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Abstract 

Recent studies have shown the ability to synthesize peroviskite materials through solid state 

chemical reaction. In previous work at the University Annamalai Naga, a specific peroviskite 

SrTiO3 (STO) was created through solid state reaction between strontium carbonate and, 

titanium dioxide powders that were homogenously mixed and then sintered until completion of 

the reaction. The sintered powder was characterized by X-ray diffraction (XRD) and shown to be 

a perovskite structure without evidence of additional phases. 

This work specifically reports on the reproducible solid state reaction procedure developed at 

the University of Arkansas for the production of STO powder, characterization of formed 

compounds. The phase transformation was confirmed by X-ray diffraction (XRD) analysis and 

Dispersive X-ray Spectrometry (EDX). Using the procedure 99.9% pure STO powder was 

produced, with the compound synthesized having similar cubic structure to STO references. EDX 

characterization agreed with XRD results and showed the formation of a fine powder necessary 

for pulsed laser deposition (PLD) targets. 

Future work can be done in research of the solid state synthesis of more materials from the 

peroviskite group and in optimization and creation of inexpensive pulse laser deposition targets. 
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1. Introduction  

Thin Films and Nano-materials in recent years have been producing momentous research 

interests due to their fundamental significance for addressing some rudimentary issues in 

fundamental physics, as well as their potential applications as advanced materials.[1] Strontium 

titanate, SrTiO3 (STO), an ABO3 peroviskite,  is debatably the prototypical member of this 

structure family, not only because it can be made to exhibit a diverse range of unusual 

properties itself.[2] Moreover, STO is an important band insulator (energy gap = 3.2 eV) and is 

becoming the basis for the emerging field of oxide electronics in condensed-matter research.  

STO has been heavily researched for its unique physical properties, such as its good insulation, 

and many practical applications, such as photo-catalysts in solar cells, and solid oxide electronic 

devices.[1] 

In past years the University of Arkansas would acquire SrTiO3 nano-particles from commercial 

sources, in order to obtain 99.9% pure particles with the correct shape and specification for use 

in experimentation, specifically especially in the areas of thin film fabrication using the Pulsed 

Laser Deposition (PLD) technique.. STO is commonly used as a sputtering target in the PLD 

process in or to create epitaxial growth on a substrate. Recently laboratory methods have been 

published for solid state synthesis of STO with purity and characteristics equivalent to that of 

commercial grade nano-particles available now. 

The work of this thesis will be focused on creating a reproducible procedure for laboratory 

creation of STO nano-particles equivalent to those of commercial quality. Validating this 

procedure will be done by characterizing the created particles and comparing these properties 

to cataloged properties. Characterization will be carried out primarily by powder X-ray 

diffraction (XRPD) and Dispersive X-ray Spectrometry (EDX).  
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1.1 Pulse Laser Deposition 

Pulsed Laser Deposition (PLD) is a subcategory of an epitaxial growth method called Physical 

Vapor Deposition (PVD).  Epitaxial growth involves growing films atomic layer by atomic layer on 

a substrate. One of the most common methods for epitaxial growth is physical vapor deposition. 

The process of vapor deposition is a process where a “solid immersed in a vapor becomes larger 

due to material deposited from the vapor onto the solid surface”.[3] The solid the materials 

deposited on will be called the substrate. In this case the material to be deposited is vaporized 

by physical means (a laser pulse). 

Pulsed laser deposition is a physical vapor deposition process, carried out in a vacuum system; 

pulsed lasers are focused onto a target of the material to be deposited.  

 

Figure 1.1:PLD Diagram [4] 

Figure 1.1 shows a plasma vapor deposition with a high laser energy density, each laser pulse 

vaporizes a small amount of the material creating a plasma plume. The vaporized material is 

expelled from the target in a forward-directed vapor plume.[4] 
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One of the most significant characteristics of PLD is the ability to transfer material with precise 

stoichiometric quantities. This is due to absorption of the high laser energy pulse by a small 

volume of material, instead of a process which heats the entire material to cause vaporization. 

For other PVD methods would simply heat the target, with the ejected vapor due to thermal 

evaporation of the target. [4] 

 

2.  Experimental Methods 
 
The STO sputtering target powders were made through solid reactions between Strontium 

Carbonate and Titanium Oxide powder. All the powders had 99.9% purity and were mixed in 

agate mortar using isopropyl alcohol up to dryness. Mixed powder was sintered then milled 

again to destroy agglomerates. The sintered powder was characterized by XRD and showed a 

perovskite structure without evidence of additional phases. [2] 

 The Stoichiometric ratios and reaction equation are shown below in Equations 2.1 and 2.2. 

 2223 COSrTiOTiOSrCO                                     [2.1] 

molepergramsSrCO 628.1473   

molepergramsTiO 865.792   

molepergramsSrTiO 484.1833   

323 7523.21979.12144.2 SrTiOgramsTiOgramsSrCOgrams      [2.2] 

The formula shows a 1-to-1 molar ratio needed between the two chemicals to produce SrTiO3. 

One mole of SrCO3 was found to be 147.628 grams and one mole of TiO3 was found to be 79.865 

grams. To produce approximately 2.7 grams of SrTiO2, 0.015 moles of each chemical were added 

to the mixture.  The catalyst in this chemical reaction was the heat supplied from the oven. 
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Chemical powders were measured in a 0.015 molar ratio in order to produce approximately 2.7 

grams of SrTiO3 powder from the solid state reaction. The process of measuring consisted of 

calibrating an electronic scale, placing a 4-by-4 inch weighing paper on the scale and then 

zeroing the scale. After this, experimenters used a disposable laboratory spatula to add powder 

to the scale. This is shown below in Figure 2.1. 

 

Figure 2.1: Scale 

Powders were measured out to an accuracy of four decimal place or .0001 grams. First the 

SrCO3 was measured out onto the weighing paper, the paper and its powder contents were 

removed after the weighing and the powder was added to the grinding mortise. This is shown in 

Figures 2.2 and 2.3 below. 

 

Figure 2.2:Weight Measure 
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Figure 2.3: Mortise 

The mortise was then covered with aluminum foil to prevent contamination (in Figure 2.4). 

 

Figure 2.4: Covered Mortise 

  

The TiO2 powder was then measured out and added to the mortise using the same methodology 

and accuracy as the previous powder (Measured weight shown in Figure 2.5).  
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Figure 2.5: Weight Measure 

The powder was then homogeneously mixed by applying one fluid ounce of laboratory grade 

isopropyl alcohol to the mixture and then grinding until the alcohol was completely evaporated 

(Shown below in Figure 2.6). 

 

Once evaporation is completed the now homogeneous powder is scraped into the center of the 

mortise and then ground evenly for approximately 3 hours by hand, switching from clockwise to 

counterclockwise every 30 minutes (illustrated in Figure 2.7 below).  

Figure 2.6: Grinding with Alcohol 
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Figure 2.7: Grinding 

After the grinding, the powder was moved to a ceramic container to be heated inside of the 

oven (Figure 2.8). 

 

Figure 2.8: Ceramic Containers 

After the sample was placed in the oven it was heated using the ovens step heat program. 

Details of the program can be found in Appendix 1.3. The relevant information is that the 

sample was heated incrementally and held at 600 degrees Celsius for 15 minutes to account for 

the heat required to warm the ceramic container.  Various heating temperatures and times 

were tested to achieve the desired outcome. These samples are shown in Table 2.1. 

 



13 
 

 

Table 2.1: Heating Procedures 

Maximum Temperature Time Held at Maximum Temperature 

800 C 8 hours 

1300 C 12 hours 

1000 C 10 hours 
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3. Characterization Methods  

Target powders were primarily analyzed by X-ray powder diffraction (XRPD) and energy 

dispersive X-ray spectrometry (EDX) a form of scanning electron microscopy (SEM).  

3.1 X-Ray Diffraction  

Diffraction occurs when an X-ray excites an electron which emits an electromagnetic field at the 

same frequency. Atoms in the same structure emit a wave from the excitation from the first 

atom this creates an interference pattern. X-rays are employed in characterization methods 

because the wave length of an X-ray is on the order of a few angstroms.[5] This length is 

relatively close to the distance between atoms in most crystalline solids, making the X-ray able 

to produce distinct interference patterns as a result of diffraction.[5] Constructive interference 

occurs when two waves are moving in phase amplifying each other. Destructive interference 

occurs when two waves are out of phase by 180 degrees and cancel each other out. This can be 

seen in Figure 3.1. 

 

 

XRPD is used for phase identification and phase compositions. When performing XRD, a machine 

produces a beam of X-rays which strikes the powder and is diffracted. The X-rays are then 

scattered at various angles and resulting intensities, then the rays are collected by a detector.[5] 

Incident X-ray’ s will come into contact with atoms at different points in the lattice structure of a 

Figure 3.1 
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Transmitted Beam 

Incident Beam 

material creating constructive and destructive wave fronts which produce diffracted X-ray peaks 

varying in location and intensity, this is shown in Figure 3.2. 

 

Figure 3.2 

Because the samples are in powder form, incident X-rays come into contact with the sample in 

every possible axial orientation. The effect produces a diffraction pattern of cones varying in 

location and intensity. This allows the detector to complete one linear orbit and collect all 

diffraction peaks and intensities. Every crystalline substance will give a distinct diffraction 

pattern or spectra, the composition of a powder and quantities of each substance can be 

determined based on the XRPD graph’s peaks of intensity and corresponding angles.  A sample 

diffraction pattern is shown below in Figure 3.3. 

 

Figure 3.3: XRPD Diffraction Pattern 

Powder 



16 
 

The experimental diffraction patterns can be recorded and can be matched to known 

prerecorded diffraction patterns (See Figure 4.1 in Section 4 for an illustration of an X-ray 

diffraction pattern). 

3.2 Scanning Electron Microscopy  

A SEM microscope focus beams of high energy electrons on to a sample, such as a surface of a 

solid. The interaction from this electron bombardment can then be recorded to determine the 

samples physical shape, texture, crystalline structure, and even chemical composition. [6] The 

setup of a typical SEM is shown in the figure below:  

 

Figure 3.4: SEM Microscope Diagram [6] 

The SEM has four basic components. First the electron source shown as “GUN” in Figure 3.4 is 

the source of the high energy electrons. Typically tungsten is heated by a high voltage that 

passes through it expelling electrons. The electrons are then expelled into the second 

component the magnetic lenses, labeled in Figure 3.4 by “Condensers” and “Aperture”. These 

lenses focus the electron beams with a magnetic force and alter the trajectory of the beam in 
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the scanning process. The third component, not labeled in the figure, is a high vacuum chamber. 

The chamber prevents electrons from interacting with other particles before reaching the 

sample. The fourth component is the electron detector. In this case it is the assembly starting 

with the “secondary electron detector” in Figure 3.4. This component attracts and collects 

“secondary electrons” and “back-scattered electrons” which are lower energy electrons 

resulting from a collision with the sample. The collector voltage can be adjusted to target certain 

groups of scattered electrons.  The corresponding brightness of a scanned area is then directly 

related to the number of scattered electrons collected. [6] 

This method produces two-dimensional scans of the surface of the sample. SEM is considered to 

be non-destructive; meaning is does not cause volume loss of the sample. So it is possible to 

scan the same sample repeatedly. A convenient side effect of the electron bombardment is the 

emission of X-rays when excited electrons return to lower energy states. These X-rays can be 

used to determine the elemental composition of the sample. [6] As mentioned earlier, energy 

dispersive X-ray spectrometry is a specific subset of SEM, discussed in the next section. 

3.3 Dispersive X-ray Spectrometry  

This method takes advantage of the X-ray spectrum emitted by the atoms of a solid when 

bombarded by a focused beam of electrons such as in SEM. Analysis of EDX is similar to that of 

XDR in that a Fourier spectrum of the diffracted sample is compared to known spectra of 

elements already found experimentally.  Being a subset of SEM, the EDX employs a scanning 

method to produce a surface topography or element mapping. [7] 

It is important to state that this diffraction identification method can obtain accuracy greater 

than +1%. Analytical accuracy is commonly nearer ± 2%. The EDX method can be used for 

elements whose atomic numbers range from 4 to 92 (or from Be to U). [7] 
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3.4 Referenced Data 

The reference data used to analyze samples is shown in this section.  Strontium Titanium Oxide, 

Strontium Carbonate, and Titanium Oxide were the primary contributors therefore the 

discussion will be limited to those compounds. Strontium Titanium Oxide (STO) is an inorganic 

ceramic mineral whose chemical formula is SrTiO3. The reference data for STO as well as the 

reference data for all references used in XRPD characterization was from samples done by 

National Lead Company. The mineral name of the compound is Tausonite. STO’s XRPD reference 

pattern is shown below in Figure 3.5. The specific peak list can be found in Appendix B1. 

 

 

Figure 3.5: STO Reference Diffraction Pattern 
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Titanium Oxide is an inorganic alloy mineral whose chemical formula is TiO2. The reference data 

for Titanium Oxide used in XRPD characterization was from samples done by National Lead 

Company. The mineral name of the compound is Rutile. Titanium Oxide’s XRPD reference 

pattern is shown below in Figure 3.6. The specific peak list can be found in Appendix B1. 

 

 

Figure 3.6: TiO2 Reference Diffraction Pattern 
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Strontium Carbonate is an inorganic mineral whose chemical formula is SrCO3. The reference 

data for Strontium Carbonate used in XRPD characterization was from samples done by National 

Lead Company. The mineral name of the compound is Strontianite. Strontium Carbonate‘s XRPD 

reference pattern is shown below in Figure 3.7. The specific peak list can be found in Appendix 

B1. 

 

Figure 3.7: SrCO3 Reference Diffraction Pattern 
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4. Characterization Results 

Powder X-ray diffraction was performed at the University of Arkansas, using a Philips PW 1830 

X’pert  (dual-goniometer X-ray diffractometer ). During a single θ XRD scan, the x-ray beam 

emitter is held stationary and the detector is in motion around the sample, which in this case is 

the powder. The scan occurred within the θ range from 20 to 90 degrees with an initial scan 

time of five minutes and then long scan for thirty minutes. 

The X’pert software we use gives a "score" out of 100 that indicates how well the reference 

pattern from a database fits with the measured data.  There are many variables that go into this 

score algorithm and it can vary depending on the regime that you use, but principally it uses the 

position and intensity of the most intense peak in the reference as compared to the sample, 

then the next most intense peak and so on. It is important to know that the X’pert score is not 

associated with a percent value or total composition ratio. 

To find a material composition of a sample the X’pert software uses the Reference Intensity 

Ratio (RIR), a value associated with each reference, in conjunction with XRD data. The RIR 

compares peak intensities of the sample to that of the reference.  This data with the X’pert 

software was used to quantify phases, otherwise without the RIR, the program can only identify 

the phases present. 
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4.1 Sample 1 XRD Results 

 

Figure 4.1: Sample 1 Diffraction Pattern 

Figure 4.1 above is the spectral graph of the sample which was heated for eight hours at eight 

hundred degrees Celsius. The y-axis represents the incident X-rays to the detector per second 

and the X-axis represents the angle θ as the scanner travels around the sample. This graph gives 

the location and intensity peaks of the diffracted X-rays, which we can use to visually compare 

the sample to the reference data. Figure 4.2 shows many small peaks and broader peak areas, 

this most likely means that interference from the diffraction pattern of several compounds is 

being represented. The black V’s in the top corner of the figure represent unidentified peaks. 

These peaks went unidentified because the reference data available for most samples ends after 

seventy degrees on the spectrum. 

Peak List 

 

Figure 4.2: Sample 1 Peak List 
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Figure 4.3: Sample 1 Pattern and Candidate List 

Figure 4.3 above shows the peak spectrum of first the sample and then the reference spectra 

that were chosen to compare against it. Diffraction patterns are labeled by their reference code 

which can be found in the pattern list. The pattern list showed which compounds were selected 

by the user to compare to the samples diffraction pattern. References in the pattern list were 

selected from the candidate list based on highest X’pert score with the elimination of outliers, 

repeat compounds and insignificant scores. The candidate list shows the next highest X’pert 

score references that were not used for comparison. The reference patterns chosen against the 

sample in this case were Strontium Titanium Oxide (STO), Strontium Carbonate, and Titanium 

Oxide. As you can see in the Peak List each compound has several peaks in the diffraction 

spectra which match peaks in the spectrum of the sample. Excluding a repeat compound (SrCO3) 

all pattern list references scored 20 points higher on the X’pert score than the other candidates. 

In the final analysis of the X’pert software the program computes an estimate of the material 

composition of the sample. The Strontium Carbonate reference included in the pattern list did 

not have a RIR therefore quantifying phases of the sample exactly was impossible.  The analysis 

can conclude that there was a reduction of Titanium Oxide and Strontium Carbonate and also 

there was an introduction of STO.  The estimate composition is shown in the pie chart Figure 4.4 
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below; the color coding matches that of the peak list. The composition is estimated to be 36.6% 

Titanium Oxide, 59.4%Strontium Carbonate, and 4% Strontium Titanium Oxide (STO). 

 

 

Figure 4.4: Sample 1 Composition Estimate 
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4.2 Sample 2 XRD Results 

 

Figure 4.5: Sample 2 Diffraction Pattern 

Figure 4.5 above is the spectral graph of the sample which was heated for twelve hours at 

thirteen hundred degrees Celsius. This graph gives the location and intensity peaks of the 

diffracted X-rays, which we can use to visually compare the sample to the reference data. Figure 

4.6 shows few and very distinct peaks, this most likely means that interference from the 

diffraction pattern of one prevalent compound with possible trace elements is being 

represented. All diffraction peaks were identified in this sample. 

Peak List  

 

Figure 4.6: Sample 2 Peak List 



26 
 

 

Figure 4.7: Sample 2 Pattern and Candidate List 

Figure 4.7 above shows the peak spectrum of first the sample and then the reference spectra 

that were chosen to compare against it. Diffraction patterns are labeled by their reference code 

which can be found in the pattern list. The pattern list shows which compounds were selected 

by the user to compare to the sample’s diffraction pattern. References in the pattern list were 

selected from the candidate list based on highest X’pert score with the elimination of outliers, 

repeat compounds and insignificant scores. The candidate list shows the next highest X’pert 

score references that were not used for comparison. The reference pattern chosen against the 

sample in this case was only Strontium Titanium Oxide (STO), with and X’pert score 77 points 

higher than all other scores. As you can see in the Peak List, the Strontium Titanium Oxide 

reference diffraction peaks matches exactly with the diffraction peaks of the sample. 

In the final analysis of the X’pert software the program computes an estimate of the material 

composition of the sample which can be viewed as accurate because of the existence of 

complete RIR data in pattern list. This is shown in the pie chart Figure 4.8 below; the color 

coding matches that of the peak list. The composition is estimated to be 99.9% Strontium 

Titanium Oxide (STO). The unidentified parts of the composition could be attributed to trace 

elements of higher order Strontium Titanium Oxide such as the first three compounds on the 

candidate list. 
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Figure 4.8: Sample 2 Composition Estimate  
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4.3 Sample 3 XRD Results 

 

Figure 4.9: Sample 3 Diffraction Pattern 

Figure 4.9 above is the spectral graph of the sample which was heated for ten hours at one 

thousand degrees Celsius. This graph gives the location and intensity peaks of the diffracted X-

rays, which we can use to visually compare the sample to the reference data. Figure 4.10 shows 

few large peaks and several small peaks, this most likely means that interference from the 

diffraction pattern of several compounds is being represented. There are several unidentified 

small peaks which indicates trace element of an unidentified compound. 

Peak List 

 

Figure 4.10: Sample 3 Peak List 
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Figure 4.11: Sample 3 Pattern and Peak List 

Figure 4.11 above shows the peak spectrum of first the sample and then the reference spectra 

that were chosen to compare against it. Diffraction patterns are labeled by their reference code 

which can be found in the pattern list. The pattern list showed which compounds were selected 

by the user to compare to the sample’s diffraction pattern. References in the pattern list were 

selected from the candidate list based on highest X’pert score with the elimination of outliers, 

repeat compounds and insignificant scores. The candidate list shows the next highest X’pert 

score references that were not used for comparison. The reference patterns chosen against the 

sample in this case were Strontium Titanium Oxide (STO), Strontium Carbonate, and Titanium 

Oxide. As you can see in the Peak List each compound has several peaks in the diffraction 

spectra which match peaks in the spectrum of the sample. The pattern list references scored 14 

points higher on the X’pert score than the other candidates with the exception of Strontium 

Carbonate. Strontium Carbonate was added to the pattern list because of its original existence 

in the powder. 

In the final analysis of the X’pert software the program computes an estimate of the material 

composition of the sample. This is shown in the pie chart Figure 4.12 below; the color coding 

matches that of the peak list. The composition estimated to be 6% Titanium Oxide, and 94% 

Strontium Titanium Oxide (STO). 
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Figure 4.12: Sample 3 Composition Estimate 

The unidentified peaks in this candidate list were found to be the result of a higher order 

Strontium Titanium Oxide compound, specifically Sr2TiO4. The inclusion of this reference in the 

pattern list eliminated the majority of the unidentified peaks. This compound was not included 

in the final data pattern list because it could be visually indicated to be a trace amount in the 

composition and because the RIR data was not included in the reference, therefore it would 

cause errors in the composition estimation. 
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Dispersive X-ray Spectrometry  

Only samples with high STO values shown in the XRD machine were selected to be analysis in 

the scanning electron microscope with dispersive X-ray spectrometry.  These tools were used to 

measure powder shape and prove the existence of STO in the powder. Dispersive X-ray 

Spectrometry can identify elements and their concentrations in a sample, but it is unable to 

compare molecular compounds, unlike the XRPD. 

 

4.4 Sample 2 EDX Results 

 

Figure 4.13 and 4.14: SEM Photos 

Sample 2 was prepared according to the procedure then heated at 1300 degrees Celsius for 12 

hours. The images shown in Figures 4.13-4.14 shown above are SEM images taken at two 

micrometers (Figure 4.13) and five hundred nanometers (Figure 4.14).  These images show 

crystalline structure is the synthesized powder. The powder was not milled after the solid state 

process therefore larger conglomerates were possible.  Crystals can be as small as 130 

nanometers as shown in Figure 4.14. 
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Figure 4.15:  SEM Contaminate Picture 

A Sodium contaminate was found in the sample, this was likely due to the handling of the 

sample and unavailability of vacuum storage after the solid state synthesis, the contaminate can 

be seen in Figure 4.15 

.  

Figure 4.16: SEM Conglomerates 

Large conglomerates of STO were found in later images, such as Figure 4.16. This phenomenon 

can be seen in the middle of the image. The formations are most like due to nucleation of STO 

particles because of the twelve- hour heating time.  
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EDX scans were in complete agreement of the XRD results, showing SrTiO3 , with only trace 

elements and impurities in the sample.  Although the EDX cannot identify molecules it can 

approximate the amount of each element is a scanned area. Then the user can compare the 

atomic ratio in the area to that of the molecule. This was done for STO showing the accurate 

ratio, the data is shown below in Figure 4.17. 

 

Figure 4.17: Sample 2 EDX Data 

Figure 4.17 shows intensity of X-ray’s emitted verse the number of X-ray’s recorded. The table 

shows the element, atomic number, un-normalized percentage weight, normalized percentage 

weight and percent of total atoms in the scanned area. 
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4.4 Sample 3 EDX Results 

 
 

Figure 4.18 and 4.19: SEM Pictures 

Sample 3 was prepared according to the procedure then heated at 1000 degrees Celsius for 10 

hours. The images shown in Figures 4.18-4.19 above are SEM images taken at one hundred 

micrometers. These images clearly show the powder kept its powder state throughout synthesis 

process. The powder was not milled after the solid state process therefore larger conglomerates 

are possible.    

 
 

Figure 4.21 and 4.22: SEM Pictures 
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Large conglomerates of STO were not in sample 2. This could be attributed to the fact that the 

sample was heated for a shorter period of time or that the temperature of the sample never 

reached a temperature to initiate nucleation.  

EDX scans were in complete agreement of the XRD results showing SrTiO3, with only trace 

elements and impurities in the sample.  Although the EDX cannot identify molecules, it can 

approximate the amount of each element is a scanned area. Then the user can compare the 

atomic ratio in the area to that of the molecule. This was done for STO showing the accurate 

ratio, the data is shown below Figure 4.22.  

 

 
 

Figure 4.22: Sample 3 EDX Data 
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Both sample scans were showing small traces of magnesium contaminate in EDX scans. This was 

found to be caused by magnesium on the aluminum stud use to mount the sample in the 

microscope. The results of the EDX scan of the stud are shown below in Figure 4.23. 

 
Figure 4.23: Stud EDX Data 
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5. Conclusions 

XRPD results demonstrated that Strontium Titanium Oxide can be solid state synthesized from 

Strontium Carbonate and Titanium Oxide hel at temperatures above 1300°C under optimal 

conditions for 10 hours following the discussed procedure. This data does not determine the 

size, or shape of Strontium Titanium Oxide but asserts the possibility of creation of Strontium 

Titanium Oxide with this procedure. An X’pert score of 92 points was recorded which was noted 

as the highest XRD purity score recorded in the University of Arkansas labs.  

The EDX data is in complete agreement with XRD results, showing crystalline growth of STO 

nano-particles with sizes as small as 130 nanometers. SEM imaging results show the necessity of 

refining the original procedure to produce specific particle sizes to suit the needs of the user. 

This could be as simple as mortaring after synthesis or changing temperature and heat times.  

The solid state synthesis method was employed in this thesis for the economic value of 

producing less costly STO nano-particles. With this method producing one gram of STO powder 

has been reduced to the cost of $5.33 per gram. Commercial grade 99.9% purity STO targets 

purchased by the University of Arkansas cost $655.00 for the smallest available target. This 

target is approximate 12.2 grams in weight. With the solid state synthesis method a laboratory 

can produce 12.2 grams of STO for $64.93 dollars, approximately one tenth of the price of 

commercial STO PLD targets, which are 12.2 grams in volume. At this rate the initial cost of the 

Carbolite furnace and materials cost will be recouped in the completion of fewer than sixteen 

STO targets. Therefore the solid state method for producing STO powders for the purpose of 

creating PLD targets is economically viable. 
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6. Future Work 

This work demonstrates the practicality and ability for University of Arkansas labs to produce 

peroviskite materials via solid state synthesis. Future work could be to optimize the solid state 

synthesis procedure for STO by varing temperature and heat time iterations. Other works 

describe high temperatures such as 1300 degrees Celsius only needing a heat time of one hour 

to produce 99.9% pure STO. [2] This could reduce production time and cost. Another candidate 

for solid state fabrication is MgAl2O4. It is a good insulating barrier to realize quantum 

confinement and a very good candidate for iso-structual growth of a spinel-type superlattice 

along the (111) orientation. 
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Appendixes: 

A1 Oven Power Supply 

A significant portion of the time and resources need for this work in went to the Installation and 

operation of the Carbolite oven used in the procedure. An obstacle to the project that took 

some time to overcome was the requirement of a new power source correct to run the oven. 

The Carbolite oven was designated as a RHF 16/3, 208V 1-phase, which requires a 40 amp 

power source (shown in the Figure A1). 

 

Figure A1:Power Source Chart 

After the correct power supply was installed the oven was moved in to the correct position. 

A1.2 Oven Setup 

After positioning the oven, the four Silicon Carbide heating elements were slid in position into 

the oven and the chimney was attached.  Then the oven was wired according to the 200-240V 

circuit 2 shown below in Figure A2.  
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Figure A2: Wiring Chart 

After the oven was correctly wired, the initial heating had to be conducted. The thermal 

insulating materials used in the construction of the Carbolite furnace contain organic binders. 

These binders are released during the first heating cycles. The furnace was heated to its 

maximum rated temperature, 1600 degrees C, and held there for an hour. 

A1.3 Oven Program Setup 

The heating process as described in the procedure was controlled by a program run on the 

ovens internal computer. The program ran in three cycles, each controlled by three variables: 

the “rate per minute” (RPM), the increase in the temperature in degrees Celsius of the oven per 

minute; the “temperature set point”, the temperature at which the oven would begin to dwell; 

and the “dwell time” (DWEL), a set period of time in which the oven would hold the set point 

temperature before starting the next cycle. It is important to note the after the final 

programmed dwell time the oven will stop supplying heat. The programs for each specific 

sample are shown below in Figure A3. 
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Figure A3: Sample Programs 

B1 Reference Data Peak lists 

The Figure B1 below is the peak list for the SrTiO3 reference used in the analysis of the sample.

 

Figure B1: STO Reference Peak List 

 

 

Cycle Step Sample 1 Sample 2 Sample 3

1 RMP 5.0 C/min 5.0 C/min 5.0 C/min

1 TSP 600 C 600 C 600 C

1 DWEL 15 min 15 min 15 min

2 RMP 5.0 C/min 5.0 C/min 5.0 C/min

2 TSP 800 C 1300 C 1000 C

2 DWEL 8 hrs 12 hrs 10 hrs

3 RMP 5.0 C/min 5.0 C/min 5.0 C/min

3 TSP 600 C 600 C 600 C

3 DWEL 15 min 15 min 15 min
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The Figure B2 below is the peak list for the TiO2 reference used in the analysis of the sample. 

 

 

Figure B2: TiO2 Reference Peak List 
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The Figure B3 below is the peak list for the SrCO3 reference used in the analysis of the sample. 

 

Figure B3: SrCO3 Reference Peak List 
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