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Uncertainty In Relief Supply Distribution

Chris Bayles

Abstract

In the aftermath of a natural disaster the efficient planning of humanitarian relief efforts, e.g., de-
livering supplies to locations in need, can often mean the difference between lives being saved and lives
being lost. In this paper we focus on two things: (1) appropriate objectives for routing problems in the
context of delivery of relief supplies, and (2) how to handle the uncertainty associated with delivery of
relief supplies after a disaster. Through applying uncertainty to parameters such as travel time between
locations, we seek to examine if/how optimal routes change as a result of different objectives and the
presence of uncertainty. After discussing various different parameters and examining the effects of un-
certainty in these cases, we then offer up an algorithmic process that could be used in the formation of
these routes using the uncertain information. Finally, we analyze the results of a simulation model that
ran different routes using information known with certainty and uncertain information, and see what
light it sheds on the disaster response discussion.

1 Introduction

Natural disasters are something that people from all over the world are familiar with as no country,
developed or developing, have control over these forces of nature. The people of nations affected by a nat-
ural disaster, often are in need of essential survival items (food, water, etc) as the destruction left in the
disaster‘s wake frequently disrupts the normal means by which they would acquire these items. Because
Mother Nature is not biased based on city size, the population in need of supplies can be in the millions if
a large city has been hit. This presents a formidable logistics problem in which emergency response crews
have to battle against the after effects of the disaster while they try and reach the people in need before they
succumb to their lack of essential resources.

For this reason, research into the area of how to prepare for and respond to natural disasters is of universal
importance and personal interest. The techniques developed through research of how to prepare and react
to a natural disaster can be equally applied to a hurricane in the United States or an earthquake in Japan,
just by updating the country specific infrastructure and parameter data set. Of these two areas: preparation
and response, this article focuses on the response aspect. Preparation includes studying decisions like where
to place supply points, how much supply inventory to hold, and other choices that are made pre-disaster.
On the other hand, by examining the area of response techniques, we will be looking at how to actually
distribute the supply from the facilities to the areas that need it.

Information about the roads and other infrastructure in these countries might be readily available, but
forming a response plan strictly based off these numbers could lead to a solution in which the route given
includes roads that have been damaged by the disaster and are now impassable. This could lead to large
deviations from the original planned arrival times to the different cities that the route encompassed. This
could mean people dying or disease spreading (if they have to drink from a contaminated water supply to
survive) due to not receiving the needed relief supplies within time.

In this paper, we focus on formulating a response strategy that takes into account the uncertainties that
arise in disaster situations. As stated earlier, one example of this is the uncertainty that a road which
pre-disaster could be traversed by a semi-truck, could still be traversed by the same truck or if it could
only support a smaller vehicle or no vehicle at all. In an area where the ground underneath the road could
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shift during a flood leaving only one lane still intact would be a real life example of this change in road
size capacity. In addition, we will also look at the uncertainty of travel time between locations in order
to represent the chances that a road with a known travel time, could now take longer to travel due to
debris littering the pavement. Uncertainty is not just limited to road conditions as in a disaster; the exact
amount of supplies needed in and the time it will take to serve an area can be grossly under/overestimated
during the chaos that ensues. For example, if you bring only enough water for the reported number of
people who are unable to access clean water what will happen if the reported number is wrong? If it is too
low, serious health consequences for the people could follow. On the other hand if it is too high, the wa-
ter could sit in the vehicle and miss being distributed to someone else in a location that desperately needed it.

One of the main aims of this research is to develop models and algorithms for planning the delivery of
relief supplies that take into account the information uncertainty that could accompany a natural disaster
situation. In the chaos caused by a disaster situation, determining precisely if some of the roads have been
affected by the natural disaster and to what extent can be a formidable task that responders may not have
the leisure to pursue. However, information about what the usual road conditions are (optimistic estimate),
a worst case (pessimistic) estimate of what could happen, and probability of each instance would probably
be readily available. Using this information an expected value could be obtained and used in the planning
process. Although we recognize only the most conservative plan would be able to handle a worst-case sce-
nario and that using the expected values does not guarantee that the plan will be able to this worst-case
scenario, we believe it is a good way to balance the tradeoffs associated with purely optimistic and purely
pessimistic plans in a disaster situation.

By introducing uncertainty and reported information into the problem, the issue of how to determine
reliability of this reported information arises. If we get information about the condition of a road from a
Twitter update versus a news report how reliable is each? If the news report is twice as reliable as the
Twitter update, does that make the reliability of the news 80% and the tweet 40% or is the news 90% and
the tweet 45% reliable? The discussion on deciding how reliable the information is could be another research
topic completely on its own. For simplicity and to keep the focus on the response aspect of emergency
management, we have assumed that the reliability of the reports are known and given to us so that we can
focus on the creation of vehicle routes.

In our model the supply points (depots) from which the vehicles leave and return have already been
decided and we will focus on the route creation aspect of the emergency response process. As previously
stated, we have decided to use the expected value for each of the uncertain quantities when running the model
in order to hedge our bets against the optimistic and pessimistic scenarios. If we used just the optimistic
values to plan a route then there could be drastic underestimates, thus resulting in negative consequences for
the people awaiting service. On the other hand if we assume everything is going to be absolute worst-case,
then the plan might have unnecessary precautions that end up costing the responders precious time or other
things. Using the expected value is intended to balance out these risks so that the prescribed plan is still a
good solution in light of the uncertainties that might occur when it is carried out. Some might argue that the
expected value is a bad value to use as your uncertain travel time for example usually could never equal the
expected travel time for that road, but we believe that it will give the model a better representation of what
could be experienced on a route than using either of the end values (optimistic and pessimistic case) . If
you start making assumptions about what the travel time will be by just using the optimistic or pessimistic
value, i.e. Road-A will be fine and Road-B will be blocked off, then your solution is only optimal if Mother
Nature makes those assumptions a reality in her path of destruction.

Below is an example of why we want to include uncertainty in our model and how its inclusion can lead
to different results than what a normal delivery tour would suggest. In Figure 1-a, the model is not taking
into account uncertainty and the travel time (in hours) that it takes you to traverse a road is unaffected by
the uncertainty in road conditions that a natural disaster can cause. If using the popular VRP objective
of minimizing total travel time, the optimal solution is bolded. Figure 1-b shows how this solution would
change with the introduction of uncertainty. The top road could be near a river that has a high chance of
being flooded which would take a truck much longer to travel on, so this is reflected in the chance of the
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(a) No uncertainty (b) Uncertainty accounted for

Figure 1

increased travel time with probability 0.4 it can still be traversed in 3 hours, but with probability 0.6 it will
take 7 hours. By using the expected travel time which is , the optimal solution for a minimizing total travel
time problem would now call for a cross over, which is quite different to what it would have been without the
element of uncertainty. This result is due to the triangle inequality, which states that the shortest distance
between two points is a straight line, is no longer valid in the scenario with uncertainty so you can potentially
arrive earlier by not taking the direct route.

In the following report we will first give a review of the relevant literature pertaining to the areas of dis-
aster relief and planning for supply routes with uncertainty. Then we will introduce parts of the model that
are universal to all of the problem types before exploring the specific problem types, and how the different
areas in which uncertainty exists could affect how the optimal solution. Finally, we will discuss algorithms
that we believe are well suited for use on this type of problem and briefly touch on a route simulation that
we carried out and what its results tell us.

2 Literature Review

Since the problem that we aim to tackle falls under the vehicle routing category, The Vehicle Routing
Problem by Toth and Vigo (2002) provided a good knowledge base for which to learn what exactly this
type of problem included. Chapter 1 in particular defined the different types of vehicle routing problems
(VRPs) that could be experienced in the real world. The different characterizations of these models were
reflected upon the while the problem in which this paper examines was being created. Chapter 2, which
defines mathematically some basic VRPs, was useful in providing a starting point for which to create the
specific models for this research while also providing a base to compare mathematical logic against.

In the specific context of disaster management and logistics, many papers were available due to the
popular and universal nature of disaster relief. A large number of researchers focused on the issue of facility
location. Huang et al. (2010) addressed the p-center problem in a situation where a whole city would be
functionless. In this case, the facility at the city would be unable to respond to its own emergency so they
sought to use a dynamic programming approach to find the optimal locations for facilities on a general
network. Duran et al. (2011) examines a similar problem in the optimal location of resource stockpiles
worldwide in order to reduce the emergency response time. Still in the realm of facility location, Van Wyk
et al. (2011) studied the best location for supplies so that inventory costs are minimized. This article also
recognizes the uncertainty that comes with disaster and used a stochastic model to address this. Advar and
Mert (2010) also see the connection between disasters and uncertainty and formulate a model that seeks to
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minimize the total costs while maximizing the credibility of the international agencies that help in worldwide
disaster planning/relief.

In regard to vehicle routing problems, Suzuki (2012) discusses the problem of having to respond to a
natural disaster with a limited amount of gasoline to support the fleet. The analysis tries to determine
if a shortage of fuel damages the logistical goals more than an equivalent-sized shortage in supplies, and
when facing a limited fuel supply what type of vehicles should be used. Balcik et al. (2008) look at the
routes created by vehicles leaving pre-determined distribution centers when trying to maximize benefits to
aid recipients and minimize transport costs. Nolz et al. (2011) examine a problem very similar to the one we
have defined in this paper. In their problem, Nolz et al. acknowledge the risks associated with assuming the
infrastructure is the same post-disaster and use this in trying to identify solutions that would allow for the
regular delivery of certain amounts of clean water to locations where the surrounding population can come
and access the water. In order to solve this problem, Nolz et al. (2011) use multiple objectives with the first
objective measuring the amount of risk, defined as the possibility that delivery tours become impassable after
natural disasters. The second objective measures the amount of coverage, number of people who they believe
can come to the water drop points, which the logistical system of routes and drop off points contains. The
final objective simply measures the total travel time that it takes to complete the routes between the water
drop point and depot. They then run different scenarios and compare the tradeoffs between the objectives.
For example, one solution might have a higher risk, but have a greater coverage where another solution
might sacrifice coverage for a lower travel time. These papers offer valuable insight to the types of problems
that are faced in emergency management planning, place the problem which we are analyzing in context to
the larger picture. The papers on VRPs are particularly helpful in highlighting issues that others have faced
in their research that we might encounter in ours, and by offering solutions to these issues.

3 Modeling

There are many challenges associated with this area of research. First, it is often unclear what the goal
or objective of the model should be. In a business environment, minimizing total travel time is usually a
good goal because drivers are paid by the hour and the cost of paying for that labor can be minimized with
a travel time related goal. Vehicles are also burning fuel every minute they are away from the depot so the
longer they are away from the depot driving, the more fuel costs a company incurs. But when you switch
away from the making profit mindset and instead are focusing on saving lives / responding to a disaster what
should the goal be? Minimizing total travel time might yield a good solution but in a disaster situation is the
time that a vehicle is away from the depot the key value to judge the solution on or would an objective that
focuses on the amount of time it takes response crews to arrive at the last location in need a better goal?
If the latter seems to align more with the mission of response crews that are trying to distribute supplies to
reduce the number of casualties then maybe a goal that minimizes the time of arrival at the last location in
the tour would be the best decision. Another goal that might be better for a disaster model than a business
model is serving as many locations as quickly as possible. In principle this is a good goal, but defining how
it will be measured is quite difficult. If you want to serve as many locations as you can within the first eight
hours you may get a solution that serves four locations within this time, but then the fifth location might not
get served until another eight hours later due to the poor position of the vehicle at the end of the initial eight
hours. Figure 2 illustrates this through comparing a route that serves four locations as quickly as possible
with a route that serves three locations as quickly as possible. The example on the left serves four nodes as
quickly as possible and does so by traveling to the left nodes first, thus reaching the fourth node when time
equals 7. In contrast, the time it would take the vehicle to reach four nodes if it traveled to the nodes on
the right hand side first is 8. However, if the objective becomes to reach three nodes as quickly as possible
then traveling to the right side first becomes optimal and three nodes can be reached by time 5. Traveling to
the left first is no longer optimal as it would take until time 6 for the vehicle to reach the third node on the left.
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Figure 2

If you make the time period too long in a serve as many as quickly problem, greater than or equal to
forty-two in the previous example, and all locations can be served within the time limit, then the problem
would become a minimize the arrival time to the last location problem as discussed earlier. Additionally, is
it better to serve as many locations as quickly as possible or serve as much demand as quickly as possible?
If you just look at as many locations as possible you may visit four small towns with only 100 people in
need in each city first, then arrive much later at a large metropolitan area with 10,000 people in need later
which may result in a higher number of casualties that if you visited the 10,000 people first. As you can see,
defining what the goal for a disaster response should be is a difficult and may depend on the situation on
the ground.

We model the problems on a directed graph D = (V,A) where V is the set of nodes that represent the
different locations that need to be visited, and where A represents the arcs or roads between the locations
and the arcs within A are defined by (i, j) for an arc that leaves location i and goes to j. The vehicles
available to use are included in the set of vehicles which is given by K.

In the models there are various parameters such as the maximum amount or capacity that vehicle k
possesses which is represented by Ck where k ∈ K. All of the vehicles also leave from and return to one
central depot which is to be defined in the model as node i = 0 = n+ 1 where |V | = n, 0 is the depot when a
vehicle leaves it, and n+ 1 is the notation for the depot upon a vehicles return. In all cases there are travel
times associated with each arc. In cases where the travel time is known for certain the travel time from
node i to j along arc (i, j) is given by tij . When there is uncertainty in the travel time, tij represents the
optimistic travel time where the pessimistic travel time is given by t̄ij . The same logic applies to the demand
of each node. When there is no uncertainty di represents the demand at node i, but when uncertainty of
demand is introduced it represents the optimistic case and d̄i is the pessimistic value. Each node has a value
for the time it takes to complete serving a node (ex. dropping off supplies) and this is given by si. Like
travel time and demand when uncertainty is introduced si represents the optimistic case where s̄i gives the
pessimistic service time value.

We model uncertainty by using two values (referred to as optimistic case and pessimistic case) for the pa-
rameter that is unknown, and by associating a probability with each of the values. The probability that the
optimistic value is correct over the pessimistic value is given by p∗ where * is the matching subscript to the
parameter in question. For example if travel time is uncertain, then the probability that the travel time of arc
(i, j) is tij is denoted by pij . This implies that the probability of the travel time arc (i, j) being t̄ij is denoted
by (1−pij), and by using these definitions the expected travel time of arc (i, j) is given by pijtij+(1−pij)t̄ij .
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In order to keep track of the routes that the vehicles follow and to check which nodes have already been
visited we need a variable that shows whether a vehicle has been to a node. The way we have decided to do
this is through the use of a binary variable xijk i, j ∈ V ∪ {0} k ∈ K that takes on the value 1 if vehicle k
travels from i to j. As many objective functions are time based (minimum travel time, etc) there needs to be
a variable that keeps track of the time at which a vehicle arrives at each node before it begins service. In our
model this variable is represented by zik i ∈ V k ∈ K where zik is the time at which vehicle k arrives at node i.

In the models, we want exactly one vehicle to visit each node therefore we need constraints that control
the routes. Constraint (3.0) sums xijk across all vehicles and across all the arcs that leave i (given by
(i, j) ∈ A : j ∈ δ+(i)) and that has to equal one for each node i. By setting it equal to 1, exactly one vehicle
will visit i.

Constraint (3.1) defines the route by saying that the same vehicle that enters a node must leave the node.
The first sum sums xjik across all the arcs that enter i so that xjik takes on the value of 1 when vehicle
k comes from some node j to node i. This summation, which will be equal 1 because of constraint (3.0),
has the summation of the arcs that leave from node i subtracted from it and is set equal to zero. If in any
case xjik equals 1, by vehicle k traveling from j to i, then xijk must also become 1 as bound by the constraint.

(3.0)
∑
k∈K

(
∑

(i,j)∈A:j∈δ+(i)

xijk) = 1 ∀ i ∈ V

(3.1)
∑

(j,i)∈A:j∈δ−(i)

xjik −
∑

(j,i)∈A:j∈δ+(i)

xijk = 0 ∀ k ∈ K, ∀ i ∈ V

Vehicle capacity cannot be exceeded therefore constraint (3.2) is needed. The summation of the values
of xijk is driven by (i, j) ∈ A : j ∈ δ+(i) and follows the same logic from the previous two constraints. Due
to the multiplication between

∑
i∈V

xijk and di the demand, the left side becomes a running total of all the

demands at for the nodes that k visits as the product of the two only takes on a non-zero value when
∑
i∈V

xijk

equals one, meaning that vehicle k visits node i. This value has to be less than the total capacity available for
the vehicle or the vehicle would run out of relief supplies in our disaster example so the right side is set to Ck.

(3.2)
∑
i∈V

di
∑

(i,j)∈A:j∈δ+(i)

xijk ≤ Ck ∀ k ∈ K

The values that variable xijk can take on must be specified, therefore constraint (3.3) makes xijk a binary
variable.

(3.3) xijk ∈ {0, 1} ∀ i, j,∈ V, ∀ k ∈ K

In addition to constraints that control the structure of the routes, constraints are needed to create and
calculate the time aspects of the model as most popular objectives for supply distribution are time related.
Constraint (3.4) makes our time variable, zik, continuous and greater than zero.

(3.4) zik ≥ 0 ∀ i ∈ V, ∀ k ∈ K

(3.5) zik + tij + si − zjk ≤M(1− xijk) ∀ k ∈ K, ∀ (i, j) ∈ A

In the constraint above (3.5) which is used as a relationship constraint to make zik and zjk take on the
correct values, the letter M is the sum of the n+ 1 largest travel times plus the n largest service times where
n is the number of nodes to be visited. M is set as this number because the constraints in the problem make
it where each arc/node can only be traveled/visited once, therefore the number of arcs used to visit n nodes
and return to depot will be n + 1. Since only n + 1 arcs will be used, and each arc used only once, it is

6



impossible that the total travel time of these arcs can exceed the sum of the n+ 1 largest arcs. Service time
of the previous node is also accounted for in the constraint so in order to ensure zik does not take on a value
larger than M is not possible the n largest service times are added as well. This makes sure that no matter
what service and travel times a vehicle experiences, it will not be able to take on a value greater than M . The
value of M is multiplied by (1−xijk) because if a vehicle k travels from i to j then xijk will take on the value
of 1 and the right side of the constraint will become 0. This forces the time when a vehicle arrives at node j,
or zjk to be greater than or equal to the time the vehicle arrived at node i plus the service time of node i and
the time it took to travel from i to j for the constraint to be satisfied. If vehicle k does not travel from i to j,
then xijk will equal 0 and the right side of the constraint will be equal to M . The constraint will then always
be satisfied no matter what values that zik, the service time, the travel time, or zjk take on as sum of the
first three will not be required to equal zjk when vehicle k does not travel from node i to j. This constraint
stays structurally the same throughout the different models, and only the values for the service and travel
times might be changed to an expected value based off whether they are the uncertain parameter in question.

In all cases we are going to examine, the objective of minimizing the time of arrival at the last location
is seen as superior to the objective of minimizing total travel time. This is because, as previously stated, in
a disaster scenario it would be more relevant to try and minimizing the time it takes to reach all locations
in need than it would be to just minimizing total travel time. This means that the popular minimize total
travel time objective function,

∑
k∈K

(zn+1,k − z0,k) needs to be altered to represent minimizing the time of

arrival at the last node. To correctly represent this goal, the objective function needs to be changed to∑
k∈K

(zn+1,k −
∑
i∈V

(ti,n+1 + si)xi,n+1,k). Because of the definition of the depot at i = 0 = n+ 1 the equation

zn+1,k − z0,k gives the total time away from depot for vehicle k, and because the objective of minimizing
time of arrival at the last node will be seen as better than the minimize total travel time objective, vehicles
will want to leave the depot at time 0 because waiting past then will just hurt the objective function value;
therefore, the value of z0,k goes to 0 which is why it has been left out in the new objective function. To
get the time of arrival at the last node, you need to subtract the travel time from the last node back to
the depot, and the service time of the last node from the total time away from the depot. This is given
by

∑
i∈V

(ti,n+1 + si)xi,n+1,k which only takes on a non-zero value (the sum of the travel time from node i

back to the depot, and the service time at node i) if xi,n+1,k equals one. Because of the route constraints
defined earlier that each node will be visited by only one vehicle, each node can only have one vehicle leave
it, therefore xi,n+1,k can only take on the value of one for one node i for each vehicle k. To get the time for
the entire fleet you then sum over K.

Now that the foundation for all problem types has been discussed, we will in the next sections examine the
different problem variations and analyze how the optimal solutions may change when the objective function
for the model is altered, and when uncertainty is introduced.

3.1 Dire Need Variant

In this problem type, the nodes are assumed to have different need urgencies therefore the best solution
would serve a node with a higher need before it served a node with a lower need. The need of a node is
represented by the parameter Ni for i ∈ V where a lower value of Ni signifies a more urgent need. This type
of problem could be easily applied to real world scenarios as all areas during a disaster are not affected the
exact same. Using hurricane Katrina as an example, the cities closest to the gulf suffered greater damage
than cities further inland as the strength of the hurricane died down after landfall. Although cities on the
gulf and further inland both may need relief supplies, the gulf area might be in more urgent need due to the
greater destruction in its area whereas the inland locations may need minimal relief. When deciding how to
serve these areas, trying just to minimize a time oriented objective function may put the inland area first
and therefore postponing service to the gulf location, which could lead to numerous casualties in the urgent
care area. If the objective was need based, then these casualties could possibly be avoided and the area that
needs relief the worst would get served first. When modeling this, the issue of how to calculate Ni arises.
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Should it be on a scale from 1-10 with general descriptions for each value, or a large specific scale in which
the values from 1-100 are given based on very specific circumstances for each value? For this project we will
assume that the value of Ni for each node has already been calculated.

Our objective in the problem is to serve all of the nodes while trying to serve the nodes with the most
need first. This objective can be illustrated by

min
∑
i∈V

∑
k∈K

zik
Ni

Because Ni is the divisor, the larger the value of zik becomes, the larger you would want Ni to be in
order to produce a smaller overall value. It is this logic that should drive the objective function to pair high
needs with lower (therefore earlier) service times.

Changing the objective function from minimizing travel time to one that includes need in the objective
can cause changes in the optimal solution even when there is no uncertainty present. Figure 3 shows an
example where changing the objective from minimizing the time of arrival at the last location to the one
specified in this section can alter the optimal route. As seen in Tables 1 and 2, when you use the minimizing
arrival time at last node, the sum of the arrival times of each node divided by the need of each node is
greater than the route shown on the right by .5.
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Dire Need Objective Using Travel Time Route 

Node Number #1 #2 #3  

Arrival Time at Node 2 5 6  

Need of Node 2 1 2 Objective Value 
   

  
⁄  1 5 3 9 

Dire Need Objective Optimal Route 

Node Number #1 #2 #3  

Arrival Time at Node 7 3 4  

Need of Node 2 1 2 Objective Value 
   

  
⁄  3.5 3 2 8.5 

Table 1 Table 2 

One of the most obvious areas in which uncertainty could have an effect on the optimal solution in the
dire need model type is uncertainty regarding the value of Ni given for each node. In Figure 4 uncertainty
is introduced for the value of Ni, and for each location the value of Ni is split 50%-50% between the two
values in parentheses. In the left example in Figure 4, the value for each node‘s need is the same as it
was in the previous example without uncertainty. The example on the right of Figure 4 shows the optimal
route if all the locations in the example could take on the value of 1, with the location at the top having
a significantly higher optimistic case value (pessimistic being the lower, therefore direr need case). As you
can see in the bolded optimal solution, the model suggests that it is better to serve the locations with the
lower (more urgent) optimistic case first and serve the top node last it could potentially have the least urgent
need. Tables 3 and 4 break down the arrival time and expected need of each node, and give the respective
objective function values for each route. In this example, the route suggested is different than any of the
routes previously suggested. This shows the variation in the optimal solution that can occur when the need
of the location is the uncertain parameter.
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Dire Need Objective With Uncertainty Optimal Route 

Node Number #1 #2 #3  

Arrival Time at Node 2 6 5  

Expected Need of Node 1.5 2.5 1.5 Objective Value 
   

  
⁄  1.33 2.4 3.33 7.06 

Dire Need Objective No Uncertainty Optimal Route 

Node Number #1 #2 #3  

Arrival Time at Node 7 3 4  

Expected Need of Node 1.5 2.5 1.5 Objective Value 
   

  
⁄  4.66 1.2 2.66 8.53 

Table 3 Table 4 

3.2 Serve As Many As Quickly As Possible

In this problem type, all nodes have the same urgency of need and the goal is to serve the most nodes
as quickly as possible. In the solution it would be better if you could serve 5 nodes in 5 hours with a 7 hour
total travel time than if you could serve 5 nodes in 6 hours with a 6 and a half total travel time.

As previously discussed, defining what “serve as many as quickly as possible” means is a difficult task.
In this variation we explore an alternative “serve as many as quickly as possible” objective which focuses
on serving as many locations as possible in a given time period. Figure 6 illustrates how uncertainty could
affect the optimal route suggested by the serve as many as quickly as possible objective. In both examples
the goal is to serve as many as possible in the first six hours. In the left example there is no uncertainty
and if the vehicle visits the locations in the order of 1-2-3-4, then all of the nodes can be reached within the
first six hours. If they are visited in any other order, then there is no way to reach all nodes within the first
six hours. In the right example travel time uncertainty is introduced and by using the expected values, a
new optimal route is created. In order to visit the most nodes possible within six hours, the optimal route
is 4-3-2. If you were to try and use the optimal route order from the example on the left then in the first six
hours one could only expect to reach 2 nodes. It is also important to note that if the 4-3-2 route is taken
and both of the first two arcs take on their worst case value (4 and 2), then it is still possible to visit two
nodes, whereas if one travels the route 1-2 and both of the first two arcs in that route take on their worst
case value (4 for both), then you would only reach one node in the first six hours.
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#3 

#4 

#1 

3 
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1 
#2 

#3 

#4 

#1 

(3(.8) + 4(.2)) = 3.2 

(1(.8) + 2(.2)) = 1.2 

(2(.5) + 4(.5)) = 3 

(2(.5) + 4(.5)) = 3 

 

(1(.5) + 2(.5)) = 1.5 

Figure 6

In order to count the number of locations that are visited before the specified time, which will be defined
as H, we need to introduce the binary variable yi for all i ∈ V which takes on the value of 1 if node i is

10



visited after time H and 0 otherwise. The objective function shown below maximizes (1−yi), so the variable
will want to become 0 in as many instances as possible. For yi to be able to take on the value of 0, zik must
be less than H, which in the problem means that the vehicle k will have to arrive at node i before time H.
This is modeled in constraint (3.2.0). If zik is less than H there is no reason to add M to it, and yi will take
on the value of 0 (M is the sum of the n+ 1 travel times plus the n largest service times and is used so that
when added zik cannot be greater than H +Myi). However, if zik is greater than H, then for the constraint
to hold true yi must take on the value of 1 so that M can be added to H. Therefore, the route which vis-
its the most nodes before time H will allow for yi to take on 0 in the most instances and be the optimal route.

max
∑
i∈V

(1− yi)

(3.2.0) zik ≤ H +Myi ∀ i ∈ V, ∀ k ∈ K

The value of zik depends on the route taken and must be modeled in constraint (3.2.1) where (pijtij +
(1− pij)t̄ij) gives the expected travel time from i to j along arc (i, j)

(3.2.1) zik + si + (pijtij + (1− pij)t̄ij)− zjk ≤M(1− xijk) ∀ k ∈ K, ∀ (i, j) ∈ A

3.3 Service Time Uncertainty

In this problem type, the time that it will take a vehicle to serve a node, drop off humanitarian aid, is
not known with 100% certainty. For example, in the real world when a vehicle goes to deliver supplies to a
large city, it may have to make more than one stop in that city as it visits multiple drop off points within
the city. The time it takes to visit these distribution sites within the city and deliver the supplies would be
the service time. If the disaster has affected transportation infrastructure in a significant way, this tour of
the supply drop off points may take much longer than predicted thus increasing the service time. In this
variation we seek to analyze how an uncertain service time affects the optimal route, or if it even affects it
at all.

Service time is an important aspect to take into account, because even when it is not affected by uncer-
tainty it can cause significant changes to the route when not accounted for. In Figure 7, the example on the
left shows the optimal route when all the service times are assumed to be equal and take on a value of 0.
However, when one of the service times becomes significantly larger than the others, that node becomes the
node last visited. This is shown in the example of the right of Figure 7 where node #1 has a service time
that is greater than the other nodes by 3, thus making it the last node on the tour when minimizing arrival
time at the last node is the objective (the objective function values are shown below the diagram). Because
it can have such impacts on the route, it is important to examine uncertainty in service time.
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Figure 7

In this variation, the service time is the only parameter that is not known with 100% certainty. The
optimistic estimate for service time of node i is given by si and the pessimistic estimate is given by s̄i. The
optimistic case is favored over the pessimistic case with a probability of pi. While this type of uncertainty
can be analyzed with many different objectives, the current objective in this example is to minimize the
total time that it takes the vehicles to arrive at the last node on their route. Figures 8 and 9 below illustrate
how uncertainty in the service time of a node can affect the optimal solution. When there is no uncertainty
present (each nodes service time is known to be 5), the optimal tour travels in a counter-clockwise fashion
stopping at every node in order as displayed in Figure 8. If uncertainty occurs, and the service time at
the top node has a fifty-fifty chance of being 5 (optimistic) or 15 (pessimistic) then the route on the right
becomes optimal as the expected service time is used as the service time for the top node as shown in Figure
9. Because there is a chance that the service time at the top node could take on a value that would greatly
delay the time at which the other nodes get reached, it becomes optimal to save that node for last as to not
risk delaying the vehicles arrival time at later nodes.
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Figure 9

The objective is to minimize the total time that it takes the vehicles to arrive at the last node on their
route while serving all nodes.
min

∑
k∈K

∑
i∈V

(zn+1,k − (ti,n+1 + si)xi,n+1,k)
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The value of zik depends on the route taken and must be modeled in constraint (3.3.0) where (pisi +
(1− pi)s̄i) gives the expected service time at node i.

(3.3.0) zik + tij + (pisi + (1− pi)s̄i)− zjk ≤M(1− xijk) ∀ k ∈ K, ∀ (i, j) ∈ A

3.4 Road Capacity Variant

In this problem type, the roads that connect locations are only able to be traversed by certain size ve-
hicles. This is very applicable to the real world as not all roads in a disaster situation will be affected the
same. Highways that are built far away from trees and do not have any bridges may have a lower chance of
becoming unusable than smaller country roads. The country roads may have trees all around and a natural
disaster may push large amounts of debris onto the road, and roads that utilize bridges may become signifi-
cantly flooded so that both would become highly inaccessible. In this variation we want to examine how an
optimal solution may change when the capacity of a road (or size of a vehicle that can traverse the road) is
taken into account and not known with certainty.

Like in the other examples, uncertainty in road capacity or size of a vehicle that can transverse a road
can be examined across a wide range of objective functions. It differs from the other problems in that in
order to analyze it, we need to add some parameters that were not previously defined or discussed. To start,
the most obvious parameter missing is road capacity itself. Road capacity along arc (i, j) when there is no
uncertainty and for the optimistic case amidst uncertainty is shown by wij where i, j ∈ V . Using the same
logic that the other parameters from early used, the pessimistic road capacity is given by w̄ij where i, j ∈ V
and the probability the optimistic case in the actual road capacity going to be experience is given by pij and
the probity of the pessimistic case is 1− pij respectively. For these parameters to play a role when forming
the optimal solution, each vehicle needs to be given a size qk and constraint (7.1) needs to be added. A
vehicle cannot go down an arc that can’t support its size so we must have the constraint (7.1). If a vehicles
size - qk - is larger than the allowable size for the arc - (pijwij + (1− pij)w̄ij) - then xijk cannot take on the
value 1 and the vehicle does not go down arc (i, j). All other constraints and parameters from the earlier
definition of parts common to all problems are still in use.

Figure 10 and 11 illustrate how uncertainty in road capacity can lead to a different optimal solution
than would be recommended with no uncertainty. In Figure 10, there is no uncertainty accounted for and
the optimal route to serve all the nodes while minimizing the time you arrive at the last node is shown.
When uncertainty in the road is taken into account and expected road capacity is used to formulate routes
in Figure 11 the optimal solution changes. Based off the expected values, arcs/roads that would not be able
to be traveled on with our vehicles are excluded so that a route that has a high chance of being impassable
is not chosen. In the case with uncertainty, the middle arc that was left out in the first scenario is included,
and the time arriving at the last node is only increased by 1. In a disaster response strategy, this small
increase in time would be worth trading for the increased reliability of the route.
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Demand at each node = 5 

Travel time of the arcs dashed below = 3  

Travel time of other arcs = 2 

Capacity Vehicle Size 

C1 = 20  q1 = 5 

#2 
wij = 6 

wij = 6 
wij = 6 

wij = 6 

wij 6 

wij = 6 

wij = 6 

#1 #4 

#3 

Figure 10

 

wij = (6(.7)) + 3(.3)) = 5.1 

wij = (6(.9)) + 5(.1)) = 5.9 
wij = (6(.7)) + 4(.3)) = 5.4 

wij = (6(.8)) + 4(.2)) = 5.6 

wij = (6(.9)) + 4(.1)) = 5.8 

wij = (6(.5)) + 3(.5)) = 4.5 

wij = (6(.9)) + 5(.1)) = 5.9 

#1 

#2 #3 

#4 

Figure 11

The objective, shown on the next page, is to minimize the total time that it takes the vehicles to arrive
at the last node on their route while serving all nodes.
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min
∑
k∈K

∑
i∈V

(zn+1,k − (ti,n+1 + si)xi,n+1,k)

The value of zik depends on the route taken and must be modeled in constraint (3.4.0)

(3.4.0) zik + tij + si − zjk ≤M(1− xijk) ∀ k ∈ K, ∀ (i, j) ∈ A

A vehicle cannot go down an arc that can’t support its size so we must have the constraint (3.4.1). If
a vehicles size - qk - is larger than the allowable size for the arc - (pijw̄ij + (1− pij)wij) - then xijk cannot
take on the value 1 and the vehicle does not go down arc (i, j)

(3.4.1) qkxijk ≤ (pijwij + (1− pij)w̄ij) ∀ k ∈ K, ∀ (i, j) ∈ A

3.5 Uncertain Demand

In this problem type, the demand at each node is not known with 100% certainty. This is one of the
easiest variations to imagine in the real world as the amount of supplies to take to each location in need is
often not exactly known. Responders may know that a city needs water, but do they need 10,000 liters or
20,000 liters? It would be difficult to predict exactly how long it would be until the uncontaminated water
utilities would be back online, and this could also affect the demand of the city as they wouldn‘t need a
large amount of water from the emergency responders if clean water was going to be available a few hours
after the responders left. Because of the natural uncertainty that comes with trying to estimate demand, in
this variation we want to observe how this uncertainty could potentially affect the optimal route given by
the model.

In a disaster situation the exact amount of humanitarian assistance needed is often not known, which
makes studying uncertainty in demand a very applicable area. For demand uncertainty, the parameters for
optimistic and pessimistic demand resemble the parameters for uncertain service time except that the letter
s is replaced with a d. Figure 12 below shows the optimal route in a situation where the demand is known
and exactly equal to the capacity of a vehicle (Ck = 45). In this case, it would be best to use one vehicle
to cover all the demand if you wanted to minimize total travel time. However, if there was any chance that
demand at one of these nodes would be greater than what is reported above then one would want to split
this route into two routes between vehicles as any increase in demand would exceed vehicle capacity.
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Figure 12

Figure 13 illustrates why studying uncertainty in demand can provide interesting results. In the two ex-
amples, the capacity of each vehicle is set at 20 and the travel time of the arcs not otherwise specified is
2. In the example with no uncertainty on the left, it is assumed that all the demands are known and the
route that minimizes the time at which the last node is served is shown. In a disaster situation, an exact
number for demand would probably be hard to attain. If you have reports of what it could be and use the
uncertainty associated with this information you can calculate the estimated demand for each node and use
this to build a route (which results in the route on the right). In comparison to the route suggested by the
model on the left, when uncertainty is taken into account the time of arrival at the last node is increased
by 3. This increase is considered necessary so that the entire expected demand can be met. Upon further
analysis, by altering the routes in this way, both vehicles would still be able to meet all of their demand if
half of the nodes they visit need the worst case scenario demand. If you use the routes suggested on the left
figure and one of the furthest two right nodes has worst case demand, then demand at one of the nodes on
the right tour will not be fully met. By using the expected demand, the routes created balance out the risks
of running out of supply by only increasing the objective (stated earlier) by 3. The routes created in the
right figure only increase the sum of the two routes (total travel time until all nodes are reached) by 1 from
14 to 15.
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The objective is to minimize the total time that it takes the vehicles to arrive at the last node on their
route while serving all nodes.

min
∑
k∈K

∑
i∈V

(zn+1,k − (ti,n+1 + si)xi,n+1,k)

Because the demand is now uncertain, constraint (3.5.0) where the expected demand is given by pidi + (1−
pi)d̄i will replace constraint (3.2) in this variation.

(3.5.0)
∑
i∈V

(pidi + (1− pi)d̄i)
∑

j∈δ+(i)

xijk ≤ Ck ∀ k ∈ K

The value of zik depends on the route taken and must be modeled in constraint (3.5.1)

(3.5.1) zik + tij + si − zjk ≤M(1− xijk) ∀ k ∈ K, ∀ (i, j) ∈ A

4 Algorithms

The algorithm that could be used in creating routes for the different model types would be straightforward
and incorporate a construction phase and an improvement phase. The construction phase would start from
the depot, and if there were nodes that had not been visited then the node that would cause the smallest
increase in the objective function would be added first. From that node, all nodes that had not been visited
yet, had arcs that the vehicle was able to traverse, and whose added demand would not exceed vehicle
capacity would be considered for insertion into the route. Of the nodes being considered, whichever node‘s
insertion into the route created the smallest increase in the objective function value would be added. This
process would continue until no more nodes could be added to the route (whether it be to vehicle capacity,
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road capacity, or that all nodes had been served). If there were still unserved nodes, then go back to the
first step and start at the depot with a new vehicle. If all nodes had been included into a route then the
improvement phase would start. The improvement phase would start with multi-route improvement and
string mix improvement would be used. This means that a string of one or two vertices would be moved
from one route to another and that two strings of one to two vertices would be moved from one route to each
other. If either of these techniques improved the overall solution then the change would become permanent.
This would be ran numerous times until all of the options had been explored. Then an improvement within
each route would occur when λ arcs are removed and then the λ remaining segments are reconnected in all
possible ways to see if a profitable combination existed. This would occur for all routes and all arcs until all
possibilities had been explored thus ending the improvement phase.

Incorporating uncertainty into this process would not be complicated as the uncertain values in the model
could be easily calculated beforehand, and just substituted in for what would normally be known data. You
would only need the optimistic and pessimistic value for the uncertain parameter and the probability of the
optimistic case occurring (assuming that the chance of the pessimistic case would be one minus the chance
of the optimistic case) so that it could calculate and use the expected value for the value of the uncertain
parameter. This calculated expected value would be substituted in for the respective parameter in the place
of data known with 100% certainty. Also, when analysing the cost to the objective function of adding a
node, the time aspect of including the node would need to be the travel time of the arc to be traversed plus
the service time of the node you are arriving at.

5 @Risk Simulation in Excel

In this research, models of networks were created in Excel in order to observe the effects of uncertainty on
tours. Two networks of destination nodes and arcs were created, and travel times were assigned to the arcs
for both networks. In order to study the effect of uncertainty in these networks through the use of scenarios
where the travel time along an arc is uncertain, the arcs were also assigned a maximum, worst case, travel
time and probabilities were associated with these increased travel times based on the likelihood of a vehicle
that used that arc encountering the increased travel time. The illustrations of these two networks and the
information for the arc numbers, travel times, probabilities, and expected value based off those probabilities
are shown below in Figure 14 and Tables 5-6. (Note: The number next to an arc indicates the numeric label
of that arc that is used in the tables.)
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Network 1 Data 

Arc Low High P(low) P(High) EV 

1 2 5 0.4 0.6 3.8 

2 3 4 0.5 0.5 3.5 

3 2 3 0.9 0.1 2.1 

4 3 7 0.4 0.6 5.4 

5 5 6 0.8 0.2 5.2 

6 1 2 0.9 0.1 1.1 

7 4 7 0.2 0.8 6.4 

8 6 7 0.8 0.2 6.2 

Original Optimal Route: 1-3-4-6 
Travel Time w/o Uncertianty:8 

Optimal Route Using EV’s: 2-3-5-6 
Travel Time w/o Uncertianty:11 

Network 2 Data 

Arc Low High P(low) P(High) EV 

1 2 5 0.3 0.7 4.1 

2 4 7 0.4 0.6 5.8 

3 3 4 0.5 0.5 3.5 

4 4 5 0.5 0.5 4.5 

5 4 5 0.6 0.4 4.4 

6 4 5 0.4 0.6 4.6 

7 3 5 0.5 0.5 4 

8 4 7 0.5 0.5 5.5 

Original Optimal Route: 1-2-4-6 
Travel Time w/o Uncertianty:14 

Optimal Route Using EV’s: 3-4-6-8 
Travel Time w/o Uncertianty:15 

Table 5 Table 6 

For each network, the average time of arrival at the last node in the tour and maximum time of arrival
at the last node in the tour were recorded for two different routes. The first route used was the route
that minimized the time of arrival at the last node in the tour when there was no uncertainty, and the
second route used was the route that minimized the time of arrival at the last node in the tour when there
was uncertainty and the expected value of the uncertain parameter was used. Both routes were initially
analysed using a scenario in which the travel time was not known with 100% certainty and there was a
discrete probability distribution between an optimistic and pessimistic value. This was accomplished by
using the @Risk Simulation software tool which allowed for the parameters of the uncertain travel time on
each arc to be entered, and then @Risk generated a travel time for each arc and based of the probability
of the optimistic and pessimistic cases. Then the sum-product was taken of the arc lengths determined
by the @Risk tool and binomial cells that took on the value of 1 if that arc was used in the route. This
sum-product was set up as the output cell for the @Risk Simulation as it gave the total travel time that
it would take a vehicle to travel that path for the current values of the arcs travel times. For further
comparison, the same networks and probabilities were used to calculate total travel times in the exact
same way, but this time the @Risk software used a uniform distribution based on the high and low val-
ues for each arcs travel time. Using the @Risk software allowed for each combination of network and
probability distribution to be ran for 10,000 replications, and the results are shown below in Tables 7-10.

 

 

 

 

Uncertainty With Discrete Probability Used For Expected Values 

 
Travel Time Data 

Using Route Suggested 
When There was No 

Uncertainty 

Using Route Suggested 
When Expected Values 

Were Used 

Average Over Trials  
(Std Dev) 

12.4 (2.5) 11.9 (.76) 

Max  Over Trials 17 15 

Uncertainty With Uniform Probability Used For Expected Values 

 
Travel Time Data 

Using Route Suggested 
When There was No 

Uncertainty 

Using Route Suggested 
When Expected Values 

Were Used 

Average Over Trials 
 (Std Dev) 

12.5 (1.5) 13 (.6) 

Max  Over Trials 16.6 14.8 

Uncertainty With Discrete Probability Used For Expected Values 

 
Travel Time Data 

Using Route Suggested 
When There was No 

Uncertainty 

Using Route Suggested 
When Expected Values 

Were Used 

Average Over Trials 
(Std Dev) 

19 (2.1) 18.1 (1.7) 

Max  Over Trials 22 21 

Uncertainty With Uniform Probability Used For Expected Values 

 
Travel Time Data 

Using Route Suggested 
When There was No 

Uncertainty 

Using Route Suggested 
When Expected Values 

Were Used 

Average Over Trials  
(Std Dev) 

18 (1.3) 18 (1) 

Max  Over Trials 21.7 20.9 

Table 7 Table 8 

Network 1 

Network 2 

Table 9 Table 10 

When a discrete probability is used, the route that is considered optimal when the expect values are used
to for travel times along the arcs not only minimized the time of arrival at the last node in the tour, but also
had the lower maximum travel time encountered when there was uncertainty present. This is true for both
networks analysed as in network 1, the average travel time was .5 units less and the maximum travel time
over the trials is 2 units lower when using the expected value optimal route, and in network 2 the average
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travel time was .9 units less and the maximum travel time over the trials is 1 unit lower when using the
expected value optimal route. In the simulations where the travel time could equally be any value within
the bounds of the optimistic and pessimistic value (uniform distribution), a different result occurred.

In the first network, the route that was optimal when the expected value of the uncertain parameter
was used still had the lower maximum value for the time arrived at the last node, but the route that was
optimal when there was no uncertainty in the model had the lower average time of arrival at the last node
in the tour. In the second network, the route that was optimal when using the expected values still had the
lower maximum travel time, but the average travel time was identical regardless of which route was taken.
Although I expected the case which took the expected values into account to be better in all areas, the
results from the simulation reflect positively on the idea of using the expected values in route calculation.
Looking at network 2, the expected value route performed comparatively to the originally optimal route
when it came to average travel time, while recording a lower maximum travel time in both cases. Although
the same is not true for network 1, the results seem to support the idea that using the expected values
during route formulation is still a good idea. In the case where uniform probabilities were used, by using the
optimal route based off the expected values, you only sacrifice half a unit of time (.5) in order to reduce the
maximum travel time that could be incurred by almost two time units (1.8). I believe in a disaster situation
this trade off would be favorable as it is a small sacrifice to make in order to greatly protect the route against
a higher worst case scenario value.
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