierarchic ally, and because the health of an entire watershed generally can be measured by the

health of the aquatic system” {(McGinnis, 1999).
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1.2 L'Anguille River Watershed (LRW} as a Case Study

L’Anguille River Watershed (HUC 08020205} is

located in Eastern Arkansas, United States

{Appendix A). The watershed encompasses six
counties in Arkansas: Craighead, Poinsett, Cross,
Woodruff, St. Francis, and Lee (Figure 1). There
are two main reasons the LRW was chosen as a
case study for this research. First, the population
of L'Anguille River Watershed in 2000 was 46, 169

giving a population density of only 49.39 people

Fig. 1. Location of LRW in Arkansas and counties encompassed.

per square mile {AWIS}. The watershed is mostly
agricultural land, followed by forest and urban areas (Figure 2). Because of the large agricultural industry
and the refatively small population, the main land-use/land-cover (LULC} changes in the watershed
occur due to crop rotation, and little due to urbanization. The second reason the LRW was chosen as a
case study was because, due to its large agricultural production, has some major pollution problems.

Under section 303(d) of the Clean Water Act, states are required to develop a list of impaired waters

e that are too polluted or degraded to meet water quality
Bare (0.1'9%)
/ i B standards set by that state (USEPA). The states are then

Water {1.39%)
13.32 Sq.Mi

Heatb (2.44%) required to establish rankings for the water bodies listed
23.28 Sq.Mi.

Forast (18,95%) and develop Total Daily Maximum Loads (TMDLs) for the
161,05 Sq.Mi.

pollutant that is causing the water quality problems. Since
Y Pasture (2.72%)

Grops {70.98%) 12509 Sq.Mi
678.33 Sq.M1. 1995, there have been seven TMDL reports on the
\‘-\wa" L’Anguille River, five for turbidity and two for fecal

Fig. 2. 2006 land cover percentages for LRW {AWIS}
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coliforms {USEPA). In 2008 the river had twelve of its reaches totaling over 98 miles designated as
impaired (Class 5) by the Arkansas Department of Environmental Quality (ADEQ, 2008). Excess chloride
and lead in these reaches as well as low dissolved oxygen levels were the main reasons these reaches
were designated as impaired. Agriculture was the source of these pollutants and problems in all known
cases (Appendix A). Five of the twelve reaches designated as impaired in 2008 were classified as 5a

streams meaning they are “truly impaired” and TMDLs need to be developed for the given parameter.

The importance of being able to accurately monitor and predict the runoff in L' Anguille River Watershed

is a crucial factor in being able to monitor and manage the pollutant loads of the L’Anguille River.

1.3 Hydrelogic Models

Hydrological modeling is a field of study that attempts to utilize mathematical and analytical models to
both model watersheds and predict watershed characteristics. Many hydrologic models have been
developed in attempts to model different aspects of watersheds. One very common model is the Soil
and Water Assessment Tool (SWAT). SWAT models are often used for modeling watersheds, but they
have difficuity accounting for LULC changes other than crop rotation. This is a problem because these
parameters not only vary within a watershed, but they are also interrelated to one another. For
example, the runoff in one section of a watershed may contribute flow into a different section of the
watershed. Therefore, typical models are incapable in handling complex relationships between large

amounts of data efficiently.

1.4 Artificial Neural Networks

Artificial Neural Networks {ANNs) were designed to process and transfer information similarly to the
neurons in a human brain. Broadly, a neural network is given a variety of inputs and corresponding

outputs (Figure 3}. These inputs enter into a hidden layer or layers that contain neurons. As the inputs
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Hidden layer
of neurons

pass through the hidden layer, weights and biases

input(s)

are added to the data. When the weighted data

Output(s)

goes through a neuron, it is processed with a non-
linear function in an attempt to relate the input
data to the target data. Simply put, ANNs have
the ability to relate input and output variables in

complex systems (Dawson and Wilby, 2001).

Fig. 3. Simple illustration of ANN,

Artificial Neural Networks {(ANN) are relatively

new to hydrologic modeling, but have the ability to handle multiple data inputs and relate them in non-
linear spatial ways {Dawson and Wilby, 2001). ANNs also have the capability to account for dynamic
changes in a watershed such as changes in land use and land cover. This property is especially important
for watershed management, because increasing human population leads to a rapidly changing
landscape. Typically, ANNs used in hydrologic models are feed-forward, back-propagation networks with
one hidden layer of neurons. Input and target data along with network parameters are entered. Data
flows forward through the network, where the network compares the computed output to the known
target by calculating an error (usually mean squared error). If the error goal is not met, the network
keeps re-running the data, changing the weights and biases until a given network parameter is met. The
problem with this typical use of ANNs is that it does not have the ability to spatiaily relate the input

parameters.

In this research, however, a pre-defined network in MatLab® was not used to model the LRW. Instead, a
custom ANN with a specific architecture was defined in order to better capture the spatial dynamics of

the flow within the watershed.

1. 5 Significance of research
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Being able to accurately and efficiently model aspects of a watershed, particularly runoff is very
important in monitoring and controlling non-point source pollution within the watershed. Unlike point-
source pollution, non-point source pollution is difficult to pinpoint and quantify. It is carried through
runoff and sediment flow in and out of watersheds. Because of the Clean Water Act (1972) and its
regulations, it is important to be able to quantify pollutant and sediment transport in a given watershed.
Water health and quality is a good indication of ecosystem health and health of the human population.
Water is the most essential resource for human survival. It is needed for drinking, for growing food, and
for cleansing purposes. Lack of clean water leads to many waterborne diseases and even death. Being
able to quantify, monitor, and even predict runoff and the pollutant loads in the runoff is a great step

towards conserving and managing watersheds and water resources.

2. Methods

2.1 Determining Inputs for ANN Model

It is widely understood that a general mass balance of water for a watershed is given by Equation 1:
Equ. 1: Precipitation = Runoff + Infiltration + Evapotranspiration + Change in storage

Rearranging Equation 1 to solve for runoff:
Equ. 1b: Runoff = Precipitation —Infiltration — Evapotranspiration =Change in storage

Thus, in order to accurately predict the runoff in a particular area, it would be ideal to have exact values
of precipitation, infiltration, evapotranspiration, and change in storage. Current technology, however,
does not allow for the exact calculation of all these parameters. Thus, there is a need to create
hydrologic models that can take currently available data and mathematically relate them in order to
estimate runoff. Precipitation can be measured fairly accurately in a region with rain gages or by using

remote sensing. Infiltration is related to the land cover, slope/topography and soil type of a region.
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Infiltration rates of different soils have been heavily studied by the Natural Resource Conservation
Service (NRCS), and general infiltration of different land covers has been studied as well.
Evapotranspiration is a term that encompasses the amount of water that is evaporated from the ground
plus the amount of water that is transpired through plant respiration (USGS). Evapotranspiration is
controlled mostly by climate, but also by plant species, fractional vegetation cover, vegetative health,
and land cover. Change in storage is a parameter describing the amount of water “stored” in an area in
the soil, man-made structures, ponds, and anything that will contain precipitation and prevent or delay
it from going to runoff. Controlling factors of storage are topography, bedrock type, land use, infiltration

rate, etc.

The complexity of the interactions of the water cycle justifies the need for a neural network model.
Thus, the inputs selected for the model should be controlling factors that influence the water balance
equation. For this research inputs chosen for the initial model were precipitation, average temperature,
and SCS Curve Number. Precipitation was an obvious choice for an input as it is fairly accurately
measured and a direct influence on runoff. Daily precipitation data (from January 1995 to December
2004) was taken from four weather stations in LRW at Beedeville, Mariana, Wynne, and Madison
{Appendix A). The closest weather station to a subbasin was used for its precipitation data. Daily average
temperature (from January 1995 to December 2004) was chosen as an input because it is a controlling
factor for evapotranspiration and can influence infiltration rates of soils. Average temperature data was
taken from the same four weather stations as the precipitation data. The third input chosen was 5C5
Curve Number. The SCS Curve Number is a method that was developed to predict the amount of runoff
that would come from a certain area of land based on the soil type and LULC. Curve numbers range from
0-100 with a curve number of 100 corresponding to 100% of rainfall going to runoff. Therefore, a CN

allows for a quantitative description of the soil type and land cover of an area of land in relation to
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infiltration and runoff. As mentioned previously, land cover and soil type are controlling factors in

infiltration rates, evapotranspiration, and storage.
2.1.1 Cross-Correlation of RF-RO to Determine Lag

The lag time of a storm is defined as the time from the peak of a precipitation event to the time it takes
for the hydrograph of a nearby stream or river to peak. This lag time can be anywhere from minutes, to
days, to weeks depending on factors such as infiltration, topography, and ground water movement.
Therefore, it is important to determine whether or not to use antecedent rainfalls as inputs into the
model. In order to do this, a cross-correlation analysis of rainfall to runoff (RF-RO) was performed up to
four previous days to determine if antecedent rainfall affected runoff. The correlation coefficient for
same day and four day’s previous was calculated using Excel® for each sub-basin and then plotted
{Appendix A). The results for all nine subbasins showed that the highest correlation between rainfall and
runoff occurred on the same day. Therefore, only the same day’s precipitation was used for an input

into the model.
2.1.2 Development of SCS Curve Number

The two pieces of information needed to formulate an SCS CN of an area of land are the hydrologic
group of a soil and the land use/ land cover of an area of land. There are four hydrologic groups used for
classifying soils based on the SCS CN method, which classifies soils by their relative runoff potentials.
Hydroiogic group A contains soils that are least likely to produce runoff when thoroughly wet and are
typically 10% clay and 90% sand or gravel (USDA, NEH). Hydrologic group B contains soils that have
“moderately low runoff potential when thoroughly wet” and is typically 10-20% clay and 50-90% sand
(USDA, NEH). Hydrologic group C contains soils that have “moderately high runoff potential when
thoroughly wet” and contain 20-40% clays and <50% sand {USDA, NEH). Lastly, hydrologic group D

contains soils that have “high runoff potential when thoroughly wet” and are typically >40% clay and
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<50% sand (USDA, NEH). LULC is also used to determine the SCS CN. All land cover types allow for a
certain amount of rainfall to infiltrate and the rest to runoff. For example, pervious land covers such as

cement and asphalt allow for zero infiltration, therefore all rain that falls on these surfaces goes to

runoff.

Since the data for daily precipitation and daily average temperature was from 1995-2004, LULC and soil
information were needed for approximately the same time period. LULC data for the spring, summer,
and fall for 1999 was available from the Arkansas Soif and Water Conservation Commission and the
University of Arkansas’ Center for Advanced Spatial Technologies (CAST). Soils data for the six counties
in LRW was available from the U.S. National Resource Conservation Service and the University of

Arkansas’ Center for Advanced Spatial Technology databases.

Using ESRI’s ArcGIS and specifically ArcMap, the first step to developing the CN data was to dissolve the
soil data based on the hydrologic group of the soil {Appendix B). Next, the LULC data for spring, summer,
and fall of 1999 was dissolved based on the name of the land cover {Appendix B). The dissolved soil data
and LULC data were intersected to form the soil-cover complex. The area of each unique soil-cover
complex was calculated using a simple visual basic code in ArcMap. Then the soil-LULC complex was
clipped to each subbasin so that each subbasin had its own soil-LULC complex data. Using the soil-cover
complex database files along with NEH curve number tables {(USDA NEH, 2008) the curve number for
each soil-cover complex could be determined. Next, using Equation 2, the area weighted CN for each

subbasin was calculated.
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Equation2: Ay CN =31, (CN!' X :;;)
where A,CN = area weighted CN
CN; = CN of soil-complex {
A; = Area of soil-complex i
Ay = Total area of subbasin

n = number of soil-complexes in subbasin

The area weighted CNs calculated for the spring, summer, and fall of 1999 for each subbasin were

assumed to be similar enough to the spring, summer, and fall of 1995 to be used as the “base” CN for

the beginning of the data.
2.1.3 Adjusting Curve Number for Crop Planting and Harvesting Dates

The data collected for the LULC was collected during the spring, summer, and fall of 1999. It is not very
accurate to divide the 365 days of the year into these three time periods and assume that the LULC will
not vary within each time period. This is especially true during the some of the winter months when
only wheat is grown; the “fall” LULC data are not sufficient for the winter months. Thus, the LULC data
were assumed to be true for the dates which the data was collected (Appendix C). Next, the LULC for
each subbasin was adjusted based on planting and harvesting dates of crops. Data on common planting
and harvesting dates from the USDA Agricultural Handbook No. 628 (USDA, 1997) was used to
determine the earliest planting dates and latest harvesting dates for each crop {Appendix C). From the
dates of the data collection and the planting and harvesting dates of each crop, what crops should be
present on each day of the year could be estimated and the curve number adjusted accordingly {Figure
4). If a crop should not be present on a certain day, the area covered by that crop was assumed to be
and changed to a land cover of bare soil/seedbed. The results of this CN adjustment was a full year of
area weighted CNs for each subbasin, assumed to be for year 1995.
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_cl"op Cover Estimation Dates for Arkansas
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Fig. 8. Crop cover estimation dates based on UsUA Agricultural Handbook 623,

2.1.4 Adjusting the Curve Number to Account for Crop Rotation

Now that crop variation within a year had been accounted for in the area weighted CN for each
subbasin, the next step was to account for yearly crop rotation. Crop rotation practices vary from farm
to farm and from region to region. Therefore, accurate data on exact crop rotation practices is not often
recorded. However, crop rotation practices for counties in the LRW were estimated based on a focus
group survey of University of Arkansas Cooperative Extension Service agents in six counties in Arkansas,
conducted in January of 2001 (Hill, Popp, and Manning 2003). Two counties from LRW (St. Francis and
Lee) were included in the survey and the crop rotation practices discussed for these two counties were
assumed to be the same for all six counties in LRW. These data were then used to rotate certain
percentages of each crop as stated based on Table 22 of the focus survey group report. The resultant
data produced was 10 years (January 1995-December 2004} of daily, area-weighted CNs for each
subbasin based on LULC and soil type and adjusted to account for crop planting and harvesting dates

and crop rotation.
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2.2 Determining Network Outputs and Target Data

Since the purpose of this research project was to predict the runoff in LRW at the outlet of each
subbasin, naturally the target output for the model was discharge at each outlet. However, there are
only two USGS gage stations along the entire reach of the L’Anguille River (at outlets of subbasins nine
and eight). Therefore, simulated discharge data for subbasins 1-7 from previous research on L'Anguille
River Watershed was used as target data for these subbasins (Srivastava et. al, 2005). The data were

simulated using a SWAT model.

2.3 Constructing Preliminary Network Architecture

The goal of this research project was to create an ANN that could account for the spatial dynamics of
flow of water within a watershed. This was accomplished by creating a custom ANN instead of using a
pre-defined network within MatLab®. By custom defining the netwaork, the architecture could be
arranged in such a way that the output of one subbasin could be an input into the next subbasin if the

first subbasin’s flow added to the next subbasin’s flow.

The network created contained three initial inputs for each subbasin, nine layers with one neuron each
representing each subbasin, and one target output for each subbasin. The network was custom created

to account for the spatial dynamics of the water flow between the subbasins within the watershed

(Figure 5).
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Legend
A Input '

. Hidden Layer

Output

Fig. 5. Network architecture to account for spatial dynamics of low within the watershed.

To do this, subbasins 1 and 2 outputs became inputs for subbasin 8. Output from subbasin 8 became an
input for subbasin 4. Outputs from subbasins 3 and 4 became inputs for subbasin 9. Subbasin 9 output

was an input for subbasin 6. Outputs from subbasins 5 and 6 became inputs for subbasin 7.

For network training the Levenberg-Marquardt algorithm was used as the training algorithm and the

performance of the network was measured by the Mean Squared Error {MSE). The data sets were also
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divided into training, testing, and validation data sets. Because the training of the network requires the
most data, 60% {1997-2002) of the data set was used for training, whereas 20% (1995-1996) was used

for testing and 20% (2002-2004) for validation.

2.4 Optimization of Network Parameters

Because only one neuron was used in each layer, it was not necessary to optimize the number of
neurons. Thus, optimization was performed only on the training parameters. Since the training function
chosen was Levenberg-Marquardt (trainim), the only option for optimization of the network was the
learning rate. A trial and error procedure was followed by varying learning rate at different increments.
The optimized learning rate was identified as the one that resulted in the lowest mean square error
{MSE). The R-square value, MSE, and Nash-Sutcliffe Model efficiency was used to determine the

optimum learning rate value.

3. Results

The custom defined neural network was run, using the optimized learning rate. The model was
evaluated using three different methods using the validation data set: (1) calculating the mean-squared
error between the computed and observed results, (2) calculating the linear regression value between
computed and observed results, and (3) calculating the Nash-Sutcliffe efficiency coefficient for

hydrologic models.

3.1 Graphical Representation of Model Results

The computed values of each subbasin and the actual values, were reverse-normalized to get back to

real values and then plotted versus one another in order to visually observe the results of the model

(Figures 6-14).

Page 15 of 35



R. Logsdon Honor's Thesis April 2009
100 l 400
- 90 =350
£ - £ 300
£ 70 4 &
g 60 2 250
= =5
: 50 & 200
g 40 * 2150
=3 =]
a 30 e
g 20 g 100
© 10 O 50
0 7 ’ —————————— 0 e e T 1
0 50 100 0 100 200 300 400
Target Runoff (cfs) Target Runoff {cfs)

Figure 6. Computed versus actual runoff values for subbasin 1.

Figure 7. Computed versus actual runoff values for subbasin 2.
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Figure 8. Computed versus actual runoff values for subbasin 3.

Figure 9. Computed versus actual runoff values for subbasin 4.
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Figure 10. Computed versus actual runoff values for subbasin 5.

Figure 10. Computed versus actual runoff values for subbasin 6.
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Figure 12. Computed versus actual runoff values for subbasin 7. Figure 11. Computed versus actual runoff vaiues for subbasin 8.
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Figure 14. Computed versus actuai runoff values for subbasin 9.

3.2 Mean Squared Error Results

The MSE was calculated between the model’s computed results and the target results for each

subbasin’s data using Equation 3 (Table 1).

i, (obsi—comp;)?

Equ. 3: MSE =

Where:  obs; = target value of data point, i
comp; = computed value of data point, /

n = number of data points
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Table 1. Calculated mean-squared error values between model’s computed results and target results for each

subbasin.

Subbasin

MSE

1

0.00243

0.00118

0.00404

0.00073

0.00206

0.00122

0.00131

0.00092

Wlo|~N|dhh|n|a]|w]Mn

0.00093

3.3 Linear Regression Results

The linear regression value (R} between the model’s computed value and the actual target data was

calculated using the “postreg” function in MatLab® (Table 2).

Table 2. Calculated linear regression values between model’s computed results and target results for each

subbasin.

Subbasin

Regression Value (R)

1

0.56304

0.58789

0.62414

0.78364

0.49596

0.77095

0.71937

0.76936

wiee|~Ndh|nik|w|n

0.76878

3.4 Nash-Sutcliffe Model Efficiency Results

The Nash-Sutcliffe Efficiency value is often used for hydrologic models because it is “insensitive to

additive and proportional differences between model simulfations and observations” (Harmei and Smith,

2007). The Nash-Sutcliffe Efficiency value was calculated for each subbasin’s results using Equation 4

(Table 3).
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i, (obsi—comp;)?
™ (obs;—obs)?

Equation 4: NSE=1-

Where:  obs, = target value of data point, i
comp; = computed value of data point, i
obs; = mean of target values

n = number of data points

Table 3. Calculated Nash-Sutcliffe Efficiency values between model’s computed results and target results for each

subbasin.
Subbasin Nash-Sutcliffe Efficiency Value
1 0.27623
2 0.32273
3 0.33598
4 0.58762
5 0.17063
6 0.57973
7 0.50704
8 {.53865
9 0.56802

4, Conclusion

From the results it was concluded that the model was not very good based on the low linear regression
values and Nash-Sutcliffe Efficiency values between computed output and actual data. Thus, the next

step was to look at possible sources of error and means of improvement for the model.

4.1 Errors Due to Target Data

As previously mentioned, the target data for each subbasin was discharge. However, there was only
available USGS gage station data at the outlets of subbasin eight and nine. Therefore, simulated data
from previous research was used for the discharge at the outlets of subbasins 1-7 {Srivastava, 2005). In

his SWAT model, Srivastava did not take into account rice field flooding. Since LRW is over seventy-

Page 19 of 35




R. Logsdon Honor’s Thesis April 2009

percent agricultural and rice makes up a large percentage of that Jand (Appendix C), not accounting for

rice field flooding could have led to poor estimations of discharge for the outlets at subbasins 1-7.

4.2 Errors Due to Network Architecture

The custom neural network that was defined in MatLab® in order to account for the spatial dynamics of
flow within the watershed was created so that each subbasin was represented by one layer containing
one neuron. Then the layers were connected spatially based on which subbasins flowed into one
another. Generally, for ANNs to model non-linear relationships more accurately, more neurons are
required. Thus, the neuron constraint of the model could have been another large source of error for
the network. The relationship between rainfall and amount of runoff is highly complex, so a single

neuron is not adequate to represent this relationship.
4.3 Other Possible Sources of Error

There are also some other aspects of the research that could have lead to some minor errors in the
model. First, crop rotation practices had to be estimated based on a survey that only incorporated two
of the counties in LRW. This was because exact crop rotation practices for these counties in Arkansas
were not available. Secondly, the LULC data used for generation of the curve number was based on the
year of 1999. However, this data was assumed to be for the year of 1995 (the beginning of the

precipitation and temperature data) so this could also have contributed error to the model.

5. Future Work and Improvements

It is recommended that to improve this model for future work that three things be done. First, the entire
network architecture shouid be changed to allow for more than one neuron in each hidden layer so that

the network can better refate output to target in non-linear ways. Second, better estimations of crop
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rotation practices should be determined. Lastly, it is recommended to only look at and compare the

output of the model where the target values are actual collected field values.
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Appendix A

Figure A.1 Location map of L’Anguille River Watershed
Table A.1 2008 Total Maximum Daily Load for L’Anguille River
Figure A.3 Map of Weather and USGS Gage Stations for L’Anguille River
Watershed
Figures A.4-A.12 Resuits of Cross-Correlation of RF-RO to Determine Lag
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Figure A.1. Location map of L’Anguille River Watershed in Arkansas.
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Figure A.3. Locations of weather and gage stations in LRW.
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Figure A.6. Cross-correlation of RF-RO for subbasin 3. Figure A.7. Cross-correlation of RF-RO for subbasin 4.
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Figure A.8. Cross-correlation of RF-RO for subbasin 5.

Figure A.9. Cross-correlation of RF-RO for subbasin 6.
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Appendix B

Figure B.1 Soils Map of L’Anguille River Watershed
Figure B.2 LULC Map of L'Anguille River Watershed for Spring 1999
Figure B.3 LULC Map of L’Anguille River Watershed for Summer1999
Figure B.4 LULC Map of L’Anguille River Watershed for Fall 1999
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Figure B.1. Soils Map of L'Anguille River Watershed.
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L’Anguille River Watershed
LULC Map: Spring 1999
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Figure B.2. LULC map of L’Anguille River Watershed for Spring 1999.
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L’Anguille River Watershed
LULC Map: Summer 1999
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Figure B.3. LULC map of L’Anguille River Watershed for Summer 1999.
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L’Anguille River Watershed

LULC Map: Fall 1999
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Figure B.4. LULC map of L’Anguille River Wéter_s_hed for Fall 1999.
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Appendix C

Table C.1 Dates for LULC Data Collection
Table C.2. Crop Planting & Harvesting Dates
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Table C.1. Dates for data collection of spring, summer, and fall LULC for 1999.

Data Date Started Date Ended
Spring 1999 LULC April 7, 1999 May 7, 1999
Summer 1999 LULC June 1, 1999 August 1, 1999

Fall 1999 LULC

September 30, 1599

November 16, 1999

Table C.2. Dates for Crop Planting & Harvesting Dates

Crop Earliest Planting Date Latest Harvesting Date
Corn, for Grain April 3 October 11
Cotton April 24 November 24
Oats October 2 July 5
Rice April 7 October 25
Sorghum, for Grain April 6 October 24
Soybeans May 4 November 29
Wheat October 3 July 5
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